JPH10273864A - Composite nonwoven fabric and its production - Google Patents

Composite nonwoven fabric and its production

Info

Publication number
JPH10273864A
JPH10273864A JP9335293A JP33529397A JPH10273864A JP H10273864 A JPH10273864 A JP H10273864A JP 9335293 A JP9335293 A JP 9335293A JP 33529397 A JP33529397 A JP 33529397A JP H10273864 A JPH10273864 A JP H10273864A
Authority
JP
Japan
Prior art keywords
polymer
fiber web
fiber
nonwoven fabric
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9335293A
Other languages
Japanese (ja)
Inventor
Koichi Nagaoka
孝一 長岡
Yasuhiro Yonezawa
安広 米沢
Mamiko Matsunaga
雅美子 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP9-15077 priority Critical
Priority to JP1507797 priority
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP9335293A priority patent/JPH10273864A/en
Publication of JPH10273864A publication Critical patent/JPH10273864A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a composite nonwoven fabric having high interlaminar peeling strength, flexibility and filtering performance by preparing a filament web consisting of an ultrafine splittable filament group composed of a high-melting polymer and a low-melting polymer and a stable fiber web composed of core-sheath conjugate staple fiber and integrating the webs by three-dimensional interlocking treatment. SOLUTION: The objective nonwoven fabric is produced by laminating a filament web consisting of an ultrafine split filament group composed of a fiber-forming low- melting polymer A and a fiber-forming high-melting polymer B incompatible with the polymer A and having a melting point higher than that of the polymer A by 30-180 deg.C and obtained by splitting a splittable bicomponent conjugate filament composed of the polymers A and B to a staple fiber web consisting of a core-sheath conjugate staple fiber having a fiber-forming low-melting polymer C as the sheath part and a fiber-forming high-melting polymer D as the core part and integrating the filament web to the staple fiber web by the three-dimensional interlocking of the constituent fibers of the filament web with each other, the constituent fiber of the filament web to that of the stable fiber web and the constituent fibers of the staple fiber web with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、繊維形成性重合体
からなる長繊維ウエブと主として繊維形成性重合体から
なる短繊維ウエブとが積層一体化されてなる複合不織布
であって、層間剥離強力が高く、柔軟性に優れ、更に良
好なフイルタ−性能を有しており、医療・衛生材料、衣
料用、生活関連資材用、産業資材用と広範囲の用途に適
用できる複合不織布及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite nonwoven fabric obtained by laminating and integrating a long fiber web made of a fiber-forming polymer and a short fiber web mainly made of a fiber-forming polymer. Highly flexible, excellent in flexibility and having good filter performance and applicable to a wide range of applications including medical and hygiene materials, clothing, living related materials, industrial materials, and a method for producing the same. Things.

【0002】[0002]

【従来の技術】従来から、基布上に短繊維ウエブを積層
した種々の複合不織布が開示されている。例えば、特開
昭53−114975号公報や特開昭53−12460
1号公報には、織編物を基布としこの上に分割型二成分
系複合短繊維からなる不織ウエブあるいはメルトブロー
ン法により得られる極細繊維ウエブを積層した複合不織
布が開示されている。しかしながら、これらの複合不織
布はその用途が合成皮革に限定されしかもコスト的に極
めて高価で経済的にも劣るものであった。更に、特開昭
63−211354号公報には、スパンボンド法によっ
て得られる長繊維不織布を基布としこの片面あるいは両
面に存在する長繊維を部分的に切断して繊維端を形成
し、この繊維端と基布上に短繊維ウエブを積層した繊維
とを絡合させた複合不織布が開示されている。しかしな
がら、この複合不織布は長繊維を部分的に切断するため
機械的特性が低下し、しかも長繊維不織布特有の表面平
滑性が損なわれるという問題を有している。又、特公昭
54−24506号公報には、熱可塑性繊維不織布から
なる通気性熱溶着層と天然繊維等からなる通気性非熱溶
着層とが積層され、非熱溶着層上に熱溶着性物質が点在
的に配置され、かつ熱溶着性物質と熱溶着層との溶融部
が非熱溶着層の両面から浸透して前記非熱溶着層を接着
狭持した構造を有する積層不織構造体が提案されてい
る。しかしながら、この積層不織構造体は、天然繊維が
積層されているため吸水性には優れるものの、通気性の
向上を目的とすることからも明らかなようにフイルタ−
性能を有しないものである。しかも、この積層不織構造
体は、これを製造するに際して通気性熱溶着層と通気性
非熱溶着層とを積層する工程と、非熱溶着層上に含浸用
熱溶着性シ−ト層を重合し超音波融着処理により熱溶着
性物質と熱溶着層との溶融部が非熱溶着層の両面から浸
透して前記非熱溶着層を接着狭持した構造を発現する工
程と、前記含浸用熱溶着性シ−トをその溶融部を残して
剥離する工程とを必要とするなど製造技術の観点からす
れば煩雑で経済的にも劣るものであった。
2. Description of the Related Art Conventionally, various composite nonwoven fabrics in which short fiber webs are laminated on a base fabric have been disclosed. For example, JP-A-53-114975 and JP-A-53-12460
No. 1 discloses a composite nonwoven fabric in which a woven or knitted fabric is used as a base fabric and a nonwoven web made of split type bicomponent conjugate short fibers or an ultrafine fiber web obtained by a melt blown method is laminated thereon. However, the use of these composite nonwoven fabrics is limited to synthetic leather, and is extremely cost-effective and economically inferior. Further, JP-A-63-21354 discloses that a long fiber nonwoven fabric obtained by a spunbond method is used as a base fabric, and a long fiber present on one side or both sides is partially cut to form a fiber end. A composite nonwoven fabric is disclosed in which an end and a fiber obtained by laminating a short fiber web on a base fabric are entangled. However, this composite nonwoven fabric has a problem that the mechanical properties are deteriorated because the long fibers are partially cut, and the surface smoothness peculiar to the long fiber nonwoven fabric is impaired. Japanese Patent Publication No. 54-24506 discloses that a gas-permeable heat-sealing layer made of a thermoplastic fiber non-woven fabric and a gas-permeable non-heat-welding layer made of natural fibers and the like are laminated, and a heat-welding material is formed on the non-heat-welding layer. Are disposed intermittently, and a fused portion of the heat-welding substance and the heat-welding layer penetrates from both sides of the non-heat-welding layer, and has a structure in which the non-heat-welding layer is adhered and sandwiched. Has been proposed. However, this laminated nonwoven structure is excellent in water absorption because natural fibers are laminated, but as is apparent from the object of improving the air permeability, it is apparent from the filter.
It has no performance. In addition, the laminated nonwoven structure has a step of laminating a gas-permeable heat-sealing layer and a gas-permeable non-heat-welding layer when manufacturing the same, and a heat-sealing sheet layer for impregnation on the non-heat-sealing layer. A step of superposing and melting the heat-weldable substance and the heat-weldable layer by ultrasonic welding so as to permeate from both sides of the non-heat-weldable layer to exhibit a structure in which the non-heat-welded layer is adhered and sandwiched; From the viewpoint of the production technology, it is complicated and economically inferior from the viewpoint of the production technique, for example, requiring a step of peeling off the heat-weldable sheet while leaving the fused portion.

【0003】[0003]

【発明が解決しょうとする課題】そこで、本発明は、2
種類の繊維形成性重合体から構成される極細割繊フイラ
メント郡より構成された不織布層と主として繊維形成性
重合体からなる短繊維不織布層とが積層されてなる複合
不織布であって、両不織布の層間剥離強力が高く、柔軟
性に優れ、良好なフイルタ−特性を有する複合不織布
と、それを効率良く製造できる方法を提供しようとする
ものである。
Therefore, the present invention provides a
A composite nonwoven fabric in which a nonwoven fabric layer composed of an ultrafine split filament group composed of fiber-forming polymers and a short-fiber nonwoven fabric layer mainly composed of a fiber-forming polymer are laminated. An object of the present invention is to provide a composite nonwoven fabric having high delamination strength, excellent flexibility, and good filter characteristics, and a method for efficiently producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を達成すべく鋭意検討の結果、本発明に到達した。すな
わち、本発明は、以下の構成をその要旨とするものであ
る。
Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, have reached the present invention. That is, the present invention has the following configuration as its gist.

【0005】繊維形成性低融点重合体Aと前記低融点重
合体Aに対し非相溶性でかつ前記低融点重合体Aの融点
より30〜180℃高い融点を有する繊維形成性高融点
重合体Bとからなる分割型二成分系複合連続単糸の分割
により発現した前記低融点重合体A及び前記高融点重合
体Bから構成される極細割繊フイラメント群からなる長
繊維ウエブと、主として繊維形成性低融点重合体Cを鞘
部に繊維形成性高融点重合体Dを芯部に配置せしめた芯
鞘複合短繊維からなる短繊維ウエブとが積層されてな
り、かつ長繊維ウエブの構成繊維同士、長繊維ウエブと
短繊維ウエブとの構成繊維同士及び短繊維ウエブの構成
繊維同士の三次元交絡により一体化してなることを特徴
とする複合不織布。
The fiber-forming low melting point polymer A and the fiber forming high melting point polymer B which are incompatible with the low melting point polymer A and have a melting point 30 to 180 ° C. higher than the melting point of the low melting point polymer A And a long-fiber web consisting of a group of ultrafine splitting filaments composed of the low-melting polymer A and the high-melting polymer B, which are developed by splitting a split-type bicomponent composite continuous single yarn consisting of A short fiber web composed of a core-sheath composite short fiber in which a low-melting polymer C is disposed in a sheath portion and a fiber-forming high-melting polymer D is disposed in a core portion is laminated, and constituent fibers of a long fiber web, A composite nonwoven fabric characterized by being integrated by three-dimensional confounding between constituent fibers of a long fiber web and a short fiber web and between constituent fibers of a short fiber web.

【0006】繊維形成性低融点重合体Aと前記低融点重
合体Aに対し非相溶性でかつ前記低融点重合体Aの融点
より30〜180℃高い融点を有する繊維形成性高融点
重合体Bとからなる分割型二成分系複合連続単糸群を溶
融紡糸し、前記複合連続単糸群をエアーサッカーを用い
て引取り、スクリーンコンベア等の移動式捕集面上に開
繊堆積させて長繊維ウエブとし、前記長繊維ウエブを部
分熱圧着装置を用いて前記複合連続単糸群に部分的な熱
圧着処理を施して長繊維ウエブを得、前記長繊維ウエブ
の少なくとも片面に主として繊維形成性低融点重合体C
を鞘部に繊維形成性高融点重合体Dを芯部に配置せしめ
た芯鞘複合短繊維からなる短繊維ウエブを積層し、次い
で、前記積層体に高圧液体流処理を施し、長繊維ウエブ
の構成繊維同士、長繊維ウエブと短繊維ウエブとの構成
繊維同士及び短繊維ウエブの構成繊維同士を三次元的に
交絡させることにより積層体を全体として一体化させる
ことを特徴とする複合不織布の製造方法。
The fiber-forming low melting point polymer A and the fiber forming high melting point polymer B which are incompatible with the low melting point polymer A and have a melting point 30 to 180 ° C. higher than the melting point of the low melting point polymer A The composite continuous single yarn group consisting of the following is melt-spun, and the composite continuous single yarn group is taken up using air soccer and spread and deposited on a movable collecting surface such as a screen conveyor to obtain a long fiber web. And performing a partial thermocompression treatment on the composite continuous single yarn group using a partial thermocompression bonding apparatus to obtain a long fiber web, and at least one surface of the long fiber web is mainly composed of a fiber-forming low melting point weight. Coalescing C
A short fiber web composed of a core-sheath composite short fiber in which a fiber-forming high-melting polymer D is disposed in a core portion in a sheath portion is laminated, and then the laminate is subjected to a high-pressure liquid flow treatment to obtain a long fiber web. Manufacture of a composite nonwoven fabric characterized by integrating a laminated body as a whole by three-dimensionally entanglement of constituent fibers, constituent fibers of a long fiber web and a short fiber web, and constituent fibers of a short fiber web. Method.

【0007】前記複合不織布の製造方法において、長繊
維ウエブとして、部分的に熱圧着した長繊維ウエブを座
屈処理にて熱圧着されていない部位に存在する前記複合
連続単糸を分割割繊させて、低融点重合体A又は高融点
重合体Bから構成される極細割繊フイラメント群を少な
くとも一部発現させ、かつ極細割繊フイラメント群は非
交絡状態とした長繊維ウエブを用いることを特徴とする
複合不織布の製造方法。
In the method for producing a composite non-woven fabric, the continuous filament yarn which has been partially thermocompressed is split by splitting the composite continuous single yarn present in a portion which has not been thermocompression-bonded by buckling. The ultrafine splitting filament group composed of the low melting point polymer A or the high melting point polymer B is expressed at least in part, and the ultrafine splitting filament group is characterized by using a long fiber web in an unentangled state. Of producing a composite nonwoven fabric.

【0008】前記複合不織布の製造方法において、長繊
維ウエブとして、部分的に熱圧着した長繊維ウエブに高
圧液体流処理を施して熱圧着されていない部位に存在す
る前記複合連続単糸を分割させて、低融点重合体A又は
高融点重合体Bから構成される極細割繊フイラメント群
を少なくとも一部発現させ、かつ極細割繊フイラメント
群同士を三次元的に交絡させた長繊維ウエブを用いるこ
とを特徴とする複合不織布の製造方法。
[0008] In the method for producing a composite nonwoven fabric, as the long fiber web, a high-pressure liquid flow treatment is applied to a partially thermocompressed long fiber web to divide the composite continuous single yarn existing in a portion not thermocompressed. Using a long fiber web in which at least a part of the ultrafine splitting filament group composed of the low melting point polymer A or the high melting point polymer B is expressed, and the ultrafine splitting filament groups are three-dimensionally entangled with each other. A method for producing a composite nonwoven fabric, comprising:

【0009】[0009]

【発明の実施の形態】次に、本発明を詳細に説明する。
まず、本発明に使用する分割型二成分系複合連続単糸よ
り構成された長繊維ウエブについて説明する。該分割型
二成分系複合連続単糸は、繊維形成性低融点重合体A
と、該低融点重合体Aに対し非相溶性の繊維形成性高融
点重合体Bとからなるものである。該低融点重合体Aと
該高融点重合体Bとが互いに非相溶性であるのは、単糸
に衝撃を与えたときに分割しやすいようにするためであ
る。
Next, the present invention will be described in detail.
First, a long fiber web composed of a split type two-component composite continuous single yarn used in the present invention will be described. The split type two-component composite continuous single yarn is a fiber-forming low-melting polymer A
And a fiber-forming high-melting polymer B incompatible with the low-melting polymer A. The reason why the low melting point polymer A and the high melting point polymer B are incompatible with each other is that the single yarn is easily split when subjected to impact.

