JPH11247059A - Nonwoven fabric and its production - Google Patents

Nonwoven fabric and its production

Info

Publication number
JPH11247059A
JPH11247059A JP10046756A JP4675698A JPH11247059A JP H11247059 A JPH11247059 A JP H11247059A JP 10046756 A JP10046756 A JP 10046756A JP 4675698 A JP4675698 A JP 4675698A JP H11247059 A JPH11247059 A JP H11247059A
Authority
JP
Japan
Prior art keywords
heat
fibers
nonwoven fabric
fiber
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10046756A
Other languages
Japanese (ja)
Inventor
Nobuo Noguchi
信夫 野口
Atsushi Matsunaga
篤 松永
Michiyo Kato
美智代 加藤
Yuko Nakane
佑子 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP10046756A priority Critical patent/JPH11247059A/en
Publication of JPH11247059A publication Critical patent/JPH11247059A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a spun lace nonwoven fabric having excellent mechanical properties and dimensional stability from a nonwoven web composed of ultrafine split staple fibers and heat-adhesive staple fibers by heat-welding the heat- adhesive staple fibers to fix the three-dimensionally interlocked state of the constituent fibers. SOLUTION: A nonwoven fabric having an areal density of 20-200 g/m<2> is produced by blending 90-60 wt.% of splittable binary conjugate staple fibers composed of mutually incompatible fiber-forming polymers such as polyolefin/ polyamide and 10-40 wt.% of heat-adhesive staple fibers, carding the mixture to form a nonwoven web, placing the web on a porous substrate, subjecting to a high-pressure fluid flow treatment to split the above conjugate staple fibers to ultrafine split staple fibers having a single fiber fineness of <=0.5 de and three-dimensionally interlock the constituent fibers, heat-treating the product at a temperature to melt or soften the heat-adhesive staple fibers and fixing the above three-dimensional interlocked state by the hot-welding of the heat- adhesive fibers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スパンレース不織
布に関するものである。
TECHNICAL FIELD The present invention relates to a spunlaced nonwoven fabric.

【0002】[0002]

【従来の技術】高圧液体流の作用により構成繊維同士が
三次元的に交絡してなるスパンレース不織布は、繊維間
空隙が大きく嵩高であり柔軟性に優れるため、その特性
が生かされた各種の用途に用いられている。また構成繊
維の素材としては、天然繊維や合成繊維等が各種用途に
応じて適宜選択されて用いられている。しかし、スパン
レース不織布は、繊維同士の交絡のみによって不織布化
したものであるから、引っ張り、摩擦に対して容易に変
形、毛羽立ち、繊維の抜けが起こり形態安定性の面にお
いては十分に優れているとはいいがたいものである。
2. Description of the Related Art Spunlaced nonwoven fabrics in which the constituent fibers are three-dimensionally entangled by the action of a high-pressure liquid flow have large inter-fiber voids and are excellent in flexibility. Used for applications. As the material of the constituent fibers, natural fibers, synthetic fibers, and the like are appropriately selected and used according to various uses. However, since spunlaced nonwoven fabric is formed into a nonwoven fabric only by interlacing fibers, it is easily deformed, fuzzed, and pulled out of fibers due to tension and friction, and is sufficiently excellent in terms of form stability. Is hard to say.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記問題を
解決するものであり、機械的特性、寸法安定性に優れる
スパンレース不織布を得ようとするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to obtain a spunlaced nonwoven fabric having excellent mechanical properties and dimensional stability.

【0004】[0004]

【課題を解決するための手段】本発明は、上記目的を達
成するもので次の構成よりなるものである。すなわち、
本発明は、互いに非相溶性の繊維形成性重合体からなる
分割型二成分系複合短繊維の分割により発現した極細割
繊短繊維と、熱接着性短繊維とからなる不織布であり、
構成繊維同士が三次元的に交絡し、該熱接着性短繊維の
熱融着により前記交絡形態が固定されてなることを特徴
とする不織布を要旨とするものである。
The present invention attains the above object and has the following constitution. That is,
The present invention is a nonwoven fabric consisting of ultrafine split short fibers expressed by splitting split type bicomponent conjugate short fibers composed of mutually incompatible fiber-forming polymers, and heat-adhesive short fibers,
The gist of the present invention is a nonwoven fabric characterized in that the constituent fibers are three-dimensionally entangled and the entangled form is fixed by heat fusion of the heat-adhesive short fibers.

【0005】また、本発明は、互いに非相溶性の繊維形
成性重合体からなる分割型二成分系複合短繊維と熱接着
性短繊維とを混綿率90〜60/10〜40(重量%)
で混綿して不織ウエブを得、この不織ウエブを多孔性支
持材に載置して高圧液体流処理を施し、前記複合短繊維
を分割させて極細割繊短繊維を発現させると共に構成繊
維同士を三次元的に交絡させた後、熱接着性短繊維が溶
融または軟化する温度で熱処理を施して、熱接着性短繊
維を熱融着させて交絡形態を固定させることを特徴とす
る不織布の製造方法を要旨とするものである。
[0005] The present invention also relates to a splitting type bicomponent conjugate short fiber composed of mutually incompatible fiber-forming polymers and a heat-adhesive staple fiber in a mixing ratio of 90 to 60/10 to 40 (% by weight).
A non-woven web is obtained by mixing the non-woven web, and the non-woven web is placed on a porous support material and subjected to a high-pressure liquid flow treatment. Non-woven fabric characterized by three-dimensionally entangled with each other, heat-treated at a temperature at which the heat-bondable short fibers melt or soften, and heat-fused the heat-bondable short fibers to fix the entangled form. Of the present invention.

【0006】[0006]

【発明の実施の形態】次に、本発明を詳細に説明する。
まず、本発明に使用する分割型二成分系複合短繊維につ
いて説明する。該分割型二成分系複合短繊維は、互いに
非相溶性の繊維形成性重合体からなるものである。互い
に非相溶性とするのは、複合短繊維に衝撃を与えたとき
に分割しやすいようにするためである。
Next, the present invention will be described in detail.
First, the splittable bicomponent conjugate short fibers used in the present invention will be described. The split type bicomponent conjugate short fibers are made of mutually incompatible fiber-forming polymers. The incompatibility with each other is to make it easy to split the composite staple fiber when subjected to impact.

【0007】分割型二成分系複合短繊維を構成する繊維
形成性重合体としては、ポリオレフィン系重合体、ポリ
アミド系重合体、ポリエステル系重合体等が挙げられ、
非相溶性の重合体の組み合わせとしては、ポリオレフイ
ン/ポリアミド、ポリオレフイン/ポリエステル、ポリ
アミド/ポリエステル等が挙げられるが、これらは代表
例であって他の各種の組み合わせも任意に採用される。
The fiber-forming polymer constituting the splittable bicomponent conjugate short fiber includes a polyolefin polymer, a polyamide polymer, a polyester polymer, and the like.
Examples of incompatible polymer combinations include polyolefin / polyamide, polyolefin / polyester, polyamide / polyester, and the like. However, these are typical examples, and other various combinations may be arbitrarily employed.

【0008】本発明に使用しうる繊維形成性ポリオレフ
イン系重合体の例としては、炭素原子数が2〜16の脂
肪族α−モノオレフイン、例えばエチレン、プロピレ
ン、1−ブテン、1−ペンテン,3−メチル1−ブテ
ン、1−ヘキセン、1−オクテン、1−ドデセン、1−
オクタデセンのホモポリオレフイン又は共重合ポリオレ
フインがある。脂肪族α−モノオレフインは他のオレフ
インおよび/または少量(重合体重量の約10重量%ま
で)の他のエチレン系不飽和モノマー、例えばブタジエ
ン、イソプレン、1,3−ペンタジエン、スチレン、α
−メチルスチレンの如き類似のエチレン系不飽和モノマ
ーと共重合されていてもよい。特にポリエチレンの場
合、重合体重量の約10重量%までのプロピレン、1−
ブテン、1−ヘキセン、1−オクテン又は類似の高級α
−オレフインと共重合させたものが製糸性がよくなるた
め好ましい。
Examples of the fiber-forming polyolefin polymer which can be used in the present invention include aliphatic α-monoolefins having 2 to 16 carbon atoms, for example, ethylene, propylene, 1-butene, 1-pentene, 3 -Methyl 1-butene, 1-hexene, 1-octene, 1-dodecene, 1-
There is a homopolyolefin or a copolymerized polyolefin of octadecene. Aliphatic α-monoolefins are other olefins and / or small amounts (up to about 10% by weight of polymer weight) of other ethylenically unsaturated monomers such as butadiene, isoprene, 1,3-pentadiene, styrene, α
-May be copolymerized with similar ethylenically unsaturated monomers such as methylstyrene. Particularly in the case of polyethylene, up to about 10% by weight of the polymer weight of propylene, 1-
Butene, 1-hexene, 1-octene or similar higher α
-Copolymerized with olefin is preferred because of improved spinning properties.

