JPH10280262A - Nonwoven fabric and its production - Google Patents

Nonwoven fabric and its production

Info

Publication number
JPH10280262A
JPH10280262A JP9084826A JP8482697A JPH10280262A JP H10280262 A JPH10280262 A JP H10280262A JP 9084826 A JP9084826 A JP 9084826A JP 8482697 A JP8482697 A JP 8482697A JP H10280262 A JPH10280262 A JP H10280262A
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
melting point
fibers
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9084826A
Other languages
Japanese (ja)
Inventor
Nobuo Noguchi
信夫 野口
Atsushi Matsunaga
篤 松永
Yasuhiro Yonezawa
安広 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP9084826A priority Critical patent/JPH10280262A/en
Publication of JPH10280262A publication Critical patent/JPH10280262A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a water-absorbing nonwoven fabric improved in effect preventing falling off of fiber due to abrasion and washing by subjecting a nonwoven web comprising a splittable type conjugate staple fiber and a water- absorbing short fiber to high pressure liquid flow treatment and heat-melting treatment. SOLUTION: A splittable bicomponent-based conjugate staple fiber formed of a fiber-forming low melting point polymer such as polyethylene and a fiber- forming high-melting point polymer such as polyethlene terephthalate which is incompatible to the low melting point polymer and having a melting point higher by 30-180 deg.C than that of the low melting point polymer is blended with 30-70 wt.% staple fiber having water soluble property, e.g. natural fiber such as cotton or regenerated fiber and the mixture is subjected to treatment with a carding machine to form a nonwoven web. High pressure liquid flow is jetted to the nonwoven web to split the splittable type conjugate staple fiber into ultrafine staple fiber having <=0.8 denier single fiber fineness and the resultant ultrasonic short fiber is treated at a temperature at which at least low-melting point polymer is melted and softened and intersections of the constitutional fibers are thermally fused to provide the objective nonwoven fabric.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、短繊維不織布に関
するものである。
TECHNICAL FIELD The present invention relates to a short fiber nonwoven fabric.

【0002】[0002]

【従来の技術】短繊維不織布として、高圧液体流の作用
により構成繊維同士が三次元的交絡したいわゆるスパン
レース不織布が挙げられる。この不織布は、柔軟性に優
れているため各種の用途に用いられており、素材として
は、各種用途に応じて天然繊維や合成繊維等が用いられ
ている。しかし、スパンレース不織布は、繊維同士の結
合が交絡によってのみなされたものであるため、引っ張
り、摩擦に対して容易に変形し、形態安定性の面におい
ては十分に優れているとはいいがたいものである。
2. Description of the Related Art As a short fiber nonwoven fabric, there is a so-called spunlace nonwoven fabric in which constituent fibers are three-dimensionally entangled by the action of a high-pressure liquid flow. This nonwoven fabric is used for various applications because of its excellent flexibility, and natural fibers, synthetic fibers, and the like are used as materials according to various applications. However, the spun lace nonwoven fabric is one in which the bonding between fibers is determined by entanglement, so that it is easily deformed against tension and friction, and it is difficult to say that it is sufficiently excellent in terms of form stability. Things.

【0003】また、合成繊維単独または合成繊維と天然
繊維とを混綿してなる不織ウエブに、熱処理が施されて
不織布化された短繊維不織布も挙げられる。この不織布
は、スパンレース不織布に比べて寸法安定性や機械的強
力には優れる。しかし、互いに相溶性のない素材が複数
種混綿されているため、熱接着部における繊維同士の接
着が強固とならず、表面摩擦力等の外力が加わった場合
に繊維の抜けによる毛羽立ちが発生し、耐摩耗性には十
分に優れているとはいいがたいものである。
[0003] Also, there is a short fiber nonwoven fabric obtained by subjecting a nonwoven web made of synthetic fibers alone or a mixture of synthetic fibers and natural fibers to a nonwoven fabric by heat treatment. This nonwoven fabric has excellent dimensional stability and mechanical strength as compared with spunlace nonwoven fabric. However, since a plurality of types of materials that are incompatible with each other are mixed, the bonding between the fibers in the heat-bonded portion does not become strong, and when an external force such as a surface frictional force is applied, fluffing occurs due to the detachment of the fibers. However, it is difficult to say that the abrasion resistance is sufficiently excellent.

【0004】[0004]

【発明が解決しようとする課題】本発明は前記問題を解
決し、機械的強力、耐摩耗性および寸法安定性に優れ、
かつ吸水性を併せもつ不織布を提供することを目的とす
るものである。
SUMMARY OF THE INVENTION The present invention solves the above problems and has excellent mechanical strength, abrasion resistance and dimensional stability.
It is another object of the present invention to provide a nonwoven fabric having both water absorbency.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するもので次の構成よりなるものである。すなわち、
本発明は、繊維形成性低融点重合体と前記低融点重合体
に対し非相溶性でかつ前記低融点重合体の融点より30
〜180℃高い融点を有する繊維形成性高融点重合体と
からなる分割型二成分系複合短繊維の分割により発現し
た前記低融点重合体および/または前記高融点重合体か
らなる極細割繊短繊維と、吸水性を有する短繊維とから
なる不織布であり、前記構成繊維同士が三次元的に交絡
し、かつ繊維同士の交点が前記低融点重合体によりに熱
接着されていることを特徴とする不織布を要旨とするも
のである。
The present invention attains the above object and has the following constitution. That is,
The present invention provides a fiber-forming low-melting polymer which is incompatible with the low-melting polymer and has a melting point lower than the melting point of the low-melting polymer by 30%.
The low-melting polymer and / or the ultrafine splitting short fiber comprising the high-melting polymer developed by splitting a splittable bicomponent conjugate short fiber comprising a fiber-forming high-melting polymer having a melting point higher by 180 ° C. And a nonwoven fabric comprising short fibers having water absorbency, wherein the constituent fibers are three-dimensionally entangled, and the intersection of the fibers is thermally bonded to the low melting point polymer. A nonwoven fabric is the gist.

【0006】[0006]

【発明の実施の態様】次に、本発明を詳細に説明する。
まず、本発明に使用する分割型二成分系複合短繊維につ
いて説明する。該分割型二成分系複合短繊維は、繊維形
成性低融点重合体と、前記低融点重合体に対し非相溶性
の繊維形成性高融点重合体とからなるものである。前記
低融点重合体と前記高融点重合体とが互いに非相溶性で
あるのは、複合短繊維に衝撃を与えたときに分割しやす
いようにするためである。
Next, the present invention will be described in detail.
First, the splittable bicomponent conjugate short fibers used in the present invention will be described. The splittable two-component conjugate short fiber is composed of a fiber-forming low-melting polymer and a fiber-forming high-melting polymer that is incompatible with the low-melting polymer. The reason that the low-melting polymer and the high-melting polymer are incompatible with each other is to make it easy to split the composite short fiber when an impact is applied.

【0007】分割型二成分系複合短繊維の繊維形成性高
融点重合体の融点は繊維形成性低融点重合体の融点より
30〜180℃高くなければならない。両者の融点差が
30℃未満であると、部分熱圧着装置を用いて熱圧着処
理する際に、低融点重合体のみでなく高融点重合体も軟
化溶融することとなり、柔軟性を有する不織布が得られ
ないこととなり、例えば、人体に接して用いる用途等に
おいては、ソフト感の乏しいものとなり好ましくない。
一方、融点差が180℃を超えると、両重合体を溶融複
合紡糸する際に低融点重合体が熱劣化を起こしやすく、
現実的に複合短繊維を製造しにくくなるため好ましくな
い。
[0007] The melting point of the fiber-forming high melting point polymer of the splittable bicomponent conjugate short fibers must be 30 to 180 ° C higher than the melting point of the fiber-forming low melting point polymer. When the difference in melting point between the two is less than 30 ° C., when performing thermocompression bonding using a partial thermocompression bonding apparatus, not only the low-melting polymer but also the high-melting polymer is softened and melted. Therefore, for example, in applications where the device is used in contact with the human body, the soft feeling is poor, which is not preferable.
On the other hand, when the difference in melting point exceeds 180 ° C., when the both polymers are melt-spun, the low-melting-point polymer tends to undergo thermal deterioration,
It is not preferable because it is practically difficult to produce a conjugate short fiber.

【0008】分割型二成分系複合短繊維の具体例として
は、図1〜図4に示した如き横断面を持つものが好まし
い。これらは、繊維形成性低融点重合体および繊維形成
性高融点重合体の両成分が共に繊維の表面に露出してお
り、かつ繊維の断面内において、一方の成分が他方の成
分により分割割繊可能な形に仕切られているものであ
る。
As a specific example of the splittable bicomponent conjugate short fibers, those having a cross section as shown in FIGS. 1 to 4 are preferable. In these, both components of the fiber-forming low-melting polymer and the fiber-forming high-melting polymer are both exposed on the surface of the fiber, and in the cross section of the fiber, one component is split by the other component. It is divided into possible forms.