【0010】分割型二成分系複合連続単糸の繊維形成性
高融点重合体Bの融点は繊維形成性低融点重合体Aの融
点より30〜180℃高くなければならない。両者の融
点差が30℃未満であると、部分熱圧着装置を用いて熱
圧着処理する際に、低融点重合体のみでなく高融点重合
体も軟化溶融することとなり、柔軟性を有する複合不織
布が得られないこと及び後の分割割繊工程において両成
分が分割割繊しにくくなり、目標の複合不織布が得られ
ないこととなる。逆に融点差が180℃を超えると、両
重合体を溶融複合紡糸する際に低融点重合体が熱劣化を
起こしやすく、現実的に複合連続単糸を製造しにくくな
るため、好ましくない。
The melting point of the fiber-forming high melting point polymer B of the split type two-component composite continuous single yarn must be 30 to 180 ° C. higher than the melting point of the fiber-forming low melting point polymer A. If the difference in melting point between the two is less than 30 ° C, not only the low-melting polymer but also the high-melting polymer will be softened and melted during thermocompression bonding using a partial thermocompression bonding apparatus, and the composite nonwoven fabric having flexibility Is not obtained, and in the subsequent split splitting step, both components are hardly split and split, and a target composite nonwoven fabric cannot be obtained. Conversely, if the difference in melting point exceeds 180 ° C., the low-melting-point polymer tends to undergo thermal deterioration when melt-spinning both polymers, which makes it difficult to produce a composite continuous single yarn, which is not preferable.

【0011】分割型二成分系複合連続単糸の具体例とし
ては、図1〜図4に示した如き横断面を持つものが好ま
しい。これらは、繊維形成性低融点重合体A及び繊維形
成性高融点重合体Bの両成分が共に繊維の表面に露出し
ており、かつ繊維の断面内において、一方の成分が他方
の成分により分割割繊可能な形に仕切られているもので
ある。
As a specific example of the split type two-component composite continuous single yarn, one having a cross section as shown in FIGS. 1 to 4 is preferable. In these, both components of the fiber-forming low-melting polymer A and the fiber-forming high-melting polymer B are both exposed on the surface of the fiber, and one component is divided by the other component in the cross section of the fiber. It is divided into splittable shapes.

【0012】分割型二成分系複合連続単糸の単糸繊度
は、1〜12デニールであることが好ましい。単糸繊度
が1デニール未満になると、溶融紡糸する際の紡糸口金
の単孔当たりの吐出量が低下し、生産量が低下する傾向
にあり、また、生産量を向上させるために、紡糸口金の
孔数を増加させると、紡糸工程が不安定になる。一方、
単糸繊度が12デニールを超えると、溶融紡糸された糸
条の冷却やエアーサッカーによる引き取りが困難になる
傾向にあり、また、糸条の冷却を促進させるため、紡糸
口金の孔数を減らすと、生産量が低下する。
The fineness of the split type two-component composite continuous single yarn is preferably 1 to 12 denier. When the single-fiber fineness is less than 1 denier, the discharge amount per single hole of the spinneret during melt spinning decreases, and the production amount tends to decrease. Increasing the number of holes makes the spinning process unstable. on the other hand,
If the single yarn fineness exceeds 12 denier, it tends to be difficult to cool the melt-spun yarn or take it off by air soccer, and to reduce the number of holes in the spinneret to promote cooling of the yarn. , The production volume decreases.

【0013】分割型二成分系複合連続単糸は、後の分割
割繊処理により、低融点重合体Aと高融点重合体Bとの
境界で分割され、低融点重合体Aからなる割繊フイラメ
ント又は高融点重合体Bからなる割繊フイラメントが少
なくとも一部発現する。本発明において、少なくとも一
部発現する割繊フイラメントの単糸繊度は、0.8デニ
ール以下が好ましく、より好ましくは0.05〜0.8
デニール、さらに好ましくは0.1〜0.5デニールで
ある。単糸繊度が0.05デニール未満であると、現実
的に紡糸が困難となり分割型二成分系複合連続単糸が安
価で合理的に得られにくい。また、十分に分割割繊を行
うことが困難となる傾向にある。一方、0.8デニール
を超えると、得られた複合不織布は柔軟性に劣り粗硬感
が発生する傾向にあり、また、短繊維ウエブとの交絡性
が弱くなるため複合不織布の層間剥離強力に劣る傾向に
なる。
The split type two-component composite continuous single yarn is split at the boundary between the low-melting polymer A and the high-melting polymer B by the split splitting process, and the split filament made of the low-melting polymer A is used. Alternatively, at least a part of the split filament composed of the high melting point polymer B is developed. In the present invention, the single-fiber fineness of the split filament that is expressed at least partially is preferably 0.8 denier or less, more preferably 0.05 to 0.8.
Denier, more preferably 0.1 to 0.5 denier. When the single yarn fineness is less than 0.05 denier, spinning is difficult in practice, and it is difficult to obtain a split type two-component composite continuous single yarn at low cost and rationally. In addition, there is a tendency that it is difficult to sufficiently perform split splitting. On the other hand, if it exceeds 0.8 denier, the obtained composite nonwoven fabric is inferior in flexibility and tends to have a rough and hard feeling, and the entanglement with the short fiber web is weakened, so that the delamination strength of the composite nonwoven fabric is increased. It tends to be inferior.

【0014】本発明において、分割型二成分系複合連続
単糸を構成する低融点重合体Aと高融点重合体Bとの組
み合わせとしては、ポリオレフイン/ポリアミド、ポリ
オレフイン/ポリエステル、ポリアミド/ポリエステル
等が挙げられるが、これらは代表例であって他の各種の
組み合わせも任意に採用される。
In the present invention, examples of the combination of the low melting point polymer A and the high melting point polymer B constituting the split type two-component composite continuous single yarn include polyolefin / polyamide, polyolefin / polyester, polyamide / polyester and the like. However, these are representative examples, and other various combinations are also arbitrarily adopted.

【0015】本発明に使用しうる繊維形成性ポリオレフ
イン系重合体の例としては、炭素原子数が2〜16の脂
肪族α−モノオレフイン、例えばエチレン、プロピレ
ン、1−ブテン、1−ペンテン,3−メチル1−ブテ
ン、1−ヘキセン、1−オクテン、1−ドデセン、1−
オクタデセンのホモポリオレフイン又は共重合ポリオレ
フインがある。脂肪族α−モノオレフインは他のオレフ
イン及び/又は少量(重合体重量の約10重量%まで)
の他のエチレン系不飽和モノマー、例えばブタジエン、
イソプレン、1,3−ペンタジエン、スチレン、α−メ
チルスチレンの如き類似のエチレン系不飽和モノマーと
共重合されていてもよい。特にポリエチレンの場合、重
合体重量の約10重量%までのプロピレン、1−ブテ
ン、1−ヘキセン、1−オクテン又は類似の高級α−オ
レフインと共重合させたものが製糸性がよくなるため好
ましい。
Examples of the fiber-forming polyolefin polymer which can be used in the present invention include aliphatic α-monoolefins having 2 to 16 carbon atoms, for example, ethylene, propylene, 1-butene, 1-pentene, 3 -Methyl 1-butene, 1-hexene, 1-octene, 1-dodecene, 1-
There is a homopolyolefin or a copolymerized polyolefin of octadecene. Aliphatic α-monoolefins may contain other olefins and / or small amounts (up to about 10% by weight of polymer weight)
Other ethylenically unsaturated monomers, such as butadiene,
It may be copolymerized with similar ethylenically unsaturated monomers such as isoprene, 1,3-pentadiene, styrene, α-methylstyrene. Particularly, in the case of polyethylene, a copolymer obtained by copolymerizing propylene, 1-butene, 1-hexene, 1-octene or a similar higher α-olefin with up to about 10% by weight of the polymer weight is preferred because the fiber-forming property is improved.

【0016】本発明に使用しうる繊維形成性ポリアミド
系重合体の例としては、ナイロン−4、ナイロン−4
6、ナイロン−6、ナイロン−66、ナイロン−61
0、ナイロン−11、ナイロン−12やポリメタキシレ
ンアジパミド(MXD−6)、ポリパラキシレンデカン
アミド(PXD−12)、ポリビスシクロヘキシルメタ
ンデカンアミド(PCM−12)又はこれらのモノマー
を構成単位とする共重合ポリアミドがある。本発明に使
用しうる繊維形成性ポリエステル系重合体の例として
は、酸成分としてテレフタル酸、イソフタル酸、フタル
酸、2,6−ナフタレンジカルボン酸等の芳香族ジカル
ボン酸もしくはアジピン酸、セバシン酸などの脂肪族ジ
カルボン酸又はこれらのエステル類と、アルコール成分
としてエチレングリコール、ジエチレングリコール、
1,4−ブタンジオール、ネオペンチルグリコール、
1,4−シクロヘキサンジメタノ−ル等のジオール化合
物とから合成されるホモポリエステルないしは共重合ポ
リエステルであり、上記ポリエステルにパラオキシ安息
香酸、5−ナトリウムスルフォイソフタール酸、ポリア
ルキレングリコール、ペンタエリスリトール、ビスフェ
ノールA等が添加あるいは共重合されていてもよい。
Examples of the fiber-forming polyamide polymer usable in the present invention include nylon-4 and nylon-4.
6, Nylon-6, Nylon-66, Nylon-61
0, nylon-11, nylon-12, polymetaxylene adipamide (MXD-6), polyparaxylenedecaneamide (PXD-12), polybiscyclohexylmethanedecaneamide (PCM-12) or a monomer of these There is a copolyamide as a unit. Examples of fiber-forming polyester polymers that can be used in the present invention include terephthalic acid, isophthalic acid, phthalic acid, aromatic dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid or adipic acid, sebacic acid and the like as an acid component. Aliphatic dicarboxylic acids or esters thereof, as the alcohol component ethylene glycol, diethylene glycol,
1,4-butanediol, neopentyl glycol,
It is a homopolyester or a copolyester synthesized from a diol compound such as 1,4-cyclohexanedimethanol, and the above-mentioned polyesters include paraoxybenzoic acid, 5-sodium sulfoisophthalic acid, polyalkylene glycol, pentaerythritol, Bisphenol A or the like may be added or copolymerized.

【0017】その他の繊維形成性重合体の例としては、
例えばビニル系重合体が用いられ、具体的にはポリビニ
ルアルコール、ポリ酢酸ビニル、ポリアクリル酸エステ
ル、エチレン酢酸ビニル共重合体、ポリ塩化ビニル、ポ
リ塩化ビニリデン、又は、これらの共重合体が用いられ
る。また、ポリフェニレン系重合体又はその共重合体を
使用することもできる。
Examples of other fiber-forming polymers include:
For example, a vinyl polymer is used, and specifically, polyvinyl alcohol, polyvinyl acetate, polyacrylate, ethylene vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, or a copolymer thereof is used. . Further, a polyphenylene-based polymer or a copolymer thereof can also be used.

【0018】なお、繊維形成性重合体には、本発明の目
的を達成しうる範囲内で、艶消し剤、顔料、防炎剤、消
臭剤、帯電防止剤、酸化防止剤、紫外線吸収剤、抗菌剤
等の任意の添加物が添加されていてもよい。
The fiber-forming polymer includes a matting agent, a pigment, a flame retardant, a deodorant, an antistatic agent, an antioxidant, and an ultraviolet absorber as long as the object of the present invention can be achieved. Any additive such as an antibacterial agent may be added.

【0019】本発明で用いる分割型二成分系複合連続単
糸からなる長繊維ウエブは、一般に以下の如き方法で製
造される。即ち、従来公知の溶融複合紡糸法で紡糸さ
れ、横吹付や環状吹付等の従来公知の冷却装置を用い
て、吹付風により冷却された後、一般的にエアーサッカ
ーを用いて、目標繊度となるように牽引細化されて引き
取られる。牽引速度は3000m/分以上、特に、40
00m/分以上が不織布の寸法安定性が向上するため更
に好適である。エアーサッカーから排出される分割型二
成分系複合連続単糸は、一般的には、高圧電場中のコロ
ナ放電域か、又は、摩擦衝突帯域を通過せしめて帯電開
繊させた後、スクリーンからなるコンベアーの如き移動
堆積装置上に開繊集積させて長繊維ウエブを得ることが
できる。
The long fiber web composed of the split type bicomponent composite continuous single yarn used in the present invention is generally produced by the following method. That is, spun by a conventionally known melt composite spinning method, using a conventionally known cooling device such as horizontal spraying or annular spraying, and cooled by spraying wind, and then generally using air soccer to reach a target fineness. As if towed and taken off. The towing speed is over 3000 m / min, especially 40
More than 00 m / min is more preferable because the dimensional stability of the nonwoven fabric is improved. The split-type two-component composite continuous single yarn discharged from air soccer generally consists of a screen after passing through a corona discharge area in a high-voltage field or through a frictional collision zone to be charged and spread. It is possible to obtain a long fiber web by spreading and accumulating on a moving deposition device such as a conveyor.

【0020】次に、該長繊維ウエブを部分熱圧着装置を
用いて処理し部分的に熱圧着する。部分的な熱圧着と
は、例えば繊維形成性低融点重合体Aの融点以下の温度
で加熱され表面に彫刻模様が刻印された金属ロールすな
わちエンボスロールと、加熱され表面が平滑な金属ロー
ルとの間に、長繊維ウエブを通すことによって、いわゆ
る熱エンボスロールを用いて、また超音波融着機を用い
て、前記彫刻模様に当接する長繊維ウエブ同士を熱的に
圧着せしめることをいう。
Next, the long fiber web is processed using a partial thermocompression bonding apparatus and partially thermocompression bonded. Partial thermocompression bonding means, for example, a metal roll or embossing roll heated at a temperature equal to or lower than the melting point of the fiber-forming low-melting polymer A and having an engraved pattern engraved on the surface, and a heated metal roll having a smooth surface. It means that the long fiber webs that come into contact with the engraved pattern are thermally pressed by using a so-called hot embossing roll or by using an ultrasonic welding machine by passing a long fiber web therebetween.

【0021】個々の熱圧着形状は、円形である必要は無
く、菱形、三角形、T形等任意の形状を適宜選択すれば
よい。個々の熱圧着部の面積は、0.1〜1.0mm2
の範囲で、その密度すなわち圧接点密度が4〜80点/
cm2 のものであるのがよい。また、長繊維ウエブの全
表面積に対する全圧接領域の面積の比すなわち圧接面積
率は5〜30%が好ましく、さらには5〜20%が好ま
しい。圧接面積率が5%未満であると、複合不織布の機
械的特性及び寸法安定性が劣る傾向にある。逆に30%
を超えると、短繊維ウエブを積層し液体流処理にて交絡
処理を施す際に、交絡部分の減少により両ウエブ層の層
間剥離強力が低下する傾向にある。
Each thermocompression bonding shape does not need to be circular, and any shape such as a rhombus, a triangle, and a T shape may be appropriately selected. The area of each thermocompression bonding part is 0.1 to 1.0 mm 2
In the range of 4 to 80 points /
cm 2 is good. Further, the ratio of the area of the entire press contact area to the total surface area of the long fiber web, that is, the press contact area ratio is preferably 5 to 30%, and more preferably 5 to 20%. If the pressed area ratio is less than 5%, the mechanical properties and dimensional stability of the composite nonwoven fabric tend to be poor. 30% conversely
When it exceeds, when laminating short fiber webs and performing entanglement treatment by liquid flow treatment, the delamination strength of both web layers tends to decrease due to a decrease in entangled portions.