【0009】本発明に使用しうる繊維形成性ポリアミド
系重合体の例としては、ナイロン−4、ナイロン−4
6、ナイロン−6、ナイロン−66、ナイロン−61
0、ナイロン−11、ナイロン−12やポリメタキシレ
ンアジパミド(MXD−6)、ポリパラキシレンデカン
アミド(PXD−12)、ポリビスシクロヘキシルメタ
ンデカンアミド(PCM−12)又はこれらのモノマー
を構成単位とする共重合ポリアミドがある。本発明に使
用しうる繊維形成性ポリエステル系重合体の例として
は、酸成分としてテレフタル酸、イソフタル酸、フタル
酸、2,6−ナフタレンジカルボン酸等の芳香族ジカル
ボン酸もしくはアジピン酸、セバシン酸などの脂肪族ジ
カルボン酸またはこれらのエステル類と、アルコール成
分としてエチレングリコール、ジエチレングリコール、
1,4−ブタンジオール、ネオペンチルグリコール、
1,4−シクロヘキサンジメタノール等のジオール化合
物とから合成されるホモポリエステルないしは共重合ポ
リエステルであり、このホモポリエステルないしは共重
合ポリエステルにパラオキシ安息香酸、5−ナトリウム
スルフオイソフタール酸、ポリアルキレングリコール、
ペンタエリスリトール、ビスフエノールA等が添加ある
いは共重合されていてもよい。
Examples of the fiber-forming polyamide polymer usable in the present invention include nylon-4 and nylon-4.
6, Nylon-6, Nylon-66, Nylon-61
0, nylon-11, nylon-12, polymetaxylene adipamide (MXD-6), polyparaxylenedecaneamide (PXD-12), polybiscyclohexylmethanedecaneamide (PCM-12) or a monomer of these There is a copolyamide as a unit. Examples of fiber-forming polyester polymers that can be used in the present invention include terephthalic acid, isophthalic acid, phthalic acid, aromatic dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid or adipic acid, sebacic acid and the like as an acid component. Aliphatic dicarboxylic acids or esters thereof, and alcohol components as ethylene glycol, diethylene glycol,
1,4-butanediol, neopentyl glycol,
A homopolyester or a copolyester synthesized from a diol compound such as 1,4-cyclohexanedimethanol, and the homopolyester or the copolyester is added to paraoxybenzoic acid, 5-sodium sulfoisophthalic acid, polyalkylene glycol,
Pentaerythritol, bisphenol A or the like may be added or copolymerized.

【0010】その他の繊維形成性重合体の例としては、
例えばビニル系重合体が用いられ、具体的にはポリビニ
ルアルコール、ポリ酢酸ビニル、ポリアクリル酸エステ
ル、エチレン酢酸ビニル共重合体、ポリ塩化ビニル、ポ
リ塩化ビニリデン、または、これらの共重合体が用いら
れる。また、ポリフエニレン系重合体またはその共重合
体を使用することもできる。
[0010] Examples of other fiber-forming polymers include:
For example, a vinyl polymer is used, and specifically, polyvinyl alcohol, polyvinyl acetate, polyacrylate, ethylene vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, or a copolymer thereof is used. . Further, a polyphenylene-based polymer or a copolymer thereof can also be used.

【0011】なお、繊維形成性重合体には、本発明の効
果を損なわない範囲内で、艶消し剤、顔料、防炎剤、難
燃剤、消臭剤、帯電防止剤、酸化防止剤、紫外線吸収
剤、抗菌剤、親水剤等の任意の添加物が添加されていて
もよい。
The fiber-forming polymer includes a matting agent, a pigment, a flame retardant, a flame retardant, a deodorant, an antistatic agent, an antioxidant, and an ultraviolet ray as long as the effects of the present invention are not impaired. Arbitrary additives such as an absorbent, an antibacterial agent, and a hydrophilic agent may be added.

【0012】分割型二成分系複合短繊維の具体例として
は、図1〜図4に示した如き横断面を持つものが好まし
い。これらは、分割型二成分系複合短繊維を構成する繊
維形成性重合体の両成分が共に繊維の表面に露出してお
り、かつ繊維の断面内において、一方の成分が他方の成
分により分割割繊可能な形に仕切られているものであ
る。
As a specific example of the splittable bicomponent conjugate short fibers, those having a cross section as shown in FIGS. 1 to 4 are preferable. In these, both components of the fiber-forming polymer constituting the splittable bicomponent conjugate short fiber are both exposed on the surface of the fiber, and in the cross section of the fiber, one component is split by the other component. It is divided into delicate shapes.

【0013】分割型二成分系複合短繊維の単糸繊度は、
1〜12デニールであることが好ましい。単糸繊度が1
デニール未満になると、溶融紡糸する際の紡糸口金の単
孔当たりの吐出量が低下し、生産量が低下する傾向にあ
り、また、生産量を向上させるために、紡糸口金の孔数
を増加させると、紡糸工程が不安定になる。一方、単糸
繊度が12デニールを超えると、溶融紡糸された糸条の
冷却不足により引き取りが困難になる傾向にあり、ま
た、糸条の冷却を促進させるため、紡糸口金の孔数を減
らすと、生産量が低下する。
The single yarn fineness of the split type bicomponent conjugate short fiber is as follows:
Preferably it is 1 to 12 denier. Single yarn fineness is 1
When it is less than denier, the discharge amount per single hole of the spinneret during melt spinning is reduced, and the production amount tends to decrease, and in order to improve the production amount, the number of holes in the spinneret is increased. Then, the spinning process becomes unstable. On the other hand, if the single yarn fineness exceeds 12 denier, it tends to be difficult to take off due to insufficient cooling of the melt-spun yarn, and to promote the cooling of the yarn, the number of holes in the spinneret is reduced. , The production volume decreases.

【0014】分割型二成分系複合短繊維は、後の分割割
繊処理により、両成分の境界で分割され、一方の重合体
からなる極細割繊短繊維または他方の極細割繊短繊維が
少なくとも発現する。本発明において、少なくとも発現
する極細割繊短繊維の単糸繊度は、0.5デニール以下
が好ましく、より好ましくは0.05〜0.3デニー
ル、さらに好ましくは0.1〜0.3デニールである。
単糸繊度が0.05デニール未満であると、現実的に紡
糸が困難となり分割型二成分系複合短繊維が安価で合理
的に得にくい。また、十分に分割割繊を行うことが困難
となる傾向にある。一方、0.5デニールを超えると、
本発明が目的とする極細の繊維の効果が得られにくい。
例えば、そのような不織布を清拭材として用いた場合に
ミクロな汚れの拭き取り性に劣る傾向となり、また、人
体に接して用いた場合においては、肌触りが悪く粗硬感
を感じるものとなる。
The splittable bicomponent conjugate short fibers are split at the boundary between the two components by a split splitting process, and at least one of the ultrafine split short fibers made of a polymer and the other is divided at least. Express. In the present invention, the single fiber fineness of at least the ultrafine split short fibers expressed is preferably 0.5 denier or less, more preferably 0.05 to 0.3 denier, and still more preferably 0.1 to 0.3 denier. is there.
If the single-fiber fineness is less than 0.05 denier, spinning is practically difficult, and it is difficult to obtain a splittable bicomponent conjugate short fiber at a reasonable cost. In addition, there is a tendency that it is difficult to sufficiently perform split splitting. On the other hand, if it exceeds 0.5 denier,
It is difficult to obtain the effect of the ultrafine fiber aimed at by the present invention.
For example, when such a nonwoven fabric is used as a wiping material, it tends to be inferior in wiping of microscopic dirt, and when used in contact with a human body, it feels hard and feels coarse and hard.

【0015】分割型二成分系複合短繊維は、一般に以下
の如き方法で製造される。すなわち、従来公知の溶融複
合紡糸法で紡糸され、横吹付や環状吹付等の従来公知の
冷却装置を用いて、吹付風により冷却された後、油剤を
付与し引き取りローラーを介して未延伸糸として巻取機
に巻取られる。引き取りローラー速度は500m/分〜
2000m/分である。巻取られた未延伸糸を複数本引
き揃え、公知の延伸機にて周速の異なるローラー群の間
で延伸される。次いで、前記延伸トウを押し込み式捲縮
付与装置にて捲縮を付与した後、所定の繊維長に切断し
て短繊維を得ることができる。なお、要求される用途に
より延伸トウに素材の融点以下の温度で熱セットを施し
てもよい。
The split type bicomponent conjugate short fibers are generally produced by the following method. That is, spun by a conventionally known melt composite spinning method, using a conventionally known cooling device such as horizontal spraying or annular spraying, and cooled by spraying wind, applying an oil agent, and as an undrawn yarn through a take-off roller. It is wound on a winder. Pickup roller speed is 500m / min ~
2000 m / min. A plurality of wound undrawn yarns are aligned and drawn between a group of rollers having different peripheral speeds by a known drawing machine. Next, the drawn tow is crimped by a press-type crimping device, and then cut into a predetermined fiber length to obtain short fibers. The stretch tow may be subjected to heat setting at a temperature equal to or lower than the melting point of the material depending on the required use.

