JPH10158968A - Nonwoven fabric and its production - Google Patents

Nonwoven fabric and its production

Info

Publication number
JPH10158968A
JPH10158968A JP9270262A JP27026297A JPH10158968A JP H10158968 A JPH10158968 A JP H10158968A JP 9270262 A JP9270262 A JP 9270262A JP 27026297 A JP27026297 A JP 27026297A JP H10158968 A JPH10158968 A JP H10158968A
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
composite
fibers
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9270262A
Other languages
Japanese (ja)
Inventor
Nobuo Noguchi
信夫 野口
Michiyo Kato
美智代 加藤
Yasuhiro Yonezawa
安広 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP9270262A priority Critical patent/JPH10158968A/en
Publication of JPH10158968A publication Critical patent/JPH10158968A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a nonwoven fabric excellent in mechanical characteristics and dimensional stbility and rich in abrasion resistance and water absorbability. SOLUTION: This nonwoven fabric comprises water-absorbable fibers and conjugated synthetic short fibers in a mutually blended and three-dimensionally interlaced state. The conjugated synthetic short fibers comprise two or more kinds of thermoplastic polymers different in their melting points from each other. The thermoplastic polymer having the lowest melt point among two or more kinds of the thermoplastic polymers is exposed to the surfaces of the conjugated synthetic short fibers. The nonwoven fabric is subjected to a partial thermal adhesion treatment to thermally fuse the three-dimensionally interlaced fibers to each other with the thermoplastic polymer having the lowest melting point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機械的特性、寸法
安定性に優れるとともに、柔軟性、吸水性にも富んだ不
織布およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonwoven fabric having excellent mechanical properties and dimensional stability, as well as excellent flexibility and water absorption, and a method for producing the same.

【0002】[0002]

【従来の技術】不織布の一種として、特に木綿などの天
然繊維と合成繊維とを混綿したうえで、高圧液体流の作
用により、不織布を構成する繊維に三次元的な交絡を付
与して一体化したものがある。このように天然繊維と合
成繊維とが混綿された不織布は、適宜の強力と吸水性と
柔軟性とを有し、各種の用途に利用することが可能であ
る。
2. Description of the Related Art As a kind of nonwoven fabric, a natural fiber such as cotton is mixed with a synthetic fiber, and then the fibers constituting the nonwoven fabric are integrated by three-dimensional confounding by the action of a high-pressure liquid flow. There is something. The nonwoven fabric in which the natural fibers and the synthetic fibers are mixed has appropriate strength, water absorption and flexibility, and can be used for various applications.

【0003】しかし、高圧液体流の作用が施された不織
布は、各単繊維どうしが交絡することで上述のように適
宜の強力は有するものの、熱融着により一体化した不織
布などに比べると、その不織布強力がまだかなり低く、
毛羽立ちしやすく耐摩耗性も劣るという問題がある。
[0003] However, although the nonwoven fabric subjected to the action of the high-pressure liquid flow has the appropriate strength as described above due to the intermingling of the individual fibers, compared with a nonwoven fabric or the like integrated by heat fusion, Its nonwoven strength is still quite low,
There is a problem that fluff is easily formed and abrasion resistance is poor.

【0004】[0004]

【発明が解決しようとする課題】本発明は前記問題を解
決し、機械的特性、寸法安定性に優れるとともに、耐摩
耗性、吸水性にも富んだ不織布を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above problems and provides a nonwoven fabric which is excellent in mechanical properties and dimensional stability, and is also excellent in abrasion resistance and water absorption.

【0005】[0005]

【課題を解決するための手段】本発明は、前記課題を解
決すべく以下の構成を要旨とするものである。 (1)吸水性を有する繊維と複合合成短繊維とが混綿さ
れた状態で三次元交絡を有しており、複合合成短繊維が
融点の異なる2種以上の熱可塑性重合体からなり、この
2種以上の熱可塑性重合体のうち最も融点の低い熱可塑
性重合体が複合合成短繊維表面に露出しており、前記三
次元交絡を有した繊維同士を前記最も融点の低い熱可塑
性重合体が熱融着している部分的熱接着部分を有してい
ることを特徴とする不織布。
SUMMARY OF THE INVENTION The present invention has the following features to solve the above-mentioned problems. (1) The fibers having water absorbency and the composite synthetic staple fiber are mixed to form a three-dimensional entanglement, and the composite synthetic staple fiber is composed of two or more thermoplastic polymers having different melting points. The thermoplastic polymer having the lowest melting point among the thermoplastic polymers of at least one kind is exposed on the surface of the composite synthetic staple fiber, and the fibers having the three-dimensional entanglement are heated by the thermoplastic polymer having the lowest melting point. A nonwoven fabric having a partially heat-sealed portion that is fused.

【0006】(2)融点の異なる2種以上の熱可塑性重
合体からなり、この2種以上の熱可塑性重合体のうち最
も融点の低い熱可塑性重合体が繊維表面に露出した複合
合成短繊維と吸水性を有する繊維とを混綿して開繊する
ことにより不織ウエブを形成し、次いで、この不織ウエ
ブに高圧液体流処理を施すことにより構成繊維相互間に
三次元交絡を形成し、その後、前記複合合成短繊維を構
成する最も融点の低い熱可塑性重合体の融点を(Tm)
℃としたときに(Tm−30)℃〜(Tm−5)℃の温
度にて部分的熱接着処理を施すことを特徴とする不織布
の製造方法。
(2) A composite synthetic short fiber composed of two or more thermoplastic polymers having different melting points, wherein the thermoplastic polymer having the lowest melting point among the two or more thermoplastic polymers is exposed to the fiber surface. A non-woven web is formed by mixing and opening fibers having water absorbency to form a non-woven web, and then a high-pressure liquid flow treatment is applied to the non-woven web to form three-dimensional entanglement between the constituent fibers. The melting point of the thermoplastic polymer having the lowest melting point constituting the composite synthetic short fiber is (Tm)
A method for producing a nonwoven fabric, comprising performing a partial thermal bonding treatment at a temperature of (Tm-30) ° C to (Tm-5) ° C when the temperature is set to 0 ° C.

【0007】すなわち本発明によれば、融点の異なる2
種以上の熱可塑性重合体のうち最も融点の低い熱可塑性
重合体(以下「低融点重合体」と称す。)が複合合成短
繊維表面に露出しており、かつ部分的熱接着処理により
前記低融点重合体が熱融着されているため、つまり繊維
同士の三次元交絡に加えて複合合成短繊維の低融点重合
体の部分的熱接着がなされているため、強力の高い不織
布が構成され、寸法安定性にもすぐれ、また強力向上の
ための部分的熱接着部分のほかの部分では三次元交絡処
理部が残されているために柔軟性に富み、さらに天然繊
維や再生繊維などの吸水性を有する繊維を含むために吸
水性に富んだ不織布を得ることができる。
That is, according to the present invention, two different melting points are used.
The thermoplastic polymer having the lowest melting point (hereinafter referred to as “low melting point polymer”) among the thermoplastic polymers of at least one kind is exposed on the surface of the composite synthetic short fiber, and the thermoplastic polymer has a low melting point due to a partial heat bonding treatment. Because the melting point polymer is heat-fused, that is, in addition to the three-dimensional confounding of the fibers, the low-melting point polymer of the composite synthetic short fiber is partially thermally bonded, so that a strong nonwoven fabric is constructed, It has excellent dimensional stability, and has a three-dimensional entangled part remaining in the other part of the heat-bonded part for enhanced strength, so it is highly flexible and absorbs natural fibers and recycled fibers. Therefore, a nonwoven fabric rich in water absorbability can be obtained because of containing fibers having the following properties.

【0008】また、本発明では、三次元交絡処理に加え
て部分的熱接着処理がなされているため、非部分的熱接
着部分では、三次元的交絡処理によって繊維同士が絡ま
りあい押さえ込みあっているため毛羽立ちが防止され且
つ耐摩耗性が向上し、また部分的熱接着部分でもそれに
より耐摩耗性が向上することとなる。
Further, in the present invention, since a partial thermal bonding process is performed in addition to the three-dimensional entanglement process, in the non-partial thermal bonding portion, the fibers are entangled and held down by the three-dimensional entanglement process. Therefore, fluffing is prevented and abrasion resistance is improved, and the abrasion resistance is improved even in a partially heat-bonded portion.

【0009】このため、本発明によれば、各種用途にお
いて効果的に用いることができる不織布を得ることがで
きる。
Therefore, according to the present invention, it is possible to obtain a nonwoven fabric which can be effectively used in various applications.

【0010】[0010]

【発明の実施の形態】本発明の不織布は、吸水性を有す
る繊維と複合合成短繊維とが混綿された状態で三次元交
絡を有しており、かつ部分的熱接着処理により、複合合
成短繊維の表面の低融点重合体が熱融着していること
で、機械的特性、耐摩耗性、寸法安定性に優れるととも
に、柔軟性、吸水性にも富んでいるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The nonwoven fabric of the present invention has a three-dimensional entanglement in a state in which a fiber having a water absorbing property and a composite synthetic short fiber are mixed. Since the low melting point polymer on the surface of the fiber is heat-sealed, it has excellent mechanical properties, abrasion resistance, and dimensional stability, and also has excellent flexibility and water absorption.

【0011】吸水性を有する繊維としては、木綿、ラミ
ー、ウール、短繊維状に裁断されたシルクなどの天然繊
維や、ビスコースレーヨン、銅アンモニアレーヨン、溶
剤紡糸レーヨンであるリヨセル(登録商標)などの再生
繊維が好適である。これらの繊維は所要の吸水性を有
し、この吸水性を有する繊維を複合合成短繊維とともに
含む本発明の不織布は、同様に吸水性を発揮することと
なり、産業資材、衣服、衛生材料、医療用材料の分野に
おいて、特に吸水性を要求される不織布として好適なも
のとなる。
Examples of the water-absorbing fiber include natural fibers such as cotton, ramie, wool, and silk cut into short fibers, viscose rayon, cuprammonium rayon, and Lyocell (registered trademark) which is a solvent-spun rayon. Recycled fibers are preferred. These fibers have the required water absorbency, and the nonwoven fabric of the present invention containing the fibers having the water absorbency together with the composite synthetic short fiber also exhibits water absorbency, and is used for industrial materials, clothing, sanitary materials, medical equipment, and the like. In the field of application materials, it is particularly suitable as a nonwoven fabric that requires water absorption.

【0012】特に、前記の木綿を用いる場合、木綿の晒
し綿や木綿の反毛を用いることもできる。ここで、反毛
とは、木綿からなる織・編物、糸条、布帛から得られる
ものであり、木綿より得られる反毛の素材としては、晒
し綿よりなる織・編物や布帛のほか、染色・プリントの
施されたものであっても良い。この反毛を効果的に得る
ことができる反毛機としては、ラッグ・マシン、ノット
・ブレイカー、ガーネット・マシン、廻切機等がある。
用いる反毛機の種類や組合せは、反毛される布帛の形
状、構成する糸の太さや撚りの強さ等にもよるが、同一
の反毛機を複数台直列に連結させたり、2種以上の反毛
機の組合を用いたりすると効果的である。このとき、下
式で示される反毛機による開繊率は30〜95%の範囲
が好ましい。
In particular, when the above-mentioned cotton is used, bleached cotton or cotton wool can also be used. Here, the anti-hair is obtained from a woven or knitted fabric, thread, or fabric made of cotton, and the material of the anti-hair obtained from cotton is a woven or knitted fabric or fabric made of bleached cotton, or dyed. -It may be printed. Examples of the anti-hair machine that can effectively obtain the anti-hair include a rag machine, a knot breaker, a garnet machine, a turning machine, and the like.
The type and combination of anti-hair machines used depends on the shape of the fabric to be anti-haired, the thickness and twist strength of the constituent yarns, etc. It is effective to use a combination of the above-mentioned anti-hair machines. At this time, it is preferable that the opening ratio by the anti-hair device represented by the following formula is in the range of 30 to 95%.