【0009】分割型二成分系複合短繊維の繊維形成性高
融点重合体と繊維形成性低融点重合体の比率は、35/
65〜65/35(重量比)の範囲とするのがよい。柔
軟性に優れる不織布を得たい場合は、熱融着成分となる
低融点重合体の配合比を35〜50重量%の範囲とすれ
ばよく、また、形態安定性や耐摩耗性に優れる不織布を
得たい場合は、低融点重合体の配合比を50〜65重量
%の範囲とすればよい。高融点重合体と低融点重合体の
比率は、目的とする不織布の用途等を考慮し適宜選択す
ればよい。
The ratio of the fiber-forming high-melting polymer to the fiber-forming low-melting polymer of the split type bicomponent conjugate short fibers is 35 /
It is better to be in the range of 65 to 65/35 (weight ratio). When it is desired to obtain a nonwoven fabric having excellent flexibility, the compounding ratio of the low melting point polymer serving as the heat-sealing component may be in the range of 35 to 50% by weight, and a nonwoven fabric having excellent shape stability and abrasion resistance may be obtained. If desired, the blending ratio of the low melting point polymer may be in the range of 50 to 65% by weight. The ratio of the high melting point polymer to the low melting point polymer may be appropriately selected in consideration of the intended use of the nonwoven fabric and the like.

【0010】分割型二成分系複合短繊維の単糸繊度は、
1〜12デニールであることが好ましい。単糸繊度が1
デニール未満になると、溶融紡糸する際の紡糸口金の単
孔当たりの吐出量が低下し、生産量が低下する傾向にあ
り、また、生産量を向上させるために、紡糸口金の孔数
を増加させると、紡糸工程が不安定になる。一方、単糸
繊度が12デニールを超えると、溶融紡糸された糸条の
冷却不足により引き取りが困難になる傾向にあり、ま
た、糸条の冷却を促進させるため、紡糸口金の孔数を減
らすと、生産量が低下する。
The single yarn fineness of the split type bicomponent conjugate short fiber is as follows:
Preferably it is 1 to 12 denier. Single yarn fineness is 1
When it is less than denier, the discharge amount per single hole of the spinneret during melt spinning is reduced, and the production amount tends to decrease, and in order to improve the production amount, the number of holes in the spinneret is increased. Then, the spinning process becomes unstable. On the other hand, if the single yarn fineness exceeds 12 denier, it tends to be difficult to take off due to insufficient cooling of the melt-spun yarn, and to promote the cooling of the yarn, the number of holes in the spinneret is reduced. , The production volume decreases.

【0011】分割型二成分系複合短繊維は、後の分割割
繊処理により、低融点重合体と高融点重合体との境界で
分割され、低融点重合体からなる極細割繊短繊維及び高
融点重合体からなる極細割繊短繊維が少なくとも一部発
現する。本発明において、少なくとも一部発現する極細
割繊短繊維の単糸繊度は、0.8デニール以下が好まし
く、より好ましくは0.05〜0.8デニール、さらに
好ましくは0.1〜0.5デニールである。単糸繊度が
0.05デニール未満であると、現実的に紡糸が困難と
なり分割型二成分系複合短繊維が安価で合理的に得にく
い。また、十分に分割割繊を行うことが困難となる傾向
にある。一方、0.8デニールを超えると、得られた不
織布は、本発明が目的とする構成繊維同士が緻密に絡み
合った、表面平滑な不織布が得られず、不織布に粗硬感
が発生する傾向にある。
The splittable bicomponent conjugate short fibers are split at the boundary between the low-melting polymer and the high-melting polymer by the split splitting process to be performed. At least a part of ultrafine split short fibers made of a polymer having a melting point is exhibited. In the present invention, the single-fiber fineness of the ultrafine split short fibers expressed at least partially is preferably 0.8 denier or less, more preferably 0.05 to 0.8 denier, and still more preferably 0.1 to 0.5. Denier. If the single-fiber fineness is less than 0.05 denier, spinning is practically difficult, and it is difficult to obtain a splittable bicomponent conjugate short fiber at a reasonable cost. In addition, there is a tendency that it is difficult to sufficiently perform split splitting. On the other hand, if it exceeds 0.8 denier, the obtained nonwoven fabric has a tendency that the constituent fibers aimed at by the present invention are densely entangled, a nonwoven fabric having a smooth surface cannot be obtained, and the nonwoven fabric tends to have a coarse hard feeling. is there.

【0012】本発明において、分割型二成分系複合短繊
維を構成する低融点重合体と高融点重合体との組み合わ
せとしては、ポリオレフイン/ポリアミド、ポリオレフ
イン/ポリエステル、ポリアミド/ポリエステル等が挙
げられるが、これらは代表例であって他の各種の組み合
わせも任意に採用される。
In the present invention, examples of the combination of the low melting point polymer and the high melting point polymer constituting the splittable bicomponent conjugate short fiber include polyolefin / polyamide, polyolefin / polyester, polyamide / polyester, etc. These are typical examples, and other various combinations are also arbitrarily adopted.

【0013】本発明に使用しうる繊維形成性ポリオレフ
イン系重合体の例としては、炭素原子数が2〜16の脂
肪族α−モノオレフイン、例えばエチレン、プロピレ
ン、1−ブテン、1−ペンテン,3−メチル1−ブテ
ン、1−ヘキセン、1−オクテン、1−ドデセン、1−
オクタデセンのホモポリオレフイン又は共重合ポリオレ
フインがある。脂肪族α−モノオレフインは他のオレフ
イン及び/又は少量(重合体重量の約10重量%まで)
の他のエチレン系不飽和モノマ−、例えばブタジエン、
イソプレン、ペンタジエン−1,3、スチレン、α−メ
チルスチレンの如き類似のエチレン系不飽和モノマ−と
共重合されていてもよい。特にポリエチレンの場合、重
合体重量の約10重量%までのプロピレン、ブテン−
1、ヘキセン−1、オクテン−1又は類似の高級α−オ
レフインと共重合させたものが製糸性がよくなるため好
ましい。
Examples of the fiber-forming polyolefin polymer which can be used in the present invention include aliphatic α-monoolefins having 2 to 16 carbon atoms, for example, ethylene, propylene, 1-butene, 1-pentene, 3. -Methyl 1-butene, 1-hexene, 1-octene, 1-dodecene, 1-
There is a homopolyolefin or a copolymerized polyolefin of octadecene. Aliphatic α-monoolefins may contain other olefins and / or small amounts (up to about 10% by weight of polymer weight)
Other ethylenically unsaturated monomers such as butadiene,
It may be copolymerized with similar ethylenically unsaturated monomers such as isoprene, pentadiene-1,3, styrene and α-methylstyrene. Especially in the case of polyethylene, up to about 10% by weight of the polymer weight of propylene, butene-
Those copolymerized with 1, hexene-1, octene-1 or a similar higher α-olefin are preferred because of improved spinning properties.

【0014】本発明に使用しうる繊維形成性ポリアミド
系重合体の例としては、ナイロン−4、ナイロン−4
6、ナイロン−6、ナイロン−66、ナイロン−61
0、ナイロン−11、ナイロン−12やポリメタキシレ
ンアジパミド(MXD−6)、ポリパラキシレンデカン
アミド(PXD−12)、ポリビスシクロヘキシルメタ
ンデカンアミド(PCM−12)又はこれらのモノマ−
を構成単位とする共重合ポリアミドがある。本発明に使
用しうる繊維形成性ポリエステル系重合体の例として
は、酸成分としてテレフタル酸、イソフタル酸、フタル
酸、2,6−ナフタレンジカルボン酸等の芳香族ジカル
ボン酸もしくはアジピン酸、セバシン酸などの脂肪族ジ
カルボン酸またはこれらのエステル類と、アルコール成
分としてエチレングリコール、ジエチレングリコール、
1,4−ブタンジオール、ネオペンチルグリコール、
1,4−シクロヘキサンジメタノール等のジオール化合
物とから合成されるホモポリエステルないしは共重合ポ
リエステルであり、上記ポリエステルにパラオキシ安息
香酸、5−ナトリウムスルフオイソフタール酸、ポリア
ルキレングリコール、ペンタエリスリトール、ビスフエ
ノールA等が添加あるいは共重合されていてもよい。
Examples of the fiber-forming polyamide polymer usable in the present invention include nylon-4 and nylon-4.
6, Nylon-6, Nylon-66, Nylon-61
0, nylon-11, nylon-12, polymetaxylene adipamide (MXD-6), polyparaxylenedecaneamide (PXD-12), polybiscyclohexylmethanedecaneamide (PCM-12) or a monomer thereof.
There is a copolymerized polyamide having as a structural unit. Examples of fiber-forming polyester polymers that can be used in the present invention include terephthalic acid, isophthalic acid, phthalic acid, aromatic dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid or adipic acid, sebacic acid and the like as an acid component. Aliphatic dicarboxylic acids or esters thereof, and alcohol components as ethylene glycol, diethylene glycol,
1,4-butanediol, neopentyl glycol,
A homopolyester or a copolymerized polyester synthesized from a diol compound such as 1,4-cyclohexanedimethanol, and the above-mentioned polyesters include paraoxybenzoic acid, 5-sodium sulfoisophthalic acid, polyalkylene glycol, pentaerythritol, bisphenol A or the like may be added or copolymerized.