【0022】熱圧着処理における熱圧着温度(エンボス
ロール温度)は、繊維形成性低融点重合体Aの融点以下
の温度、好ましくは繊維形成性低融点重合体Aの融点よ
り5〜30℃低い温度とする。例えば、融点より高い温
度で加工を行うと、熱圧着装置に長繊維ウエブが固着し
著しく操業性を悪化させることとなる。熱圧着温度が繊
維形成性低融点重合体Aの融点に近い温度であると、熱
圧着は強固なものとなるため、長繊維ウエブの寸法安定
性は優れ、また、後の高圧液体流処理において、複合連
続単糸の分割割繊及び交絡一体化の際に、部分的熱圧着
部は残存し、非熱圧着部に存在する極細割繊フイラメン
ト群が三次元的に交絡する。よって、得られる複合不織
布は、縦・横の破断伸度が高く寸法安定性に優れ、機械
的強力が高いものとなる。一方、熱圧着温度が繊維形成
性低融点重合体Aの融点に遠い温度であると、部分的熱
圧着部は繊維形態を残した仮熱圧着の状態となり、後の
高圧液体流処理において、複合連続単糸の分割割繊及び
交絡一体化の際に、部分的熱圧着部は剥離されて繊維状
となり、複合連続単糸群や極細割繊フイラメント群は自
由に運動することができ、よりランダムに三次元的に交
絡する。よって、得られる複合不織布は、柔軟性に優
れ、層間剥離強力の高いものとなる。
The thermocompression temperature (embossing roll temperature) in the thermocompression treatment is a temperature lower than the melting point of the fiber-forming low melting point polymer A, preferably 5 to 30 ° C. lower than the melting point of the fiber forming low melting point polymer A. And For example, if the processing is performed at a temperature higher than the melting point, the long fiber web sticks to the thermocompression bonding apparatus and the operability is remarkably deteriorated. When the thermocompression bonding temperature is a temperature close to the melting point of the fiber-forming low melting point polymer A, the thermocompression bonding becomes strong, so that the dimensional stability of the long fiber web is excellent, and in the high pressure liquid flow treatment to be performed later. At the time of split splitting and entanglement integration of the composite continuous single yarn, the partial thermocompression bonding portion remains, and the ultrafine splitting filament group existing in the non-thermocompression bonding portion is three-dimensionally entangled. Therefore, the obtained composite nonwoven fabric has high elongation at break in the vertical and horizontal directions, excellent dimensional stability, and high mechanical strength. On the other hand, if the thermocompression bonding temperature is a temperature far from the melting point of the fiber-forming low-melting polymer A, the partial thermocompression bonding section is in a state of temporary thermocompression bonding in which the fiber form is left. At the time of split splitting and interlacing integration of continuous single yarn, the partial thermocompression bonding part is peeled off and becomes fibrous, and the composite continuous single yarn group and ultrafine split filament group can move freely, more randomly Confound three-dimensionally. Therefore, the obtained composite nonwoven fabric is excellent in flexibility and has high delamination strength.

【0023】長繊維ウエブの目付は100g/m2 程度
以下が好ましい。目付が100g/m2 を超えると、後
の分割割繊処理において、実質上、長繊維ウエブの全厚
みを通じて、十分に分割型二成分系複合連続単糸が割繊
されない傾向となる。即ち、長繊維ウエブの厚みの中心
部に未割繊の分割型二成分系複合連続単糸が残存する傾
向となる。しかし、このような場合であっても、本発明
の実施態様の一つであることには変わりない。長繊維ウ
エブの目付の下限については、特に限定されないが、得
られる複合不織布の地合い等を考慮すると10g/m2
程度までが好ましい。
The basis weight of the long fiber web is preferably about 100 g / m 2 or less. If the basis weight exceeds 100 g / m 2 , in the subsequent split splitting treatment, the split type two-component composite continuous single yarn tends to not be split sufficiently throughout the entire thickness of the long fiber web. That is, the split-type two-component composite continuous single yarn of the undivided fiber tends to remain at the center of the thickness of the long fiber web. However, even in such a case, it is still one of the embodiments of the present invention. Although the lower limit of the basis weight of the long fiber web is not particularly limited, it is 10 g / m 2 in consideration of the formation of the obtained composite nonwoven fabric.
Up to a degree is preferred.

【0024】本発明は、前記長繊維ウエブの少なくとも
片面に短繊維ウエブが積層されて構成繊維同士が交絡一
体化したものであるが、短繊維ウエブを積層する長繊維
ウエブとしては、分割型二成分系複合連続単糸からなる
部分的に熱圧着された長繊維ウエブであっても、予め単
糸を形成する二成分を分割割繊させて極細割繊フイラメ
ント群を少なくとも一部発現させた長繊維ウエブであっ
てもよい。
In the present invention, the short fiber web is laminated on at least one surface of the long fiber web, and the constituent fibers are entangled and integrated. The long fiber web for laminating the short fiber web is a split-type web. Even in the case of a long fiber web which is partially thermocompressed and made of a component-based composite continuous single yarn, a length in which the two components forming the single yarn are split in advance and at least a part of the ultrafine split filament group is developed. It may be a fiber web.

【0025】部分的に熱圧着された長繊維ウエブを予め
単糸を形成する二成分を分割割繊させて極細割繊フイラ
メント群を少なくとも一部発現させる方法として、長繊
維ウエブを機械的に揉み加工(座屈処理)して分割割繊
する方法、長繊維ウエブに高圧液体流処理を施し衝撃を
与えて分割割繊する方法が適用される。
[0025] As a method for splitting the two components forming a single yarn in advance into a long fiber web which has been partially thermocompression-bonded, and mechanically kneading the long fiber web, at least partially expressing a group of ultrafine split filaments. A method of processing (buckling treatment) to split the fibers and a method of applying a high-pressure liquid flow treatment to the long fiber web to give an impact and split the fibers are applied.

【0026】機械的な揉み加工(座屈処理)にて分割割
繊する方法としては、例えば、座屈加工機すなわち一対
のロールを通じて長繊維ウエブを押し込み式クリンパー
内へ押し込み、揉み加工により分割割繊する方法、長繊
維ウエブを一対のギアロールに通して座屈させることに
より分割割繊する方法、長繊維ウエブを複数のガイド間
に通し擦過屈曲させて分割割繊する方法、長繊維ウエブ
を液体中に浸漬して液流により分割割繊する方法等が挙
げられる。
As a method of splitting by mechanical kneading (buckling), for example, a long fiber web is pushed into a push-in type crimper through a buckling machine, that is, a pair of rolls, and divided by kneading. Fiber splitting, splitting by buckling the long fiber web through a pair of gear rolls, splitting the fiber by rubbing and bending the long fiber web between multiple guides, liquid splitting the long fiber web And a method of splitting the fiber by liquid flow.

【0027】高圧液体流処理を施し衝撃を与えて分割割
繊する方法とは、後の本発明の長繊維ウエブと短繊維ウ
エブとを交絡一体化させる際に用いる水流と同様で、水
を噴射孔から高圧力で噴射させて得られる水流(高圧液
体流)により長繊維ウエブを分割割繊することをいう。
The method of splitting by applying a high-pressure liquid flow treatment and giving an impact is the same as the water flow used when the long fiber web and short fiber web of the present invention are entangled and integrated, and water is jetted. This refers to splitting and splitting the long fiber web by a water flow (high-pressure liquid flow) obtained by jetting the high-pressure liquid from the holes.

【0028】予め分割割繊処理を施すことにより、後の
短繊維ウエブとの積層一体化交絡処理において、低い高
圧液体流のエネルギーで構成繊維同士の交絡一体化を行
うことができる。よって、予め施す分割割繊処理での割
繊率が高い程、低い高圧液体流のエネルギーで構成繊維
同士の交絡一体化を行うことができる。ここでいう割繊
率とは、次の方法により求められる。すなわち、長繊維
ウエブの任意の10個所を選び、その断面を100倍に
拡大して断面写真を撮影する。1枚の断面写真からラン
ダムに30本のフイラメントを選び、下記式により割繊
率を求める。同様の操作を10枚の断面写真について行
い、得られた値の平均値をその長繊維ウエブの割繊率と
する。 割繊率(%)=(30/X)×100 上式において、Xは完全に割繊されたと仮定したときの
低融点重合体からなるフイラメント及び高融点重合体か
らなるフイラメントの全フイラメントの総数である。
By preliminarily performing the split splitting treatment, in the subsequent lamination and integration entanglement with the short fiber web, entanglement and integration of the constituent fibers can be performed with the energy of the low-pressure liquid flow. Therefore, the higher the splitting rate in the split splitting process to be performed in advance, the lower the energy of the high-pressure liquid flow can be to perform the confounding integration of the constituent fibers. Here, the splitting rate is determined by the following method. That is, any ten locations of the long fiber web are selected, and the cross section is magnified 100 times and a cross-sectional photograph is taken. Thirty filaments are randomly selected from one cross-sectional photograph, and the splitting rate is determined by the following equation. The same operation is performed for ten cross-sectional photographs, and the average value of the obtained values is defined as the splitting rate of the long fiber web. Splitting rate (%) = (30 / X) × 100 In the above formula, X is the total number of filaments composed of a low-melting-point polymer and a filament composed of a high-melting-point polymer, assuming that the splitting is complete. It is.

【0029】特に、本発明においては、後の構成繊維同
士の交絡一体化処理を効率的に行えて、層間剥離強力に
優れた複合不織布を得るには、割繊率は60%以上が好
ましく、より好ましくは80%以上、さらに好ましくは
90%以上である。
In particular, in the present invention, the splitting rate is preferably 60% or more in order to efficiently perform the subsequent entanglement and integration processing of the constituent fibers and obtain a composite nonwoven fabric having excellent delamination strength. It is more preferably at least 80%, further preferably at least 90%.

【0030】本発明において、短繊維ウエブを積層する
長繊維ウエブは、後の積層一体化交絡処理での高圧液体
流エネルギ−の仕様及び複合不織布の要求性能等に応じ
て、予め割繊処理を施していない長繊維ウエブや前記種
々の方法により予め割繊処理を施した長繊維ウエブを適
宜選択すればよい。
In the present invention, the long fiber web on which the short fiber web is laminated is subjected to splitting processing in advance in accordance with the specification of the high-pressure liquid flow energy in the subsequent lamination integrated entanglement processing and the required performance of the composite nonwoven fabric. A long fiber web that has not been subjected to the treatment or a long fiber web that has been subjected to the splitting treatment in advance by the above various methods may be appropriately selected.

【0031】機械的な揉み加工(座屈処理)にて分割割
繊する方法により、予め極細割繊フイラメント群を発現
させた長繊維ウエブは、極細割繊フイラメント群が非交
絡状態であるので、フイラメントの自由度が大きく、ま
たフイラメント間の空隙が大きいので、後の短繊維ウエ
ブとの積層一体化交絡処理において、極細割繊フイラメ
ント群の間に短繊維ウエブの構成繊維が制限されること
なく入り込み、絡みやすい。したがって、高圧液体流に
よる積層交絡一体化を低い液体流エネルギーで行うこと
ができ、得られる複合不織布は、柔軟性に優れる上、層
間剥離強力に優れたものとなる。
A long fiber web in which a group of ultrafine splitting filaments is developed in advance by a method of splitting and splitting by mechanical kneading (buckling) is used because the group of ultrafine splitting filaments is in a non-entangled state. Since the degree of freedom of the filament is large and the gap between the filaments is large, the constituent fibers of the short fiber web are not restricted between the group of ultrafine split filaments in the subsequent lamination integrated entanglement with the short fiber web. Easy to get in and entangle. Therefore, lamination and entanglement integration by high-pressure liquid flow can be performed with low liquid flow energy, and the resulting composite nonwoven fabric has excellent flexibility and excellent delamination strength.

【0032】高圧液体流を施し衝撃を与えて分割割繊す
る方法により、予め極細割繊フイラメント群を発現させ
た長繊維ウエブは、分割型二成分系複合連続単糸の殆ど
が割繊されて交絡状態の極細割繊フイラメント群を発現
している。よって、後の短繊維ウエブとの積層一体化交
絡処理において、構成繊維同士の交絡一体化のみの目的
で高圧液体流処理を施せばよい。
A long fiber web in which a group of ultrafine splitting filaments is developed in advance by a method of splitting splitting by applying a high-pressure liquid flow and giving an impact is obtained by splitting almost all split-type bicomponent composite continuous single yarns. An ultra-fine split filament group in a confounding state is exhibited. Therefore, in the subsequent lamination and integration entanglement with the short fiber web, the high-pressure liquid flow treatment may be performed only for the purpose of entanglement and integration of the constituent fibers.

【0033】予め割繊処理を施していない長繊維ウエブ
では、後の短繊維ウエブとの積層一体化交絡処理におい
て、分割型二成分系複合連続単糸の分割割繊する作用と
発現した極細割繊フイラメント群同士又は割繊フイラメ
ント群と短繊維又は短繊維同士とが三次元的に交絡一体
化させる作用と同時に行われる。よって予め極細割繊フ
イラメント群を発現させた長繊維ウエブを用いる方法と
比較して交絡一体化処理における高圧液体流のエネルギ
ーが高く、又、得られた複合不織布は柔軟性にやや劣る
ものの、生産工程が簡略化される。また、得られる複合
不織布は緻密に交絡一体化したフイルター性能に優れた
ものとなる。
In the case of the long fiber web which has not been subjected to the splitting treatment in advance, in the subsequent lamination and integration entanglement treatment with the short fiber web, the action of splitting and splitting the split type two-component composite continuous single yarn has been demonstrated. This is performed simultaneously with the action of three-dimensionally confounding and integrating the fine filament groups or the split filament group with the short fibers or short fibers. Therefore, the energy of the high-pressure liquid flow in the confounding integration process is higher than the method using a long fiber web in which a group of ultrafine splitting filaments is expressed in advance, and the obtained composite nonwoven fabric is slightly inflexible. The process is simplified. In addition, the obtained composite nonwoven fabric has excellent filter performance that is densely entangled and integrated.