【0013】開繊率(%)=(反毛重量−未開繊繊維重
量)×100/反毛重量 開繊率が30%未満であると、カードウエブ中に未開繊
繊維が存在し、不織布表面にザラツキが生じるばかり
か、交絡処理の際の高圧液体流がウエブを充分に貫通せ
ずに不織ウエブの構成繊維相互の交絡が不充分となり、
不織布強力の低下の要因となりやすい。逆に、開繊率が
95%を超えると、不織布の充分な表面摩擦強力が得ら
れない。
[0013] Spreading rate (%) = (weight of unhaired fiber-weight of unspread fiber) x 100 / weight of unhaired fiber If the spreading rate is less than 30%, unspread fibers are present in the card web and the surface of the nonwoven fabric is not Not only does roughness occur, but the high-pressure liquid flow during the entanglement process does not sufficiently penetrate the web, and the entanglement between the constituent fibers of the nonwoven web becomes insufficient,
The strength of the nonwoven fabric tends to decrease. Conversely, if the opening ratio exceeds 95%, sufficient surface friction strength of the nonwoven fabric cannot be obtained.

【0014】複合合成短繊維を構成する熱可塑性重合体
としては、繊維形成性を有するエステル系重合体、オレ
フィン系重合体、アミド系重合体、アクリル系重合体、
ビニルアルコール系重合体、またはこれらを主成分とし
た共重合体、またはこれらの重合体の組合せからなるブ
レンド体が挙げられる。
The thermoplastic polymer constituting the composite synthetic short fiber includes an ester polymer, an olefin polymer, an amide polymer, an acrylic polymer,
Examples include a vinyl alcohol-based polymer, a copolymer containing these as a main component, or a blend composed of a combination of these polymers.

【0015】エステル系重合体としては、テレフタル
酸、イソフタル酸、ナフタリン−2,6−ジカルボン酸
等の芳香族ジカルボン酸、または、アジピン酸、セバチ
ン酸等の脂肪族ジカルボン酸、または、これらのエステ
ル類を酸成分とし、かつエチレングリコール、ジエチレ
ングリコール、1,4−ブタジオール、ネオペンチルグ
リコール、シクロヘキサン−1,4−ジメタノール等の
ジオール化合物をアルコール成分とするホモポリエステ
ル重合体、あるいは共重合体が挙げられる。なお、これ
らのエステル系重合体には、パラオキシ安息香酸、5−
ソジウムスルホイソフタール酸、ポリアリキレングリコ
ール、ペンタエリスリトール、ビスフェノールA等が添
加あるいは共重合されていても良い。
Examples of the ester polymer include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and naphthalene-2,6-dicarboxylic acid, aliphatic dicarboxylic acids such as adipic acid and sebacic acid, and esters thereof. A homopolyester or a copolymer having a diol compound such as ethylene glycol, diethylene glycol, 1,4-butadiol, neopentyl glycol, cyclohexane-1,4-dimethanol as an alcohol component, and an alcohol component. Can be In addition, these ester polymers include paraoxybenzoic acid, 5-hydroxybenzoic acid,
Sodium sulfoisophthalic acid, polyalkylene glycol, pentaerythritol, bisphenol A or the like may be added or copolymerized.

【0016】オレフィン系重合体としては、炭素数2〜
18の脂肪族α−モノオレフィン、例えばエチレン、プ
ロピレン、1−ブテン、1−ペンテン、3−メチル−1
−ブテン、1−ヘキセン、1−オクテン、1−オクタデ
センからなるポリオレフィン系重合体が挙げられる。こ
れらの脂肪族α−モノオレフィンは、例えばブタジエ
ン、イソピレン、1,3−ペンタジエン、スチレン、α
−メチルスチレンのような類似のエチレン系不飽和モノ
マーが共重合されたオレフィン系重合体であっても良
い。また、エチレン系重合体の場合には、エチレンに対
してプロピレン、1−ブテン、1−オクテン、1−ヘキ
セン、または類似の高級α−オレフィンが10重量%以
下共重合されたものであっても良く、プロピレン系重合
体の場合には、プロピレンに対してエチレン、または類
似の高級α−オレフィンが10重量%以下共重合された
ものであっても良い。
[0016] The olefin polymer may have 2 to 2 carbon atoms.
18 aliphatic α-monoolefins such as ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1
Polyolefin-based polymers comprising -butene, 1-hexene, 1-octene and 1-octadecene. These aliphatic α-monoolefins include, for example, butadiene, isopropylene, 1,3-pentadiene, styrene, α
An olefin polymer in which a similar ethylenically unsaturated monomer such as methylstyrene is copolymerized. In the case of an ethylene polymer, even if ethylene is copolymerized with propylene, 1-butene, 1-octene, 1-hexene, or a similar higher α-olefin by 10% by weight or less. In the case of a propylene-based polymer, ethylene or a similar higher α-olefin may be copolymerized with propylene at 10% by weight or less.

【0017】アミド系重合体としては、ポリイミノ−1
−オキソテトラメチレン(ナイロン4)、ポリテトラメ
チレンアジパミド(ナイロン46)、ポリカプラミド
(ナイロン6)、ポリヘキサメチレンアジパミド(ナイ
ロン66)、ポリウンデカナミド(ナイロン11)、ポ
リラウロラクタミド(ナイロン12)、ポリメタキシレ
ンアジパミド、ポリパラキシリレンデカナミド、ポリビ
スシクロヘキシルメタンデカナミド、またはこれらのモ
ノマーを構成単位とするアミド系共重合体が挙げられ
る。特に、ポリテトラメチレンアジパミド(ナイロン4
6)の場合は、ポリテトラメチレンアジパミド(ナイロ
ン46)にポリカプラミドやポリヘキサメチレンアジパ
ミド、ポリウンデカメチレンテレフタラミド等のポリア
ミド成分が30モル%以下共重合されたテトラメチレン
アジパミド系共重合体であっても良い。但し、この場
合、ポリアミド成分の共重合率が30モル%を超える
と、共重合体の融点が低下し、不織布の機械的物性が損
なわれることになる。
As the amide polymer, polyimino-1
-Oxotetramethylene (nylon 4), polytetramethylene adipamide (nylon 46), polycapramid (nylon 6), polyhexamethylene adipamide (nylon 66), polyundecanamide (nylon 11), polylaurolactamide (Nylon 12), polymetaxylene adipamide, polyparaxylylene decanamide, polybiscyclohexylmethanedecanamide, or an amide copolymer containing these monomers as a constitutional unit. In particular, polytetramethylene adipamide (nylon 4
In the case 6), tetramethylene adipamide obtained by copolymerizing polytetramethylene adipamide (nylon 46) with a polyamide component such as polycapramide, polyhexamethylene adipamide, polyundecamethylene terephthalamide or the like in an amount of 30 mol% or less. It may be a amide copolymer. However, in this case, if the copolymerization ratio of the polyamide component exceeds 30 mol%, the melting point of the copolymer decreases, and the mechanical properties of the nonwoven fabric are impaired.

【0018】なお、本発明に用いる熱可塑性重合体に
は、本発明の効果を損なわない範囲内で、艶消し剤、顔
料、防炎剤、消臭剤、帯電防止剤、酸化防止剤、紫外線
吸収剤、抗菌剤などの任意の添加剤を添加してもよい。
The thermoplastic polymer used in the present invention includes a matting agent, a pigment, a flame retardant, a deodorant, an antistatic agent, an antioxidant, and an ultraviolet ray as long as the effects of the present invention are not impaired. Arbitrary additives such as an absorbent and an antibacterial agent may be added.

【0019】不織布を形成する複合合成短繊維は、低融
点重合体すなわちこの複合合成短繊維を構成する熱可塑
性重合体のうち最も融点の低い熱可塑性重合体が繊維表
面に露出するように形成されたものでなければならな
い。これにより、部分的な熱接着処理を施した際に繊維
表面に存在する低融点重合体が軟化又は熱溶融し、これ
が接着成分となって不織布を部分的に接着することにな
る。
The composite synthetic staple fiber forming the nonwoven fabric is formed so that the low melting point polymer, that is, the thermoplastic polymer having the lowest melting point among the thermoplastic polymers constituting the composite synthetic staple fiber is exposed on the fiber surface. Must be As a result, the low-melting polymer present on the fiber surface upon partial heat bonding is softened or thermally melted, and this becomes an adhesive component to partially bond the nonwoven fabric.

【0020】このような複合合成短繊維の繊維横断面と
しては、図1に示すように、この複合合成短繊維を構成
する低融点重合体を鞘成分1とし、この複合合成短繊維
を構成する熱可塑性重合体のうち最も融点の高い熱可塑
性重合体(以下「高融点重合体」と称す。)を芯成分2
として繊維横断面中央部に配した中実芯鞘型複合断面が
好ましい。あるいは、図2に示すように、前記中実芯鞘
型複合断面において繊維横断面内部すなわち芯成分2の
内部に中空部3を有した中空芯鞘型複合断面が好まし
い。低融点重合体を鞘成分1とすることにより、部分的
に熱接着を施す際に、芯成分2の軟化又は熱溶融が発生
せず、複合合成短繊維ひいてはこの複合合成短繊維から
なる不織布の機械的特性及び柔軟性を保持することが可
能となる。
As shown in FIG. 1, the cross section of the composite synthetic staple fiber is such that the low melting point polymer constituting the composite synthetic staple fiber is used as the sheath component 1 to constitute the composite synthetic staple fiber. The core component 2 is a thermoplastic polymer having the highest melting point among the thermoplastic polymers (hereinafter referred to as “high melting point polymer”).
A solid core-sheath type composite cross section disposed at the center of the fiber cross section is preferable. Alternatively, as shown in FIG. 2, a hollow core-sheath composite cross section having a hollow portion 3 inside the fiber cross section, that is, inside the core component 2 in the solid core-sheath composite cross section is preferable. When the low melting polymer is used as the sheath component 1, the core component 2 does not soften or heat melt when partially thermally bonded, and the composite synthetic staple fiber and thus the nonwoven fabric made of the composite synthetic staple fiber It is possible to maintain mechanical properties and flexibility.

【0021】繊維横断面が前述した芯鞘構造の場合にそ
の組合せの具体例として、例えば芯成分/鞘成分がポリ
エチレン/ポリプロピレン、ポリエチレン/ポリアミ
ド、ポリエチレン/ポリエステル、ポリプロピレン/ポ
リエステル、ポリアミド/ポリエステル等であることが
挙げられる。
When the fiber cross section has the above-mentioned core / sheath structure, specific examples of the combination include, for example, a core / sheath component of polyethylene / polypropylene, polyethylene / polyamide, polyethylene / polyester, polypropylene / polyester, polyamide / polyester, etc. There is something.