【0015】その他の繊維形成性重合体の例としては、
例えばビニル系重合体が用いられ、具体的にはポリビニ
ルアルコール、ポリ酢酸ビニル、ポリアクリル酸エステ
ル、エチレン酢酸ビニル共重合体、ポリ塩化ビニル、ポ
リ塩化ビニリデン、または、これらの共重合体が用いら
れる。また、ポリフエニレン系重合体またはその共重合
体を使用することもできる。
Examples of other fiber-forming polymers include:
For example, a vinyl polymer is used, and specifically, polyvinyl alcohol, polyvinyl acetate, polyacrylate, ethylene vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, or a copolymer thereof is used. . Further, a polyphenylene-based polymer or a copolymer thereof can also be used.

【0016】なお、繊維形成性低融点重合体、繊維形成
性高融点重合体には、本発明の効果を損なわない範囲内
で、艶消し剤、顔料、防炎剤、消臭剤、帯電防止剤、酸
化防止剤、紫外線吸収剤等の任意の添加物が添加されて
いてもよい。
The fiber-forming low-melting polymer and the fiber-forming high-melting polymer include a matting agent, a pigment, a flame retardant, a deodorant, an antistatic agent as long as the effects of the present invention are not impaired. Optional additives such as an agent, an antioxidant, and an ultraviolet absorber may be added.

【0017】分割型二成分系複合短繊維は、一般に以下
の如き方法で製造される。すなわち、従来公知の溶融複
合紡糸法で紡糸され、横吹付や環状吹付等の従来公知の
冷却装置を用いて、吹付風により冷却された後、油剤を
付与し引き取りローラーを介して未延伸糸として巻取機
に巻取られる。引き取りローラー速度は500m/分〜
2000m/分である。巻取られた未延伸糸を複数本引
き揃え、公知の延伸機にて周速の異なるローラー群の間
で延伸される。次いで、前記延伸トウを押し込み式捲縮
付与装置にて捲縮を付与した後、所定の繊維長に切断し
て短繊維を得ることができる。なお、要求される用途に
より延伸トウに素材の融点以下の温度で熱セットを施し
てもよい。
The split type bicomponent conjugate short fibers are generally produced by the following method. That is, spun by a conventionally known melt composite spinning method, using a conventionally known cooling device such as horizontal spraying or annular spraying, and cooled by spraying wind, applying an oil agent, and as an undrawn yarn through a take-off roller. It is wound on a winder. Pickup roller speed is 500m / min ~
2000 m / min. A plurality of wound undrawn yarns are aligned and drawn between a group of rollers having different peripheral speeds by a known drawing machine. Next, the drawn tow is crimped by a press-type crimping device, and then cut into a predetermined fiber length to obtain short fibers. The stretch tow may be subjected to heat setting at a temperature equal to or lower than the melting point of the material depending on the required use.

【0018】次に、本発明に用いる吸水性を有する短繊
維について説明する。吸水性を有する短繊維としては、
特に公定水分率が5%以上の繊維を用いることが好まし
い。公定水分率が5%以上の繊維としては、天然繊維と
して木綿、麻、羊毛、短繊維状に裁断されたシルク繊
維、再生繊維としてビスコースレーヨン、銅アンモニア
レーヨン、溶剤紡糸されたレーヨン等が有効に用いられ
る。また、公定水分が5%以上のビニロン繊維、アクリ
ル繊維等の合成繊維を用いることも可能である。本発明
の不織布は、吸水性を有する短繊維として、前述したも
のが1種または2種以上混綿されたものであってもよ
い。
Next, the water-absorbing short fibers used in the present invention will be described. As short fibers having water absorption,
In particular, it is preferable to use fibers having an official moisture content of 5% or more. Effective fibers having an official moisture content of 5% or more include cotton, hemp, wool, silk fibers cut into short fibers as natural fibers, and viscose rayon, copper ammonia rayon, and solvent-spun rayon as recycled fibers. Used for It is also possible to use synthetic fibers such as vinylon fibers and acrylic fibers having an official moisture of 5% or more. The nonwoven fabric of the present invention may be one obtained by mixing one or two or more of the above-mentioned short fibers having water absorbency.

【0019】本発明の不織布は、吸水性を有する短繊維
が30〜70重量%の割合で混綿されていることが好ま
しい。吸水性を有する短繊維が30重量%未満では、得
られる不織布は吸水性に劣る傾向となる。このような不
織布を、例えば、衣服等に用いた際、吸湿性が乏しいた
め、吸汗性のない衣服となり、またワイパー等に用いた
際、水分の拭き取り性に劣る傾向のものとなる。一方、
吸水性を有する短繊維が70重量%を超えると、吸水性
は十分な不織布が構成されるものの、極細割繊短繊維量
が少なくなり、構成繊維同士の緻密な交絡が期待できに
くい。よって不織布は、通気性が多大となり保温効果の
低下、またフイルターや清拭材等に用いた際、粉塵の捕
集性、ほこりの捕集性が乏しい傾向のものとなる。
The nonwoven fabric of the present invention preferably contains 30 to 70% by weight of water-absorbing short fibers. If the water-absorbing short fibers are less than 30% by weight, the resulting nonwoven fabric tends to be poor in water absorption. For example, when such a nonwoven fabric is used for clothes and the like, it has poor hygroscopicity, so that the garment has no sweat absorption. When used for wipers and the like, it tends to have poor moisture wiping properties. on the other hand,
If the water-absorbing short fibers exceed 70% by weight, a nonwoven fabric having sufficient water absorption is formed, but the amount of ultrafine split short fibers is reduced, and it is difficult to expect dense entanglement between the constituent fibers. Therefore, the nonwoven fabric tends to have a large air permeability and a low heat retention effect, and tends to have poor dust collecting ability and dust collecting ability when used as a filter or a wiping material.

【0020】本発明の不織布の目付は、20〜150g
/m2 の範囲であることが好ましい。目付が20g/m
2 未満であると、不織布の地合に劣るものとなり、また
不織布の形態安定性、寸法安定性が乏しくなる傾向とな
る。一方、目付が150g/m2 を超えると、構成繊維
同士を三次元的に交絡させるための高圧液体流処理の加
工エネルギーが多大となるため経済的に好ましくなく、
また、場合によっては不織布の内層において繊維相互に
十分な交絡がなされず機械的強度の低い不織布となる傾
向にある。
The basis weight of the nonwoven fabric of the present invention is 20 to 150 g.
/ M 2 . The basis weight is 20 g / m
If it is less than 2 , the formation of the nonwoven fabric is inferior, and the morphological stability and dimensional stability of the nonwoven fabric tend to be poor. On the other hand, if the basis weight exceeds 150 g / m 2 , the processing energy of the high-pressure liquid flow treatment for three-dimensionally entangled the constituent fibers becomes large, which is not economically preferable.
Further, in some cases, the fibers are not sufficiently entangled with each other in the inner layer of the nonwoven fabric, and the nonwoven fabric tends to have a low mechanical strength.

【0021】次に、本発明の不織布の製造方法に関して
説明する。本発明では、まず、分割型二成分系複合短繊
維と吸水性を有する短繊維とを(好ましくは70/30
〜30/70重量%の混綿率で)混綿し、カード法やエ
アレイ法等を用いて所定の目付の不織ウエブを作製する
ことができる。カード機によりカーデイングして所定目
付の不織ウエブを作成する。カード法ではカ−ド機を用
いて、構成繊維の配列度合を不織布の用途等に合わせて
種々選択することができる。例えば、衣料用として用い
る場合には,不織布としての強力において、縦/横の強
力比が概ね1:1となる不織ウエブを用いるとよい。不
織ウエブの構成繊維の配列パターンとしては、構成繊維
が一方向に配列したパラレルウエブ、パラレルウエブが
クロスレイドされたウエブ、構成繊維がランダムに配列
したランダムウエブあるいは両者の中程度に配列したセ
ミランダムウエブ等が挙げられる。
Next, the method for producing a nonwoven fabric of the present invention will be described. In the present invention, first, a splittable bicomponent conjugate short fiber and a water-absorbing short fiber (preferably 70/30
Non-woven web having a predetermined basis weight can be produced by using a carding method, an air-laying method, or the like. The carding machine is used to create a nonwoven web with a predetermined basis weight. In the card method, a carding machine can be used to variously select the degree of arrangement of the constituent fibers according to the use of the nonwoven fabric. For example, when used for clothing, it is preferable to use a nonwoven web having a strength ratio of about 1: 1 in the length / width direction in the strength as a nonwoven fabric. As the arrangement pattern of the constituent fibers of the non-woven web, a parallel web in which the constituent fibers are arranged in one direction, a web in which the parallel webs are cross-laid, a random web in which the constituent fibers are randomly arranged, or a semi-structure in which both are moderately arranged. A random web etc. are mentioned.

【0022】次に、得られた不織ウエブに高圧液体流処
理を施して、分割型二成分系複合短繊維を分割させて繊
維形成性低融点重合体および/または繊維形成性高融点
重合体からなる極細割繊短繊維を少なくとも発現させる
と共に構成繊維同士を三次元的に交絡させる。ここでい
う三次元的な交絡とは、不織ウエブを構成している繊維
相互間が不織布の縦/横の方向のみでなく不織布の厚み
方向に対しても交絡し、一体化した構造を有しているこ
とをいう。
Next, the obtained nonwoven web is subjected to a high-pressure liquid flow treatment to split the splittable bicomponent conjugate short fibers to obtain a fiber-forming low-melting polymer and / or a fiber-forming high-melting polymer. At least, and the constituent fibers are three-dimensionally entangled with each other. The three-dimensional confounding referred to herein means that the fibers constituting the nonwoven web are entangled not only in the vertical / horizontal direction of the nonwoven fabric but also in the thickness direction of the nonwoven fabric, and have an integrated structure. What you do.