【0034】本発明に使用する短繊維ウエブは、ポリオ
レフイン、ポリアミド、ポリエステル等の繊維形成性重
合体からなる芯鞘複合短繊維により主として構成され
る。この芯鞘複合短繊維は、繊維形成性低融点重合体C
を鞘部に、繊維形成性高融点重合体Dを芯部に配置せし
めたものであって、芯部に配される重合体の融点と鞘部
に配される重合体の融点との差は、20℃以上であるこ
とが好ましい。芯部と鞘部の重合体の融点の差が20℃
未満であると、得られた複合不織布を要求性能に応じて
熱処理する際に、高温で処理すると、繊維表面の鞘部の
重合体が軟化又は溶融すると共に、芯部の重合体が熱劣
化して繊維自体の引張強力、引裂強力及び曲げ強力が低
下する傾向にある。一方、低温で処理すると芯部の重合
体は熱劣化しないものの、鞘部の重合体が十分軟化又は
溶融しないため熱処理の効果を期待しにくい。したがっ
て、芯部と鞘部の重合体の融点差を少なくとも20℃と
すると、熱処理により、鞘部の重合体は繊維交差点にて
少なくとも部分的に軟化又は溶融して、融着結合するた
め、不織布の強力が向上し、しかも芯成分の重合体は熱
劣化せずに繊維構造を保っているため不織布の強力を保
つことができる。よって、本発明に用いる短繊維は前記
構成を有するため、複合不織布を熱処理する効果が期待
できる。
The short fiber web used in the present invention is mainly constituted by a core-sheath composite short fiber made of a fiber-forming polymer such as polyolefin, polyamide and polyester. This core-sheath composite short fiber is a fiber-forming low melting polymer C
In the sheath portion, the fiber-forming high melting point polymer D is disposed in the core portion, the difference between the melting point of the polymer disposed in the core portion and the melting point of the polymer disposed in the sheath portion is , 20 ° C. or higher. The difference in melting point between the core and the sheath polymer is 20 ° C
If it is less than 1, when the obtained composite nonwoven fabric is subjected to heat treatment in accordance with the required performance, when treated at a high temperature, the polymer in the sheath portion of the fiber surface softens or melts, and the polymer in the core portion thermally degrades. Therefore, the tensile strength, tear strength and bending strength of the fiber itself tend to decrease. On the other hand, when the polymer is treated at a low temperature, the polymer in the core does not thermally deteriorate, but the polymer in the sheath does not sufficiently soften or melt, so that it is difficult to expect the effect of the heat treatment. Therefore, assuming that the difference in melting point between the core and the sheath polymer is at least 20 ° C., the heat treatment causes the sheath polymer to be at least partially softened or melted at the fiber intersection and fused and bonded. The strength of the nonwoven fabric can be maintained because the core component polymer maintains the fiber structure without thermal degradation. Therefore, since the short fiber used in the present invention has the above-described configuration, the effect of heat-treating the composite nonwoven fabric can be expected.

【0035】例えば、複合不織布の表面の毛羽立ちを抑
制する目的で、短繊維を構成する芯部の重合体の融点未
満の温度〜鞘部の重合体の融点以上の温度で熱処理する
ことにより、鞘部の重合体を繊維交差点にて少なくとも
部分的に軟化又は溶融させ、複合不織布の表面の毛羽立
ちを抑制する。その一方で、芯部の重合体を熱劣化させ
ずに繊維構造を保たせるため、複合不織布の柔軟性は維
持させながら優れた機械的強力を有する複合不織布を得
ることが可能となる。
For example, in order to suppress fluffing of the surface of the composite nonwoven fabric, the sheath is heat-treated at a temperature lower than the melting point of the polymer of the core constituting the short fibers to a temperature higher than the melting point of the polymer of the sheath. Part of the polymer is at least partially softened or melted at the fiber intersection, thereby suppressing fluffing of the surface of the composite nonwoven fabric. On the other hand, since the fiber structure is maintained without thermally degrading the polymer of the core, it is possible to obtain a composite nonwoven fabric having excellent mechanical strength while maintaining the flexibility of the composite nonwoven fabric.

【0036】また、複合不織布を用いて袋体や簡易マス
ク等の製品を製造する目的で複合不織布にヒートシール
等の熱処理加工を施す際、短繊維を構成する鞘部の重合
体の融点以下の温度で熱処理し、短繊維の鞘部同士ある
いは短繊維の鞘部と長繊維ウエブを構成する低融点重合
体とを熱溶融により強固に融着させ、その一方で、短繊
維の芯部の重合体を熱劣化させずに繊維構造を保たせ、
そのヒートシール部において優れた機械的強力を有する
複合不織布からなる製品を得ることが可能となる。
When a heat treatment such as heat sealing is applied to the composite nonwoven fabric for the purpose of producing a product such as a bag or a simple mask using the composite nonwoven fabric, the melting point of the polymer of the sheath portion constituting the short fiber is not higher than the melting point. Heat treatment at a temperature to cause the sheaths of the short fibers or the sheath of the short fibers and the low melting point polymer constituting the long fiber web to be firmly fused by hot melting, while the weight of the core of the short fibers is increased. Keep the fiber structure without thermal degradation of the coalescence,
It is possible to obtain a product made of a composite nonwoven fabric having excellent mechanical strength at the heat seal portion.

【0037】なお、複合不織布の上記ヒートシール部を
型抜き等により切断した場合でも、その切断部において
は、短繊維の芯部の重合体を熱劣化させずに繊維構造を
保っているため柔軟性が維持され、一方、構成繊維同士
は熱溶融により強固に融着しているので品位もまた維持
されたものとなる。
Even when the heat-sealed portion of the composite nonwoven fabric is cut by die-cutting or the like, the cut portion has a fiber structure without thermally deteriorating the polymer of the core portion of the short fiber, so that it is flexible. However, since the constituent fibers are firmly fused by thermal fusion, the quality is also maintained.

【0038】さらに、複合不織布に高いフイルター性能
が要求される場合には、短繊維を構成する鞘部の重合体
の融点以下の温度で熱カレンダー加工を施すことによ
り、短繊維の鞘部同士あるいは短繊維の鞘部と長繊維ウ
エブを構成する低融点重合体とを少なくとも部分的に熱
圧着させ、複合不織布の構成繊維間の間隙を小さくし、
優れたフイルター性能を有する複合不織布を得ることが
可能となる。要求されるフイルター性能に応じて、すな
わち要望の構成繊維間の間隙を達成するために、熱カレ
ンダー加工に適用する加工温度、加工線圧を適宜選択す
ることにより、フイルター性能を制御することが可能で
ある。また、フイルターに限らず、要求性能に応じて、
場合によっては短繊維を構成する芯部の重合体の融点未
満の温度〜鞘部の重合体の融点以上の温度で、かつ高い
線圧をかけて熱カレンダー加工を施してもよい。
Further, when high filter performance is required for the composite nonwoven fabric, the calendering is performed at a temperature not higher than the melting point of the polymer of the sheath portion constituting the short fiber, so that the sheath portions of the short fiber or the short fiber can be separated. The sheath portion of the short fiber and the low melting point polymer constituting the long fiber web are at least partially thermocompression-bonded to reduce the gap between the constituent fibers of the composite nonwoven fabric,
A composite nonwoven fabric having excellent filter performance can be obtained. It is possible to control the filter performance according to the required filter performance, that is, by appropriately selecting the processing temperature and the processing linear pressure applied to the heat calendering in order to achieve the desired gap between the constituent fibers. It is. In addition to filters, depending on the required performance,
In some cases, the heat calendering may be performed at a temperature lower than the melting point of the core polymer constituting the short fiber to a temperature higher than the melting point of the sheath polymer and at a high linear pressure.

【0039】芯鞘複合短繊維に使用しうる繊維形成性重
合体のポリオレフイン、ポリアミド、ポリエステル等の
例としては、分割型二成分系複合連続単糸に用いる繊維
形成性重合体と同じものを用いればよい。芯部/鞘部の
重合体の組み合わせとして、ポリエステル系重合体/ポ
リオレフイン系重合体、高融点ポリエステル系重合体/
低融点ポリエステル系重合体、ポリアミド系重合体/ポ
リオレフイン系重合体、ポリエステル系重合体/ポリア
ミド系重合体、高融点ポリアミド系重合体/低融点ポリ
アミド系重合体、高融点ポリオレフイン系重合体/低融
点ポリオレフイン系重合体などが挙げられる。
Examples of fiber-forming polymers such as polyolefin, polyamide and polyester which can be used for the core-sheath conjugate short fibers are the same as the fiber-forming polymers used for the split type two-component composite continuous single yarn. I just need. As the combination of the core / sheath polymer, a polyester polymer / polyolefin polymer, a high melting polyester polymer /
Low melting point polyester polymer, polyamide polymer / polyolefin polymer, polyester polymer / polyamide polymer, high melting point polyamide polymer / low melting point polyamide polymer, high melting point polyolefin polymer / low melting point Polyolefin polymers and the like can be mentioned.

【0040】このような組み合わせのうち、芯部の重合
体として複合不織布の機械的特性や生産性の面からポリ
エチレンテレフタレート系重合体、鞘部の重合体として
ヒートシール性、製糸性などの面からポリエチレン系重
合体やポリプロピレン系重合体を用いた芯鞘複合短繊維
がより好ましい。
Of these combinations, the core polymer is a polyethylene terephthalate-based polymer in terms of the mechanical properties and productivity of the composite nonwoven fabric, and the sheath polymer is a heat-sealable and thread-forming material. Core-sheath composite short fibers using a polyethylene polymer or a polypropylene polymer are more preferred.

【0041】芯鞘複合短繊維の芯部と鞘部の重合体の複
合比(重量比)は、任意にとりうるが、繊維自体の強力
と繊維間の熱接着性の点で75/25〜25/75の範
囲が好ましい。
The composite ratio (weight ratio) of the polymer of the core and the sheath of the core-sheath composite short fiber can be arbitrarily determined, but is 75/25 to 25 in view of the strength of the fiber itself and the thermal adhesiveness between the fibers. The range of / 75 is preferred.

【0042】本発明で用いる芯鞘複合短繊維は、一般に
以下の如き方法で製造される。繊維形成性低融点重合体
Cを鞘部に繊維形成性高融点重合体Dを芯部に位置せし
める紡糸口金より紡出し、横吹付や環状吹付等の従来公
知の冷却装置を用いて、吹付風により冷却し、仕上げ油
剤を付与した後、一般的に引き取りロールを介して、未
延伸糸として捲き取られる。引き取り速度は500m/
分〜2000m/分が適用される。次いで、得られた未
延伸糸を複数本引き揃えてトウとなし、公知の延伸機を
用いて延伸を行った後、押し込み式捲縮付与装置にて捲
縮を付与し所定の繊維長に切断して短繊維を得ることが
できる。尚、要求される用途により延伸トウを素材の融
点以下の温度で熱セットを行ってもよい。
The core-sheath conjugate short fibers used in the present invention are generally produced by the following method. The fiber-forming low-melting polymer C is sheathed and the fiber-forming high-melting polymer D is spun from a spinneret which is positioned at the core, and the air is blown using a conventionally known cooling device such as horizontal spraying or annular spraying. And apply the finishing oil, and then, as a rule, are wound up as undrawn yarn via a take-up roll. Pickup speed is 500m /
Min to 2000 m / min apply. Next, a plurality of the obtained undrawn yarns are drawn and aligned to form a tow, and after performing drawing using a known drawing machine, crimping is applied by a press-in type crimping device and cut into a predetermined fiber length. To obtain short fibers. The stretch tow may be heat-set at a temperature equal to or lower than the melting point of the material depending on the required use.

【0043】また、糸断面においては、丸断面に限ら
ず、中空断面、扁平断面、異形断面、多葉断面等、要求
性能に応じて適宜採用すればよい。
The cross section of the yarn is not limited to a round cross section, but may be a hollow cross section, a flat cross section, a modified cross section, a multi-leaf cross section, or the like, depending on the required performance.

【0044】また、短繊維ウエブには、吸水性の付与あ
るいは高光沢性の付与等の要求性能によりコットン、ウ
−ル、リネン、シルク等の天然繊維及び/又はレ−ヨン
等の再生短繊維からなる短繊維を30重量%未満混綿し
てもよい。
The short fiber web may be made of natural fibers such as cotton, wool, linen, silk and / or regenerated short fibers such as rayon, depending on the required properties such as imparting water absorption or imparting high gloss. Less than 30% by weight.

【0045】短繊維ウエブの目付は100g/m2 程度
以下が好ましい。目付が100g/m2 を超えると、長
繊維ウエブと短繊維ウエブとの交絡処理において大きな
高圧液体流エネルギ−を要する。また、得られる複合不
織布の用途が限定されることとなる。目付の下限につい
ては特に限定されないが10g/m2 程度であればよ
い。
The basis weight of the short fiber web is preferably about 100 g / m 2 or less. If the basis weight exceeds 100 g / m 2 , a large high-pressure liquid flow energy is required in the entanglement treatment of the long fiber web and the short fiber web. Further, the use of the obtained composite nonwoven fabric is limited. The lower limit of the basis weight is not particularly limited, but may be about 10 g / m 2 .

【0046】短繊維ウエブは、カード法やエアレイ法等
を用いて所定の目付のウエブを作製することができる。
カード法ではカ−ド機を用いて、構成繊維の配列度合を
複合不織布の用途等に合わせて種々選択することができ
る。例えば、短繊維ウエブの構成繊維の配列パターンと
しては、構成繊維が一方向に配列したパラレルウエブ、
パラレルウエブがクロスレイドされたウエブ、構成繊維
がランダムに配列したランダムウエブあるいは両者の中
程度に配列したセミランダムウエブ等が挙げられる。
As the short fiber web, a web having a predetermined basis weight can be produced by using a card method, an air lay method, or the like.
In the card method, a carding machine can be used to variously select the degree of arrangement of the constituent fibers according to the use of the composite nonwoven fabric. For example, as an arrangement pattern of the constituent fibers of the short fiber web, a parallel web in which the constituent fibers are arranged in one direction,
Examples of the web include a web in which parallel webs are cross-laid, a random web in which constituent fibers are randomly arranged, and a semi-random web in which both are moderately arranged.

【0047】本発明は、前記長繊維ウエブ(分割型二成
分系複合連続単糸からなる部分的に熱圧着された長繊維
ウエブ又は予め該単糸を形成する二成分を分割割繊させ
て極細割繊フイラメント群を少なくとも一部発現させた
長繊維ウエブ)の少なくとも片面に短繊維ウエブを積層
した積層体に高圧液体流処理を施し、長繊維ウエブの構
成繊維同士及び長繊維ウエブと短繊維ウエブとの構成繊
維同士及び短繊維ウエブの構成繊維同士を三次元的に交
絡一体化させた複合不織布である。ここで長繊維ウエブ
の構成繊維とは、分割型二成分系複合連続単糸及び該複
合連続単糸より発現した極細割繊フイラメント群をい
う。
According to the present invention, the long fiber web (partially thermocompressed long fiber web composed of a split type two-component composite continuous single yarn or a bicomponent which forms the single yarn in advance is divided into extra fine fibers. A high-pressure liquid flow treatment is applied to a laminate obtained by laminating a short fiber web on at least one surface of a long fiber web in which at least a part of a split filament group is expressed, and the constituent fibers of the long fiber web and the long fiber web and the short fiber web are processed. Is a composite nonwoven fabric in which the constituent fibers of the above and the constituent fibers of the short fiber web are three-dimensionally entangled and integrated. Here, the constituent fibers of the long fiber web refer to a split type two-component composite continuous single yarn and a group of ultrafine split filaments developed from the composite continuous single yarn.