【0022】また、複合合成短繊維の芯成分の軟化及び
熱溶融を招かないためには、高融点重合体の融点と低融
点重合体の融点との温度差が25℃以上であることが好
ましい。高融点重合体と低融点重合体との融点差が25
℃未満であると、融点差が接近しているため、部分的な
熱接着を施すと高融点重合体の軟化及び熱溶融を招くこ
とがあり、不織布全体の柔軟性を損ない、人体に接して
用いる用途においてソフト感に乏しいものとなることが
ある。
Further, in order not to cause softening and thermal melting of the core component of the composite synthetic short fiber, it is preferable that the temperature difference between the melting point of the high melting point polymer and the melting point of the low melting point polymer is 25 ° C. or more. . The melting point difference between the high melting polymer and the low melting polymer is 25
If the temperature is lower than ℃, the melting point differences are close to each other, so that applying partial heat bonding may cause softening and heat melting of the high melting point polymer, impairing the flexibility of the entire nonwoven fabric, and contacting the human body. In some applications, the feeling of softness is poor.

【0023】複合合成短繊維の繊維横断面として、前記
のような芯鞘型複合断面を適用する場合は、鞘成分と芯
成分との比率を、鞘成分:芯成分=25:75〜75:
25(重量比)の範囲とすることが好ましい。特に、不
織布の柔軟性を考慮すると、熱融着成分となる鞘成分の
比率を50重量%以下、すなわち鞘成分:芯成分=3
5:65〜50:50(重量比)にするのが好ましい。
When the above-mentioned core-sheath type composite cross section is used as the fiber cross section of the composite synthetic short fiber, the ratio of the sheath component to the core component is determined by calculating the ratio of the sheath component to the core component = 25: 75 to 75:
It is preferably in the range of 25 (weight ratio). In particular, considering the flexibility of the nonwoven fabric, the ratio of the sheath component serving as the heat-sealing component is 50% by weight or less, that is, the sheath component: the core component = 3.
The ratio is preferably 5:65 to 50:50 (weight ratio).

【0024】本発明の不織布は、吸水性を有する繊維と
複合合成短繊維との混綿割合が、(吸水性を有する繊
維)/(複合合成短繊維)=50/50〜90/10
(重量%)であることが好ましい。このように吸水性を
有する繊維を含有することで、不織布全体の吸水性を保
持するものである。吸水性を有する繊維が50重量%未
満であると、得られる不織布の吸水性に乏しく、しかも
吸水性を有する繊維として用いられる天然繊維や再生繊
維本来の風合いが損なわれることとなりやすい。逆に、
吸水性を有する繊維が90重量%を超えると、熱可塑性
重合体よりなる複合合成短繊維量の減少により部分的熱
接着の効果が得にくく、機械的特性や寸法安定性の乏し
い不織布となりやすい。以上の理由により、吸水性を有
する繊維は、さらに好ましくは60〜85重量%である
のが良い。したがって、熱可塑性重合体よりなる複合合
成短繊維は、50〜10重量%、さらに好ましくは40
〜15重量%であるのが良い。
In the nonwoven fabric of the present invention, the mixing ratio of the water-absorbing fiber and the composite synthetic staple fiber is (water-absorbing fiber) / (composite synthetic staple fiber) = 50/50 to 90/10.
(% By weight). By containing fibers having water absorbency in this way, the water absorbency of the entire nonwoven fabric is maintained. If the water-absorbing fiber content is less than 50% by weight, the resulting nonwoven fabric is poor in water absorption property, and the natural feeling of natural fibers or recycled fibers used as the water-absorbing fiber tends to be impaired. vice versa,
If the water-absorbing fiber content exceeds 90% by weight, the effect of partial heat bonding is hardly obtained due to a decrease in the amount of composite synthetic short fibers made of a thermoplastic polymer, and a nonwoven fabric having poor mechanical properties and dimensional stability tends to be obtained. For these reasons, the water-absorbing fiber content is more preferably 60 to 85% by weight. Therefore, the composite synthetic staple fiber composed of a thermoplastic polymer accounts for 50 to 10% by weight, more preferably 40% by weight.
The content is preferably up to 15% by weight.

【0025】反対に、このように融点の異なる2種以上
の熱可塑性重合体からなる複合合成短繊維を50〜10
重量%含有することで、部分的な熱接着の効果を充分に
期待でき、しかも、優れた機械的特性および耐摩耗性を
有する不織布を得ることができる。
Conversely, composite synthetic short fibers composed of two or more thermoplastic polymers having different melting points as described above are used.
By containing it by weight, a partial heat bonding effect can be sufficiently expected, and a nonwoven fabric having excellent mechanical properties and abrasion resistance can be obtained.

【0026】複合合成短繊維の単糸繊度は、1.5デニ
ール以上かつ7デニール未満であることが好ましい。単
糸繊度が1.5デニール未満であると、この複合合成短
繊維の紡糸工程において製糸性の低下を招きやすい。逆
に、単糸繊度が7デニール以上であると、不織布の嵩高
性は得られるものの、複合合成短繊維の交絡性が損なわ
れて不織布強力の弱いものとなりやすいのみでなく、不
織布を構成する複合合成短繊維の繊維量が減少し、部分
的熱接着処理の効果が得にくくなる傾向にある。
The single-filament fineness of the composite synthetic short fiber is preferably not less than 1.5 denier and less than 7 denier. If the single-fiber fineness is less than 1.5 denier, the spinnability of the composite synthetic short fiber tends to be reduced in the spinning process. Conversely, if the single-fiber fineness is 7 denier or more, the bulkiness of the nonwoven fabric can be obtained, but the entanglement of the composite synthetic short fiber is impaired and the nonwoven fabric is not only likely to have a low strength, but also the composite material constituting the nonwoven fabric. The amount of synthetic short fibers tends to decrease, and the effect of the partial heat bonding treatment tends to be difficult to obtain.

【0027】なお、本発明の不織布には、その使用用途
に応じて、上記の複合合成短繊維とは別の合成短繊維を
混綿してもよい。このような合成短繊維は、熱処理時に
溶融せずに繊維形態を保持できるもの、すなわち本発明
の複合合成短繊維を構成する高融点重合体と同じあるい
はそれ以上の融点を有することが必要である。この合成
短繊維の不織布全体に対する混綿割合は特に制限される
ものではないが、吸水性や繊維同士の接着性を考慮する
と10〜30重量%程度とすることが好ましい。このよ
うな混綿割合で例えば、単糸繊度が1〜3デニールの合
成短繊維を混綿すると、不織布に機械的特性と柔軟性と
を付与することができる。また、単糸繊度が5〜15デ
ニールの合成短繊維を混綿すると、嵩高性に優れた不織
布が得られる。また、合成短繊維の繊維横断面の形状が
異形断面であるものを混綿した場合には、三次元交絡処
理の際の交絡度合いが良好になり不織布の機械的特性が
向上する。このような効果は異形断面の中でも特に偏平
断面であるものが著しく、偏平度すなわち長軸/短軸の
比が5以上である場合に顕著となる。
The nonwoven fabric of the present invention may be mixed with a synthetic short fiber different from the above-mentioned composite synthetic short fiber according to the intended use. Such a synthetic staple fiber must be capable of maintaining the fiber form without melting during heat treatment, that is, having a melting point equal to or higher than the high melting point polymer constituting the conjugate synthetic staple fiber of the present invention. . The mixing ratio of the synthetic short fibers to the entire nonwoven fabric is not particularly limited, but is preferably about 10 to 30% by weight in consideration of the water absorption and the adhesion between the fibers. When synthetic short fibers having a single yarn fineness of 1 to 3 denier are mixed at such a mixing ratio, mechanical properties and flexibility can be imparted to the nonwoven fabric. Further, when synthetic short fibers having a single yarn fineness of 5 to 15 denier are mixed, a nonwoven fabric having excellent bulkiness can be obtained. In addition, when a synthetic short fiber having a fiber cross section having an irregular cross section is mixed, the degree of entanglement during the three-dimensional entanglement process is improved, and the mechanical properties of the nonwoven fabric are improved. Such an effect is remarkable especially in a flat cross section among the modified cross sections, and becomes remarkable when the flatness, that is, the ratio of the major axis / minor axis is 5 or more.

【0028】本発明の不織布は、前記の吸水性を有する
繊維と複合合成短繊維とが前記の割合で混綿された状態
で、その構成繊維相互間において三次元交絡を有する不
織布である。ここでいう三次元交絡とは、構成繊維相互
間が不織布の縦/横の方向のみでなく不織布の厚み方向
に対しても交絡し、一体化した構造を有していることを
いう。この三次元的な交絡は、公知のいわゆる高圧液体
流処理により形成されるものであって、これにより不織
布としての形態が保持され、摩耗による毛羽立ちがな
く、また優れた柔軟性に富む不織布を得ることができる
のである。
The nonwoven fabric of the present invention is a nonwoven fabric in which the above-mentioned water-absorbing fiber and the conjugated synthetic short fiber are mixed in the above-mentioned ratio and three-dimensionally entangled between the constituent fibers. The three-dimensional entanglement referred to herein means that the constituent fibers are entangled not only in the vertical / horizontal direction of the nonwoven fabric but also in the thickness direction of the nonwoven fabric and have an integrated structure. This three-dimensional confounding is formed by a known so-called high-pressure liquid flow treatment, whereby the form of the non-woven fabric is maintained, and there is no fuzz due to abrasion, and a highly flexible non-woven fabric is obtained. You can do it.

【0029】また、本発明の不織布は、この三次元交絡
の施された不織ウエブに部分的熱接着処理が施されたも
のである。ここで、部分的熱接着処理は、複合合成短繊
維を構成する前述の低融点重合体を熱溶融させ、これを
接着成分として機能させることができる程度で良い。し
たがって、それ以上に強固な熱接着、例えば前述の高融
点重合体までが軟化及び熱溶融してしまう程の接着は、
得られる不織布の柔軟性の点から好ましくない。このよ
うな部分的熱接着処理を形成するためには、具体的に
は、後述するエンボスロールと表面がフラットなロール
とを用いた熱エンボス加工法や、超音波融着装置を用い
た部分的熱接着法等を採用すれば良い。
The nonwoven fabric of the present invention is obtained by subjecting the nonwoven web subjected to the three-dimensional entanglement to a partial heat bonding treatment. Here, the partial heat bonding treatment may be performed to such an extent that the above-mentioned low-melting polymer constituting the composite synthetic short fiber is melted by heat and can function as an adhesive component. Therefore, a stronger thermal bond than that, for example, such a bond that the above-mentioned high melting point polymer is softened and thermally melted,
It is not preferable from the viewpoint of the flexibility of the obtained nonwoven fabric. In order to form such a partial heat bonding treatment, specifically, a heat embossing method using an embossing roll described later and a roll having a flat surface, or a partial method using an ultrasonic welding device. What is necessary is just to employ a heat bonding method etc.

【0030】熱エンボス加工法によると、エンボス加工
点において低融点成分による接着が行われ、かつそれ以
外の部分においては繊維どうしの三次元交絡状態が維持
されているので、得られた不織布は、接着部の存在にも
とづく機械的特性と、三次元交絡部の存在にもとづく柔
軟性と防毛羽性すなわち耐摩耗性とを兼ね備えたものと
なる。超音波融着装置を用いた場合は、柔軟性に優れた
不織布を得ることができる。また、部分的熱接着処理を
施すことで、不織布の寸法安定性も向上させることがで
きる。
According to the hot embossing method, bonding is performed by the low melting point component at the embossing point, and the three-dimensional entangled state of the fibers is maintained in other portions. The mechanical properties based on the presence of the bonded portion, the flexibility based on the presence of the three-dimensional entangled portion, and the anti-fuzziness, that is, the wear resistance, are both obtained. When an ultrasonic welding device is used, a nonwoven fabric having excellent flexibility can be obtained. In addition, the dimensional stability of the nonwoven fabric can be improved by performing the partial heat bonding treatment.