【0016】本発明に用いる熱接着性短繊維は、熱接着
性成分を少なくとも繊維表面に有する繊維であり、この
熱接着性短繊維は、熱処理によって融着し、構成繊維同
士の交絡状態を固定する。熱接着性短繊維の熱接着性成
分は、主体繊維である分割型二成分系複合短繊維を構成
する重合体の融点より30℃以上低い融点または軟化点
を有することとする。両者の差が30℃未満であると、
熱接着性短繊維を熱融着させる際に分割型二成分系複合
短繊維より発現した極細割繊短繊維までも軟化溶融する
恐れがあるため好ましくない。
The heat-adhesive short fibers used in the present invention are fibers having at least a heat-adhesive component on the fiber surface. The heat-adhesive short fibers are fused by heat treatment to fix the entangled state of the constituent fibers. I do. The heat-adhesive component of the heat-adhesive short fibers has a melting point or softening point lower than the melting point of the polymer constituting the splittable bicomponent conjugate short fibers, which is the main fiber, by 30 ° C. or more. If the difference between the two is less than 30 ° C,
When heat-bonding the heat-adhesive short fibers, even ultrafine split short fibers developed from the split type bicomponent conjugate short fibers may be softened and melted, which is not preferable.

【0017】熱接着性短繊維の形態としては、少なくと
も繊維表面に熱接着性成分を有する形態であればよく、
熱接着性成分のみからなる単相のもの、熱接着性成分と
他の重合体との貼り合わせ型のもの、熱接着性成分を鞘
部に配し他の重合体を芯部に配する芯鞘型のもの等が挙
げられる。本発明において、芯部に配する重合体より3
0℃以上低い融点または軟化点を有する重合体(熱接着
性成分)を鞘部に配した芯鞘型複合繊維が好ましく用い
られる。芯鞘型複合繊維は、鞘部のみが構成繊維同士を
融着する接着剤として機能し、芯部は繊維の形態を維持
しており、柔軟性の向上に寄与することとなるため好ま
しい。
The form of the heat-adhesive short fiber may be any form having a heat-adhesive component on at least the fiber surface.
Single-phase type consisting only of the heat-adhesive component, laminated type of the heat-adhesive component and another polymer, a core in which the heat-adhesive component is disposed in the sheath and the other polymer is disposed in the core A sheath type is exemplified. In the present invention, the polymer disposed on the core is 3
A core-in-sheath composite fiber in which a polymer having a melting point or softening point lower than 0 ° C. or lower (a heat-adhesive component) is disposed in a sheath portion is preferably used. The core-sheath type composite fiber is preferable because only the sheath part functions as an adhesive for fusing constituent fibers together, and the core part maintains the form of the fiber and contributes to improvement in flexibility.

【0018】熱接着性短繊維は、本発明の目的が達成で
きる量を不織布中に混綿されていればよく、10〜40
重量%混綿させるとよい。熱接着性短繊維の混綿率が1
0重量%未満であると、不織布の三次元交絡構造を充分
に固定化させ、耐摩耗性、耐久性に優れた不織布が得ら
れなくなる。一方、40重量%を超えると、不織布中を
占める極細割繊繊維の比率が減り、極細割繊繊維の風合
いが損なわれるため好ましくない。
The heat-adhesive short fibers may be mixed in the nonwoven fabric in such an amount that the object of the present invention can be achieved.
It is good to mix by weight%. Cotton mixing ratio of heat-adhesive short fiber is 1
If the content is less than 0% by weight, the three-dimensional entangled structure of the nonwoven fabric is sufficiently fixed, and a nonwoven fabric having excellent wear resistance and durability cannot be obtained. On the other hand, if it exceeds 40% by weight, the proportion of the ultrafine split fibers occupying the nonwoven fabric decreases, and the texture of the ultrafine split fibers is unfavorably deteriorated.

【0019】本発明の不織布の目付は、特に限定されな
いが、20〜200g/m2 の範囲とする。目付が20
g/m2 未満であると不織布の地合に劣るものとなりや
すく、目付が200g/m2 を超えると、高圧液体流処
理の際に、不織布の内層において繊維相互に十分な交絡
および分割割繊がされにくくなる。
The basis weight of the nonwoven fabric of the present invention is not particularly limited, but is in the range of 20 to 200 g / m 2 . 20 basis weight
g / m is less than 2 tends to become poor in nonwoven formation, the basis weight exceeds 200 g / m 2, when the high-pressure liquid jet treatment, sufficient entanglement to the fibers each other in the inner layer of nonwoven and split split fiber It is difficult to be done.

【0020】次に、本発明の不織布の製造方法に関して
説明する。本発明では、まず、分割型二成分系複合短繊
維と熱接着性短繊維とを混綿率90〜60/10〜40
(重量%)で混綿し、カード法やエアレイ法等を用いて
所定の目付の不織ウエブを作製することができる。カー
ド法ではカード機を用いて、構成繊維の配列度合を種々
選択することができる。構成繊維の配列パターンとして
は、構成繊維が一方向に配列したパラレルウエブ、パラ
レルウエブがクロスレイドされたウエブ、構成繊維がラ
ンダムに配列したランダムウエブあるいは両者の中程度
に配列したセミランダムウエブ等が挙げられる。
Next, the method for producing a nonwoven fabric of the present invention will be described. In the present invention, first, the splitting type bicomponent conjugate short fiber and the heat-adhesive short fiber are mixed at a cotton mixing ratio of 90-60 / 10-10
(Weight%), and a nonwoven web having a predetermined basis weight can be produced by using a card method, an air lay method, or the like. In the card method, a carding machine can be used to select various degrees of arrangement of the constituent fibers. As the arrangement pattern of the constituent fibers, a parallel web in which the constituent fibers are arranged in one direction, a web in which the parallel webs are cross-laid, a random web in which the constituent fibers are randomly arranged, or a semi-random web in which both are moderately arranged. No.

【0021】次に、得られた不織ウエブに高圧液体流処
理を施して、分割型二成分系複合短繊維を分割させて極
細割繊短繊維を発現させると共に構成繊維同士を三次元
的に交絡させる。ここでいう三次元的な交絡とは、不織
ウエブを構成している繊維相互間が不織布の縦/横の方
向のみでなく不織布の厚み方向に対しても交絡し、一体
化した構造を有していることをいう。
Next, the obtained nonwoven web is subjected to a high-pressure liquid flow treatment to split the splittable bicomponent conjugate short fibers to express ultrafine split short fibers and to make the constituent fibers three-dimensionally. Confound. The three-dimensional confounding referred to herein means that the fibers constituting the nonwoven web are entangled not only in the vertical / horizontal direction of the nonwoven fabric but also in the thickness direction of the nonwoven fabric, and have an integrated structure. What you do.

【0022】高圧液体流処理について説明する。処理を
施すための高圧液体流装置としては、例えば、孔径が
0.05〜1.5mm、特に0.1〜0.4mmの噴射
孔を孔間隔0.05〜5mmで一列あるいは複数列に多
数配列した装置を用いる。噴射孔から高圧力で噴射させ
て得られる水流すなわち高圧液体流を噴射し、多孔性支
持部材上に載置した不織ウエブに衝突させる。分割型二
成分系複合短繊維は、高圧液体流による衝撃によって、
極細割繊短繊維を発現し、かつ構成繊維同士が三次元的
に交絡一体化する。このとき、繊維同士の交絡は、極細
割繊短繊維の発現により緻密で強固なものとなる。
The high-pressure liquid flow processing will be described. As a high-pressure liquid flow device for performing the treatment, for example, a large number of injection holes having a hole diameter of 0.05 to 1.5 mm, particularly 0.1 to 0.4 mm are arranged in a line or a plurality of lines at a hole interval of 0.05 to 5 mm. Use an arrayed device. A water stream, ie, a high-pressure liquid stream obtained by jetting at a high pressure from the jet holes is jetted, and collides with a nonwoven web placed on a porous support member. Split type bicomponent conjugate short fibers are impacted by high pressure liquid flow,
Ultrafine split short fibers are developed, and the constituent fibers are three-dimensionally entangled and integrated. At this time, the entanglement of the fibers becomes dense and strong due to the expression of ultrafine split short fibers.