【0048】この積層体は、長繊維ウエブの少なくとも
片面に短繊維ウエブが積層されたものであり、長繊維ウ
エブの両面に短繊維ウエブを積層したものであっても、
短繊維ウエブの両面に長繊維ウエブを積層したものであ
ってもよく、複合不織布を用いる用途、性能に合わせて
適宜選択すればよい。
This laminated body is obtained by laminating a short fiber web on at least one surface of a long fiber web, and may be a laminate obtained by laminating a short fiber web on both surfaces of a long fiber web.
A long fiber web may be laminated on both sides of a short fiber web, and may be appropriately selected in accordance with the use and performance of the composite nonwoven fabric.

【0049】次に、高圧液体流処理方法を詳述する。高
圧液体流装置としては、例えば、孔径が0.05〜1.
5mm、特に0.1〜0.4mmの噴射孔を孔間隔0.
05〜5mmで一列あるいは複数列に多数配列した装置
を用いる。噴射孔から高圧力で噴射させて得られる水流
すなわち高圧液体流を噴射し、多孔性支持部材上に載置
した前記積層体に衝突させる。未分割の分割型二成分系
複合連続単糸は、高圧液体流による衝撃によって、極細
割繊フイラメントを発現し、分割により発現した極細割
繊フイラメント群は、極細割繊フイラメント群同士又は
極細割繊フイラメント群と短繊維又は短繊維同士が三次
元的に交絡一体化する。
Next, the high-pressure liquid flow processing method will be described in detail. As the high-pressure liquid flow device, for example, a hole diameter of 0.05 to 1.
Injection holes of 5 mm, especially 0.1 to 0.4 mm, having a hole interval of 0.
A large number of devices arranged in a single row or a plurality of rows with a size of 05 to 5 mm are used. A water stream, ie, a high-pressure liquid stream, obtained by jetting at a high pressure from the jet holes is jetted, and collides with the laminate placed on the porous support member. The undivided split-type bicomponent composite continuous yarn develops an ultrafine split filament by the impact of the high-pressure liquid flow, and the ultrafine split filaments group generated by the splitting is an ultrafine split filament group or ultrafine split filaments. The filament group and the short fibers or short fibers are three-dimensionally entangled and integrated.

【0050】噴射孔の配列は、前記積層体の進行方向と
直行する方向に列状に配列する。高圧液体流としては、
常温あるいは温水を用いることができる。噴射孔と前記
積層体との間の距離は、10〜150mmとするのが良
い。この距離が10mm未満であると、この処理により
得られる複合不織布の地合が乱れ、一方、この距離が1
50mmを超えると液体流が前記積層体に衝突したとき
の衝撃力が低下して分割割繊及び交絡一体化が十分に施
されない傾向にある。
The arrangement of the injection holes is arranged in a row in a direction perpendicular to the traveling direction of the laminate. As a high pressure liquid flow,
Room temperature or hot water can be used. The distance between the injection hole and the laminate is preferably 10 to 150 mm. If this distance is less than 10 mm, the formation of the composite nonwoven fabric obtained by this treatment is disturbed, while the distance is 1 mm.
If it exceeds 50 mm, the impact force when the liquid stream collides with the laminate tends to be low, so that split splitting and entanglement integration tend not to be sufficiently performed.

【0051】この高圧液体流の処理圧力は、製造方法及
び不織布の要求性能によって制御されるが、一般的に
は、20〜200kg/cm2 Gの高圧液体流を噴出す
るのが良い。なお、処理するウエブの目付等にも左右さ
れるが、前記処理圧力の範囲内において、処理圧力が低
いと嵩高で柔軟性に優れた複合不織布を得ることがで
き、処理圧力が高いと構成繊維同士の交絡が緻密で層間
剥離のないフイルター性能に優れた複合不織布を得るこ
とができる。高圧液体流の圧力が20kg/cm2G未
満であると、分割割繊及び交絡一体化が十分に施され
ず、得られる複合不織布は層間剥離強力に劣るものとな
り、目的の複合不織布を得ることができない。逆に、高
圧液体流の圧力が200kg/cm2 Gを超えると水圧
による打撃により、ひどい場合には、構成繊維が切断さ
れて得られる不織布は表面に毛羽を有するものとなる傾
向にあり好ましくない。
The processing pressure of this high-pressure liquid flow is controlled by the production method and the required performance of the nonwoven fabric, but generally, a high-pressure liquid flow of 20 to 200 kg / cm 2 G is preferably ejected. In addition, depending on the basis weight of the web to be processed, etc., within the range of the above-mentioned processing pressure, if the processing pressure is low, a composite nonwoven fabric which is bulky and excellent in flexibility can be obtained. It is possible to obtain a composite nonwoven fabric which is densely entangled and has excellent filter performance without delamination. If the pressure of the high-pressure liquid flow is less than 20 kg / cm 2 G, split splitting and entanglement unification are not sufficiently performed, and the obtained composite nonwoven fabric is inferior in delamination strength. Can not. Conversely, if the pressure of the high-pressure liquid stream exceeds 200 kg / cm 2 G, the non-woven fabric obtained by cutting the constituent fibers tends to have fluff on the surface in a severe case due to impact by water pressure, which is not preferable. .

【0052】高圧液体流処理を施すに際して用いる前記
積層体を担持する多孔性支持部材としては、例えば、2
0〜200メツシユの金網製あるいは合成樹脂製等のメ
ツシユスクリーンや有孔板など、高圧液体流が前記積層
体を貫通するものであれば特に限定されない。
The porous support member for supporting the laminate used in performing the high-pressure liquid flow treatment includes, for example, 2
There is no particular limitation as long as the high-pressure liquid flow penetrates the laminate, such as a mesh screen or a perforated plate made of a wire mesh or synthetic resin of 0 to 200 mesh.

【0053】なお、積層体の片面より高圧液体流処理を
施した後、引き続き交絡の施された積層体を反転して高
圧液体流処理を施すことにより、表裏共に緻密に交絡一
体化した複合不織布を得ることができるので、複合不織
布の用途に応じて、また、積層数の多いもの及び積層体
の目付の大きいもの等に適用すればよい。
After the high-pressure liquid flow treatment is performed from one side of the laminate, the entangled laminate is subsequently inverted and subjected to the high-pressure liquid flow treatment, so that the front and back surfaces of the composite nonwoven fabric are densely entangled and integrated. Can be obtained depending on the use of the composite nonwoven fabric, and may be applied to those having a large number of laminations and those having a large basis weight of the laminate.

【0054】高圧液体流処理を施した後、処理後の前記
積層体から過剰水分を除去する。この過剰水分を除去す
るに際しては、公知の方法を採用することができる。例
えば、マングルロ−ル等の絞り装置を用いて過剰水分を
ある程度機械的に除去し、引き続きサクシヨンバンド方
式の熱風循環式乾燥機等の乾燥装置を用いて残余の水分
を除去して本発明の複合不織布を得ることができる。
After the high-pressure liquid flow treatment, excess moisture is removed from the laminated body after the treatment. When removing the excess moisture, a known method can be adopted. For example, the excess water is mechanically removed to some extent using a squeezing device such as a mangle roll, and the remaining water is subsequently removed using a drying device such as a suction band type hot air circulating dryer. A composite nonwoven can be obtained.

【0055】以上、詳述したように本発明の複合不織布
は、二成分系複合連続単糸よりなる長繊維ウエブと短繊
維ウエブとを積層し、高圧液体流処理装置を用い両ウエ
ブを緻密に交絡一体化した複合不織布である。二成分系
複合連続単糸は、分割して極細割繊フイラメント群を発
現するので、長繊維ウエブは、くさび状や薄片等の異形
断面や繊度の極めて小さい繊維を有することとなる。こ
の極細割繊フイラメント群の存在により、高圧液体流処
理での交絡性に優れ、その交絡は解舒しにくく安定した
複合不織布となり、また短繊維ウエブとの層間剥離強力
に優れたものとなる。
As described in detail above, the composite nonwoven fabric of the present invention is obtained by laminating a long-fiber web and a short-fiber web made of a two-component composite continuous single yarn, and using a high-pressure liquid flow treatment device to closely combine the two webs. It is a composite nonwoven fabric that is entangled and integrated. Since the two-component composite continuous single yarn is divided to exhibit a group of ultrafine splitting filaments, the long fiber web has an irregular cross-section such as a wedge or a flake, or a fiber having a very small fineness. Due to the presence of this group of ultrafine splitting filaments, the entanglement in high-pressure liquid flow treatment is excellent, the entanglement becomes a stable composite nonwoven fabric that is difficult to unwind, and the delamination strength with the short fiber web is excellent.

【0056】本発明の複合不織布において、前記割繊率
が高いほど、複合不織布の柔軟性及び交絡性に優れ、層
間剥離強力に優れる傾向にある。複合不織布における割
繊率は、複合不織布を用いる用途に応じて適宜選択すれ
ばよい。例えば、工業用ワイパー等として用いるのであ
れば割繊率30%程度、家庭用ワイパーとして眼鏡や鏡
拭き用として用いるのであれば割繊率50%程度、濾過
布として用いるのであれば割繊率70%程度以上等が挙
げられる。
In the composite nonwoven fabric of the present invention, the higher the splitting ratio, the better the flexibility and the entanglement of the composite nonwoven fabric and the more excellent the delamination strength. The splitting rate in the composite nonwoven fabric may be appropriately selected according to the use of the composite nonwoven fabric. For example, when used as an industrial wiper or the like, the splitting rate is about 30%. When used as a household wiper for wiping glasses or mirrors, the splitting rate is about 50%. When used as a filter cloth, the splitting rate is about 70%. % Or more.

【0057】本発明の複合不織布は、医療・衛生材用、
衣料用、生活関連資材用、産業資材用等様々な分野にお
いて好適なものである。例えば、その一例として、ワイ
パー等の拭き取り用として使用するのに好適である。す
なわち、複合不織布の長繊維ウエブ面で拭き取り、汚れ
等は極細割繊フイラメント群の異形断面におけるシヤー
プなエツジ部分で拭き取り、水分等は毛細管現象により
複合不織布内に内包されることとなる。
The composite nonwoven fabric of the present invention is used for medical and hygiene materials,
It is suitable for various fields such as clothing, living related materials, industrial materials and the like. For example, as an example, it is suitable to be used for wiping with a wiper or the like. That is, the composite nonwoven fabric is wiped off on the long fiber web surface, dirt and the like are wiped off at the sharp edge portion in the irregular cross section of the ultrafine split filament group, and moisture and the like are included in the composite nonwoven fabric by capillary action.

【0058】また、高圧液体流処理において、液体流の
圧力を適宜選択し、構成繊維同士が強固に緻密に絡み合
った本発明の複合不織布は、フイルター性能に優れるた
め、例えば、食品工業における濾過布、ケイ藻土濾過の
フイルター、井戸水等から除粒子、除鉄の際の濾過布等
の用途に好適に用いられる。
In the high-pressure liquid flow treatment, the pressure of the liquid flow is appropriately selected, and the composite nonwoven fabric of the present invention, in which the constituent fibers are tightly and closely entangled, has excellent filter performance. It is suitable for use as a filter for diatomaceous earth filtration, for removing particles from well water, and for filtering cloth for iron removal.

【0059】すなわち、まず複合不織布において繊維間
空隙の大きい短繊維ウエブ側にて粗粒子や粗塵を取り除
き、次に短繊維ウエブ側にて濾過しきれなかった微粒子
や微塵を極細割繊フイラメント群からなる繊維間空隙の
小さい長繊維ウエブ側にて取り除くことができる。よっ
て、本発明の複合不織布は一枚の不織布で、濾過対象物
の大きさに応じた分別収集が可能となることから、優れ
たフイルター性能を長期に亘って維持できるフイルター
寿命の長い濾過布として用いることができる。なお、短
繊維ウエブ側を線圧・熱処理温度等を適宜選択してカレ
ンダー加工を施すことにより、短繊維ウエブの繊維間空
隙を調節し、中粒子や中塵を取り除くことも可能とな
る。
That is, first, coarse particles and coarse dust are removed on the short fiber web side of the composite nonwoven fabric having large inter-fiber voids, and then fine particles and fine dust which cannot be completely filtered are removed on the short fiber web side. Can be removed on the long fiber web side having a small inter-fiber void. Therefore, since the composite nonwoven fabric of the present invention is a single nonwoven fabric, it is possible to separate and collect according to the size of the object to be filtered, and as a filter cloth with a long filter life that can maintain excellent filter performance over a long period of time. Can be used. In addition, by appropriately selecting the linear pressure, the heat treatment temperature, and the like on the short fiber web side and performing calendering, it is possible to adjust the interfiber space of the short fiber web and remove medium particles and dust.

【0060】[0060]

【実施例】次に、実施例に基づき本発明をより具体的に
説明するが、本発明は、これらの実施例によって何ら限
定されるものではない。実施例において、各特性値の測
定を次の方法によって実施した。
Next, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. In the examples, the measurement of each characteristic value was performed by the following method.

【0061】(1)重合体の融点(℃):パ−キンエル
マ−社製DSC−2型の示差走査型熱量計を用い、昇温
速度20℃/分で測定した融解吸熱ピ−クの最大値を与
える温度を融点とした。
(1) Melting point of polymer (° C.): The maximum of the melting endothermic peak measured at a heating rate of 20 ° C./minute using a DSC-2 type differential scanning calorimeter manufactured by PerkinElmer. The temperature giving the value was taken as the melting point.

【0062】(2)ポリエステルの相対粘度(イ):フ
エノ−ルとテトラクロロエタンの等重量混合液を溶媒と
し、この溶媒100ccに試料0.5gを溶解し温度2
0℃の条件で常法により求めた。
(2) Relative viscosity of polyester (a): A mixture of phenol and tetrachloroethane in an equal weight was used as a solvent, and 0.5 g of a sample was dissolved in 100 cc of the solvent.
It was determined by a conventional method at 0 ° C.

【0063】(3)ナイロン6の相対粘度(ロ):96
%硫酸を溶媒とし、この溶媒100ccに試料1gを溶
解し、温度25℃の条件で常法により求めた。
(3) Relative viscosity of nylon 6 (b): 96
% Sulfuric acid was used as a solvent, and 1 g of a sample was dissolved in 100 cc of the solvent.

【0064】(4)長繊維ウエブの分割割繊後の繊度
(デニール):電子顕微鏡写真の形状寸法から断面積を
算出して、密度補正をして求めた。
(4) Fineness (denier) after splitting the long fiber web: The cross-sectional area was calculated from the shape and dimensions of an electron micrograph, and the density was corrected.

【0065】(5)不織布の引張強力(kg/5cm
幅):JIS L 1096に記載のストリップ法に準
じ、幅5cm、長さ10cmの試験片から最大引張強力
を測定した。
(5) Tensile strength of nonwoven fabric (kg / 5cm
Width): The maximum tensile strength was measured from a test piece having a width of 5 cm and a length of 10 cm according to the strip method described in JIS L 1096.

【0066】(6)不織布の剛軟度(g):幅5cm、
長さ10cmの試験片を横方向の曲げて円筒状物とし、
各々その端部を接合したものを剛軟度測定試料とした。
試料の横方向について、定速伸張型引張試験機を用いて
圧縮速度5cm/分で圧縮し、得られた最大荷重値の平
均値を不織布の剛軟度とした。
(6) Softness (g) of nonwoven fabric: width 5 cm,
A test piece with a length of 10 cm is bent laterally into a cylindrical object,
Each of the joined ends was used as a bending resistance measurement sample.
The sample was compressed in the transverse direction at a compression rate of 5 cm / min using a constant-speed extension-type tensile tester, and the average of the obtained maximum load values was defined as the softness of the nonwoven fabric.