【0031】三次元交絡の施された不織ウエブは、高圧
液体流の作用により不織布としてのある程度の機械的特
性を保持しているものであるが、本発明においては、こ
の三次元交絡の施された不織ウエブに対してさらに部分
的に熱接着を施して一体化することにより、優れた不織
布強力を得ようとするものである。たとえば、三次元交
絡を有さない不織ウエブに部分的熱接着を施して得た不
織布は、複合合成短繊維の量によっては、極めて機械的
特性の乏しい不織布となったり、摩擦や洗濯による毛羽
の発生、構成繊維の脱落が生じ、不織布の耐久性に乏し
いものとなったりする。しかしながら、本発明のように
三次元交絡の施された不織ウエブに対してさらに部分的
に熱接着を施して得た不織布の場合には、部分的熱接着
部分では機械的特性を向上させ毛羽立ちが抑えられ、非
熱接着部分では三次元交絡処理により繊維同士が絡まり
あい押さえあっているため、摩擦や洗濯による毛羽立ち
を防止し耐摩耗性を向上させることができる。
A nonwoven web subjected to three-dimensional entanglement retains a certain degree of mechanical properties as a nonwoven fabric by the action of a high-pressure liquid flow. The obtained nonwoven web is further partially subjected to thermal bonding to be integrated to obtain excellent nonwoven fabric strength. For example, a non-woven fabric obtained by subjecting a non-woven web having no three-dimensional entanglement to partial thermal bonding may be a non-woven fabric having extremely poor mechanical properties depending on the amount of composite synthetic staple fibers, or a fluff due to friction or washing. And the constituent fibers fall off, and the durability of the nonwoven fabric is poor. However, in the case of a non-woven fabric obtained by further partially applying heat bonding to a nonwoven web subjected to three-dimensional entanglement as in the present invention, the mechanical properties are improved in the partially heat-bonded portion and the fluff is formed. In the non-heat-bonded portion, the fibers are entangled and suppressed by the three-dimensional confounding treatment, so that fluff due to friction and washing can be prevented, and the wear resistance can be improved.

【0032】また、このような熱エンボス加工のほか
に、パターンロールを用いて処理することもでき、その
ようにすると、不織布にロゴマークなどの自在な模様を
付与することができる。
Further, in addition to such hot embossing, it is also possible to use a pattern roll to perform the treatment. In such a case, a free pattern such as a logo mark can be imparted to the nonwoven fabric.

【0033】次に、本発明にもとづく不織布の製造方法
について説明する。まず、吸水性を有する繊維と複合合
成短繊維とを、好ましくは(吸水性を有する繊維)/
(複合合成短繊維)=50/50〜90/10(重量
%)の割合で混綿し、例えばカード機によるカーディン
グにて開繊して不織ウエブを作成する。この不織ウエブ
は、構成繊維の配列度合によってカード機の進行方向に
配列したパラレルウエブ、パラレルウエブがクロスレイ
ドされたウエブ、ランダムに配列したランダムウエブ、
あるいは両者の中程度に配列したセミランダムウエブの
いずれであっても良く、用途等によって適宜選択すれば
良い。例えば、衣料用として用いる場合には、不織布と
しての強力において縦/横の強力比が概ね1/1となる
不織ウエブを用いると良い。
Next, a method for producing a nonwoven fabric according to the present invention will be described. First, the water-absorbing fiber and the conjugate synthetic staple fiber are preferably combined with (a water-absorbing fiber) /
(Composite synthetic short fibers) = 50/50 to 90/10 (% by weight) are mixed and opened by carding using a card machine, for example, to prepare a nonwoven web. This non-woven web is a parallel web arranged in the traveling direction of the card machine according to the arrangement degree of the constituent fibers, a web in which the parallel web is cross-laid, a random web arranged randomly,
Alternatively, it may be any of semi-random webs arranged at an intermediate level, and may be appropriately selected depending on the application and the like. For example, when used for clothing, it is preferable to use a nonwoven web whose strength ratio in the length / width direction is approximately 1/1 in terms of strength as a nonwoven fabric.

【0034】不織ウエブの目付けは、30〜150g/
2 とすることが好ましい。目付けが30g/m2
満であると、得られる不織布の機械的特性が不充分で実
用性の乏しいものとなるばかりでなく、形態安定性、寸
法安定性の乏しい不織布となりやすい。逆に、目付けが
150g/m2 を超えると、高圧液体流処理を施す際
の加工エネルギーが大きくなり、場合によっては不織ウ
エブの内層において繊維相互に充分な交絡がなされず機
械的特性の低い不織布となる。
The basis weight of the nonwoven web is 30 to 150 g /
m 2 is preferable. If the basis weight is less than 30 g / m 2 , the resulting nonwoven fabric will have insufficient mechanical properties and poor practicality, and will tend to be poor in form stability and dimensional stability. Conversely, if the basis weight exceeds 150 g / m 2 , the processing energy in applying the high-pressure liquid flow treatment increases, and in some cases, the fibers are not sufficiently entangled with each other in the inner layer of the nonwoven web, resulting in low mechanical properties. It becomes a non-woven fabric.

【0035】吸水性を有する繊維は、常法にて得ること
ができる。一方、複合合成短繊維は以下の方法により効
率よく製造することができる。すなわち、たとえば前述
のような芯鞘型複合断面形状を形成する紡糸口金を好適
に用い、前述の重合体より選択された融点の異なる2種
以上の熱可塑性重合体を紡出材料として用い、紡糸する
重合体の融点に応じた溶融紡糸温度にて溶融紡糸を行
う。次いで、紡糸口金から吐出されたポリマー流を80
0〜1200m/分の速度で引取って未延伸糸条を得
る。そして、得られた未延伸糸条を合糸し、延伸処理を
施して延伸糸とする。そして、延伸処理の施された延伸
糸束に押し込みクリンパーにて捲縮を付与し、紡績用油
脂成分を付与し、さらに乾燥を施した後、所定の繊維長
に裁断し短繊維とする。
The fibers having water absorbency can be obtained by a conventional method. On the other hand, composite synthetic short fibers can be efficiently produced by the following method. That is, for example, a spinneret forming the above-described core-in-sheath composite cross-sectional shape is preferably used, and two or more thermoplastic polymers having different melting points selected from the above-mentioned polymers are used as a spinning material. The melt spinning is performed at a melt spinning temperature corresponding to the melting point of the polymer to be melted. Next, the polymer stream discharged from the spinneret is
The yarn is drawn at a speed of 0 to 1200 m / min to obtain an undrawn yarn. Then, the obtained undrawn yarn is combined and subjected to a drawing treatment to obtain a drawn yarn. Then, the drawn yarn bundle that has been subjected to the drawing treatment is crimped by a press crimper, a fat and oil component for spinning is applied, and after being dried, it is cut into a predetermined fiber length to be a short fiber.

【0036】次いで、得られた不織ウエブに高圧液体流
処理を施すことにより構成繊維相互間に三次元交絡を形
成する。ここでいう高圧液体流処理とは、例えば孔径が
0.05〜1.5mmの噴射孔を噴射孔間隔0.05〜
5mmで1列ないしは複数列に複数個配設されたオリフ
ィスヘッドから高圧で柱状に噴射される流体を、多孔性
支持部材上に載置した不織ウエブに衝突させるものであ
る。そして、衝突の際の構成繊維を引き込む力により、
周りの他の繊維をねじり、曲げ、回して、繊維相互を緻
密に交絡せしめ一体化させるものである。
Next, a three-dimensional entanglement is formed between the constituent fibers by subjecting the obtained nonwoven web to a high-pressure liquid flow treatment. The high-pressure liquid flow treatment referred to here means, for example, that an injection hole having a hole diameter of 0.05 to 1.5 mm is formed at an injection hole interval of 0.05 to
A fluid jetted at a high pressure from a plurality of orifice heads arranged in one row or a plurality of rows with a diameter of 5 mm collide with a nonwoven web placed on a porous support member. And, by the force to draw in the constituent fibers at the time of collision,
It twists, bends, and turns other surrounding fibers to finely entangle the fibers and integrate them.

【0037】不織ウエブに高圧液体流により三次元交絡
を施すに際しては、不織ウエブを移動する多孔性支持板
上に載置して、噴射圧力が20〜150kg/cm2
の高圧液体流を前記噴射孔から噴射する方法を採用す
る。噴射孔は、不織ウエブの進行方向と直交する方向に
列状に配列すると良く、高圧液体流を不織ウエブに衝突
させるに際しては、この噴射孔が配設されたオリフィス
ヘッドを、多孔性支持部材上に載置された不織ウエブの
進行方向に対し直角をなす方向に噴射孔間隔と同一間隔
で振幅させ、柱状液体噴射を均一に衝突させると良い。
不織ウエブを担持する多孔性支持部材は、例えば金網等
のメッシュスクリーンや有孔板など、高圧液体流が不織
ウエブを貫通し得るものであれば特に限定されない。高
圧液体としては、水あるいは温水を用いるのが一般的で
ある。噴射孔と不織ウエブとの間の距離は、1〜10c
mとするのが良い。この距離が1cm未満であると、こ
の処理により得られる不織布の地合いが乱れやすくな
り、逆に、この距離が10cmを超えると、液体流が不
織ウエブに衝突したときの衝撃力が低下して三次元的な
交絡が充分に施されにくくなる。
When the nonwoven web is subjected to three-dimensional confounding by a high-pressure liquid flow, the nonwoven web is placed on a moving porous support plate, and the jet pressure is 20 to 150 kg / cm 2 G.
And a method of injecting the high-pressure liquid flow from the injection hole. The injection holes are preferably arranged in a row in a direction perpendicular to the direction of travel of the nonwoven web. When the high-pressure liquid flow impinges on the nonwoven web, the orifice head provided with the injection holes is supported by a porous support. It is preferable to make the column-shaped liquid jets uniformly collide with the jet holes at the same interval as the interval between the jet holes in a direction perpendicular to the traveling direction of the nonwoven web placed on the member.
The porous support member for supporting the nonwoven web is not particularly limited as long as the high-pressure liquid flow can pass through the nonwoven web, for example, a mesh screen such as a wire mesh or a perforated plate. Generally, water or hot water is used as the high-pressure liquid. The distance between the injection hole and the nonwoven web is 1-10c
m. If this distance is less than 1 cm, the formation of the nonwoven fabric obtained by this treatment tends to be disturbed. Conversely, if this distance exceeds 10 cm, the impact force when the liquid stream collides with the nonwoven web decreases. Three-dimensional confounding is not sufficiently performed.

【0038】高圧液体流処理を施した後は、乾燥処理を
施すのであるが、この際、まず処理後の不織ウエブから
過剰水分を除去することが好ましい。この過剰水分の除
去には、公知の方法を採用することができ、例えばマン
グルロール等の絞り装置を用いて過剰水分をある程度機
械的に除去する。そして、引き続き、サクションバンド
方式の熱風循環式乾燥機等の乾燥装置を用いて残余の水
分を除去し、捲き取り機によりロール製品として、三次
元交絡により形態保持された不織ウエブを得る。
After the high-pressure liquid flow treatment, a drying treatment is performed. At this time, it is preferable to first remove excess moisture from the nonwoven web after the treatment. A known method can be used to remove the excess water, and the excess water is mechanically removed to some extent using a squeezing device such as a mangle roll. Subsequently, the remaining moisture is removed using a drying device such as a suction band type hot air circulation type dryer, and a non-woven web whose shape is retained by three-dimensional entanglement is obtained as a roll product by a winder.