【0023】高圧液体流処理について説明する。処理を
施すための高圧液体流装置としては、例えば、孔径が
0.05〜1.5mm、特に0.1〜0.4mmの噴射
孔を孔間隔0.05〜5mmで一列あるいは複数列に多
数配列した装置を用いる。噴射孔から高圧力で噴射させ
て得られる水流すなわち高圧液体流を噴射し、多孔性支
持部材上に載置した不織ウエブに衝突させる。分割型二
成分系複合短繊維は、高圧液体流による衝撃によって、
極細割繊短繊維を発現し、かつ構成繊維同士が三次元的
に交絡一体化する。このとき、繊維同士の交絡は、極細
割繊短繊維の発現により緻密で強固なものとなり、柔軟
で表面平滑な不織布が得られる。
The high-pressure liquid flow processing will be described. As a high-pressure liquid flow device for performing the treatment, for example, a large number of injection holes having a hole diameter of 0.05 to 1.5 mm, particularly 0.1 to 0.4 mm are arranged in a line or a plurality of lines at a hole interval of 0.05 to 5 mm. Use an arrayed device. A water stream, ie, a high-pressure liquid stream obtained by jetting at a high pressure from the jet holes is jetted, and collides with a nonwoven web placed on a porous support member. Split type bicomponent conjugate short fibers are impacted by high pressure liquid flow,
Ultrafine split short fibers are developed, and the constituent fibers are three-dimensionally entangled and integrated. At this time, the entanglement of the fibers becomes dense and strong due to the expression of the ultrafine split short fibers, and a soft nonwoven fabric having a smooth surface is obtained.

【0024】噴射孔の配列は、不織ウエブの進行方向と
直行する方向に列状に配列する。高圧液体流としては、
常温あるいは温水を用いることができる。噴射孔と不織
ウエブとの間の距離は、10〜150mmとするのが良
い。この距離が10mm未満であると、この処理により
得られる不織布の地合が乱れ、一方、この距離が150
mmを超えると液体流が不織ウエブに衝突したときの衝
撃力が低下して分割割繊及び交絡一体化が十分に施され
ない傾向にある。
The arrangement of the injection holes is arranged in a row in a direction perpendicular to the traveling direction of the nonwoven web. As a high pressure liquid flow,
Room temperature or hot water can be used. The distance between the injection holes and the nonwoven web is preferably between 10 and 150 mm. If this distance is less than 10 mm, the formation of the nonwoven fabric obtained by this treatment is disturbed, while the distance is 150 mm.
If it exceeds mm, the impact force when the liquid stream collides with the nonwoven web tends to decrease, and the split splitting and entanglement integration tend not to be sufficiently performed.

【0025】この高圧液体流の処理圧力は、製造方法お
よび不織布の要求性能によって制御されるが、一般的に
は、20〜200kg/cm2 Gの高圧液体流を噴出す
るのが良い。なお、処理する不織ウエブの目付等にも左
右されるが、前記処理圧力の範囲内において、処理圧力
が低いと嵩高で柔軟性に優れた不織布を得ることがで
き、処理圧力が高いと構成繊維同士の交絡が緻密でフイ
ルター性能に優れた不織布を得ることができる。高圧液
体流の圧力が20kg/cm2 G未満であると、分割割
繊及び交絡一体化が十分に施されず、本発明が目的とす
る不織布を得ることができない。但し、本発明の不織布
には、分割型二成分系複合短繊維が十分に分割されず一
部残存するものも包含される。逆に、高圧液体流の圧力
が200kg/cm2 Gを超えると水圧による打撃によ
り、極端な場合には、構成繊維が切断されて、得られる
不織布は表面に毛羽を有するものとなる傾向にあり好ま
しくない。
The processing pressure of the high-pressure liquid flow is controlled by the production method and the required performance of the nonwoven fabric, but generally, a high-pressure liquid flow of 20 to 200 kg / cm 2 G is preferably ejected. In addition, depending on the basis weight of the nonwoven web to be treated, etc., within the range of the treatment pressure, it is possible to obtain a nonwoven fabric which is bulky and excellent in flexibility when the treatment pressure is low, and is constituted when the treatment pressure is high. It is possible to obtain a nonwoven fabric in which the entanglement of the fibers is dense and the filter performance is excellent. If the pressure of the high-pressure liquid flow is less than 20 kg / cm 2 G, split splitting and entanglement unification are not sufficiently performed, and the nonwoven fabric targeted by the present invention cannot be obtained. However, the nonwoven fabric of the present invention also includes nonwoven fabrics in which split bicomponent conjugate short fibers are not sufficiently split and partially remain. Conversely, if the pressure of the high-pressure liquid flow exceeds 200 kg / cm 2 G, the constituent fibers are cut in an extreme case by the impact of water pressure, and the resulting nonwoven fabric tends to have fluff on the surface. Not preferred.

【0026】高圧液体流処理を施すに際して用いる不織
ウエブを担持する多孔性支持部材としては、例えば、2
0〜200メツシユの金網製あるいは合成樹脂製等のメ
ツシユスクリーンや有孔板など、高圧液体流が不織ウエ
ブと支持部材を貫通するものであれば特に限定されな
い。
As the porous support member for supporting the nonwoven web used in performing the high-pressure liquid flow treatment, for example, 2
There is no particular limitation as long as the high-pressure liquid flow penetrates the nonwoven web and the supporting member, such as a mesh screen or a perforated plate made of a wire mesh or synthetic resin of 0 to 200 mesh.

【0027】なお、不織ウエブの片面より高圧液体流処
理を施した後、引き続き交絡の施された不織ウエブを反
転して高圧液体流処理を施すことにより、表裏共に緻密
に交絡した不織布を得ることができるので、不織布の用
途に応じて、また、不織ウエブの目付の大きいもの等に
適用すればよい。
After the high-pressure liquid flow treatment is performed from one side of the nonwoven web, the entangled nonwoven web is subsequently inverted and subjected to the high-pressure liquid flow treatment, so that the nonwoven fabric densely entangled on both sides is obtained. Since it can be obtained, it may be applied to a nonwoven web having a large basis weight or the like according to the use of the nonwoven fabric.

【0028】高圧液体流処理を施した後、処理後の不織
ウエブから過剰水分を除去する。この過剰水分を除去す
るに際しては、公知の方法を採用することができる。例
えば、マングルロール等の絞り装置を用いて過剰水分を
ある程度機械的に除去し、引き続きサクシヨンバンド方
式の熱風循環式乾燥機等の乾燥装置を用いて残余の水分
を除去する。
After the high pressure liquid flow treatment, excess moisture is removed from the treated nonwoven web. When removing the excess moisture, a known method can be adopted. For example, the excess water is mechanically removed to some extent using a squeezing device such as a mangle roll, and the remaining water is subsequently removed using a drying device such as a suction band type hot air circulation dryer.

【0029】次に、三次元的に交絡させた不織布に、熱
処理装置を用いて少なくとも低融点重合体が溶融軟化す
る温度で熱処理を施し、構成繊維同士の交点を低融点重
合体の溶融軟化により熱接着する。用いる熱処理装置と
しては、乾熱熱風循環方式のものが効果的に用いられ
る。三次元的に交絡された不織布は、不織布としての形
態が安定したものであるので、熱風により構成繊維が飛
散することなく熱処理が施される。熱処理の施された不
織布は、液体流の作用により構成繊維が三次元交絡を有
する状態で構成繊維の交点が低融点重合体を介して熱接
着される。すなわち、熱接着により不織布の交絡状態が
固定化されるため、嵩高性を維持した状態で形態安定
性、寸法安定性、機械的強力が向上し、耐摩耗性、耐洗
濯性の向上が図られる。
Next, the three-dimensionally entangled nonwoven fabric is subjected to a heat treatment using a heat treatment device at a temperature at which the low-melting polymer melts and softens at least, and the intersection of the constituent fibers is determined by the melt-softening of the low-melting polymer. Heat bonding. As a heat treatment apparatus to be used, a dry heat hot air circulation system is effectively used. Since the three-dimensionally entangled nonwoven fabric has a stable form as the nonwoven fabric, the nonwoven fabric is subjected to the heat treatment without the constituent fibers being scattered by hot air. In the heat-treated nonwoven fabric, the intersection of the constituent fibers is thermally bonded via the low-melting polymer in a state where the constituent fibers have three-dimensional entanglement by the action of the liquid flow. That is, since the entangled state of the nonwoven fabric is fixed by the thermal bonding, the shape stability, dimensional stability, and mechanical strength are improved while maintaining the bulkiness, and the abrasion resistance and washing resistance are improved. .