【0023】噴射孔の配列は、不織ウエブの進行方向と
直行する方向に列状に配列する。高圧液体流としては、
常温あるいは温水を用いることができる。噴射孔と不織
ウエブとの間の距離は、10〜150mmとするのが良
い。この距離が10mm未満であると、この処理により
得られる不織布の地合が乱れ、一方、この距離が150
mmを超えると、液体流が不織ウエブに衝突したときの
衝撃力が低下して、分割割繊及び交絡一体化が十分に施
されない傾向にある。
The jet holes are arranged in rows in a direction perpendicular to the direction of travel of the nonwoven web. As a high pressure liquid flow,
Room temperature or hot water can be used. The distance between the injection holes and the nonwoven web is preferably between 10 and 150 mm. If this distance is less than 10 mm, the formation of the nonwoven fabric obtained by this treatment is disturbed, while the distance is 150 mm.
If it exceeds mm, the impact force when the liquid stream collides with the nonwoven web tends to decrease, and the split splitting and entanglement integration tend not to be sufficiently performed.

【0024】この高圧液体流の処理圧力は、不織布の要
求性能によって制御されるが、一般的には、20〜20
0kg/cm2 Gの高圧液体流を噴出するのが良い。な
お、処理する不織ウエブの目付等にも左右されるが、前
記処理圧力の範囲内において、処理圧力が低いと嵩高で
柔軟性に優れた不織布を得ることができ、処理圧力が高
いと構成繊維同士の交絡が緻密で強固な不織布を得るこ
とができる。高圧液体流の圧力が20kg/cm2 G未
満であると、分割割繊及び交絡一体化が十分に施され
ず、本発明が目的とする不織布を得ることができない。
但し、本発明の不織布には、分割型二成分系複合短繊維
が十分に分割されず一部残存するものも包含される。逆
に、高圧液体流の圧力が200kg/cm2 Gを超える
と水圧による打撃により、極端な場合には構成繊維が切
断されて、得られる不織布は表面に毛羽を有するものと
なりやすい。
The processing pressure of this high-pressure liquid stream is controlled by the required performance of the nonwoven fabric, but is generally in the range of 20 to 20.
A high pressure liquid stream of 0 kg / cm 2 G is preferably ejected. In addition, depending on the basis weight of the nonwoven web to be treated, etc., within the range of the treatment pressure, it is possible to obtain a nonwoven fabric which is bulky and excellent in flexibility when the treatment pressure is low, and is constituted when the treatment pressure is high. A nonwoven fabric in which the entanglement of the fibers is dense and strong can be obtained. If the pressure of the high-pressure liquid flow is less than 20 kg / cm 2 G, split splitting and entanglement unification are not sufficiently performed, and the nonwoven fabric targeted by the present invention cannot be obtained.
However, the nonwoven fabric of the present invention also includes nonwoven fabrics in which split bicomponent conjugate short fibers are not sufficiently split and partially remain. Conversely, if the pressure of the high-pressure liquid flow exceeds 200 kg / cm 2 G, the constituent fibers are cut in an extreme case by impact with water pressure, and the resulting nonwoven fabric tends to have fluff on the surface.

【0025】高圧液体流処理を施すに際して用いる不織
ウエブを担持する多孔性支持部材としては、例えば、2
0〜200メツシユの金網製あるいは合成樹脂製等のメ
ツシユスクリーンや有孔板など、高圧液体流が前記積層
体を貫通するものであれば特に限定されない。メツシユ
スクリーンの組織等を適宜選択することにより不織布に
模様や開孔を付与することが可能である。
The porous support member for supporting the nonwoven web used in performing the high-pressure liquid flow treatment includes, for example, 2
There is no particular limitation as long as the high-pressure liquid flow penetrates the laminate, such as a mesh screen or a perforated plate made of a wire mesh or synthetic resin of 0 to 200 mesh. By appropriately selecting the structure of the mesh screen or the like, it is possible to impart a pattern or an opening to the nonwoven fabric.

【0026】なお、不織ウエブの片面より高圧液体流処
理を施した後、引き続き交絡の施された不織ウエブを反
転して高圧液体流処理を施すことにより、表裏共に緻密
に交絡した不織布を得ることができるので、不織布の用
途に応じて、また、不織ウエブの目付の大きいもの等に
適用すればよい。
After the high-pressure liquid flow treatment is performed from one side of the nonwoven web, the entangled nonwoven web is subsequently turned over and subjected to the high-pressure liquid flow treatment, whereby the nonwoven fabric densely entangled on both sides is obtained. Since it can be obtained, it may be applied to a nonwoven web having a large basis weight or the like according to the use of the nonwoven fabric.

【0027】高圧液体流処理を施した後、処理後の不織
布から過剰水分を除去する。この過剰水分を除去するに
際しては、公知の方法を採用することができる。例え
ば、マングルロール等の絞り装置を用いて過剰水分をあ
る程度機械的に除去し、引き続きサクシヨンバンド方式
の熱風循環式乾燥機等の乾燥装置を用いて残余の水分を
除去する。
After the high pressure liquid flow treatment, excess moisture is removed from the treated nonwoven fabric. When removing the excess moisture, a known method can be adopted. For example, the excess water is mechanically removed to some extent using a squeezing device such as a mangle roll, and the remaining water is subsequently removed using a drying device such as a suction band type hot air circulation dryer.

【0028】次に、三次元的に交絡させた不織布に、熱
処理装置を用い熱接着性短繊維が溶融または軟化する温
度で熱処理を施し、熱接着性短繊維を熱融着させて、構
成繊維同士を熱接着し三次元交絡形態を固定させる。用
いる熱処理装置としては、乾熱熱風循環方式のものが効
果的に用いられる。三次元的に交絡された不織布は、不
織布として形態が安定したものであるので、熱風により
構成繊維が飛散することなく熱処理が施され、熱接着に
より三次元交絡の形態が固定される。このように熱接着
により不織布の交絡形態が固定化されるため、嵩高性を
維持した状態で形態安定性、寸法安定性、機械的強力が
向上し、耐摩耗性、耐洗濯性、耐久性の向上が図れる。
したがって、本発明の不織布は、摩擦力に対し変形する
ことなく、また不織布表面の毛羽立ち、繊維の抜けが発
生することがない。よって、例えば、本発明の不織布を
清拭材として用いた際により強固な汚れを拭き取ること
ができる。
Next, the three-dimensionally entangled nonwoven fabric is subjected to a heat treatment using a heat treatment device at a temperature at which the heat-bondable short fibers are melted or softened, and the heat-bondable short fibers are heat-fused to form the constituent fibers. The three-dimensional entangled form is fixed by heat bonding. As a heat treatment apparatus to be used, a dry heat hot air circulation system is effectively used. Since the nonwoven fabric three-dimensionally entangled has a stable form as a nonwoven fabric, heat treatment is performed without the constituent fibers being scattered by hot air, and the three-dimensional entangled form is fixed by thermal bonding. In this way, the entangled form of the nonwoven fabric is fixed by heat bonding, so that the form stability, dimensional stability, and mechanical strength are improved while maintaining the bulkiness, and the abrasion resistance, washing resistance, and durability are improved. Improvement can be achieved.
Therefore, the nonwoven fabric of the present invention does not deform due to frictional force, and there is no fluffing of the surface of the nonwoven fabric and no loss of fibers. Therefore, for example, when the nonwoven fabric of the present invention is used as a wiping material, stronger stains can be wiped off.

【0029】熱処理温度は、熱接着性短繊維が溶融また
は軟化する温度とするが、熱接着性短繊維の熱接着性成
分の融点または軟化点を(Tm)℃としたときに、(T
m+5)℃〜(Tm+25)℃の熱風を吹きつけるのが
よい。この温度範囲を採用することにより、熱接着性成
分のみを溶融または軟化させ、かつ他の構成繊維等に対
して熱による影響を及ぼすことなく柔軟性を保持した不
織布を得ることができる。(Tm+5)℃未満である
と、熱接着性成分が十分に溶融または軟化しないため目
的とする熱接着効果が得られない。一方、(Tm+2
5)℃を超えると、熱接着性成分が溶融流動して不織布
がフイルム化し粗硬感が感じられるものとなる。また、
極細割繊短繊維までもが溶融する恐れがあり、極細割繊
短繊維による風合いが損なわれるため好ましくない。
The heat treatment temperature is a temperature at which the heat-adhesive short fibers are melted or softened. When the melting point or softening point of the heat-adhesive component of the heat-adhesive short fibers is (Tm) ° C.,
Hot air of (m + 5) ° C. to (Tm + 25) ° C. is preferably blown. By adopting this temperature range, it is possible to obtain a nonwoven fabric in which only the heat-adhesive component is melted or softened and flexibility is maintained without affecting other constituent fibers and the like due to heat. If the temperature is lower than (Tm + 5) ° C., the desired heat bonding effect cannot be obtained because the heat bonding component does not sufficiently melt or soften. On the other hand, (Tm + 2
5) When the temperature exceeds 0 ° C., the heat-adhesive component melts and flows, and the nonwoven fabric is formed into a film, giving a feeling of coarse hardness. Also,
There is a possibility that even the ultrafine split short fibers may be melted, and the texture due to the ultrafine split short fibers is impaired, which is not preferable.