【0039】次いで、以上の方法により得られた三次元
交絡の施された不織ウエブに、引続き部分的な熱接着処
理を施し、複合合成短繊維を構成する低融点重合体を熱
溶融させて、複合合成短繊維同士および複合合成短繊維
と吸水性を有する繊維とを部分的に熱接着する。
Next, the non-woven web subjected to three-dimensional entanglement obtained by the above-described method is subjected to a partial heat bonding treatment to heat-melt the low-melting polymer constituting the composite synthetic short fiber. The composite synthetic short fibers and the composite synthetic short fibers and the water-absorbing fibers are partially thermally bonded to each other.

【0040】この部分的な熱接着処理は、たとえばロー
ルの表面に彫刻の施されたいわゆるエンボスロールと表
面のフラットなロールとを用いて行うものである。ロー
ルに施される圧接部の彫刻は、その形状として丸形、四
角形、六角形等に限定されるものではなく、その他の様
々な形状を採用することができる。不織ウエブに熱接着
を施す部分の面積比すなわち圧接面積比は、ウエブの面
積に対し5〜30%の範囲、より好ましくは8〜20%
の範囲が良い。圧接面積比が5%未満であると、機械的
特性、耐摩耗性、寸法安定性の向上が図れないと同時
に、不織布の嵩密度の規制が不充分なものとなりやす
い。逆に、圧接面積比が30%を超えると、寸法安定性
の向上は可能となるものの、不織布の柔軟性が損なわれ
やすい。
This partial thermal bonding treatment is performed, for example, by using a so-called embossing roll having a surface engraved on a roll and a flat-surfaced roll. The shape of the sculpture of the pressed portion applied to the roll is not limited to a round shape, a square shape, a hexagonal shape, and the like, and various other shapes can be adopted. The area ratio of the portion to be thermally bonded to the nonwoven web, that is, the pressure contact area ratio, is in the range of 5 to 30%, more preferably 8 to 20%, with respect to the area of the web.
Good range. If the pressed area ratio is less than 5%, the mechanical properties, abrasion resistance, and dimensional stability cannot be improved, and the regulation of the bulk density of the nonwoven fabric tends to be insufficient. Conversely, if the pressed area ratio exceeds 30%, dimensional stability can be improved, but the flexibility of the nonwoven fabric is likely to be impaired.

【0041】この部分的熱接着処理を施すに際しては、
複合合成短繊維を構成する低融点重合体の融点を(T
m)℃としたときに、(Tm−30)℃〜(Tm−5)
℃の温度により処理する必要がある。これにより、不織
布に含まれる複合合成短繊維を構成する低融点重合体の
みを熱溶融し、高融点重合体に対して熱的な変化を及ぼ
すことなく柔軟性を保持することができる。処理温度が
(Tm−30)℃未満であると、熱接着効果が薄く機械
的特性に劣るとともに構成繊維が脱落しやすく、逆に、
(Tm−5)℃を超えると、柔軟性に劣るとともに熱接
着機にウエブが取られるという重大なトラブルを招くこ
ととなりやすい。
In performing this partial thermal bonding treatment,
The melting point of the low-melting polymer constituting the composite synthetic short fiber is (T
m) ° C, (Tm-30) ° C to (Tm-5)
It is necessary to process at a temperature of ° C. Thereby, only the low melting point polymer constituting the composite synthetic short fiber contained in the nonwoven fabric is thermally melted, and flexibility can be maintained without thermally changing the high melting point polymer. When the treatment temperature is lower than (Tm-30) ° C., the heat bonding effect is thin and the mechanical properties are inferior, and the constituent fibers are liable to fall off.
When the temperature exceeds (Tm-5) ° C., the flexibility is inferior and a serious trouble that the web is taken by the heat bonding machine is likely to be caused.

【0042】なお、不織布の柔軟性、寸法安定性を損な
わない範囲であれば、前記以外の部分的熱接着方法とし
て、上述の超音波や高周波による接着方法等を採用する
こともできる。
In addition, as long as the flexibility and dimensional stability of the nonwoven fabric are not impaired, the above-described bonding method using ultrasonic waves or high frequency can be used as a partial thermal bonding method other than the above.

【0043】また、柔軟性をさらに向上させるため、熱
接着の効果を損なわない範囲で、上野山機工(株)製の
カムフィット機等の柔軟加工機を用いた処理を行っても
良い。
Further, in order to further improve the flexibility, a treatment using a flexible processing machine such as a cam fitting machine manufactured by Uenoyama Kiko Co., Ltd. may be performed as long as the effect of the thermal bonding is not impaired.

【0044】[0044]

【実施例】次に、実施例に基づき本発明を具体的に説明
するが、本発明はこれらの実施例のみに限定されるもの
ではない。なお、実施例における各種特性値の測定は、
以下の方法により実施した。
Next, the present invention will be specifically described based on examples, but the present invention is not limited to only these examples. Incidentally, the measurement of various characteristic values in the examples,
It carried out by the following method.

【0045】(1)融点(℃):示差走査型熱量計(パ
ーキンエルマ社製;DSC−2型)を用い、昇温速度2
0℃/分の条件で測定し、得られた融解吸熱曲線におい
て極値を与える温度を融点(℃)とした。
(1) Melting point (° C.): Using a differential scanning calorimeter (manufactured by PerkinElmer; DSC-2 type), heating rate 2
The measurement was performed under the condition of 0 ° C./min, and the temperature at which an extreme value was obtained in the obtained melting endothermic curve was defined as the melting point (° C.).

【0046】(2)ポリエステルの相対粘度:フェノー
ルと四塩化エタンの等重量混合液を溶媒とし、この溶媒
100ミリリットルに試料0.5gを溶解し、温度20
℃の条件で常法により測定した。
(2) Relative viscosity of polyester: A mixture of phenol and ethane tetrachloride in an equal weight was used as a solvent, and 0.5 g of a sample was dissolved in 100 ml of the solvent.
It was measured by a conventional method under the condition of ° C.

【0047】(3)ポリエチレンのメルトインデックス
(g/10分):ASTM−D−1238(E)に記載
の方法に準じて測定した(以下、メルトインデックスを
MIと記す)。
(3) Melt index of polyethylene (g / 10 minutes): Measured according to the method described in ASTM-D-1238 (E) (hereinafter, the melt index is referred to as MI).

【0048】(4)ポリプロピレンのメルトフローレー
ト(g/10分):ASTM−D−1238(L)に記
載の方法に準じて測定した(以下、メルトフローレート
をMFRと記す)。
(4) Melt flow rate of polypropylene (g / 10 min): Measured according to the method described in ASTM-D-1238 (L) (hereinafter, the melt flow rate is referred to as MFR).

【0049】(5)目付け(g/m2 ):標準状態の
試料から試料長が10cm、試料幅が10cmの試料片
5点を作成し、平衡水分にした後、各試料片の重量
(g)を秤量し、得られた値の平均値を単位面積当たり
に換算し、目付け(g/m2 )とした。
(5) Basis weight (g / m 2 ): Five sample pieces each having a sample length of 10 cm and a sample width of 10 cm were prepared from the sample in the standard state, and after adjusting to equilibrium moisture, the weight (g) of each sample piece was obtained. ) Was weighed, and the average of the obtained values was converted per unit area to obtain the basis weight (g / m 2 ).

【0050】(6)引張強力(kg/5cm幅):JI
S−L−1096Aに記載の方法に準じて測定した。す
なわち、試料長が15cm、試料幅が5cmの試料片を
10点ずつ作成し、定速伸張型引張試験機(東洋ボール
ドウイン社製;テンシロンUTM−4−1−100)を
用いて、試料の掴み間隔10cmとし、引張速度10c
m/分で伸張した。そして、得られた切断時荷重値(k
g/5cm幅)の平均値を引張強力(kg/5cm幅)
とした。なお、引張強力については、不織布の機械方向
(MD方向)について測定した。
(6) Tensile strength (kg / 5 cm width): JI
The measurement was carried out according to the method described in SL-1096A. That is, a sample having a sample length of 15 cm and a sample width of 5 cm was prepared for each 10 points, and the sample was measured using a constant-speed extension-type tensile tester (manufactured by Toyo Baldwin Co., Ltd .; Tensilon UTM-4-1-100). The gripping interval is 10cm and the pulling speed is 10c
Stretched at m / min. Then, the obtained cutting load value (k
g / 5cm width) to the tensile strength (kg / 5cm width)
And The tensile strength was measured in the machine direction (MD direction) of the nonwoven fabric.

【0051】(7)柔軟性、圧縮剛軟度(g):試料幅
5cm、試料長5cmの試料片を5個作成し、各試料を
試料の長手方向に曲げてその両端を接着して円筒状にし
たものを測定用試料とし、定速伸張型引張試験機(東洋
ボールドウイン社製;テンシロンUTM−4−1−10
0)を用いて、5cm/分の速度で試料を圧縮し、その
最大荷重時の応力の平均値(g)を圧縮剛軟度(g)と
した。
(7) Flexibility, stiffness (g): Five specimens each having a specimen width of 5 cm and a specimen length of 5 cm are prepared, each specimen is bent in the longitudinal direction of the specimen, and both ends thereof are adhered to each other to form a cylinder. The shape was used as a measurement sample, and a constant-speed extension-type tensile tester (manufactured by Toyo Baldwin Co., Ltd .; Tensilon UTM-4-1-10)
Using (0), the sample was compressed at a speed of 5 cm / min, and the average value (g) of the stress under the maximum load was defined as the compression stiffness (g).

【0052】(8)吸水性(mm/10分):JIS−
L−1096に記載のバイレック法に準じて測定した。
(8) Water absorption (mm / 10 minutes): JIS-
It was measured according to the Bilek method described in L-1096.

【0053】(9)不織布の耐摩耗性(級):学振形摩
擦試験機を用いて100回の往復摩擦試験を行い、目視
により5段階評価を行った。すなわち、最も摩耗の少な
い不織布を5級、最も摩耗の多い不織布を1級として、
その間を2〜4級と段階的に評価した。
(9) Abrasion resistance (grade) of nonwoven fabric: A reciprocating friction test was performed 100 times using a Gakushin type friction tester, and a five-step evaluation was performed visually. In other words, the non-woven fabric with the least abrasion is class 5, and the non-woven fabric with the most abrasion is class 1.
During that time, grades 2 to 4 were graded.

【0054】(10)不織布の嵩密度(g/cc):幅
10cm、長さ10cmの試料片を5個作成し、厚み測
定器(大栄科学精機製作所(株)製)にて4.5g/c
2Gの荷重の印加により個々の不織布の厚みを測定し
て、その平均値を厚み(mm)とし、下式により得られ
る値を不織布の嵩密度とした。
(10) Bulk density of nonwoven fabric (g / cc): Five specimens each having a width of 10 cm and a length of 10 cm were prepared, and measured with a thickness measuring instrument (manufactured by Daiei Kagaku Seiki Seisakusho Co., Ltd.) at 4.5 g / cc. c
The thickness of each nonwoven fabric was measured by applying a load of m 2 G, the average value was taken as the thickness (mm), and the value obtained by the following equation was taken as the bulk density of the nonwoven fabric.