【0030】熱処理温度は、少なくとも低融点重合体が
溶融軟化する温度とするが、低融点重合体の融点または
軟化点を(Tm)℃としたときに、(Tm+5)℃〜
(Tm+25)℃の熱風を吹きつけるのがよい。この温
度範囲を採用することにより、低融点重合体のみを溶融
軟化させ、かつ他の構成繊維に対して熱による変化を及
ぼすことなく柔軟性を保持した不織布を得ることができ
る。(Tm+5)℃未満であると、低融点重合体が十分
に溶融軟化しないため熱接着効果が低くなり、不織布の
機械的特性に劣る傾向となる。一方、(Tm+25)℃
を超えると、低融点重合体が軟化流動して、不織布全体
がフイルム化し粗硬感が感じられるものとなり、また、
高融点重合体までもが溶融軟化すると、空隙率に乏しい
不織布となるので、吸水性や埃の拭き取り性、粉塵の捕
集性が低下する傾向にある。
The heat treatment temperature is at least a temperature at which the low-melting point polymer melts and softens. When the melting point or softening point of the low-melting point polymer is (Tm) ° C., (Tm + 5) ° C.
It is preferable to blow hot air of (Tm + 25) ° C. By adopting this temperature range, a nonwoven fabric can be obtained in which only the low melting point polymer is melt-softened and flexibility is maintained without affecting other constituent fibers by heat. When the temperature is lower than (Tm + 5) ° C., the low-melting polymer does not sufficiently melt and soften, so that the heat bonding effect is reduced and the mechanical properties of the nonwoven fabric tend to be inferior. On the other hand, (Tm + 25) ° C
If it exceeds, the low-melting polymer softens and flows, and the whole nonwoven fabric becomes a film and a coarse and hard feeling is felt, and
When even the high melting point polymer melts and softens, it becomes a non-woven fabric having a low porosity, and thus the water absorbency, the wiping property of dust and the dust collecting property tend to decrease.

【0031】熱接着処理を施した後に、熱接着の効果を
損なわない範囲で、不織布に対し柔軟性を付与する目的
で、上野山機工(株)製のカムフイツト機による柔軟加
工機を用いてもよい。
After the heat bonding treatment, a flexible processing machine using a camfighting machine manufactured by Uenoyama Kiko Co., Ltd. may be used for the purpose of imparting flexibility to the nonwoven fabric within a range that does not impair the effect of the heat bonding. .

【0032】[0032]

【作用】本発明の不織布は、構成繊維同士が絡み合い全
体として一体化している。高圧液体流処理により繊維同
士が交絡する際、曲げモーメントの小さい極細割繊短繊
維が発現し、この繊維が他の繊維に緻密に絡みつくた
め、繊維同士の交絡度合いが向上し、全体として緻密に
交絡一体化した不織布となっている。また、本発明の不
織布は、三次元的に交絡した不織布に熱処理を施し、繊
維同士の交点が熱接着され交絡状態が固定化している。
よって、外力により変形のない、すなわち寸法安定性に
優れ、機械的強力の高い不織布となっている。そして、
構成繊維同士は緻密に絡み合っているので、繊維交点で
の熱接着部における繊維同士の接着がさらに強固とな
り、表面摩擦力が加わった場合でも繊維が抜けにくく毛
羽立ちにくい摩耗性に優れた不織布となる。すなわち、
本発明による不織布は、相溶性のない素材を複数種混綿
した不織布であるが、構成繊維同士の三次元的交絡と構
成繊維同士の熱接着との相乗効果により外的摩擦による
耐摩耗性に優れたものとなる。
In the nonwoven fabric of the present invention, the constituent fibers are entangled with each other and integrated as a whole. When the fibers are entangled by the high-pressure liquid flow treatment, ultrafine split short fibers having a small bending moment are developed, and these fibers are densely entangled with other fibers. It is a nonwoven fabric that is entangled and integrated. Further, the nonwoven fabric of the present invention is subjected to a heat treatment on the three-dimensionally entangled nonwoven fabric, and the intersections of the fibers are thermally bonded to fix the entangled state.
Therefore, the nonwoven fabric is free from deformation due to external force, that is, has excellent dimensional stability and high mechanical strength. And
Since the constituent fibers are tightly entangled, the bonding between the fibers at the heat bonding portion at the fiber intersection becomes even stronger, and even when a surface frictional force is applied, the fiber is less likely to come off, and the nonwoven fabric is excellent in abrasion resistance which is less fuzzy. . That is,
The nonwoven fabric according to the present invention is a nonwoven fabric in which a plurality of types of incompatible materials are mixed, and has excellent wear resistance due to external friction due to a synergistic effect of three-dimensional entanglement between constituent fibers and thermal bonding between constituent fibers. It will be.

【0033】[0033]

【実施例】次に、実施例に基づき本発明をより具体的に
説明するが、本発明は、これらの実施例によって何ら限
定されるものではない。実施例において、各特性値の測
定を次の方法によって実施した。 (1)重合体の融点(℃):パーキンエルマー社製DS
C−2型の示差走査型熱量計を用い、昇温速度20℃/
分で測定した融解吸熱ピ−クの最大値を与える温度を融
点とした。
Next, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. In the examples, the measurement of each characteristic value was performed by the following method. (1) Melting point (° C.) of polymer: DS manufactured by PerkinElmer
Using a C-2 type differential scanning calorimeter, the heating rate was 20 ° C. /
The temperature giving the maximum value of the melting endothermic peak measured in minutes was defined as the melting point.

【0034】(2)ポリエステルの相対粘度(イ):フ
エノールと四塩化エタンの等重量混合溶液を溶媒とし、
この溶媒100ccに試料0.5gを溶解し温度20℃
の条件で常法により求めた。
(2) Relative viscosity of polyester (a): Equivalent weight mixed solution of phenol and ethane tetrachloride was used as solvent,
0.5 g of a sample is dissolved in 100 cc of the solvent, and the temperature is 20 ° C.
Was determined by a conventional method under the following conditions.

【0035】(3)ナイロン6の相対粘度(ロ):96
%硫酸100ccに試料1gを溶解し、温度25℃の条
件で常法により求めた。
(3) Relative viscosity of nylon 6 (b): 96
1 g of a sample was dissolved in 100 cc of 100% sulfuric acid, and determined by a conventional method at a temperature of 25 ° C.

【0036】(4)不織布の引張強力(kg/5cm
幅)および破断伸度(%):JIS L−1096に記
載のストリツプ法に準じ、最大引張強力を測定した。す
なわち、幅5cm、長さ15cmの試験片10個用意
し、定速伸長型引張試験機(テンシロンUTM−4−1
−100 東洋ボールドウイン社製)を用いて、掴み間
隔10cm、引張速度10cm/分の条件で最大引張強
力を測定し、試料10個の平均値を不織布の引張強力
(kg/5cm幅)とし、切断時伸長率の平均値を不織
布の破断伸度(%)とした。
(4) Tensile strength of nonwoven fabric (kg / 5cm
Width) and elongation at break (%): The maximum tensile strength was measured according to the strip method described in JIS L-1096. That is, ten test pieces having a width of 5 cm and a length of 15 cm were prepared, and a constant-speed elongation type tensile tester (Tensilon UTM-4-1) was prepared.
-100 manufactured by Toyo Baldwin Co., Ltd.), the maximum tensile strength was measured at a gripping interval of 10 cm and a tensile speed of 10 cm / min, and the average value of 10 samples was taken as the tensile strength of the nonwoven fabric (kg / 5 cm width). The average value of the elongation at break was defined as the elongation at break (%) of the nonwoven fabric.

【0037】(5)不織布の剛軟度(g):幅5cm,
長さ5cmの試料片を5個用意し、試料の長手方向に曲
げて円筒状物とし、各々その端部を接合したものを剛軟
度測定試料とした。定速伸張型引張試験機(テンシロン
UTM−4−1−100 東洋ボールドウイン社製)を
用いて圧縮速度5cm/分で圧縮し、得られた最大荷重
値の平均値を不織布の剛軟度(g)とした。
(5) Softness (g) of nonwoven fabric: width 5 cm,
Five sample pieces each having a length of 5 cm were prepared and bent in the longitudinal direction of the sample to form a cylindrical object. Compressed at a compression speed of 5 cm / min using a constant-speed extension-type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.), and the average value of the obtained maximum load values was determined as the rigidity and softness of the nonwoven fabric. g).

【0038】(6)不織布の吸水性(mm/10分):
JIS L−1096に記載のバイレツク法に準じて測
定した。
(6) Water absorption (mm / 10 minutes) of nonwoven fabric:
It was measured according to the birec method described in JIS L-1096.

【0039】(7)不織布の耐摩耗性(級):学振形摩
擦試験機を用い、100回の往復摩擦試験を行い、目視
評価により5段階評価を行った。不織布表面の摩耗がな
く毛羽立ちの見られないものを5級とし、不織布表面の
摩耗が激しく毛羽立ったものを1級とし、その間を2〜
4級と段階的に評価した。
(7) Abrasion resistance (grade) of nonwoven fabric: A reciprocating friction test was performed 100 times using a Gakushin type friction tester, and a five-point evaluation was performed by visual evaluation. A non-woven fabric surface with no fluff and no fluff is classified as class 5, and a non-woven fabric surface with severe fluff is classified as class 1.
Grade 4 was evaluated.