【0030】本発明の不織布に対し柔軟性を付与する目
的で、上野山機工(株)製のカムフイツト機による柔軟
加工機を用いてもよい。
For the purpose of imparting flexibility to the nonwoven fabric of the present invention, a flexible processing machine using a camfighting machine manufactured by Uenoyama Kiko Co., Ltd. may be used.

【0031】[0031]

【実施例】次に、実施例に基づき本発明をより具体的に
説明するが、本発明は、これらの実施例によって何ら限
定されるものではない。実施例において、各特性値の測
定を次の方法によって実施した。 (1)重合体の融点(℃):パーキンエルマー社製DS
C−2型の示差走査型熱量計を用い、昇温速度20℃/
分で測定した融解吸熱ピークの最大値を与える温度を融
点(℃)とした。
Next, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. In the examples, the measurement of each characteristic value was performed by the following method. (1) Melting point (° C.) of polymer: DS manufactured by PerkinElmer
Using a C-2 type differential scanning calorimeter, the heating rate was 20 ° C. /
The temperature giving the maximum value of the melting endothermic peak measured in minutes was defined as the melting point (° C.).

【0032】(2)ポリエステルの相対粘度(イ):フ
エノールと四塩化エタンの等重量混合液を溶媒とし、こ
の溶媒100ccに試料0.5gを溶解し温度20℃の
条件で常法により求めた。
(2) Relative viscosity of polyester (a): A mixture of phenol and ethane tetrachloride was used as a solvent, and 0.5 g of a sample was dissolved in 100 cc of the solvent. .

【0033】(3)ナイロン6の相対粘度(ロ):96
%硫酸100ccに試料1gを溶解し、温度25℃の条
件で常法により求めた。
(3) Relative viscosity of nylon 6 (b): 96
1 g of a sample was dissolved in 100 cc of 100% sulfuric acid, and determined by a conventional method at a temperature of 25 ° C.

【0034】(4)ポリエチレンのメルトインデツクス
(以下、MIと記す。)(g/10分):ASTM D
1238(E)に記載の方法により測定した。
(4) Melt index of polyethylene (hereinafter referred to as MI) (g / 10 minutes): ASTM D
It was measured by the method described in 1238 (E).

【0035】(5)ポリプロピレンのメルトフローレー
ト値(以下、MFRと記す。)(g/10分):AST
M D1238(L)に記載の方法により測定した。
(5) Melt flow rate value of polypropylene (hereinafter referred to as MFR) (g / 10 minutes): AST
It was measured by the method described in MD1238 (L).

【0036】(6)目付(g/m2 ):幅10cm、長
さ10cmの試料片を5個作成し、その重量を測定し、
試料片5個の平均値を不織布の目付(g/m2 )とし
た。
(6) Basis weight (g / m 2 ): Five sample pieces each having a width of 10 cm and a length of 10 cm were prepared, and their weights were measured.
The average value of five sample pieces was defined as the basis weight (g / m 2 ) of the nonwoven fabric.

【0037】(7)引張強力(kg/5cm幅):JI
S L−1096に記載のストリツプ法に準じ、最大引
張強力を測定した。すなわち、幅5cm、長さ15cm
の試験片10個用意し、定速伸長型引張試験機(テンシ
ロンUTM−4−1−100東洋ボールドウイン社製)
を用いて、掴み間隔10cm、引張速度10cm/分の
条件で最大引張強力を測定し、試料片10個の平均値を
不織布の引張強力(kg/5cm幅)とした。
(7) Tensile strength (kg / 5 cm width): JI
The maximum tensile strength was measured according to the strip method described in SL-1096. That is, width 5 cm, length 15 cm
Specimens of 10 were prepared, and a constant-speed elongation type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.)
, The maximum tensile strength was measured under the conditions of a gripping interval of 10 cm and a tensile speed of 10 cm / min, and the average value of 10 test pieces was defined as the tensile strength (kg / 5 cm width) of the nonwoven fabric.

【0038】(8)耐摩耗性(級):学振形摩擦試験機
を用い、100回の往復摩擦試験を行い、目視評価によ
り5段階評価を行った。不織布表面の摩耗がなく毛羽立
ちの見られないものを5級とし、不織布表面の摩耗が激
しく毛羽立ったものを1級とし、その間を2〜4級と段
階的に評価した。
(8) Abrasion resistance (grade): A reciprocating friction test was performed 100 times using a Gakushin type friction tester, and a five-point evaluation was performed by visual evaluation. Those with no abrasion on the surface of the non-woven fabric and without fluff were rated as class 5, and those with severely abraded on the surface of the non-woven fabric were classified as class 1, and the grade between them was graded as grades 2 to 4.

【0039】(9)粉塵の拭き取り性:粉塵として片山
化学社製の特級試薬の塩化ナトリウムを5gをガラス板
上にまき、不織布でガラス板上の塩化ナトリウムを拭き
取りガラス板上に残された塩化ナトリウムの重量を測定
した。70%以上の拭き取り性を示す不織布を拭き取り
性が良好、75%以上の拭き取り性を示す不織布を拭き
取り性が特に優れているとした。
(9) Dust wiping property: 5 g of sodium chloride, a special-grade reagent manufactured by Katayama Chemical Co., Ltd., was sprayed on a glass plate as dust, and the sodium chloride on the glass plate was wiped off with a non-woven fabric. The weight of sodium was measured. A nonwoven fabric exhibiting a wiping property of 70% or more was judged to have excellent wiping properties, and a nonwoven fabric exhibiting a wiping property of 75% or more was judged to have particularly excellent wiping properties.

【0040】実施例1 分割型二成分系複合短繊維として、繊維断面が図1に示
す複合形態でナイロン6(融点225℃、相対粘度2.
65)とポリプロピレン(融点160℃、相対MFR2
8g/10分)との分割型二成分系複合短繊維を用意し
た。すなわち、図1に示す如く全分割数が7個となるよ
うな分割型二成分系複合型紡糸口金より複合比を重量比
で1:1とし、溶融温度265℃、単孔吐出量0.59
g/分で押し出した。紡出糸条を冷却し仕上げ油剤を付
与した後、引き取り速度が1000m/分の引き取りロ
ールを介して、未延伸糸として捲き取った。次いで、得
られた未延伸糸を複数本引き揃えてトウとなし、公知の
延伸機を用いて延伸倍率が2.8倍で延伸を行った後、
押し込み式捲縮付与装置にて捲縮を付与し38mmの繊
維長に切断して2デニール(ポリプロピレンからなる極
細割繊短繊維の繊度は1.0デニール、ナイロン6から
なる極細割繊短繊維の繊度は0.17デニール)の短繊
維を得た。
EXAMPLE 1 Nylon 6 (melting point: 225.degree. C., relative viscosity: 2.degree. C.) having a fiber cross section shown in FIG.
65) and polypropylene (melting point 160 ° C, relative MFR2)
(8 g / 10 minutes). That is, as shown in FIG. 1, the composite ratio is set to 1: 1 in weight ratio from the split type two-component type composite spinneret in which the total number of divisions is 7, the melting temperature is 265 ° C., and the single hole discharge amount is 0.59.
Extruded at g / min. After the spun yarn was cooled and the finishing oil was applied, it was wound up as an undrawn yarn via a take-up roll having a take-up speed of 1000 m / min. Next, a plurality of the obtained undrawn yarns are drawn and aligned to form a tow, and after drawing at a draw ratio of 2.8 using a known drawing machine,
It is crimped by an indentation type crimping device and cut to a fiber length of 38 mm. 2 denier (the fineness of the ultrafine split short fiber made of polypropylene is 1.0 denier, and the fine split short fiber made of nylon 6 is Short fibers having a fineness of 0.17 denier were obtained.