【0055】嵩密度(g/cc)=〔目付け(g/m2
)/厚み(mm)〕×1000
Bulk density (g / cc) = [basis weight (g / m 2)
) / Thickness (mm)] × 1000

【0056】(11)中空度(%):中空度は図2に従
い下式により得られる値を不織布の中空度とした。 中空度(%)=a2 /A2 ×100
(11) Hollowness (%): The value obtained by the following equation according to FIG. 2 was used as the hollowness of the nonwoven fabric. Hollowness (%) = a 2 / A 2 × 100

【0057】(12)偏平度:偏平度は図3に従い、長
軸をW、短軸をHとし、下式により得られる値を偏平断
面繊維の偏平度とした。 偏平度=W/H
(12) Flatness: The flatness was defined as W in the long axis and H in the short axis according to FIG. 3, and the value obtained by the following equation was defined as the flatness of the flat cross section fiber. Flatness = W / H

【0058】実施例1 融点が130℃、MIが20g/10分のポリエチレン
を低融点重合体として用いるとともに、融点が258
℃、相対粘度が1.38のポリエチレンテレフタレート
を高融点重合体として用い、芯成分にポリエチレンテレ
フタレートが配され、鞘成分にポリエチレンが配される
中実芯鞘型複合断面形状が得られる複合紡糸口金を用い
て、複合合成短繊維を得た。すなわち、両ポリマーの配
合比を50/50(重量比)とし、単孔吐出量を0.6
8g/分、溶融温度を285℃として、溶融紡糸を行っ
た。そして、芯鞘型複合紡糸口金より紡出された糸条を
冷却後、引き取り速度が1000m/分のロールを介し
て未延伸糸条として巻き取った。次いで、公知の延伸機
を用いて該未延伸糸トウを3.2倍に延伸した後、押し
込み式クリンパーに導き捲縮を付与した後38mmにカ
ットした。延伸後の短繊維の単糸繊度は2デニールであ
った。
Example 1 A polyethylene having a melting point of 130 ° C. and an MI of 20 g / 10 min was used as a low melting polymer, and the melting point was 258.
Polyethylene terephthalate having a relative viscosity of 1.38 ° C. as a high-melting polymer, polyethylene terephthalate as a core component, and polyethylene as a sheath component. Was used to obtain a composite synthetic short fiber. That is, the compounding ratio of both polymers was set to 50/50 (weight ratio), and the single hole discharge amount was set to 0.6.
Melt spinning was performed at 8 g / min and a melting temperature of 285 ° C. After cooling the yarn spun from the core-sheath composite spinneret, the yarn was wound up as an undrawn yarn through a roll having a take-up speed of 1000 m / min. Next, the undrawn yarn tow was stretched 3.2 times using a known stretching machine, guided to a push-in type crimper, crimped, and then cut to 38 mm. The single fiber fineness of the drawn short fibers was 2 denier.

【0059】次いで、平均繊度1.5デニール、平均繊
維長24mmの木綿の晒し綿と前記複合合成短繊維と
を、木綿晒し綿/複合合成短繊維=90/10(重量
%)の割合で均一に混綿し、ランダムカード機を用いて
目付けが60g/m2 の不織ウエブを作成した。
Next, bleached cotton having an average fineness of 1.5 denier and an average fiber length of 24 mm and the above-mentioned composite synthetic short fiber were uniformly mixed at a ratio of cotton bleached cotton / composite synthetic short fiber = 90/10 (weight%). And a non-woven web having a basis weight of 60 g / m 2 was prepared using a random card machine.

【0060】引き続き、得られた不織ウエブを移動する
70メッシュの金属製ネット上に載置し、不織ウエブ層
の上方50mmの位置より、噴射孔経0.1mm、噴射
孔間隔0.6mmで一列に配置された噴射孔から、噴射
圧70kg/cm2Gの高圧水流により交絡処理を施し
緻密に交絡した不織ウエブを得た。次いで、この交絡処
理の施された不織ウエブより余剰の水分を公知の水分除
去装置であるマングルにより除去し、90℃の乾燥機に
より乾燥処理を行った後、ロール状に巻き取った。
Subsequently, the obtained nonwoven web was placed on a moving 70-mesh metal net, and the injection hole diameter was 0.1 mm and the injection hole interval was 0.6 mm from a position 50 mm above the nonwoven web layer. From the injection holes arranged in a row with a high-pressure water flow at an injection pressure of 70 kg / cm 2 G to obtain a densely entangled nonwoven web. Next, excess water was removed from the entangled nonwoven web by a mangle, which is a known water removing device, dried by a dryer at 90 ° C., and wound up in a roll.

【0061】そして、部分的な熱接着処理を行った。熱
接着処理に際しては、圧接面積率10%で彫刻されたエ
ンボスロールと表面がフラットのロールとを用い、ロー
ル表面の温度を120℃、ロール間の線圧を30kg/
cmとすることで、不織布を得た。
Then, a partial heat bonding treatment was performed. At the time of the heat bonding treatment, an embossing roll engraved with a pressure contact area ratio of 10% and a flat-surfaced roll were used, the temperature of the roll surface was 120 ° C., and the linear pressure between the rolls was 30 kg / roll.
cm, a nonwoven fabric was obtained.

【0062】得られた不織布の性能等を表1に示す。Table 1 shows the performance and the like of the obtained nonwoven fabric.

【0063】[0063]

【表1】 [Table 1]

【0064】実施例2 実施例1における木綿の晒し綿と複合合成短繊維との混
綿割合を、木綿晒し綿/複合合成短繊維=70/30
(重量%)とした。そして、それ以外は実施例1と同一
条件として、目付けが60g/m2 の不織布を作成し
た。
Example 2 The blending ratio of bleached cotton of cotton and composite synthetic staple fiber in Example 1 was calculated as follows: cotton bleached cotton / composite synthetic staple fiber = 70/30.
(% By weight). Then, a nonwoven fabric having a basis weight of 60 g / m 2 was prepared under the same conditions as in Example 1 except for the above.

【0065】得られた不織布の性能等を表1に示す。Table 1 shows the performance and the like of the obtained nonwoven fabric.

【0066】実施例3 実施例1における木綿の晒し綿と複合合成短繊維との混
綿割合を、木綿晒し綿/複合合成短繊維=50/50
(重量%)とした。そして、それ以外は実施例1と同一
条件として、目付けが60g/m2 の不織布を作成し
た。
Example 3 The ratio of bleached cotton and composite synthetic staple fiber in Example 1 was calculated as follows: cotton bleached cotton / composite synthetic staple fiber = 50/50.
(% By weight). Then, a nonwoven fabric having a basis weight of 60 g / m 2 was prepared under the same conditions as in Example 1 except for the above.

【0067】得られた不織布の性能等を表1に示す。Table 1 shows the performance and the like of the obtained nonwoven fabric.

【0068】実施例4 融点が110℃、相対粘度が1.40のテレフタレート
酸/イソフタル酸=60/40(モル%)の共重合ポリ
エステルを低融点重合体として用い、高融点重合体とし
ては実施例1と同一のポリエチレンテレフタレートを用
い、芯成分にポリエチレンテレフタレートが配され、鞘
成分に共重合ポリエステルが配される中実芯鞘型複合断
面形状が得られる複合紡糸口金を用いて、複合合成短繊
維を得た。すなわち、両ポリマーの配合比を重量比で5
0:50とし、単孔吐出量を0.72g/分、溶融温度
を285℃として、溶融紡糸を行った。そして、芯鞘型
複合紡糸口金より紡出された糸条を冷却後、引き取り速
度が1000m/分のロールを介して未延伸糸条として
巻き取った。次いで、公知の延伸機を用いて該未延伸糸
トウを3.4倍に延伸した後、押し込み式クリンパーに
導き捲縮を付与した後38mmにカットした。延伸後の
短繊維の単糸繊度は2デニールであった。
Example 4 A copolymer of terephthalate acid / isophthalic acid = 60/40 (mol%) having a melting point of 110 ° C. and a relative viscosity of 1.40 was used as a low-melting polymer, and was used as a high-melting polymer. Using the same polyethylene terephthalate as in Example 1, using a composite spinneret having a solid core-sheath type composite cross-sectional shape in which polyethylene terephthalate is disposed in the core component and copolymerized polyester is disposed in the sheath component, a composite spinneret is obtained. Fiber was obtained. That is, the mixing ratio of both polymers is 5% by weight.
The melt spinning was performed at 0:50, the single hole discharge rate was 0.72 g / min, and the melting temperature was 285 ° C. After cooling the yarn spun from the core-sheath composite spinneret, the yarn was wound up as an undrawn yarn through a roll having a take-up speed of 1000 m / min. Next, the undrawn yarn tow was drawn 3.4 times using a known drawing machine, guided to a push-in type crimper to give crimp, and then cut into 38 mm. The single fiber fineness of the drawn short fibers was 2 denier.

【0069】次いで、実施例1で用いた木綿の晒し綿と
前記複合合成短繊維とを、木綿晒し綿/複合合成短繊維
=70/30(重量%)の割合で均一に混綿し、ランダ
ムカード機を用いて目付けが60g/m2 の不織ウエ
ブを作成した。
Next, the bleached cotton of cotton used in Example 1 and the above-mentioned composite synthetic staple fiber were uniformly mixed at a ratio of cotton bleached cotton / composite synthetic staple fiber = 70/30 (% by weight), and a random card was prepared. A nonwoven web having a basis weight of 60 g / m 2 was prepared using a machine.

【0070】引き続き、得られた不織ウエブを実施例1
と同一条件下にて交絡処理及び乾燥処理を行った。そし
て、部分的な熱接着処理を行った。熱接着処理に際して
は、ロール表面の温度を100℃とした。そして、それ
以外は実施例1と同一条件として、不織布を作成した。
Subsequently, the obtained nonwoven web was used in Example 1.
Under the same conditions as described above, a confounding treatment and a drying treatment were performed. Then, a partial heat bonding process was performed. During the heat bonding treatment, the temperature of the roll surface was set to 100 ° C. Other than that, a nonwoven fabric was prepared under the same conditions as in Example 1.

【0071】得られた不織布の性能等を表1に示す。Table 1 shows the performance and the like of the obtained nonwoven fabric.

【0072】実施例5 融点が160℃、MFRが50g/10分のポリプロピ
レンを低融点重合体として用い、高融点重合体としては
実施例1と同一のポリエチレンテレフタレートを用い、
芯成分にポリエチレンテレフタレートが配され、鞘成分
にポリプロピレンが配される中実芯鞘型複合断面形状が
得られる複合紡糸口金を用いて、複合合成短繊維を得
た。すなわち、両ポリマーの配合比を重量比で50:5
0とし、単孔吐出量を0.65g/分、溶融温度を28
5℃として、溶融紡糸を行った。そして、芯鞘型複合紡
糸口金より紡出された糸条を冷却後、引き取り速度が1
000m/分のロールを介して未延伸糸条として巻き取
った。次いで、公知の延伸機を用いて該未延伸糸トウを
3.1倍に延伸した後、押し込み式クリンパーに導き捲
縮を付与した後38mmにカットした。延伸後の短繊維
の単糸繊度は2デニールであった。
Example 5 Polypropylene having a melting point of 160 ° C. and an MFR of 50 g / 10 min was used as a low melting polymer, and the same polyethylene terephthalate as in Example 1 was used as a high melting polymer.
A composite synthetic short fiber was obtained using a composite spinneret having a solid core-sheath composite cross-sectional shape in which polyethylene terephthalate was disposed in the core component and polypropylene was disposed in the sheath component. That is, the mixing ratio of both polymers is 50: 5 by weight ratio.
0, the single hole discharge rate was 0.65 g / min, and the melting temperature was 28.
At 5 ° C., melt spinning was performed. Then, after cooling the yarn spun from the core-sheath type composite spinneret, the take-up speed becomes 1
It was wound up as an undrawn yarn through a roll of 000 m / min. Next, the undrawn yarn tow was drawn 3.1 times using a known drawing machine, guided to a push-in type crimper to give crimp, and then cut into 38 mm. The single fiber fineness of the drawn short fibers was 2 denier.