【0067】(7)不織布の層間剥離強力(g/5cm
幅):幅5cm,長さ10cmの試験片を複合不織布の
縦方向について定速伸張型引張試験機を用いて、長繊維
ウエブ層と短繊維ウエブ層の端部を同試験機のチャック
に各々挟持させ引張速度10cm/分で剥離した時の荷
重値の平均値を不織布の層間剥離強力とした。
(7) Delamination strength of nonwoven fabric (g / 5 cm)
Width): A test piece having a width of 5 cm and a length of 10 cm was placed in the longitudinal direction of the composite nonwoven fabric using a constant-speed stretching type tensile testing machine, and the ends of the long fiber web layer and the short fiber web layer were respectively attached to the chucks of the testing machine. The average value of the load values when sandwiched and peeled at a pulling rate of 10 cm / min was defined as the delamination strength of the nonwoven fabric.

【0068】(8)不織布の吸水性(mm/10分):
JIS L 1096に記載のバイレック法に準じて測
定した。
(8) Water absorption (mm / 10 minutes) of nonwoven fabric:
The measurement was performed according to the Bilek method described in JIS L 1096.

【0069】実施例1 繊維形成性低融点重合体Aとして、融点が130℃、A
STM−D−1238(E)の方法で測定して得られる
メルトインデックス値が25g/10分のポリエチレン
重合体を使用し、繊維形成性高融点重合体Bとして、融
点が258℃、相対粘度(イ)が1.38のポリエチレ
ンテレフタレ−ト重合体を使用した。そして、糸断面が
図1に示す複合形態でポリエチレン重合体が芯部を形成
し全分割数が7個になる複合紡糸口金を用い、ポリエチ
レン重合体とポリエチレンテレフタレート重合体の複合
比を重量比で1:1とし、単孔吐出量=1.2g/分で
押し出した。紡出糸条を冷却した後、エアーサッカーに
より4500m/分の速度で引き取り、公知の開繊器に
て開繊させ、移動する捕集面上に捕集・堆積させて長繊
維ウエブとし、該長繊維ウエブを熱エンボスローラーに
てポイント柄、加工温度120℃、圧接面積率10%の
条件下で部分熱圧着を行ない、目付けが30g/m2
長繊維ウエブを得た。該繊維集積体から採取した分割型
二成分系複合連続単糸の繊度は2.4デニ−ルであっ
た。
Example 1 As a fiber-forming low melting point polymer A, the melting point was 130 ° C.
Using a polyethylene polymer having a melt index value of 25 g / 10 minutes as measured by the method of STM-D-1238 (E), as a fiber-forming high melting point polymer B, a melting point of 258 ° C. and a relative viscosity ( A) used a polyethylene terephthalate polymer of 1.38. Then, using a composite spinneret in which the polyethylene cross-section has a total length of 7 with the polyethylene polymer forming the core in the composite form shown in FIG. 1, the composite ratio of the polyethylene polymer and the polyethylene terephthalate polymer is determined by weight. It was extruded at a discharge ratio of single hole = 1.2 g / min. After cooling the spun yarn, the yarn is taken out by air soccer at a speed of 4500 m / min, spread by a known spreader, collected and deposited on a moving collecting surface to form a long fiber web, The long fiber web was subjected to partial thermocompression bonding under the conditions of a point pattern, a processing temperature of 120 ° C., and a press contact area ratio of 10% using a hot emboss roller to obtain a long fiber web having a basis weight of 30 g / m 2 . The fineness of the split type two-component composite continuous single yarn collected from the fiber assembly was 2.4 denier.

【0070】得られた該長繊維ウエブを座屈加工機(マ
イクレツクス社製、マイクロクレーパ−)を用いて、ポ
リエチレン重合体とポリエチレンテレフタレート重合体
との分割割繊処理を施した。割繊加工後の長繊維ウエブ
を顕微鏡にて観察したところ、ポリエチレン重合体から
なる極細割繊フイラメント及びポリエチレンテレフタレ
ート重合体からなる極細割繊フイラメントはそれぞれ非
交絡状態であり、割繊率は92%であった。また、ポリ
エチレン重合体からなる極細割繊フイラメントの繊度は
1.2デニールであり、ポリエチレンテレフタレート重
合体からなる極細割繊フイラメントの繊度は0.2デニ
ールであった。
The obtained long fiber web was subjected to splitting treatment of a polyethylene polymer and a polyethylene terephthalate polymer by using a buckling machine (Microcreper, manufactured by Microtex Co., Ltd.). When the long fiber web after split processing was observed with a microscope, the ultrafine split filament made of polyethylene polymer and the ultrafine split filament made of polyethylene terephthalate polymer were each in an unentangled state, and the splitting rate was 92%. Met. The fineness of the ultrafine split filament made of polyethylene polymer was 1.2 denier, and the fineness of the ultrafine split filament made of polyethylene terephthalate polymer was 0.2 denier.

【0071】一方、短繊維ウエブとして、繊維形成性低
融点重合体Cとしてポリエチレン重合体を鞘部に繊維形
成性高融点重合体Dとしてポリエチレンテレフタレート
重合体を芯部に位置せしめた芯鞘複合型短繊維を準備し
た。
On the other hand, as a short fiber web, a core-sheath composite type in which a polyethylene polymer was positioned at the sheath as the fiber-forming low-melting polymer C and a polyethylene terephthalate polymer was positioned at the core as the fiber-forming high-melting polymer D was used. Short fibers were prepared.

【0072】すなわち、分割型二成分系複合連続単糸の
製造に用いた重合体と同様のポリエチレン重合体とポリ
エチレンテレフタレート重合体を用いて、ポリエチレン
重合体を鞘部にポリエチレンテレフタレート重合体を芯
部に配置せしめる芯鞘複合型紡糸口金より複合比を重量
比で1:1とし、単孔吐出量=0.80g/分で押し出
した。紡出糸条を冷却し仕上げ油剤を付与した後、引き
取り速度が1000m/分の引き取りロールを介して、
未延伸糸として捲き取った。次いで、得られた未延伸糸
を複数本引き揃えてトウとなし、公知の延伸機を用いて
延伸倍率が2.6で延伸を行った後、押し込み式捲縮付
与装置にて捲縮を付与し51mmの繊維長に切断して3
デニールの短繊維を得た。該短繊維を用いて、ランダム
カード機にて、目付20g/m2 の短繊維ウエブを得
た。
That is, using the same polyethylene polymer and polyethylene terephthalate polymer as used in the production of the split type two-component composite continuous single yarn, the polyethylene polymer was used as the sheath and the polyethylene terephthalate polymer was used as the core. The composite ratio was set to 1: 1 by weight from the core-sheath composite type spinneret placed at the same position, and extruded at a single hole discharge rate of 0.80 g / min. After cooling the spun yarn and applying the finishing oil, the take-up speed is 1000 m / min through a take-off roll,
It was wound up as an undrawn yarn. Subsequently, a plurality of the obtained undrawn yarns are drawn and aligned to form a tow. After drawing is performed at a draw ratio of 2.6 using a known drawing machine, crimping is performed by a press-in type crimping device. And cut to a fiber length of 51 mm.
Denier staple fibers were obtained. Using the short fibers, a short fiber web having a basis weight of 20 g / m 2 was obtained using a random card machine.

【0073】次いで、予め分割割繊処理を施した長繊維
ウエブの片面に短繊維ウエブを積層し、50メツシユの
金網上に積載して高圧液体流処理を施した。高圧液体流
処理は、孔径0.12の噴射孔が孔面積0.62mmで
配置された高圧液体流処理装置を用い、前記積層体の上
方50mmの位置から液体流圧力を80kg/cm2
の条件下で短繊維ウエブ側より処理を施した。得られた
複合物より過剰水分の除去と乾燥処理を施して目付けが
50g/m2 の複合不織布を得た。
Next, the short fiber web was laminated on one side of the long fiber web which had been subjected to the split splitting treatment in advance, and was loaded on a 50-mesh wire net and subjected to a high-pressure liquid flow treatment. The high-pressure liquid flow treatment uses a high-pressure liquid flow treatment apparatus in which injection holes having a hole diameter of 0.12 are arranged with a hole area of 0.62 mm, and a liquid flow pressure of 80 kg / cm 2 G from a position 50 mm above the laminate.
Under the conditions described above, from the short fiber web side. The obtained composite was subjected to removal of excess moisture and drying treatment to obtain a composite nonwoven fabric having a basis weight of 50 g / m 2 .

【0074】実施例2 実施例1において、次の短繊維ウエブを用いる以外は、
実施例1と同様にして実施例2の複合不織布を得た。す
なわち、繊維形成性低融点重合体Cとして、実施例1と
同様のポリエチレン重合体を鞘部に、繊維形成熱可塑性
重合体Dとして、融点が160℃、ASTM−D−12
38(L)の方法で測定して得られるメルトフローレー
ト値が30g/10分のポリプロピレン重合体を芯部に
配置せしめる芯鞘複合型紡糸口金より複合比を重量比で
1:1とし、単孔吐出量=1.04g/分で押し出し
た。紡出糸条を冷却し仕上げ油剤を付与した後、引き取
り速度が1000m/分の引き取りロールを介して、未
延伸糸として捲き取った。次いで、得られた未延伸糸を
複数本引き揃えてトウとなし、公知の延伸機を用いて延
伸倍率が3.4で延伸を行った後、押し込み式捲縮付与
装置にて捲縮を付与し51mmの繊維長に切断して3デ
ニールの短繊維を得た。該短繊維を用いてランダムカー
ド機にて、目付けが20g/m2 の短繊維ウエブを作成
した。
Example 2 In Example 1, except that the following short fiber web was used,
A composite nonwoven fabric of Example 2 was obtained in the same manner as in Example 1. That is, as the fiber-forming low-melting polymer C, the same polyethylene polymer as in Example 1 was used in the sheath portion, and as the fiber-forming thermoplastic polymer D, the melting point was 160 ° C. and ASTM-D-12.
The melt ratio obtained by the method of Example 38 (L) was 30 g / 10 min, and the composite ratio was set to 1: 1 by weight from a core-sheath composite spinneret in which a polypropylene polymer was disposed in the core. Extrusion was performed at a hole discharge rate of 1.04 g / min. After the spun yarn was cooled and the finishing oil was applied, it was wound up as an undrawn yarn via a take-up roll having a take-up speed of 1000 m / min. Next, a plurality of the obtained undrawn yarns are drawn and aligned to form a tow, and after drawing at a draw ratio of 3.4 using a known drawing machine, crimping is performed by a press-in type crimping device. Then, the fiber was cut to a fiber length of 51 mm to obtain short fibers of 3 denier. Using the short fibers, a short fiber web having a basis weight of 20 g / m 2 was prepared by a random card machine.

【0075】実施例3 実施例1と同一のポリエチレン重合体とポリエチレンテ
レフタレート重合体とよりなる芯鞘複合短繊維80重量
%と平均単繊維繊度が1.5デニールで、平均繊維長が
25mmのコットン繊維20重量%とを混綿し、ランダ
ムカード機にて目付けが20g/m2 の短繊維ウエブに
したこと以外は、実施例1と同一条件にて、目付けが5
0g/m2 の複合不織布を得た。
Example 3 80% by weight of a core-sheath composite short fiber composed of the same polyethylene polymer and polyethylene terephthalate polymer as in Example 1, cotton having an average single fiber fineness of 1.5 denier and an average fiber length of 25 mm A fiber weight of 5 g was obtained under the same conditions as in Example 1 except that a short fiber web having a basis weight of 20 g / m 2 was produced by blending 20% by weight of fibers with a random card machine.
A composite nonwoven fabric of 0 g / m 2 was obtained.

【0076】実施例4 実施例1と同一のポリエチレン重合体とポリエチレンテ
レフタレート重合体を用い、糸断面が図2に示す如き複
合形態で全分割数が12個になる複合紡糸口金を用い、
ポリエチレン重合体とポリエチレンテレフタレート重合
体の複合比を重量比で1:1とし、単孔吐出量=1.1
2g/分で押し出した。紡出糸条を冷却した後、エアー
サッカーにより4200m/分の速度で引き取り、公知
の開繊器にて開繊させ、移動する捕集面上に捕集・堆積
させて長繊維ウエブとし、該長繊維ウエブを熱エンボス
ローラーにてポイント柄、加工温度120℃、圧接面積
率10%の条件下で部分熱圧着を行ない、目付けが30
g/m2 の長繊維ウエブを得た。該繊維集積体から採取
した分割型二成分系複合連続繊維の繊度は約2.4デニ
−ルであった。次いで、該長繊維ウエブを座屈加工機
(マイクレツクス社製、マイクロクレーパ−)にてポリ
エチレン重合体とポリエチレンテレフタレート重合体と
の分割割繊処理を施した。割繊処理後の長繊維ウエブを
顕微鏡にて観察したところポリエチレン重合体からなる
極細割繊フイラメント及びポリエチレンテレフタレート
重合体からなる極細割繊フイラメントはそれぞれ非交絡
状態であり、割繊率は85%であった。又、ポリエチレ
ン重合体からなる極細割繊フイラメント及びポリエチレ
ンテレフタレート重合体からなる極細割繊フイラメント
の繊度は、各々0.2デニールであった。
Example 4 The same polyethylene polymer and polyethylene terephthalate polymer as in Example 1 were used, and a composite spinneret having a yarn cross section as shown in FIG. 2 and a total division number of 12 was used.
The composite ratio of the polyethylene polymer and the polyethylene terephthalate polymer was set to 1: 1 by weight, and the single hole discharge amount was 1.1.
Extruded at 2 g / min. After cooling the spun yarn, the yarn is taken out by air soccer at a speed of 4200 m / min, spread by a known spreader, collected and deposited on a moving collecting surface to form a long fiber web, Partial thermocompression bonding was performed on the long fiber web using a hot embossing roller under the conditions of a point pattern, a processing temperature of 120 ° C., and a press contact area ratio of 10%.
g / m 2 long fiber web was obtained. The fineness of the split type bicomponent conjugate continuous fibers collected from the fiber assembly was about 2.4 denier. Next, the long fiber web was subjected to splitting treatment of a polyethylene polymer and a polyethylene terephthalate polymer using a buckling machine (Microcreper, manufactured by Microtex Co., Ltd.). When the long fiber web after the splitting treatment was observed with a microscope, the ultrafine splitting filament made of a polyethylene polymer and the ultrafine splitting filament made of a polyethylene terephthalate polymer were each in an unentangled state, and the splitting rate was 85%. there were. The fineness of the ultrafine splitting filament made of a polyethylene polymer and the ultrafine splitting filament made of a polyethylene terephthalate polymer were 0.2 denier, respectively.