【0041】熱接着性短繊維として、芯鞘型複合繊維が
得られる複合型紡糸口金を用い、芯成分としてポリエチ
レンテレフタレート(融点259℃、相対粘度1.3
8)、鞘成分としてポリエチレン(融点128℃、MI
20g/10分)を用いて、複合比を芯成分:鞘成分=
65:35(重量比)とし、溶融温度295℃、単孔吐
出量0.8g/分で押し出した。紡出糸条を冷却し仕上
げ油剤を付与した後、引き取り速度が1100m/分の
引き取りロ−ルを介して、未延伸糸として捲き取った。
次いで、得られた未延伸糸を複数本引き揃えてトウとな
し、公知の延伸機を用いて延伸倍率が3.31倍で延伸
を行った後、押し込み式捲縮付与装置にて捲縮を付与し
38mmの繊維長に切断して2デニールの熱接着性短繊
維を得た。
As the heat-adhesive short fiber, a conjugate spinneret capable of obtaining a core-sheath conjugate fiber was used, and polyethylene terephthalate (melting point: 259 ° C., relative viscosity: 1.3) was used as a core component.
8), polyethylene (melting point 128 ° C., MI
20 g / 10 min), and the composite ratio is calculated as follows: core component: sheath component =
It was extruded at 65:35 (weight ratio) at a melting temperature of 295 ° C. and a single hole discharge rate of 0.8 g / min. After the spun yarn was cooled and the finishing oil was applied, it was wound up as an undrawn yarn via a take-up roll having a take-up speed of 1100 m / min.
Subsequently, a plurality of the obtained undrawn yarns are drawn and aligned to form a tow. After drawing is performed at a draw ratio of 3.31 times using a known drawing machine, crimping is performed by a push-in type crimping device. This was applied and cut to a fiber length of 38 mm to obtain 2 denier heat-adhesive short fibers.

【0042】分割型二成分系複合短繊維70重量%と熱
接着性短繊維30重量%とを混綿し、ランダムカード機
にて目付80g/m2 の不織ウエブを準備した。
A nonwoven web having a basis weight of 80 g / m 2 was prepared using a random card machine by mixing 70% by weight of split type bicomponent conjugate short fibers and 30% by weight of heat-adhesive short fibers.

【0043】次いで、不織ウエブを100メツシユの金
属製メツシユスクリーン上に積載して高圧液体流処理を
施した。高圧液体流処理は、孔径0.1mmの噴射孔が
孔間隔0.6mmで配置された高圧液体流処理装置を用
い、前記積層体の上方50mmの位置から液体流圧力を
70kg/cm2 Gの条件下で処理を施した。交絡した
不織布より過剰水分の除去と乾燥処理を施した。次い
で、熱融着処理機(ルシオール 京都機械社製)を用い
て、処理温度140℃、処理時間30秒の条件で熱処理
を行い、本発明の不織布を得た。
Next, the nonwoven web was loaded on a 100-mesh metal mesh screen and subjected to high-pressure liquid flow treatment. The high-pressure liquid flow treatment uses a high-pressure liquid flow treatment device in which injection holes having a hole diameter of 0.1 mm are arranged at a hole interval of 0.6 mm, and a liquid flow pressure of 70 kg / cm 2 G from a position 50 mm above the laminate. The treatment was performed under the conditions. Excessive moisture was removed from the entangled non-woven fabric and dried. Next, heat treatment was performed using a heat fusion processor (Lushiol Kyoto Kikai Co., Ltd.) under the conditions of a processing temperature of 140 ° C. and a processing time of 30 seconds to obtain a nonwoven fabric of the present invention.

【0044】実施例2 分割型二成分系複合短繊維として、繊維断面が図1に示
す複合形態でポリエチレンテレフタレート(融点258
℃、相対粘度1.38)とポリプロピレン(融点160
℃、相対MFR28g/10分)からなる分割型二成分
系複合短繊維を用いた以外は、実施例1と同様にして本
発明の不織布を得た。すなわち、図1に示す如く全分割
数が7個となるような分割型二成分系複合型紡糸口金よ
り複合比を重量比で1:1とし、溶融温度285℃、単
孔吐出量0.63g/分で押し出した。紡出糸条を冷却
し仕上げ油剤を付与した後、引き取り速度が1000m
/分の引き取りロールを介して、未延伸糸として捲き取
った。次いで、得られた未延伸糸を複数本引き揃えてト
ウとなし、公知の延伸機を用いて延伸倍率が3.0倍で
延伸を行った後、押し込み式捲縮付与装置にて捲縮を付
与し38mmの繊維長に切断して2デニール(ポリプロ
ピレンからなる極細割繊短繊維の繊度は1.0デニー
ル、ポリエチレンテレフタレートからなる極細割繊短繊
維の繊度は0.17デニール)の短繊維を作成した。
Example 2 As a splittable bicomponent conjugate short fiber, polyethylene terephthalate (melting point: 258) having a fiber cross section shown in FIG.
° C, relative viscosity 1.38) and polypropylene (melting point 160
A nonwoven fabric of the present invention was obtained in the same manner as in Example 1, except that a splittable bicomponent conjugate short fiber consisting of C.C. and a relative MFR of 28 g / 10 minutes) was used. That is, as shown in FIG. 1, the weight ratio of the composite ratio is 1: 1 from the split type two-component type composite spinneret in which the total number of splits is 7, the melting temperature is 285 ° C., and the single hole discharge amount is 0.63 g. / Min. After cooling the spun yarn and applying a finishing oil, the take-up speed is 1000 m
/ Min was taken up as an undrawn yarn through a take-off roll. Subsequently, a plurality of the obtained undrawn yarns are drawn and aligned to form a tow. After drawing is performed at a draw ratio of 3.0 using a known drawing machine, crimping is performed by a push-in type crimping device. It is applied and cut into a fiber length of 38 mm to produce a short fiber of 2 denier (the fineness of the ultrafine split short fiber made of polypropylene is 1.0 denier, and the fineness of the ultrafine split short fiber made of polyethylene terephthalate is 0.17 denier). Created.

【0045】実施例3 分割型二成分系複合短繊維として、繊維断面が図1に示
す複合形態でポリエチレンテレフタレート(融点258
℃、相対粘度1.38)とナイロン6(融点225℃、
相対粘度2.65)からなる分割型二成分系複合短繊維
を用いた以外は、実施例1と同様にして本発明の不織布
を得た。すなわち、図1に示す如く全分割数が7個とな
るような分割型二成分系複合型紡糸口金より複合比を重
量比で1:1とし、溶融温度285℃、単孔吐出量0.
65g/分で押し出した。紡出糸条を冷却し仕上げ油剤
を付与した後、引き取り速度が1000m/分の引き取
りロールを介して、未延伸糸として捲き取った。次い
で、得られた未延伸糸を複数本引き揃えてトウとなし、
公知の延伸機を用いて延伸倍率が3.1倍で延伸を行っ
た後、押し込み式捲縮付与装置にて捲縮を付与し38m
mの繊維長に切断して2デニール(ナイロン6からなる
極細割繊短繊維の繊度は1.0デニール、ポリエチレン
テレフタレートからなる極細割繊短繊維の繊度は0.1
7デニール)の短繊維を作成した。
Example 3 As a splittable bicomponent conjugate short fiber, polyethylene terephthalate (melting point: 258) having a fiber cross section shown in FIG.
° C, relative viscosity 1.38) and nylon 6 (melting point 225 ° C,
A nonwoven fabric of the present invention was obtained in the same manner as in Example 1, except that a splittable bicomponent conjugate short fiber having a relative viscosity of 2.65) was used. In other words, as shown in FIG. 1, the weight ratio of the composite ratio is 1: 1 from the split type two-component composite type spinneret in which the total number of divisions is 7, the melting temperature is 285 ° C., and the single hole discharge amount is 0.1.
Extruded at 65 g / min. After the spun yarn was cooled and the finishing oil was applied, it was wound up as an undrawn yarn via a take-up roll having a take-up speed of 1000 m / min. Next, a plurality of the obtained undrawn yarns are aligned to form a tow,
After performing stretching at a stretching ratio of 3.1 times using a known stretching machine, crimping was performed using a press-in type crimping device, and 38 m was applied.
2 denier (fineness of ultrafine split short fibers made of nylon 6 is 1.0 denier, fineness of ultrafine split short fibers made of polyethylene terephthalate is 0.1
7 denier) short fiber was prepared.