【0040】実施例1 分割型二成分系複合短繊維として、繊維断面が図1に示
す複合形態でポリエチレン(融点128℃、ASTM−
D−1238(E)法で測定のメルトインデックス20
g/10分)とポリエチレンテレフタレート(融点25
8℃、相対粘度1.38)との分割型二成分系複合短繊
維を用意した。
Example 1 As a splittable bicomponent conjugate short fiber, polyethylene was used in a composite form having a fiber cross section shown in FIG.
Melt index 20 measured by D-1238 (E) method
g / 10 minutes) and polyethylene terephthalate (melting point 25
A splittable bicomponent conjugate short fiber having a relative viscosity of 8 ° C. and a relative viscosity of 1.38) was prepared.

【0041】すなわち、図1に示す如く全分割数が7個
となるような分割型二成分系複合型紡糸口金より複合比
を重量比で1:1とし、単孔吐出量=0.68g/分で
押し出した。紡出糸条を冷却し仕上げ油剤を付与した
後、引き取り速度が1000m/分の引き取りロ−ルを
介して、未延伸糸として捲き取った。次いで、得られた
未延伸糸を複数本引き揃えてトウとなし、公知の延伸機
を用いて延伸倍率が3.2倍で延伸を行った後、押し込
み式捲縮付与装置にて捲縮を付与し38mmの繊維長に
切断して2デニール(ポリエチレンからなる極細割繊短
繊維の繊度は1.0デニール、ポリエチレンテレフタレ
ートからなる極細割繊短繊維の繊度は0.16デニー
ル)の短繊維を得た。吸水性を有する短繊維として、平
均繊度1.5デニール、平均繊維長24mmの木綿の晒
綿を用意した。
That is, as shown in FIG. 1, the composite ratio was set to 1: 1 by weight ratio from the split type two-component type composite spinneret in which the total number of divisions was 7, and the single hole discharge amount = 0.68 g / Extruded in minutes. After the spun yarn was cooled and the finishing oil was applied, it was wound up as an undrawn yarn via a take-up roll having a take-up speed of 1000 m / min. Next, a plurality of the obtained undrawn yarns are drawn and aligned to form a tow, and after drawing at a draw ratio of 3.2 times using a known drawing machine, crimping is performed by a push-in type crimping device. It is applied and cut to a fiber length of 38 mm to produce a short fiber of 2 denier (the fineness of the ultrafine split short fiber made of polyethylene is 1.0 denier, and the fineness of the ultrafine split short fiber made of polyethylene terephthalate is 0.16 denier). Obtained. Cotton bleached cotton having an average fineness of 1.5 denier and an average fiber length of 24 mm was prepared as the short fiber having water absorbency.

【0042】分割型二成分系複合短繊維30重量%と吸
水性を有する短繊維70重量%とを混綿し、ランダムカ
ード機にて目付85g/m2 の不織ウエブを準備した。
次いで、不織ウエブを70メツシユの金網上に積載して
高圧液体流処理を施した。高圧液体流処理は、孔径0.
1mmの噴射孔が孔間隔0.6mmで配置された高圧液
体流処理装置を用い、前記積層体の上方50mmの位置
から液体流圧力を70kg/cm2 Gの条件下で処理を
施した。得られた不織布より過剰水分の除去と乾燥処理
を施した。
A nonwoven web having a basis weight of 85 g / m 2 was prepared using a random card machine by mixing 30% by weight of split type bicomponent conjugate short fibers and 70% by weight of water-absorbing short fibers.
Next, the nonwoven web was loaded on a 70-mesh wire net and subjected to high-pressure liquid flow treatment. The high pressure liquid flow treatment uses a pore size of 0.
Using a high-pressure liquid flow treatment apparatus in which 1 mm injection holes were arranged at a hole interval of 0.6 mm, treatment was performed from a position 50 mm above the laminate under a liquid flow pressure of 70 kg / cm 2 G. The obtained nonwoven fabric was subjected to removal of excess moisture and drying treatment.

【0043】続いて、熱風循環式乾燥機(寿工業社製)
を用いて、処理温度135℃、処理時間30秒の条件で
熱処理を行った。続いて、柔軟加工機(上野山機工株式
会社製:カムフイツト)を用いて柔軟加工を施し本発明
の不織布を得た。
Subsequently, a hot air circulating dryer (manufactured by Kotobuki Industries Co., Ltd.)
, A heat treatment was performed under the conditions of a processing temperature of 135 ° C. and a processing time of 30 seconds. Subsequently, a flexible processing machine (manufactured by Uenoyama Kiko Co., Ltd .: Camfit) was used to perform flexible processing to obtain the nonwoven fabric of the present invention.

【0044】実施例2 実施例1において、分割型二成分系複合短繊維20重量
%と吸水性を有する短繊維80重量%とを混綿し目付8
0g/m2 の不織ウエブを準備した以外は、実施例1と
同様にして本発明の不織布を得た。
Example 2 The same procedure as in Example 1 was repeated except that 20% by weight of the splittable bicomponent conjugate short fibers and 80% by weight of the water-absorbing short fibers were mixed together to obtain a basis weight of 8%.
A nonwoven fabric of the present invention was obtained in the same manner as in Example 1, except that a nonwoven web of 0 g / m 2 was prepared.

【0045】実施例3 実施例1において、分割型二成分系複合短繊維70重量
%と吸水性を有する短繊維30重量%とを混綿し、熱処
理温度を150℃とした以外は、実施例1と同様にして
本発明の不織布を得た。
Example 3 Example 1 was repeated except that 70% by weight of split type bicomponent conjugate short fibers and 30% by weight of water-absorbing short fibers were mixed and the heat treatment temperature was 150 ° C. In the same manner as in the above, a nonwoven fabric of the present invention was obtained.

【0046】実施例4 実施例1において、熱処理温度を160℃とした以外
は、実施例1と同様にして本発明の不織布を得た。
Example 4 A nonwoven fabric of the present invention was obtained in the same manner as in Example 1 except that the heat treatment temperature was changed to 160 ° C.

【0047】実施例5 実施例1において、分割型二成分系複合短繊維40重量
%と吸水性を有する短繊維として短繊維状に裁断したシ
ルク繊維60重量%とを混綿し目付65g/m2 の不織
ウエブを準備し、高圧液体流処理の水圧を80kg/c
2 Gとし、熱処理の処理温度を140℃とした以外
は、実施例1と同様にして本発明の不織布を得た。
Example 5 In Example 1, 40% by weight of split type bicomponent conjugate short fibers and 60% by weight of short fibers cut into short fibers as water-absorbing short fibers were mixed to give a basis weight of 65 g / m 2. Is prepared and the water pressure of the high pressure liquid flow treatment is set to 80 kg / c.
and m 2 G, except that the processing temperature of the heat treatment was 140 ° C., to obtain a nonwoven fabric of the present invention in the same manner as in Example 1.

【0048】実施例6 分割型二成分系複合短繊維として、糸断面が図2に示す
複合形態でナイロン6(融点225℃、相対粘度2.5
5)とポリエチレンテレフタレート(融点258℃、相
対粘度1.38)との分割型二成分系複合短繊維を用意
した。
Example 6 Nylon 6 (melting point 225 ° C., relative viscosity 2.5
5) and polyethylene terephthalate (melting point: 258 ° C., relative viscosity: 1.38) were prepared.

【0049】すなわち、図2に示す如く複合形態で全分
割数が24個となるような分割型二成分系複合型紡糸口
金より複合比を重量比で1:1とし、単孔吐出量=0.
76g/分で押し出した。紡出糸条を冷却し仕上げ油剤
を付与した後、引き取り速度が1000m/分の引き取
りロールを介して、未延伸糸として捲き取った。次い
で、得られた未延伸糸を複数本引き揃えてトウとなし、
公知の延伸機を用いて延伸倍率が3.0倍で延伸を行っ
た後、押し込み式捲縮付与装置にて捲縮を付与し38m
mの繊維長に切断して2.4デニール(ナイロン6から
なる極細割繊短繊維の繊度は0.1デニール、ポリエチ
レンテレフタレートからなる極細割繊短繊維の繊度は
0.1デニ−ル)の短繊維を得た。吸水性を有する短繊
維として、麻を用意した。
That is, as shown in FIG. 2, the composite ratio is set to 1: 1 in weight ratio from the split type two-component type composite spinneret in which the total number of divisions is 24 in the composite form, and the single hole discharge amount = 0. .
Extruded at 76 g / min. After the spun yarn was cooled and the finishing oil was applied, it was wound up as an undrawn yarn via a take-up roll having a take-up speed of 1000 m / min. Next, a plurality of the obtained undrawn yarns are aligned to form a tow,
After performing stretching at a stretching ratio of 3.0 times using a known stretching machine, crimping was performed by a press-in type crimping device, and 38 m was applied.
m and cut into 2.4 deniers (the fineness of ultrafine split short fibers made of nylon 6 is 0.1 denier and the fineness of ultrafine split short fibers made of polyethylene terephthalate is 0.1 denier) Short fibers were obtained. Hemp was prepared as a short fiber having water absorbency.