【0077】短繊維ウエブ及び高圧液体流処理条件を実
施例1と同一条件下で目付けが50g/m2 の複合不織
布を得た。
A composite nonwoven fabric having a basis weight of 50 g / m 2 was obtained under the same conditions as in Example 1 with the short fiber web and high-pressure liquid flow treatment conditions.

【0078】実施例5 実施例1と同一の長繊維ウエブを高圧液体流処理にてポ
リエチレン重合体とポリエチレンテレフタレート重合体
とに割繊処理を行った。すなわち、100メッシュの金
網上に長繊維ウエブを積載して、孔径0.12の噴射孔
が孔面積0.62mmで配置された高圧液体流処理装置
を用い、前記積層体の上方50mmの位置から液体流圧
力を50kg/cm2 Gの条件下で処理を施した。割繊
処理後の長繊維ウエブを顕微鏡にて観察したところポリ
エチレン重合体からなる極細割繊フイラメント同士及び
ポリエチレン重合体からなる極細割繊フイラメントとポ
リエチレンテレフタレート重合体からなる極細割繊フイ
ラメント及びポリエチレンテレフタレート重合体からな
る極細割繊フイラメント同士は交絡状態であり、割繊率
は85%であった。
Example 5 The same long-fiber web as in Example 1 was split into a polyethylene polymer and a polyethylene terephthalate polymer by high-pressure liquid flow treatment. That is, a long-fiber web was loaded on a 100-mesh wire net, and a high-pressure liquid flow treatment device in which injection holes having a hole diameter of 0.12 were arranged with a hole area of 0.62 mm was used. The treatment was performed under the conditions of a liquid flow pressure of 50 kg / cm 2 G. When the long fiber web after the splitting treatment was observed with a microscope, the ultrafine splitting filaments composed of polyethylene polymer and the ultrafine splitting filament composed of polyethylene polymer and the ultrafine splitting filament composed of polyethylene terephthalate polymer and polyethylene terephthalate weight The ultrafine split filaments made of the union were in an entangled state, and the split rate was 85%.

【0079】短繊維ウエブ及び高圧液体流処理条件を実
施例2と同一条件下で目付けが50g/m2 の複合不織
布を得た。
A composite nonwoven fabric having a basis weight of 50 g / m 2 was obtained under the same conditions as in Example 2 for the short fiber web and high-pressure liquid flow treatment.

【0080】実施例6 実施例1において、実施例1で得られた部分的熱圧着処
理が施され分割割繊維処理を施していない長繊維ウエブ
の片面に実施例1と同一の短繊維ウエブを積層した以外
は、実施例1と同様にして目付が50g/m2 の複合不
織布を得た。割繊加工後の複合不織布を顕微鏡にて観察
したところ割繊率は72%であった。
Example 6 In Example 1, the same short fiber web as in Example 1 was applied to one surface of the long fiber web which had been subjected to the partial thermocompression treatment obtained in Example 1 and had not been subjected to the split fiber treatment. Except for laminating, a composite nonwoven fabric having a basis weight of 50 g / m 2 was obtained in the same manner as in Example 1. When the composite nonwoven fabric after splitting was observed with a microscope, the splitting rate was 72%.

【0081】実施例7 長繊維ウエブにおいて、繊維形成性低融点重合体Aとし
て、融点225℃、相対粘度が2.6のナイロン6重合
体を使用し、繊維形成性高融点重合体Bとして、実施例
1と同一のポリエチレンテレフタレート重合体を使用し
た。糸断面が図1に示す如き複合形態でナイロン6重合
体が芯部を形成し全分割数が7個になる複合紡糸口金を
用い、ナイロン6重合体とポリエチレンテレフタレート
重合体の複合比を重量比で1:1とし、単孔吐出量=
1.28g/分で押し出した。紡出糸条を冷却した後、
エアーサッカーにより4800m/分の速度で引き取
り、公知の開繊器にて開繊させ、移動する捕集面上に捕
集・堆積させて長繊維ウエブとし、該長繊維ウエブを熱
エンボスローラーにてポイント柄,加工温度185℃、
圧接面積率10%の条件下で部分熱圧着を行ない、目付
が30g/m2 の長繊維ウエブを得た。該繊維集積体か
ら採取した分割型二成分系複合連続単糸の繊度は約2.
4デニールであった。次いで、該長繊維ウエブを座屈加
工機(マイクレツクス社製、マイクロクレーパ−)にて
ナイロン6重合体とポリエチレンテレフタレート重合体
との分割割繊処理を施した。割繊処理後の長繊維ウエブ
を顕微鏡にて観察したところナイロン6重合体からなる
極細割繊フイラメント及びポリエチレンテレフタレート
重合体からなる極細割繊フイラメントはそれぞれ非交絡
状態であり、割繊率は95%であった。又、ナイロン6
重合体からなる極細割繊フイラメントの繊度は1.2デ
ニールでありポリエチレンテレフタレート重合体からな
る極細割繊フイラメントの繊度は0.2デニールであっ
た。
Example 7 In a long fiber web, a nylon 6 polymer having a melting point of 225 ° C. and a relative viscosity of 2.6 was used as the fiber-forming low melting point polymer A, and a fiber forming high melting point polymer B was used. The same polyethylene terephthalate polymer as in Example 1 was used. The composite ratio of the nylon 6 polymer and the polyethylene terephthalate polymer was determined by weight using a composite spinneret having a yarn cross section as shown in FIG. To 1: 1 and the single hole discharge amount =
Extruded at 1.28 g / min. After cooling the spun yarn,
It is drawn at a speed of 4800 m / min by air soccer, spread by a known spreader, collected and deposited on a moving collecting surface to form a long fiber web, and the long fiber web is heated by a hot emboss roller. Point pattern, processing temperature 185 ℃
Partial thermocompression bonding was performed under the condition of a pressed area ratio of 10% to obtain a long fiber web having a basis weight of 30 g / m 2 . The fineness of the split type two-component composite continuous single yarn collected from the fiber assembly is about 2.
It was 4 denier. Next, the long fiber web was subjected to a splitting treatment of a nylon 6 polymer and a polyethylene terephthalate polymer by a buckling machine (Microcreper, manufactured by Microtex Co., Ltd.). When the long fiber web after the splitting treatment was observed with a microscope, the ultrafine splitting filament made of nylon 6 polymer and the ultrafine splitting filament made of polyethylene terephthalate polymer were each in an unentangled state, and the splitting rate was 95%. Met. Also nylon 6
The fineness of the ultrafine split filament made of a polymer was 1.2 denier, and the fineness of the ultrafine split filament made of a polyethylene terephthalate polymer was 0.2 denier.

【0082】短繊維ウエブ及び積層交絡一体化処理にお
ける高圧液体流処理条件を実施例1と同一条件で行い、
目付けが50g/m2 の複合不織布を得た。
The high-pressure liquid flow processing conditions in the short fiber web and the lamination and entanglement integration processing were performed under the same conditions as in Example 1.
A composite nonwoven fabric having a basis weight of 50 g / m 2 was obtained.

【0083】比較例1 実施例1と同一のポリエチレンテレフタレート重合体を
使用し、糸断面が丸になる単相紡糸口金を用い、単孔吐
出量=1.33g/分で押し出した。紡出糸条を冷却し
た後、エアーサッカーにより5000m/分の速度で引
き取り、公知の開繊器にて開繊させ、移動する捕集面上
に捕集・堆積させて長繊維ウエブとし、該長繊維ウエブ
を熱エンボスローラーにてポイント柄、加工温度240
℃、圧接面積率10%の条件下で部分熱圧着を行ない、
目付けが30g/m2 の長繊維ウエブを得た。単相型連
続繊維の繊度は、2.4デニールであった。短繊維ウエ
ブ及び積層交絡一体化処理における高圧液体流処理条件
を実施例1と同一条件で行い、目付けが50g/m2
複合不織布を得た。
Comparative Example 1 The same polyethylene terephthalate polymer as in Example 1 was extruded at a single hole discharge rate of 1.33 g / min using a single-phase spinneret having a round yarn cross section. After cooling the spun yarn, the yarn is taken out by air soccer at a speed of 5000 m / min, opened by a known opening device, collected and deposited on a moving collecting surface to form a long fiber web, Long fiber web with hot emboss roller, point pattern, processing temperature 240
Perform partial thermocompression bonding under the condition of ℃, pressure contact area ratio 10%,
A long fiber web having a basis weight of 30 g / m 2 was obtained. The fineness of the single-phase continuous fiber was 2.4 denier. The short fiber web and the high-pressure liquid flow treatment conditions in the lamination and confounding integration treatment were performed under the same conditions as in Example 1 to obtain a composite nonwoven fabric having a basis weight of 50 g / m 2 .

【0084】実施例1〜7及び比較例1で得られた複合
不織布及び不織布の物性を測定し、表1に示した。
The physical properties of the composite nonwoven fabrics and nonwoven fabrics obtained in Examples 1 to 7 and Comparative Example 1 were measured and are shown in Table 1.

【0085】[0085]

【表1】 [Table 1]

【0086】表1から明らかのように、実施例1〜2
は、ポリエチレン重合体とポリエチレンテレフタレート
重合体とよりなる二成分系複合連続単糸を予め座屈処理
により分割割繊した長繊維ウエブに短繊維ウエブを積層
し、液体流処理装置を用い交絡処理を行った複合不織布
であるので、引張強力、層間剥離強力、柔軟性のいずれ
にも優れるものであった。
As is clear from Table 1, Examples 1 and 2
Is a two-component composite continuous single yarn consisting of a polyethylene polymer and a polyethylene terephthalate polymer. Since the composite nonwoven fabric was used, it was excellent in all of tensile strength, delamination strength, and flexibility.

【0087】実施例3は、ポリエチレン重合体とポリエ
チレンテレフタレート重合体とよりなる二成分系複合連
続単糸を予め座屈処理により分割割繊した長繊維ウエブ
に、ポリエチレン重合体とポリエチレンテレフタレート
重合体よりなる芯鞘複合短繊維とコットンとの混綿より
なる短繊維ウエブを積層し、液体流処理装置を用い交絡
処理を行った複合不織布であるので、引張強力、層間剥
離強力、柔軟性のいずれにも優れるものであり吸水性も
付与できるものであった。
In Example 3, a two-component composite continuous single yarn consisting of a polyethylene polymer and a polyethylene terephthalate polymer was split into pieces by a buckling treatment in advance to obtain a long fiber web. Since it is a composite nonwoven fabric obtained by laminating short fiber webs made of a blend of core-sheath composite short fibers and cotton and performing entanglement treatment using a liquid flow treatment device, it has tensile strength, delamination strength, and flexibility. It was excellent and could impart water absorption.

【0088】実施例4は、実施例1よりポリエチレン重
合体よりなる割繊フイラメントの繊度を小さくした長繊
維ウエブを、予め座屈処理により分割割繊した長繊維ウ
エブに短繊維ウエブを積層し、液体流処理装置を用い交
絡処理を行った複合不織布であるので、引張強力、層間
剥離強力、柔軟性のいずれにも優れるものであった。
In the fourth embodiment, a short fiber web is laminated on a long fiber web in which the fineness of a splitting filament made of a polyethylene polymer is smaller than that in the first embodiment, which has been split and split in advance by a buckling treatment. Since it was a composite nonwoven fabric subjected to entanglement treatment using a liquid flow treatment device, it was excellent in all of tensile strength, delamination strength and flexibility.

【0089】実施例5は、ポリエチレン重合体とポリエ
チレンテレフタレート重合体とよりなる二成分系複合連
続単糸を予め液体流処理により分割割繊した長繊維ウエ
ブに短繊維ウエブを積層し、液体流処理装置を用い液体
流低圧交絡処理を行った複合不織布であるので、引張強
力、層間剥離強力、柔軟性のいずれにも優れるものであ
った。
In Example 5, a short-fiber web was laminated on a long-fiber web in which a two-component composite continuous single yarn composed of a polyethylene polymer and a polyethylene terephthalate polymer was split beforehand by liquid flow treatment. Since the composite nonwoven fabric was subjected to liquid flow low-pressure entanglement using an apparatus, it was excellent in all of tensile strength, delamination strength, and flexibility.

【0090】実施例6は、ポリエチレン重合体とポリエ
チレンテレフタレート重合体とよりなる二成分系複合連
続単糸よりなる長繊維ウエブに短繊維ウエブを積層し、
液体流処理装置を用い割繊処理と交絡処理を同時に行っ
た複合不織布であるので、層間剥離強力、柔軟性にやや
優れ、引張強力に優れるものであった。
In Example 6, a short fiber web was laminated on a long fiber web consisting of a two-component composite continuous single yarn consisting of a polyethylene polymer and a polyethylene terephthalate polymer.
Since the composite nonwoven fabric was subjected to splitting and entanglement at the same time using a liquid flow treatment device, it was slightly superior in delamination strength, flexibility, and tensile strength.

【0091】実施例7は、ナイロン6重合体とポリエチ
レンテレフタレート重合体とよりなる二成分系複合連続
単糸を予め座屈処理により分割割繊した長繊維ウエブに
短繊維ウエブを積層し、液体流処理装置を用い割繊交絡
処理を行った複合不織布であるので、柔軟性にやや優
れ、層間剥離強力に優れ、引張強力には特に優れるもの
であった。
In Example 7, a short-fiber web was laminated on a long-fiber web obtained by splitting a two-component composite continuous single yarn comprising a nylon 6 polymer and a polyethylene terephthalate polymer in advance by buckling and splitting it. Since it was a composite nonwoven fabric subjected to splitting and entanglement treatment using a processing apparatus, it was slightly excellent in flexibility, excellent in delamination strength, and particularly excellent in tensile strength.

【0092】これに対し、比較例1は、ポリエチレンテ
レフタレート重合体で単相連続繊維よりなる長繊維ウエ
ブに短繊維ウエブを積層し、液体流処理装置を用い交絡
処理を行った複合不織布であるので、剥離強力に著しく
劣るものであった。
On the other hand, Comparative Example 1 is a composite nonwoven fabric obtained by laminating a short fiber web on a long fiber web made of a single-phase continuous fiber of a polyethylene terephthalate polymer and performing an entanglement treatment using a liquid flow treatment device. , Peel strength was remarkably inferior.

【0093】実施例8 実施例1で得られた複合不織布にカレンダー加工を施し
た。すなわち、加熱温度が110℃の金属ロールと常温
のコットンロールからなるカレンダー加工装置を用い、
複合不織布の短繊維ウエブ側を金属ロールになるように
通布し、線圧20kg/cmの条件下でカレンダー加工
を施し、目付50g/m2 の複合不織布を得た。得られ
た複合不織布の物性は表1に示した。
Example 8 The composite nonwoven fabric obtained in Example 1 was subjected to calendering. That is, using a calendering device consisting of a metal roll at 110 ° C. and a cotton roll at room temperature,
The short fiber web side of the composite nonwoven fabric was passed as a metal roll and calendered under the condition of a linear pressure of 20 kg / cm to obtain a composite nonwoven fabric with a basis weight of 50 g / m 2 . The physical properties of the obtained composite nonwoven fabric are shown in Table 1.