【0073】次いで、実施例1用いた木綿の晒し綿と前
記複合合成短繊維とを、木綿晒し綿/複合合成短繊維=
70/30(重量%)の割合で均一に混綿し、ランダム
カード機を用いて目付けが60g/m2 の不織ウエブ
を作成した。
Next, the bleached cotton of cotton used in Example 1 and the above-mentioned composite synthetic short fiber were combined with cotton bleached cotton / composite synthetic short fiber =
The cotton was uniformly mixed at a ratio of 70/30 (% by weight), and a nonwoven web having a basis weight of 60 g / m 2 was prepared using a random card machine.

【0074】引き続き、得られた不織ウエブを実施例1
と同一条件下にて交絡処理及び乾燥処理を行った。そし
て、部分的な熱接着処理を行った。熱接着処理に際して
は、ロール表面の温度を150℃とした。そして、それ
以外は実施例1と同一条件として、不織布を作成した。
Subsequently, the obtained nonwoven web was used in Example 1.
Under the same conditions as described above, a confounding treatment and a drying treatment were performed. Then, a partial heat bonding process was performed. During the heat bonding treatment, the temperature of the roll surface was set to 150 ° C. Other than that, a nonwoven fabric was prepared under the same conditions as in Example 1.

【0075】得られた不織布の性能等を表1に示す。Table 1 shows the performance and the like of the obtained nonwoven fabric.

【0076】実施例6 実施例1と同一のポリエチレンを低融点重合体として用
い、高融点重合体としては実施例5と同一のポリプロピ
レンが配され、芯成分にポリプロピレンが配され、鞘成
分にポリエチレンが配される中実芯鞘型複合断面形状が
得られる複合紡糸口金を用いて、複合合成短繊維を得
た。すなわち、両ポリマーの配合比を重量比で50:5
0とし、単孔吐出量を0.59g/分、溶融温度を23
0℃として、溶融紡糸を行った。そして、芯鞘型複合紡
糸口金より紡出された糸条を冷却後、引き取り速度が1
000m/分のロールを介して未延伸糸条として巻き取
った。次いで、公知の延伸機を用いて該未延伸糸トウを
2.8倍に延伸した後、押し込み式クリンパーに導き捲
縮を付与した後38mmにカットした。延伸後の短繊維
の単糸繊度は2デニールであった。
Example 6 The same polyethylene as in Example 1 was used as the low melting polymer, and the same polypropylene as in Example 5 was used as the high melting polymer, polypropylene was used as the core component, and polyethylene was used as the sheath component. Was used to obtain a composite synthetic staple fiber using a composite spinneret having a solid core-sheath composite cross-sectional shape. That is, the mixing ratio of both polymers is 50: 5 by weight ratio.
0, the single hole discharge rate was 0.59 g / min, and the melting temperature was 23.
At 0 ° C., melt spinning was performed. Then, after cooling the yarn spun from the core-sheath type composite spinneret, the take-up speed becomes 1
It was wound up as an undrawn yarn through a roll of 000 m / min. Next, the undrawn yarn tow was stretched 2.8 times using a known stretching machine, guided to a push-in type crimper, crimped, and then cut to 38 mm. The single fiber fineness of the drawn short fibers was 2 denier.

【0077】次いで、実施例1で用いた木綿の晒し綿と
前記複合合成短繊維とを、木綿晒し綿/複合合成短繊維
=70/30(重量%)の割合で均一に混綿し、ランダ
ムカード機を用いて目付けが60g/m2 の不織ウエ
ブを作成した。
Next, the bleached cotton of cotton used in Example 1 and the above-mentioned composite synthetic staple fiber were uniformly mixed in a ratio of cotton bleached cotton / composite synthetic staple fiber = 70/30 (% by weight), and a random card was prepared. A nonwoven web having a basis weight of 60 g / m 2 was prepared using a machine.

【0078】引き続き、得られた不織ウエブを実施例1
と同一条件下にて交絡処理及び乾燥処理を行った。そし
て、部分的な熱接着処理を実施例1と同一条件として行
い、不織布を作成した。
Subsequently, the obtained nonwoven web was used in Example 1.
Under the same conditions as described above, a confounding treatment and a drying treatment were performed. Then, a partial heat bonding treatment was performed under the same conditions as in Example 1 to prepare a nonwoven fabric.

【0079】得られた不織布の性能等を表1に示す。Table 1 shows the performance and the like of the obtained nonwoven fabric.

【0080】実施例7 実施例1と同一のポリエチレンを低融点重合体として用
い、高融点重合体としては実施例1と同一のポリエチレ
ンテレフタレートが配され、芯成分にポリエチレンテレ
フタレートが配され、鞘成分にポリエチレンが配される
中空芯鞘型複合断面形状が得られる複合紡糸口金を用い
て、複合合成短繊維を得た。すなわち、両ポリマーの配
合比を重量比で50:50とし、単孔吐出量を1.05
g/分、溶融温度を285℃として、溶融紡糸を行っ
た。そして、芯鞘型複合紡糸口金より紡出された糸条を
冷却後、引き取り速度が1000m/分のロールを介し
て未延伸糸条として巻き取った。次いで、公知の延伸機
を用いて該未延伸糸トウを3.3倍に延伸した後、押し
込み式クリンパーに導き捲縮を付与した後38mmにカ
ットした。延伸後の短繊維の単糸繊度は3デニールであ
り、中空度は17%であった。
Example 7 The same polyethylene as in Example 1 was used as the low-melting polymer, and the same polyethylene as the high-melting polymer, polyethylene terephthalate as in Example 1, polyethylene terephthalate as the core component, and the sheath component A composite synthetic short fiber was obtained using a composite spinneret having a hollow core-sheath type composite cross-sectional shape in which polyethylene was disposed. That is, the mixing ratio of both polymers was set to 50:50 by weight, and the single hole discharge amount was set to 1.05.
The melt spinning was performed at a melting point of 285 ° C. and a melting temperature of 285 ° C. After cooling the yarn spun from the core-sheath composite spinneret, the yarn was wound up as an undrawn yarn through a roll having a take-up speed of 1000 m / min. Next, the undrawn yarn tow was stretched 3.3 times using a known stretching machine, guided to a push-in type crimper, crimped, and then cut to 38 mm. The single fiber fineness of the drawn short fibers was 3 denier, and the hollowness was 17%.

【0081】次いで、実施例1で用いた木綿の晒し綿と
前記中空芯鞘型複合断面形状よりなる複合合成短繊維と
を、木綿晒し綿/中空芯鞘型複合断面複合合成短繊維=
70/30(重量%)の割合で均一に混綿し、ランダム
カード機を用いて目付けが60g/m2 の不織ウエブ
を作成した。
Next, the bleached cotton of cotton used in Example 1 and the composite synthetic short fiber having the hollow core-sheath type composite cross-sectional shape were combined with the cotton bleached cotton / hollow core-sheath composite composite short fiber =
The cotton was uniformly mixed at a ratio of 70/30 (% by weight), and a nonwoven web having a basis weight of 60 g / m 2 was prepared using a random card machine.

【0082】引き続き、得られた不織ウエブを実施例1
と同一条件下にて交絡処理及び乾燥処理を行った。そし
て、部分的な熱接着処理を実施例1と同一条件として行
い、不織布を作成した。
Subsequently, the obtained nonwoven web was used in Example 1.
Under the same conditions as described above, a confounding treatment and a drying treatment were performed. Then, a partial heat bonding treatment was performed under the same conditions as in Example 1 to prepare a nonwoven fabric.

【0083】得られた不織布の性能等を表2に示す。Table 2 shows the performance and the like of the obtained nonwoven fabric.

【0084】[0084]

【表2】 [Table 2]

【0085】実施例8 実施例1と同一のポリエチレンテレフタレートを用い、
単相丸型断面形状が得られる紡糸口金を用いて、太繊度
の合成短繊維を得た。すなわち、単孔吐出量を4.32
g/分、溶融温度を285℃として、溶融紡糸を行っ
た。そして、紡糸口金より紡出された糸条を冷却後、引
き取り速度が1000m/分のロールを介して未延伸糸
条として巻き取った。次いで、公知の延伸機を用いて該
未延伸糸トウを4.1倍に延伸した後、押し込み式クリ
ンパーに導き捲縮を付与した後51mmにカットした。
延伸後の短繊維の単糸繊度は10デニールであった。
Example 8 Using the same polyethylene terephthalate as in Example 1,
Synthetic short fibers having a large fineness were obtained using a spinneret capable of obtaining a single-phase round cross-sectional shape. That is, the single hole discharge amount is 4.32.
The melt spinning was performed at a melting point of 285 ° C. and a melting temperature of 285 ° C. After cooling the yarn spun from the spinneret, the yarn was taken up as an undrawn yarn through a roll having a take-up speed of 1000 m / min. Next, the undrawn yarn tow was drawn to 4.1 times using a known drawing machine, guided to a push-in type crimper to give crimp, and then cut into 51 mm.
The single fiber fineness of the drawn short fibers was 10 denier.

【0086】次いで、実施例1で用いた木綿の晒し綿と
中実芯鞘型複合断面形状よりなる複合合成短繊維とを用
いこれに前記太繊度よりなる合成短繊維を加えて、木綿
晒し綿/中実芯鞘型複合断面複合合成短繊維/太繊度合
成短繊維=60/20/20(重量%)の割合で均一に
混綿し、ランダムカード機を用いて目付けが60g/m
2 の不織ウエブを作成した。引き続き、得られた不織
ウエブを実施例1と同一条件下にて交絡処理及び乾燥処
理を行った。
Next, using the bleached cotton of cotton used in Example 1 and the composite synthetic short fiber having a solid core-sheath type composite cross section, the synthetic short fiber having the fineness was added thereto, and the cotton bleached cotton was added. / Solid core-sheath type composite cross-section composite synthetic short fiber / large fineness synthetic short fiber = 60/20/20 (weight%), uniformly mixed, and a basis weight of 60 g / m using a random card machine.
Two nonwoven webs were made. Subsequently, the obtained nonwoven web was subjected to a entanglement treatment and a drying treatment under the same conditions as in Example 1.

【0087】そして、部分的な熱接着処理はロール表面
の温度を123℃としたこと以外は実施例1と同一条件
として行い、不織布を作成した。得られた不織布の性能
等を表2に示す。
Then, a partial heat bonding treatment was performed under the same conditions as in Example 1 except that the temperature of the roll surface was set to 123 ° C., to prepare a nonwoven fabric. Table 2 shows the performance and the like of the obtained nonwoven fabric.

【0088】実施例9 実施例1で用いた木綿の晒し綿と実施例7で用いた中空
芯鞘型複合断面形状よりなる複合合成短繊維と実施例8
で用いた太繊度よりなる合成短繊維とを、木綿晒し綿/
中空芯鞘型複合断面複合合成短繊維/太繊度合成短繊維
=60/20/20(重量%)の割合で均一に混綿し、
ランダムカード機を用いて目付けが60g/m2の不織
ウエブを作成した。
Example 9 A composite short fiber composed of bleached cotton used in Example 1 and a hollow core-sheath composite cross section used in Example 7 and Example 8 were used.
The synthetic staple fiber having the fineness used in
Hollow-core sheath type composite cross-section composite synthetic short fiber / large fineness synthetic short fiber = 60/20/20 (wt%)
A nonwoven web having a basis weight of 60 g / m 2 was prepared using a random card machine.