【0050】分割型二成分系複合短繊維50重量%と吸
水性を有する短繊維50重量%とを混綿し、ランダムカ
ード機にて目付85g/m2 の不織ウエブを準備した。
次いで、不織ウエブを70メッシュの金網上に積載して
高圧液体流処理を施した。高圧液体流処理は、孔径0.
1mmの噴射孔が孔間隔0.6mmで配置された高圧液
体流処理装置を用い、前記積層体の上方50mmの位置
から液体流圧力を80kg/cm2 Gの条件下で処理を
施した。得られた不織布より過剰水分の除去と乾燥処理
を施した。
50% by weight of split type bicomponent conjugate short fibers and 50% by weight of water-absorbing short fibers were blended, and a nonwoven web having a basis weight of 85 g / m 2 was prepared using a random card machine.
Next, the nonwoven web was loaded on a 70-mesh wire net and subjected to high-pressure liquid flow treatment. The high pressure liquid flow treatment uses a pore size of 0.
Using a high-pressure liquid flow treatment apparatus in which 1 mm injection holes were arranged at a hole interval of 0.6 mm, treatment was performed from a position 50 mm above the laminate under a liquid flow pressure of 80 kg / cm 2 G. The obtained nonwoven fabric was subjected to removal of excess moisture and drying treatment.

【0051】続いて、熱風循環式乾燥機(寿工業社製)
を用いて、処理温度240℃、処理時間30秒の条件で
熱処理を行った。続いて、柔軟加工機(上野山機工株式
会社製:カムフイツト)を用いて柔軟加工を施し本発明
の不織布を得た。
Subsequently, a hot air circulating dryer (manufactured by Kotobuki Industries Co., Ltd.)
The heat treatment was performed under the conditions of a processing temperature of 240 ° C. and a processing time of 30 seconds. Subsequently, a flexible processing machine (manufactured by Uenoyama Kiko Co., Ltd .: Camfit) was used to perform flexible processing to obtain the nonwoven fabric of the present invention.

【0052】実施例7 分割型二成分系複合短繊維として、糸断面が図3に示す
如く複合形態でナイロン6(融点225℃、相対粘度
2.55)とポリエチレンテレフタレート(融点258
℃、相対粘度1.38)との分割型二成分系複合短繊維
を用意した。
Example 7 Nylon 6 (melting point: 225 ° C., relative viscosity: 2.55) and polyethylene terephthalate (melting point: 258) were used as split bicomponent conjugate short fibers in a composite form as shown in FIG.
C. and a relative viscosity of 1.38).

【0053】すなわち、図3に示す如く複合形態で全分
割数が36個となるような分割型二成分系複合型紡糸口
金より複合比を重量比で1:1とし、単孔吐出量=0.
66g/分で押し出した。紡出糸条を冷却し仕上げ油剤
を付与した後、引き取り速度が1000m/分の引き取
りロ−ルを介して、未延伸糸として捲き取った。次い
で、得られた未延伸糸を複数本引き揃えてトウとなし、
公知の延伸機を用いて延伸倍率が2.6倍で延伸を行っ
た後、押し込み式捲縮付与装置にて捲縮を付与し38m
mの繊維長に切断して2.4デニール(ナイロン6から
なる極細割繊短繊維の繊度は0.07デニール、ポリエ
チレンテレフタレートからなる極細割繊短繊維の繊度は
0.07デニール)の中空率17%の短繊維を得た。分
割型二成分系複合短繊維60重量%と吸水性を有する短
繊維として木綿の晒綿40重量%とを混綿し、ランダム
カード機にて目付120g/m2 の不織ウエブを準備
し、高圧液体流処理の水圧を100kg/cm2 Gとし
た以外は実施例6と同様にして本の不織布を得た。
That is, as shown in FIG. 3, the composite ratio is set to 1: 1 in weight ratio from the split type two-component type composite spinneret in which the total number of divisions is 36 in the composite form, and the single hole discharge amount = 0. .
Extruded at 66 g / min. After the spun yarn was cooled and the finishing oil was applied, it was wound up as an undrawn yarn via a take-up roll having a take-up speed of 1000 m / min. Next, a plurality of the obtained undrawn yarns are aligned to form a tow,
After performing stretching at a stretching ratio of 2.6 times using a known stretching machine, crimping was performed by a press-in type crimping device, and 38 m was applied.
cut into 2.4 m denier (2.47 denier for ultrafine split short fiber made of nylon 6 and 0.07 denier for ultrafine split short fiber made of polyethylene terephthalate) 17% short fibers were obtained. A nonwoven web having a basis weight of 120 g / m 2 was prepared using a random card machine by mixing 60% by weight of split type bicomponent composite short fibers and 40% by weight of bleached cotton as water-absorbing short fibers. A nonwoven fabric was obtained in the same manner as in Example 6, except that the water pressure in the liquid flow treatment was changed to 100 kg / cm 2 G.

【0054】比較例1 実施例1において、木綿の晒綿よりなる目付80g/m
2 の不織ウエブを準備し、高圧液体流処理の水圧を10
0kg/cm2 Gとした以外は、実施例1と同様にして
比較例1の不織布を得た。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the basis weight was 80 g / m
Prepare 2 non-woven webs and set the water pressure for high pressure liquid flow treatment to 10
A non-woven fabric of Comparative Example 1 was obtained in the same manner as in Example 1, except that 0 kg / cm 2 G was used.

【0055】比較例2 実施例1において、高圧液体流処理を施さなかった以外
は実施例1と同様にして比較例2の不織布を得た。
Comparative Example 2 A nonwoven fabric of Comparative Example 2 was obtained in the same manner as in Example 1 except that the high-pressure liquid flow treatment was not performed.

【0056】実施例1〜7および比較例1〜2の不織布
の物性を表1に示した。
The physical properties of the nonwoven fabrics of Examples 1 to 7 and Comparative Examples 1 and 2 are shown in Table 1.

【0057】[0057]

【表1】 [Table 1]

【0058】実施例1、3、5〜7の不織布は、機械的
強力、寸法安定性、柔軟性に優れた不織布であり、また
耐摩耗性の良好な不織布であった。
The nonwoven fabrics of Examples 1, 3, 5 to 7 were nonwoven fabrics having excellent mechanical strength, dimensional stability and flexibility, and also having good abrasion resistance.

【0059】実施例2の不織布は、分割型二成分系複合
短繊維の混綿率が低いので、他の実施例に比べて寸法安
定性、耐摩耗性に劣るものの、機械的協力は優れ、ま
た、吸水性を有する短繊維の混綿率が高いので、他の実
施例に比べて吸水性は特に優れたものであった。
Since the nonwoven fabric of Example 2 has a low mixing ratio of the splittable bicomponent conjugate short fibers, it is inferior in dimensional stability and abrasion resistance as compared with the other examples, but has excellent mechanical cooperation. Since the mixing ratio of the short fibers having water absorbency was high, the water absorbency was particularly excellent as compared with the other examples.

【0060】実施例4の不織布は、熱処理の際の処理温
度が高いため、柔軟性はやや劣るものの、機械的強力お
よび寸法安定性に優れたものであった。
The nonwoven fabric of Example 4 had a high processing temperature at the time of heat treatment, and thus was slightly inferior in flexibility but excellent in mechanical strength and dimensional stability.

【0061】分割型二成分系複合短繊維を混綿しなかっ
た比較例1の不織布は、繊維同士の交絡のみにより不織
布化されたものであり、学振型摩耗試験機による摩耗試
験では、20回の往復で不織布形態に変形が生じ、30
回の往復では表面に存在する繊維の脱落が発生するとい
うような耐久使用性において劣るものであった。
The nonwoven fabric of Comparative Example 1 in which no split type bicomponent conjugate short fibers were mixed was made into a nonwoven fabric only by entanglement of the fibers. The non-woven fabric is deformed by the reciprocation of
The reciprocating operation was inferior in durable use such that the fibers existing on the surface fell off.

【0062】高圧液体流処理を施さなかった比較例2の
不織布は、分割型二成分系複合短繊維は分割されず極細
割繊短繊維を含まないものであるため、構成繊維同士の
緻密な交絡はなされていないものであり、機械的強力お
よび耐摩耗性において実施例と比較し劣るものであっ
た。
In the non-woven fabric of Comparative Example 2 which was not subjected to the high-pressure liquid flow treatment, the split type bicomponent conjugate short fibers were not split and did not contain ultrafine split short fibers. Was not performed, and was inferior to the examples in mechanical strength and abrasion resistance.

【0063】[0063]

【発明の効果】本発明によれば、不織布構成繊維同士が
相互に緻密な交絡を有し、交絡が施された状態で低融点
重合体により繊維交点が熱接着された不織布であるの
で、三次元交絡と熱接着の相乗効果により、摩擦や洗濯
による繊維の脱落防止効果の向上、耐久性の向上が可能
となり、機械的強力、耐摩耗性および寸法安定性に優
れ、かつ吸水性を併せ持つ不織布が得られたものであ
る。
According to the present invention, since the non-woven fabric constituent fibers are densely entangled with each other and the fiber intersections are heat-bonded with the low-melting polymer in the entangled state, the tertiary non-woven fabric is tertiary. The synergistic effect of the original entanglement and thermal bonding makes it possible to improve the effect of preventing the fiber from falling off due to friction and washing, and to improve the durability. It also has excellent mechanical strength, abrasion resistance and dimensional stability, and has a water absorption property. Is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられる分割型二成分系複合短繊維
の横断面の一実施模式図である。
FIG. 1 is a schematic diagram of one embodiment of a cross section of a splittable bicomponent conjugate short fiber used in the present invention.

【図2】本発明に用いられる分割型二成分系複合短繊維
の横断面の一実施模式図である。
FIG. 2 is a schematic diagram showing one embodiment of a cross section of a splittable bicomponent conjugate short fiber used in the present invention.