【0094】カレンダー加工を施した実施例8の複合不
織布は、短繊維ウエブの構成繊維である芯鞘型複合繊維
の鞘部分同士及び鞘部分と長繊維ウエブを形成する低融
点重合体とが熱圧着し、長繊維ウエブと短繊維ウエブと
の層間剥離強力は強く、強固に一体化した複合不織布と
なった。また、短繊維ウエブ側において、熱処理による
構成繊維同士の熱圧着により繊維間密度が小さくなり、
この複合不織布をフイルター用途等として用いると優れ
た性能が発揮できるものであった。
The calendered composite nonwoven fabric of Example 8 was obtained by heating the sheath portions of the core-sheath composite fibers, which are constituent fibers of the short fiber web, and the sheath portion and the low melting point polymer forming the long fiber web. After compression bonding, the delamination strength between the long fiber web and the short fiber web was strong, and the composite nonwoven fabric was firmly integrated. In addition, on the short fiber web side, the inter-fiber density is reduced by thermocompression bonding of the constituent fibers by heat treatment,
When this composite nonwoven fabric was used for a filter or the like, excellent performance was exhibited.

【0095】実施例9 実施例1において、高圧液体流処理装置により、液体流
圧力を30kg/cm2 Gとしたこと以外は、実施例1
と同一条件にて、目付が50g/m2 の複合不織布を得
た。得られた複合不織布の物性は、引張強力19kg/
5cm幅、圧縮剛軟度14g、剥離強力360gであっ
た。
Example 9 Example 1 was the same as Example 1 except that the liquid flow pressure was set to 30 kg / cm 2 G by the high-pressure liquid flow treatment device.
Under the same conditions as above, a composite nonwoven fabric having a basis weight of 50 g / m 2 was obtained. The physical properties of the obtained composite non-woven fabric were 19 kg / tensile strength.
It had a width of 5 cm, a compression stiffness of 14 g, and a peel strength of 360 g.

【0096】座屈処理により予め極細割繊フイラメント
群を発現させた長繊維ウエブは、極細割繊フイラメント
群は非交絡状態であるため、フイラメントの自由度が大
きい上、フイラメント間の空隙が大きいため、短繊維ウ
エブの構成繊維が入り込み絡みやすい。したがって、積
層一体化における高圧液体流処理の水圧を低水圧とした
が、得られた実施例9の複合不織布は、剥離強力に優
れ、特に柔軟性に優れたものであった。
The long fiber web in which the group of ultra-fine splitting filaments is developed in advance by buckling treatment has a high degree of freedom of the filaments and a large gap between the filaments because the group of ultra-fine splitting filaments is in an unentangled state. In addition, the constituent fibers of the short fiber web easily enter and become entangled. Therefore, although the water pressure of the high-pressure liquid flow treatment in the lamination integration was set to a low water pressure, the obtained composite nonwoven fabric of Example 9 was excellent in peeling strength and particularly excellent in flexibility.

【0097】[0097]

【発明の効果】本発明の複合不織布は、二成分系分割型
複合連続単糸よりなる長繊維ウエブと二成分系芯鞘型複
合連続繊維よりなる短繊維ウエブとを積層し、液体流処
理装置を用い両ウエブを緻密に交絡一体化した複合不織
布であって、機械的特性と剥離強力が高く、柔軟性に優
れ、良好なフイルター性能を有するものであり、医療・
衛生材用、衣料用、生活関連資材用、産業資材用として
好適である。
The composite nonwoven fabric according to the present invention is obtained by laminating a long fiber web composed of a two-component split type composite continuous single yarn and a short fiber web composed of a two-component core-sheath composite continuous fiber, and a liquid flow treatment device. Is a composite nonwoven fabric in which both webs are densely entangled and integrated with each other. It has high mechanical properties and peel strength, has excellent flexibility, and has good filter performance.
It is suitable for sanitary materials, clothing, living related materials, and industrial materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられる二成分系複合連続単糸の横
断面の一実施模式図である。
FIG. 1 is a schematic diagram showing one embodiment of a cross section of a two-component composite continuous single yarn used in the present invention.

【図2】本発明に用いられる二成分系複合連続単糸の横
断面の一実施模式図である。
FIG. 2 is a schematic diagram of one embodiment of a cross section of a two-component composite continuous single yarn used in the present invention.

【図3】本発明に用いられる二成分系複合連続単糸の横
断面の一実施模式図である。
FIG. 3 is a schematic diagram showing one embodiment of a cross section of a two-component composite continuous single yarn used in the present invention.

【図4】本発明に用いられる二成分系複合連続単糸の横
断面の一実施模式図である。
FIG. 4 is a schematic diagram of one embodiment of a cross section of a two-component composite continuous single yarn used in the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 繊維形成性低融点重合体Aと前記低融点
重合体Aに対し非相溶性でかつ前記低融点重合体Aの融
点より30〜180℃高い融点を有する繊維形成性高融
点重合体Bとからなる分割型二成分系複合連続単糸の分
割により発現した前記低融点重合体A及び前記高融点重
合体Bから構成される極細割繊フイラメント群からなる
長繊維ウエブと、主として下記短繊維からなる短繊維ウ
エブとが積層されてなり、かつ長繊維ウエブの構成繊維
同士、長繊維ウエブと短繊維ウエブとの構成繊維同士及
び短繊維ウエブの構成繊維同士の三次元交絡により一体
化してなることを特徴とする複合不織布。 記 短繊維:繊維形成性低融点重合体Cを鞘部に繊維形成性
高融点重合体Dを芯部に配置せしめた芯鞘複合短繊維。
1. A fiber-forming low melting point polymer A and a fiber forming high melting point weight which are incompatible with the low melting point polymer A and have a melting point 30 to 180 ° C. higher than the melting point of the low melting point polymer A. A long-fiber web consisting of a group of ultrafine splitting filaments composed of the low-melting polymer A and the high-melting polymer B, which are developed by dividing the split type two-component composite continuous single yarn comprising the union B; Short fiber webs composed of short fibers are laminated and integrated by three-dimensional confounding of the constituent fibers of the long fiber web, the constituent fibers of the long fiber web and the short fiber web, and the constituent fibers of the short fiber web. A composite nonwoven fabric comprising: Short fiber: a core-sheath composite short fiber in which a fiber-forming low-melting polymer C is disposed in a sheath and a fiber-forming high-melting polymer D is disposed in a core.
【請求項2】 短繊維ウエブにおいて、天然繊維及び/
又は再生繊維からなる短繊維が30重量%未満混綿され
てなることを特徴とする請求項1記載の複合不織布。
2. In a short fiber web, natural fibers and / or
The composite nonwoven fabric according to claim 1, wherein a short fiber composed of regenerated fiber is mixed with less than 30% by weight.
【請求項3】 短繊維ウエブを構成する芯鞘複合短繊維
の鞘部の重合体が繊維交差点にて少なくとも部分的に軟
化又は溶融して、繊維同士が熱融着していることを特徴
とする請求項1又は2に記載の複合不織布。
3. The short-fiber web according to claim 1, wherein the polymer of the sheath of the core-sheath composite short fiber is at least partially softened or melted at the fiber intersection, and the fibers are heat-sealed to each other. The composite nonwoven fabric according to claim 1.
【請求項4】 繊維形成性低融点重合体Aと前記低融点
重合体Aに対し非相溶性でかつ前記低融点重合体Aの融
点より30〜180℃高い融点を有する繊維形成性高融
点重合体Bとからなる分割型二成分系複合連続単糸群を
溶融紡糸し、前記複合連続単糸群をエアーサッカーを用
いて引取り、スクリーンコンベア等の移動式捕集面上に
開繊堆積させて長繊維ウエブとし、前記長繊維ウエブを
部分熱圧着装置を用いて前記複合連続単糸群に部分的な
熱圧着処理を施して長繊維ウエブを得、前記長繊維ウエ
ブの少なくとも片面に主として下記短繊維からなる短繊
維ウエブを積層し、次いで、前記積層体に高圧液体流処
理を施し、長繊維ウエブの構成繊維同士、長繊維ウエブ
と短繊維ウエブとの構成繊維同士及び短繊維ウエブの構
成繊維同士を三次元的に交絡させることにより積層体を
全体として一体化させることを特徴とする複合不織布の
製造方法。 記 短繊維:繊維形成性低融点重合体Cを鞘部に繊維形成性
高融点重合体Dを芯部に配置せしめた芯鞘複合短繊維。
4. A fiber-forming low melting point polymer A and a fiber forming high melting point weight which is incompatible with said low melting point polymer A and has a melting point 30 to 180 ° C. higher than the melting point of said low melting point polymer A. The split type two-component composite continuous single yarn group composed of the combined B is melt-spun, the composite continuous single yarn group is taken up by using an air soccer, and is spread and deposited on a movable collecting surface such as a screen conveyor to obtain a long yarn. A fiber web, the long fiber web is subjected to a partial thermocompression treatment on the composite continuous single yarn group using a partial thermocompression bonding apparatus to obtain a long fiber web, and at least one surface of the long fiber web is mainly made of the following short fibers. The short fiber web is laminated, and then the high pressure liquid flow treatment is applied to the laminate, and the constituent fibers of the long fiber web, the constituent fibers of the long fiber web and the short fiber web, and the constituent fibers of the short fiber web are separated. Three-dimensional A method for producing a composite nonwoven fabric, wherein a laminate is integrated as a whole by entanglement. Short fiber: a core-sheath composite short fiber in which a fiber-forming low-melting polymer C is disposed in a sheath and a fiber-forming high-melting polymer D is disposed in a core.
【請求項5】 長繊維ウエブとして、部分的に熱圧着し
た長繊維ウエブを座屈処理にて熱圧着されていない部位
に存在する前記複合連続単糸を分割割繊させて、低融点
重合体A又は高融点重合体Bから構成される極細割繊フ
イラメント群を少なくとも一部発現させ、かつ極細割繊
フイラメント群同士は非交絡状態とした長繊維ウエブを
用いることを特徴とする請求項4記載の複合不織布の製
造方法。
5. A low-melting polymer obtained by splitting and splitting the composite continuous single yarn present in a portion of a long fiber web which has not been thermocompression-bonded by a buckling treatment as a long fiber web. 5. A filament fiber web in which at least a part of the group of ultrafine split filaments composed of A or the high melting point polymer B is expressed, and the group of ultrafine split filaments is unentangled. A method for producing a composite nonwoven fabric.
【請求項6】 長繊維ウエブとして、部分的に熱圧着し
た長繊維ウエブに高圧液体流処理を施して熱圧着されて
いない部位に存在する前記複合連続単糸を分割割繊させ
て、低融点重合体A又は高融点重合体Bから構成される
極細割繊フイラメント群を少なくとも一部発現させ、か
つ極細割繊フイラメント群同士を三次元的に交絡させた
長繊維ウエブを用いることを特徴とする請求項4記載の
複合不織布の製造方法。
6. A long-fiber web, which is subjected to a high-pressure liquid flow treatment on a partially thermo-compressed long-fiber web to split and split the composite continuous single yarn present at a portion that has not been thermo-compressed, thereby obtaining a low melting point. It is characterized by using a long fiber web in which at least a part of the ultrafine split filament group composed of the polymer A or the high melting point polymer B is expressed, and the ultrafine split filament groups are three-dimensionally entangled with each other. A method for producing a composite nonwoven fabric according to claim 4.
【請求項7】 短繊維ウエブにおいて、天然繊維及び/
又は再生繊維からなる短繊維を30重量%未満混綿させ
ることを特徴とする請求項4〜6のいずれか1項記載の
複合不織布の製造方法。
7. A short fiber web comprising natural fibers and / or
The method for producing a composite nonwoven fabric according to any one of claims 4 to 6, wherein a short fiber made of a regenerated fiber is mixed with less than 30% by weight.
【請求項8】 積層体に高圧液体流処理を施した後、短
繊維を構成する鞘部の重合体が溶融する温度で熱処理す
ることを特徴とする請求項4〜7のいずれか1項記載の
複合不織布の製造方法。
8. The laminate according to claim 4, wherein the laminate is subjected to a high-pressure liquid flow treatment, and then heat-treated at a temperature at which the polymer of the sheath constituting the short fibers melts. A method for producing a composite nonwoven fabric.
JP9335293A 1997-01-29 1997-12-05 Composite nonwoven fabric and its production Pending JPH10273864A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9-15077 1997-01-29
JP1507797 1997-01-29
JP9335293A JPH10273864A (en) 1997-01-29 1997-12-05 Composite nonwoven fabric and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9335293A JPH10273864A (en) 1997-01-29 1997-12-05 Composite nonwoven fabric and its production

Publications (1)

Publication Number Publication Date
JPH10273864A true JPH10273864A (en) 1998-10-13

Family

ID=26351161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9335293A Pending JPH10273864A (en) 1997-01-29 1997-12-05 Composite nonwoven fabric and its production

Country Status (1)

Country Link
JP (1) JPH10273864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201855A (en) * 2013-04-05 2014-10-27 帝人株式会社 Heat-adhesive composite fiber
EP3991823A1 (en) * 2020-10-30 2022-05-04 Conteyor International NV Face mask

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201855A (en) * 2013-04-05 2014-10-27 帝人株式会社 Heat-adhesive composite fiber
EP3991823A1 (en) * 2020-10-30 2022-05-04 Conteyor International NV Face mask
BE1028772B1 (en) * 2020-10-30 2022-05-30 Conteyor Int Nv FACE MASK

Similar Documents

Publication Publication Date Title
JP2002061060A (en) Nonwoven fabric and finished article of nonwoven fabric
JPH10331063A (en) Composite nonwoven fabric and its production
JPH10219555A (en) Laminated nonwoven fabric and its production
JP3201671B2 (en) Manufacturing method of composite nonwoven fabric
JPH10273864A (en) Composite nonwoven fabric and its production
JPH10273870A (en) Composite non-woven fabric and its production
JPH10280262A (en) Nonwoven fabric and its production
JP4015831B2 (en) Ultrafine fiber nonwoven fabric and method for producing the same
JP3259936B2 (en) Laminated nonwoven fabric and method for producing the same
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JP3905916B2 (en) Method for producing composite nonwoven fabric containing ultrafine fibers
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP3580626B2 (en) Nonwoven fabric for hook-and-loop fastener and method for producing the same
JPH1161618A (en) Ultrafine fiber nonwoven fabric and its production
JPH11158763A (en) Conjugate nonwoven cloth and its production
JPH06212548A (en) Biodegradable latent-crimping conjugate short fiber and its nonwoven fabric
JPH08109567A (en) Laminated nonwoven structure and its production
JP3305453B2 (en) Laminated non-woven structure
JP3145067B2 (en) Nonwoven fabric and method for producing the same
JPH10273869A (en) Composite non-woven fabric and its production
JP2000017558A (en) Ultrafine staple-containing composite nonwoven fabric and its production
JP3221200B2 (en) Laminated nonwoven fabric and method for producing the same
JPH10158970A (en) Composite nonwoven fabric and its production
JPH1121752A (en) Composite nonwoven fabric and its production
JPH1161621A (en) Stretchable ultrafine fiber nonwoven fabric and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807