【0046】実施例4 分割型二成分系複合短繊維として、繊維断面が図2に示
す複合形態でナイロン6(融点225℃、相対粘度2.
65)とポリプロピレン(融点160℃、相対MFR2
8g/10分)からなる分割型二成分系複合短繊維を用
いた以外は、実施例1と同様にして本発明の不織布を得
た。すなわち、図2に示す如く全分割数が12個となる
ような分割型二成分系複合型紡糸口金より複合比を重量
比で1:1とし、溶融温度265℃、単孔吐出量0.5
6g/分で押し出した。紡出糸条を冷却し仕上げ油剤を
付与した後、引き取り速度が1000m/分の引き取り
ロールを介して、未延伸糸として捲き取った。次いで、
得られた未延伸糸を複数本引き揃えてトウとなし、公知
の延伸機を用いて延伸倍率が2.65倍で延伸を行った
後、押し込み式捲縮付与装置にて捲縮を付与し38mm
の繊維長に切断して2デニール(ナイロン6からなる極
細割繊短繊維およびポリプロピレンからなる極細割繊短
繊維の繊度は0.17デニール)の短繊維を作成した。
Example 4 Nylon 6 (melting point: 225.degree. C., relative viscosity: 2.degree. C.) having a fiber cross section as shown in FIG.
65) and polypropylene (melting point 160 ° C, relative MFR2)
A nonwoven fabric of the present invention was obtained in the same manner as in Example 1, except that a splittable bicomponent conjugate short fiber (8 g / 10 min) was used. That is, as shown in FIG. 2, the weight ratio of the composite ratio is 1: 1 from the split type two-component type composite spinneret in which the total number of splits is 12, the melting temperature is 265 ° C., and the single hole discharge amount is 0.5.
Extruded at 6 g / min. After the spun yarn was cooled and the finishing oil was applied, it was wound up as an undrawn yarn via a take-up roll having a take-up speed of 1000 m / min. Then
A plurality of the obtained undrawn yarns are drawn and aligned to form a tow, and after drawing at a draw ratio of 2.65 times using a known drawing machine, crimping is performed by a press-in type crimping device. 38mm
To produce a short fiber of 2 denier (the ultrafine split short fiber made of nylon 6 and the ultrafine split short fiber made of polypropylene have a fineness of 0.17 denier).

【0047】実施例5 分割型二成分系複合短繊維として、繊維断面が図2に示
す複合形態でポリエチレンテレフタレート(融点258
℃、相対粘度1.38)とポリプロピレン(融点160
℃、相対MFR28g/10分)からなる分割型二成分
系複合短繊維を用いた以外は、実施例1と同様にして本
発明の不織布を得た。すなわち、図2に示す如く全分割
数が12個となるような分割型二成分系複合型紡糸口金
より複合比を重量比で1:1とし、溶融温度285℃、
単孔吐出量0.6g/分で押し出した。紡出糸条を冷却
し仕上げ油剤を付与した後、引き取り速度が1000m
/分の引き取りロールを介して、未延伸糸として捲き取
った。次いで、得られた未延伸糸を複数本引き揃えてト
ウとなし、公知の延伸機を用いて延伸倍率が2.85倍
で延伸を行った後、押し込み式捲縮付与装置にて捲縮を
付与し38mmの繊維長に切断して2デニール(ポリエ
チレンテレフタレートからなる極細割繊短繊維およびポ
リプロピレンからなる極細割繊短繊維の繊度は0.17
デニール)の短繊維を作成した。
Example 5 As a splittable bicomponent conjugate short fiber, polyethylene terephthalate (melting point: 258) having a fiber cross section shown in FIG.
° C, relative viscosity 1.38) and polypropylene (melting point 160
A nonwoven fabric of the present invention was obtained in the same manner as in Example 1, except that a splittable bicomponent conjugate short fiber consisting of C.C. and a relative MFR of 28 g / 10 minutes) was used. That is, as shown in FIG. 2, the split ratio is 1: 1 by weight from a split type two-component type composite spinneret in which the total number of splits is 12, and the melting temperature is 285 ° C.
It was extruded at a single hole discharge rate of 0.6 g / min. After cooling the spun yarn and applying a finishing oil, the take-up speed is 1000 m
/ Min was taken up as an undrawn yarn through a take-off roll. Next, a plurality of the obtained undrawn yarns are drawn and aligned to form a tow, and after drawing at a draw ratio of 2.85 times using a known drawing machine, crimping is performed with a press-in type crimping device. The fiber was cut to a fiber length of 38 mm and cut into 2 deniers (the fineness of ultrafine split short fibers made of polyethylene terephthalate and ultrafine split short fibers made of polypropylene was 0.17.
Denier).

【0048】実施例6 分割型二成分系複合短繊維として、繊維断面が図2に示
す複合形態でポリエチレンテレフタレート(融点258
℃、相対粘度1.38)とナイロン6(融点225℃、
相対粘度2.65)からなる分割型二成分系複合短繊維
を用いた以外は、実施例1と同様にして本発明の不織布
を得た。すなわち、図2に示す如く全分割数が12個と
なるような分割型二成分系複合型紡糸口金より複合比を
重量比で1:1とし、溶融温度285℃、単孔吐出量
0.62g/分で押し出した。紡出糸条を冷却し仕上げ
油剤を付与した後、引き取り速度が1000m/分の引
き取りロールを介して、未延伸糸として捲き取った。次
いで、得られた未延伸糸を複数本引き揃えてトウとな
し、公知の延伸機を用いて延伸倍率が2.95倍で延伸
を行った後、押し込み式捲縮付与装置にて捲縮を付与し
38mmの繊維長に切断して2デニール(ポリエチレン
テレフタレートからなる極細割繊短繊維およびナイロン
6からなる極細割繊短繊維の繊度は0.17デニール)
の短繊維を作成した。
Example 6 As a splittable bicomponent conjugate short fiber, polyethylene terephthalate (melting point: 258) having a fiber cross section shown in FIG.
° C, relative viscosity 1.38) and nylon 6 (melting point 225 ° C,
A nonwoven fabric of the present invention was obtained in the same manner as in Example 1, except that a splittable bicomponent conjugate short fiber having a relative viscosity of 2.65) was used. That is, as shown in FIG. 2, the weight ratio of the composite ratio is 1: 1 from the split type two-component composite type spinneret in which the total number of divisions is 12, the melting temperature is 285 ° C., and the single hole discharge amount is 0.62 g. / Min. After the spun yarn was cooled and the finishing oil was applied, it was wound up as an undrawn yarn via a take-up roll having a take-up speed of 1000 m / min. Subsequently, a plurality of the obtained undrawn yarns are drawn and aligned to form a tow. After drawing is performed at a draw ratio of 2.95 times using a known drawing machine, crimping is performed by a push-in type crimping device. 2 denier (approximately 0.17 denier of ultrafine split short fiber made of polyethylene terephthalate and ultrafine split short fiber made of nylon 6)
Staple fibers were prepared.

【0049】比較例1 実施例1において、熱処理を施さなかった以外は実施例
1と同様にして比較例1の不織布を作成した。
Comparative Example 1 A nonwoven fabric of Comparative Example 1 was prepared in the same manner as in Example 1 except that the heat treatment was not performed.

【0050】比較例2 実施例1において、分割型二成分系複合短繊維と熱接着
性短繊維の混綿率を30/70(重量%)とした以外は
実施例1と同様にして比較例2の不織布を作成した。
Comparative Example 2 Comparative Example 2 was carried out in the same manner as in Example 1 except that the mixing ratio of the splittable bicomponent conjugate short fibers and the heat-adhesive short fibers was 30/70 (% by weight). Was prepared.

【0051】得られた実施例1〜6の不織布および比較
例1〜2の不織布の物性を測定し、表1に示した。
The physical properties of the obtained nonwoven fabrics of Examples 1 to 6 and Comparative Examples 1 and 2 were measured and are shown in Table 1.

【0052】[0052]

【表1】 [Table 1]

【0053】実施例1〜6の不織布は、熱処理を施して
三次元交絡形態を固定化させたものであり、機械的強
力、寸法安定性、さらに耐摩耗性に優れた不織布である
ので、耐久使用性において優れており、拭き取り性も良
好であった。また、極細繊維を主たる構成繊維としてい
るため、不織布の表面タツチは柔らかいものであった。
特に、極細割繊繊維の分割後の繊度をすべて0.17デ
ニールとした実施例4〜6の不織布は、機械的強力、耐
摩耗性、表面タツチの柔らかさにおいてその傾向が強い
ものであった。
The nonwoven fabrics of Examples 1 to 6 were subjected to heat treatment to fix the three-dimensional entangled form, and were excellent in mechanical strength, dimensional stability and abrasion resistance. It was excellent in usability and good in wiping. In addition, the surface touch of the non-woven fabric was soft because the ultrafine fibers were the main constituent fibers.
In particular, the nonwoven fabrics of Examples 4 to 6 in which the fineness after splitting the ultrafine split fibers were all 0.17 denier showed strong tendency in mechanical strength, abrasion resistance, and softness of surface touch. .

【0054】一方、熱処理を施さなかった比較例1の不
織布は、耐摩耗性に劣り、摩耗強度を要求されるような
状態での使用にはあまり適さないものであった。
On the other hand, the non-woven fabric of Comparative Example 1 which was not subjected to the heat treatment was inferior in abrasion resistance and was not very suitable for use in a state where abrasion strength was required.