【図3】本発明に用いられる分割型二成分系複合短繊維
の横断面の一実施模式図である。
FIG. 3 is a schematic diagram showing one embodiment of a cross section of a splittable bicomponent conjugate short fiber used in the present invention.

【図4】本発明に用いられる分割型二成分系複合短繊維
の横断面の一実施模式図である。
FIG. 4 is a schematic diagram of one embodiment of a cross section of a splittable bicomponent conjugate short fiber used in the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 繊維形成性低融点重合体と前記低融点重
合体に対し非相溶性でかつ前記低融点重合体の融点より
30〜180℃高い融点を有する繊維形成性高融点重合
体とからなる分割型二成分系複合短繊維の分割により発
現した前記低融点重合体および/または前記高融点重合
体からなる極細割繊短繊維と、吸水性を有する短繊維と
からなる不織布であり、前記構成繊維同士が三次元的に
交絡し、かつ繊維同士の交点が前記低融点重合体により
に熱接着されていることを特徴とする不織布。
1. A fiber-forming low-melting polymer and a fiber-forming high-melting polymer incompatible with the low-melting polymer and having a melting point 30 to 180 ° C. higher than the melting point of the low-melting polymer. A nonwoven fabric consisting of ultrafine split short fibers composed of the low-melting polymer and / or high-melting polymer expressed by splitting the splittable bicomponent conjugate short fibers, and short fibers having water absorbency; A nonwoven fabric, wherein constituent fibers are three-dimensionally entangled, and intersections between the fibers are thermally bonded to each other by the low-melting polymer.
【請求項2】 分割型二成分系複合短繊維の分割により
少なくとも発現した極細割繊短繊維の単糸繊度が、0.
8デニール以下であることを特徴とする請求項1記載の
不織布。
2. The fineness of an ultrafine split short fiber which is at least developed by splitting a splittable bicomponent conjugate short fiber has a fineness of 0.1%.
The nonwoven fabric according to claim 1, wherein the nonwoven fabric has a denier of 8 deniers or less.
【請求項3】 吸水性を有する短繊維が、天然繊維、再
生繊維のいずれかであることを特徴とする請求項1また
は2記載の不織布。
3. The nonwoven fabric according to claim 1, wherein the water-absorbing short fibers are either natural fibers or regenerated fibers.
【請求項4】 吸水性を有する短繊維が、不織布中に3
0〜70重量%混綿されていることを特徴とする請求項
1〜3のいずれか1項に記載の不織布。
4. A non-woven fabric comprising a short fiber having a water absorbing property
The nonwoven fabric according to any one of claims 1 to 3, wherein the nonwoven fabric is mixed with 0 to 70% by weight.
【請求項5】 繊維形成性低融点重合体と前記低融点重
合体に対し非相溶性でかつ前記低融点重合体の融点より
30〜180℃高い融点を有する繊維形成性高融点重合
体とからなる分割型二成分系複合短繊維と吸水性を有す
る短繊維とを混綿して不織ウエブを得、この不織ウエブ
に高圧液体流処理を施し、前記複合短繊維を分割させて
前記低融点重合体および/または前記高融点重合体から
なる極細割繊短繊維を少なくとも発現させると共に構成
繊維同士を三次元的に交絡させ、次いで、熱処理装置を
用い少なくとも前記低融点重合体が溶融軟化する温度で
処理して、構成繊維同士の交点を熱接着することを特徴
とする不織布の製造方法。
5. A fiber-forming low-melting polymer and a fiber-forming high-melting polymer incompatible with the low-melting polymer and having a melting point 30 to 180 ° C. higher than the melting point of the low-melting polymer. A nonwoven web is obtained by blending a splittable bicomponent conjugate short fiber and a short fiber having water absorbency, and the nonwoven web is subjected to a high-pressure liquid flow treatment to divide the conjugate short fiber to obtain the low melting point. A temperature at which at least the polymer and / or the ultrafine splitting short fibers composed of the high melting point polymer are expressed and the constituent fibers are three-dimensionally entangled, and then at least the temperature at which the low melting point polymer melts and softens using a heat treatment apparatus. And heat bonding the intersections of the constituent fibers.
JP9084826A 1997-04-03 1997-04-03 Nonwoven fabric and its production Pending JPH10280262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9084826A JPH10280262A (en) 1997-04-03 1997-04-03 Nonwoven fabric and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9084826A JPH10280262A (en) 1997-04-03 1997-04-03 Nonwoven fabric and its production

Publications (1)

Publication Number Publication Date
JPH10280262A true JPH10280262A (en) 1998-10-20

Family

ID=13841577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9084826A Pending JPH10280262A (en) 1997-04-03 1997-04-03 Nonwoven fabric and its production

Country Status (1)

Country Link
JP (1) JPH10280262A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933459A1 (en) * 1998-01-30 1999-08-04 Unitika Ltd. Staple fiber non-woven fabric and process for producing the same
FR2790489A1 (en) * 1999-03-01 2000-09-08 Freudenberg Carl Fa Nonwoven polymer cloth containing composite spun- or extruded filaments, with e.g. segments of structural polymer and segments of binder, forms perfectly-distributed, ideally- thermally-bonded intersections in product
JP2006000625A (en) * 2004-05-20 2006-01-05 Daiwabo Co Ltd Wiping sheet
JP2009084737A (en) * 2007-09-28 2009-04-23 Daiwabo Co Ltd Polycarbonate split type conjugate fiber, fiber aggregate and nonwoven fabric using the same
WO2010090220A1 (en) * 2009-02-06 2010-08-12 ユニ・チャーム株式会社 Water-disintegrable nonwoven fabric
CN107245806A (en) * 2017-07-12 2017-10-13 西安工程大学 The processing method of goats hair 3-D crimped fiber two-piece needle non-woven carpet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933459A1 (en) * 1998-01-30 1999-08-04 Unitika Ltd. Staple fiber non-woven fabric and process for producing the same
FR2790489A1 (en) * 1999-03-01 2000-09-08 Freudenberg Carl Fa Nonwoven polymer cloth containing composite spun- or extruded filaments, with e.g. segments of structural polymer and segments of binder, forms perfectly-distributed, ideally- thermally-bonded intersections in product
JP2000303337A (en) * 1999-03-01 2000-10-31 Carl Freudenberg:Fa Non-woven fabric made from thermally binding filament or fiber
EP1048771A1 (en) * 1999-03-01 2000-11-02 Firma Carl Freudenberg Nonwoven fabric made of thermobonded filaments or fibres
JP2006000625A (en) * 2004-05-20 2006-01-05 Daiwabo Co Ltd Wiping sheet
JP2009084737A (en) * 2007-09-28 2009-04-23 Daiwabo Co Ltd Polycarbonate split type conjugate fiber, fiber aggregate and nonwoven fabric using the same
WO2010090220A1 (en) * 2009-02-06 2010-08-12 ユニ・チャーム株式会社 Water-disintegrable nonwoven fabric
JP2010180510A (en) * 2009-02-06 2010-08-19 Uni Charm Corp Water-disintegrable nonwoven fabric
EP2395142A1 (en) * 2009-02-06 2011-12-14 Uni-charm Corporation Water-disintegrable nonwoven fabric
CN102362024A (en) * 2009-02-06 2012-02-22 尤妮佳股份有限公司 Water-disintegrable nonwoven fabric
EP2395142A4 (en) * 2009-02-06 2013-04-03 Uni Charm Corp Water-disintegrable nonwoven fabric
CN107245806A (en) * 2017-07-12 2017-10-13 西安工程大学 The processing method of goats hair 3-D crimped fiber two-piece needle non-woven carpet

Similar Documents

Publication Publication Date Title
EP0933459B2 (en) Staple fiber non-woven fabric and process for producing the same
JPH10331063A (en) Composite nonwoven fabric and its production
JP3948781B2 (en) Short fiber nonwoven fabric and method for producing the same
JPH10280262A (en) Nonwoven fabric and its production
JP3145067B2 (en) Nonwoven fabric and method for producing the same
JP2000178865A (en) Nonwoven fabric for use in hygienic material
JPH10280258A (en) Nonwoven fabric and its production
JP3235908B2 (en) Composite fibers and non-woven fabrics made therefrom
JPH10280263A (en) Nonwoven fabric for wipping material and its production
JPH11158763A (en) Conjugate nonwoven cloth and its production
JP3580626B2 (en) Nonwoven fabric for hook-and-loop fastener and method for producing the same
JPH10158968A (en) Nonwoven fabric and its production
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP2000034661A (en) Composite nonwoven fabric and its production
JPH11100764A (en) Nonwoven fabric and its production
JP3259936B2 (en) Laminated nonwoven fabric and method for producing the same
JP2000136477A (en) Laminated nonwoven fabric and its production
JPH10273870A (en) Composite non-woven fabric and its production
JPH11247059A (en) Nonwoven fabric and its production
JPH08109567A (en) Laminated nonwoven structure and its production
JP2000073267A (en) Conjugated nonwoven fabric and its production
JPH06212550A (en) Ultra-fine polypropylene fiber nonwoven web and its production
JPH1121752A (en) Composite nonwoven fabric and its production
JPH1077560A (en) Nonwoven fabric and its production