【0055】接着性短繊維を70重量%混綿させた比較
例2の不織布は、耐摩耗性は良好であったが、不織布表
面は硬くて肌触りが悪く、割繊極細繊維が接着成分の融
着物に固められ、極細繊維の風合いが損なわれたもので
あった。
The nonwoven fabric of Comparative Example 2 mixed with 70% by weight of adhesive short fibers had good abrasion resistance, but the nonwoven fabric surface was hard and uncomfortable. And the texture of the ultrafine fibers was impaired.

【0056】[0056]

【発明の効果】本発明の不織布は、構成繊維同士が絡み
合い全体として一体化している。高圧液体流処理により
繊維同士が交絡する際、曲げモーメントの小さい極細割
繊短繊維が発現するため、繊維同士の交絡度合いが向上
し、全体として緻密に交絡一体化した不織布となる。ま
た、極細割繊短繊維を主たる構成繊維としているため、
表面タツチの柔らかいものである。
According to the nonwoven fabric of the present invention, the constituent fibers are entangled with each other and integrated as a whole. When the fibers are entangled by the high-pressure liquid flow treatment, ultrafine split short fibers having a small bending moment are developed, so that the degree of entanglement between the fibers is improved, and a nonwoven fabric that is densely entangled and integrated as a whole is obtained. In addition, since ultra-fine split short fibers are the main constituent fibers,
It has a soft surface touch.

【0057】さらに、本発明の不織布は、三次元的に交
絡した形態が熱接着性繊維により固定化されているた
め、外力により変形のない、すなわち寸法安定性に優
れ、機械的強力の高いものとなっている。そして、表面
摩擦力が加わった場合でも毛羽立ちや繊維の抜けが起こ
りにくく、耐摩耗性に優れた不織布となる。
Furthermore, since the nonwoven fabric of the present invention has a three-dimensionally entangled form fixed by the heat-adhesive fiber, it does not deform due to external force, that is, has excellent dimensional stability and high mechanical strength. It has become. Then, even when a surface frictional force is applied, fluffing and detachment of the fiber hardly occur, and the nonwoven fabric has excellent abrasion resistance.

【0058】本発明の不織布は、上記特性を有するもの
であるので、ガラス、鏡、眼鏡、家具、床、車および化
粧パフ、おしぼり、おしり拭き等、幅広い用途にドライ
状態およびウエツト状態での拭き取り用清拭材として、
また、工業用や家庭用の濾材、フイルター材として効果
的に用いることができる。さらに、医療材料、衛生材
料、衣料用、生活資材等の様々な分野で好適に用いるこ
とができる。
Since the nonwoven fabric of the present invention has the above properties, it can be wiped dry and wet for a wide range of uses such as glass, mirrors, glasses, furniture, floors, car and makeup puffs, towels and towels. As a cleaning material for
Further, it can be effectively used as an industrial or household filter medium or filter medium. Furthermore, it can be suitably used in various fields such as medical materials, sanitary materials, clothing, and living materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられる分割型二成分系複合短繊維
の横断面の一実施模式図である。
FIG. 1 is a schematic diagram of one embodiment of a cross section of a splittable bicomponent conjugate short fiber used in the present invention.

【図2】本発明に用いられる分割型二成分系複合短繊維
の横断面の一実施模式図である。
FIG. 2 is a schematic diagram showing one embodiment of a cross section of a splittable bicomponent conjugate short fiber used in the present invention.

【図3】本発明に用いられる分割型二成分系複合短繊維
の横断面の一実施模式図である。
FIG. 3 is a schematic diagram showing one embodiment of a cross section of a splittable bicomponent conjugate short fiber used in the present invention.

【図4】本発明に用いられる分割型二成分系複合短繊維
の横断面の一実施模式図である。
FIG. 4 is a schematic diagram of one embodiment of a cross section of a splittable bicomponent conjugate short fiber used in the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 互いに非相溶性の繊維形成性重合体から
なる分割型二成分系複合短繊維の分割により発現した極
細割繊短繊維と、熱接着性短繊維とからなる不織布であ
り、構成繊維同士が三次元的に交絡し、該熱接着性短繊
維の熱融着により前記交絡形態が固定されてなることを
特徴とする不織布。
1. A nonwoven fabric comprising ultrafine split short fibers developed by splitting splittable bicomponent conjugate short fibers made of mutually incompatible fiber-forming polymers, and heat-adhesive short fibers. A nonwoven fabric, wherein fibers are three-dimensionally entangled and the entangled form is fixed by heat fusion of the heat-adhesive short fibers.
【請求項2】 分割型二成分系複合短繊維の分割により
少なくとも発現した極細割繊短繊維の単糸繊度が、0.
5デニール以下であることを特徴とする請求項1記載の
不織布。
2. The fineness of an ultrafine split short fiber which is at least developed by splitting a splittable bicomponent conjugate short fiber has a fineness of 0.1%.
The nonwoven fabric according to claim 1, wherein the nonwoven fabric has a denier of 5 deniers or less.
【請求項3】 互いに非相溶性の繊維形成性重合体から
なる分割型二成分系複合短繊維90〜60重量%と熱接
着性短繊維10〜40重量%とを混綿して不織ウエブを
得、この不織ウエブを多孔性支持材に載置して高圧液体
流処理を施し、前記複合短繊維を分割させて極細割繊短
繊維を発現させると共に構成繊維同士を三次元的に交絡
させた後、熱接着性短繊維が溶融または軟化する温度で
熱処理を施して、熱接着性短繊維を熱融着させて交絡形
態を固定させることを特徴とする不織布の製造方法。
3. A nonwoven web obtained by mixing 90 to 60% by weight of a splittable bicomponent conjugate short fiber composed of mutually incompatible fiber-forming polymers and 10 to 40% by weight of a heat-adhesive short fiber. Then, the nonwoven web is placed on a porous support material and subjected to a high-pressure liquid flow treatment, and the composite short fibers are split to express ultrafine split short fibers and the constituent fibers are three-dimensionally entangled with each other. A method for producing a nonwoven fabric, comprising: performing heat treatment at a temperature at which the heat-adhesive short fibers are melted or softened, and heat-fusing the heat-adhesive short fibers to fix the entangled form.
JP10046756A 1998-02-27 1998-02-27 Nonwoven fabric and its production Pending JPH11247059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10046756A JPH11247059A (en) 1998-02-27 1998-02-27 Nonwoven fabric and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10046756A JPH11247059A (en) 1998-02-27 1998-02-27 Nonwoven fabric and its production

Publications (1)

Publication Number Publication Date
JPH11247059A true JPH11247059A (en) 1999-09-14

Family

ID=12756182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10046756A Pending JPH11247059A (en) 1998-02-27 1998-02-27 Nonwoven fabric and its production

Country Status (1)

Country Link
JP (1) JPH11247059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000625A (en) * 2004-05-20 2006-01-05 Daiwabo Co Ltd Wiping sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000625A (en) * 2004-05-20 2006-01-05 Daiwabo Co Ltd Wiping sheet

Similar Documents

Publication Publication Date Title
EP0933459B2 (en) Staple fiber non-woven fabric and process for producing the same
JP2001159078A (en) Hydrophilic fiber and nonwoven fabric, nonwoven fabric processed product
JP7249352B2 (en) Artificial leather base material, method for producing the same, and napped artificial leather
JPH10331063A (en) Composite nonwoven fabric and its production
JP3948781B2 (en) Short fiber nonwoven fabric and method for producing the same
JP2909164B2 (en) Composite fiber and nonwoven fabric with excellent water absorption performance
JPH10280262A (en) Nonwoven fabric and its production
JP3145067B2 (en) Nonwoven fabric and method for producing the same
JP2000178865A (en) Nonwoven fabric for use in hygienic material
JPH11247059A (en) Nonwoven fabric and its production
JPH10280263A (en) Nonwoven fabric for wipping material and its production
JPH10158968A (en) Nonwoven fabric and its production
JP3580626B2 (en) Nonwoven fabric for hook-and-loop fastener and method for producing the same
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP2003089955A (en) Ultra fine fiber-made nonwoven fabric and method for manufacturing the same
JPH1161618A (en) Ultrafine fiber nonwoven fabric and its production
JPH10280258A (en) Nonwoven fabric and its production
JP2000136477A (en) Laminated nonwoven fabric and its production
JPH11100764A (en) Nonwoven fabric and its production
JP2000034661A (en) Composite nonwoven fabric and its production
JPH11158763A (en) Conjugate nonwoven cloth and its production
JP2000073267A (en) Conjugated nonwoven fabric and its production
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JPH11229256A (en) Composite nonwoven fabric and its production
JPH10273870A (en) Composite non-woven fabric and its production