【0089】引き続き、得られた不織ウエブを実施例1
と同一条件下にて交絡処理及び乾燥処理を行った。そし
て、部分的な熱接着処理はロール表面の温度を123℃
としたこと以外は実施例1と同一条件として行い、不織
布を作成した。
Subsequently, the obtained nonwoven web was prepared in Example 1.
Under the same conditions as described above, a confounding treatment and a drying treatment were performed. Then, the temperature of the roll surface is set to 123 ° C.
A nonwoven fabric was prepared under the same conditions as in Example 1 except that the above conditions were satisfied.

【0090】得られた不織布の性能等を表1に示す。Table 1 shows the performance and the like of the obtained nonwoven fabric.

【0091】実施例10 実施例1と同一のポリエチレンテレフタレートを用い、
単相偏平型断面形状が得られる紡糸口金を用いて、合成
短繊維を得た。すなわち、単孔吐出量を0.63g/
分、溶融温度を285℃として、溶融紡糸を行った。そ
して、紡糸口金より紡出された糸条を冷却後、引き取り
速度が1000m/分のロールを介して未延伸糸条とし
て巻き取った。次いで、公知の延伸機を用いて該未延伸
糸トウを3.0倍に延伸した後、押し込み式クリンパー
に導き捲縮を付与した後38mmにカットした。延伸後
の短繊維の単糸繊度は2デニールで偏平度は7.2であ
った。
Example 10 Using the same polyethylene terephthalate as in Example 1,
Synthetic short fibers were obtained by using a spinneret capable of obtaining a single-phase flat type cross-sectional shape. That is, the single hole discharge amount is set to 0.63 g /
The melt spinning was performed at a melting temperature of 285 ° C. for one minute. After cooling the yarn spun from the spinneret, the yarn was taken up as an undrawn yarn through a roll having a take-up speed of 1000 m / min. Next, the undrawn yarn tow was stretched to 3.0 times using a known stretching machine, guided to a push-in type crimper, crimped, and then cut to 38 mm. The single fiber fineness of the drawn short fibers was 2 denier and the flatness was 7.2.

【0092】次いで、実施例1で用いた木綿の晒し綿と
同様に実施例1で用いた中実芯鞘型複合断面形状よりな
る複合合成短繊維と前記偏平型断面形状よりなる合成短
繊維とを、木綿晒し綿/中実芯鞘型複合断面複合合成短
繊維/偏平型断面形状合成短繊維=60/20/20
(重量%)の割合で均一に混綿し、ランダムカード機を
用いて目付けが60g/m2の不織ウエブを作成した。
Next, similarly to the bleached cotton of the cotton used in Example 1, the composite synthetic short fiber having the solid core-sheath composite cross section used in Example 1 and the synthetic short fiber having the flat type cross section used in Example 1 were used. Is obtained by bleaching cotton / solid core-sheath composite composite composite short fiber / flat composite synthetic short fiber = 60/20/20
(Weight%), and a non-woven web having a basis weight of 60 g / m 2 was prepared using a random card machine.

【0093】引き続き、得られた不織ウエブを実施例1
と同一条件下にて交絡処理及び乾燥処理を行った。そし
て、部分的な熱接着処理はロール表面の温度を123℃
としたこと以外は実施例1と同一条件として行い、不織
布を作成した。
Subsequently, the obtained nonwoven web was used in Example 1.
Under the same conditions as described above, a confounding treatment and a drying treatment were performed. Then, the temperature of the roll surface is set to 123 ° C.
A nonwoven fabric was prepared under the same conditions as in Example 1 except that the above conditions were satisfied.

【0094】得られた不織布の性能等を表2に示す。Table 2 shows the performance and the like of the obtained nonwoven fabric.

【0095】実施例11 実施例1で用いた木綿の晒し綿と実施例7で用いた中空
芯鞘型複合断面形状よりなる複合合成短繊維と実施例1
0で用いた偏平型断面形状よりなる合成短繊維とを、木
綿晒し綿/中空芯鞘型複合断面複合合成短繊維/偏平型
断面形状合成短繊維=60/20/20(重量%)の割
合で均一に混綿し、ランダムカード機を用いて目付けが
60g/m2 の不織ウエブを作成した。
Example 11 A composite synthetic short fiber comprising bleached cotton used in Example 1 and a hollow core-sheath type composite sectional shape used in Example 7 was used.
The synthetic short fiber having the flat cross-sectional shape used in Example 1 was mixed with cotton bleached cotton / hollow core / sheath composite cross-sectional composite short fiber / flat synthetic short fiber = 60/20/20 (% by weight). And a nonwoven web having a basis weight of 60 g / m 2 was prepared using a random card machine.

【0096】引き続き、得られた不織ウエブを実施例1
と同一条件下にて交絡処理及び乾燥処理を行った。そし
て、部分的な熱接着処理はロール表面の温度を123℃
としたこと以外は実施例1と同一条件として行い、不織
布を作成した。
Subsequently, the obtained nonwoven web was used in Example 1.
Under the same conditions as described above, a confounding treatment and a drying treatment were performed. Then, the temperature of the roll surface is set to 123 ° C.
A nonwoven fabric was prepared under the same conditions as in Example 1 except that the above conditions were satisfied.

【0097】得られた不織布の性能等を表2に示す。Table 2 shows the performance and the like of the obtained nonwoven fabric.

【0098】実施例12 実施例1の複合合成短繊維と単糸繊度が2デニールで繊
維長が38mmのレーヨンとを用い、混綿割合をレーヨ
ン/複合合成短繊維=70/30(重量%)として均一
に混綿し、ランダムカード機を用いて目付けが60g/
2 の不織ウエブを作成した。
Example 12 Using the composite synthetic staple fiber of Example 1 and rayon having a single fiber fineness of 2 denier and a fiber length of 38 mm, the mixing ratio was set to 70/30 (weight%). Blend uniformly and use a random card machine to obtain a basis weight of 60 g /
you create a nonwoven web m 2.

【0099】引き続き、得られた不織ウエブを実施例1
と同一条件下にて交絡処理及び乾燥処理を行った。そし
て、部分的な熱接着処理を実施例1と同一条件下にて行
い、不織布を作成した。
Subsequently, the obtained nonwoven web was prepared in Example 1.
Under the same conditions as described above, a confounding treatment and a drying treatment were performed. Then, a partial heat bonding treatment was performed under the same conditions as in Example 1 to produce a nonwoven fabric.

【0100】得られた不織布の性能等を表2に示す。Table 2 shows the performance and the like of the obtained nonwoven fabric.

【0101】実施例13 実施例1と同一のポリエチレンテレフタレートを用い、
単相丸型断面形状が得られる紡糸口金を用いて、細繊度
の合成短繊維を得た。すなわち、単孔吐出量を0.27
g/分、溶融温度を285℃として溶融紡糸を行った。
そして紡糸口金より紡出された糸条を冷却後、引取速度
が1000m/分のロールを介して未延伸糸として巻き
取った。
Example 13 Using the same polyethylene terephthalate as in Example 1,
Synthetic short fibers of fine fineness were obtained using a spinneret capable of obtaining a single-phase round cross-sectional shape. That is, the single hole discharge amount is set to 0.27.
The melt spinning was performed at a melt temperature of 285 ° C. and a melt temperature of 285 ° C.
After cooling the yarn spun from the spinneret, the yarn was taken up as an undrawn yarn through a roll having a take-up speed of 1000 m / min.

【0102】次いで公知の延伸機を用いて該未延伸糸ト
ウを2.6に延伸した後、押し込み式クリンパーに導き
捲縮を付与した後、38mmにカットした。延伸後の短
繊維の単糸繊度は1デニールであった。
Next, the undrawn yarn tow was drawn to 2.6 using a known drawing machine, guided to a push-in type crimper, crimped, and then cut to 38 mm. The single fiber fineness of the drawn short fibers was 1 denier.

【0103】次いで実施例1で用いた木綿の晒し綿と中
実芯鞘型断面形状よりなる複合合成短繊維とを、木綿晒
し綿/中実芯鞘型複合断面合成短繊維/細繊度合成短繊
維=60/20/20(重量%)の割合で均一に混綿し
ランダムカード機を用いて60g/m2の不織ウエブを
作成した。
Next, the bleached cotton of cotton used in Example 1 and the composite synthetic short fiber having a solid core-sheath type cross-sectional shape were combined with cotton bleached cotton / solid core-sheath type composite cross-sectional synthetic short fiber / fine fineness synthetic short fiber. Fibers were uniformly mixed at a ratio of 60/20/20 (weight%), and a nonwoven web of 60 g / m 2 was prepared using a random card machine.

【0104】引き続き、得られた不織ウエブを実施例1
と同一条件下にて交絡処理及び乾燥処理を行った。そし
て、部分的な熱接着処理はロール表面の温度を123℃
としたこと以外は実施例1と同一条件として行い、不織
布を作成した。
Subsequently, the obtained nonwoven web was used in Example 1.
Under the same conditions as described above, a confounding treatment and a drying treatment were performed. Then, the temperature of the roll surface is set to 123 ° C.
A nonwoven fabric was prepared under the same conditions as in Example 1 except that the above conditions were satisfied.

【0105】得られた不織布の性能等を表2に示す。Table 2 shows the performance and the like of the obtained nonwoven fabric.

【0106】実施例1〜6で得られた不織布は、芯成分
と鞘成分とを構成するそれぞれの重合体が30℃以上の
融点差を有した中実芯鞘型複合繊維を含み、三次元交絡
部分を残した部分的な熱接着が施され、しかもその熱接
着の温度が高融点重合体の融点以下であるので、優れた
機械的特性を有し、また、吸水性、耐摩耗性、嵩高性が
十分に発揮されるものであり、しかも高融点重合体に対
して熱的なダメージを及ぼすものではなく柔軟性を有す
るものであった。
The nonwoven fabric obtained in each of Examples 1 to 6 contains a solid core-sheath type composite fiber in which each of the polymers constituting the core component and the sheath component has a melting point difference of 30 ° C. or more. Partial thermal bonding is performed leaving the entangled portion, and since the temperature of the thermal bonding is equal to or lower than the melting point of the high melting point polymer, it has excellent mechanical properties, and also has excellent water absorption, abrasion resistance, The bulkiness was sufficiently exhibited, and the polymer did not thermally damage the high melting point polymer but had flexibility.

【0107】実施例7で得られた不織布は、複合合成短
繊維として中空芯鞘型複合繊維を用いたので嵩高性に優
れるものであった。実施例8〜9で得られた不織布は、
複合合成短繊維として中実あるいは中空芯鞘型複合繊維
と太繊度よりなる短繊維と木綿とを混綿したので、機械
的特性及び柔軟性にやや劣るものの更に嵩高性に優れる
ものであった。
The nonwoven fabric obtained in Example 7 was excellent in bulkiness because a hollow core-sheath type composite fiber was used as the composite synthetic short fiber. The nonwoven fabric obtained in Examples 8 to 9 is
As a composite synthetic short fiber, a solid or hollow core-sheath composite fiber, a short fiber having a large fineness, and cotton were mixed, so that the mechanical properties and flexibility were slightly inferior, but the bulkiness was further excellent.

【0108】実施例10〜11で得られた不織布は、複
合合成短繊維として中実あるいは中空芯鞘型複合繊維と
優れた交絡能を発揮する偏平断面よりなる短繊維と木綿
とを混綿したので、柔軟性及び嵩高性にやや劣るもの
の、機械的特性には特に優れるものであった。
The nonwoven fabrics obtained in Examples 10 to 11 were prepared by mixing solid or hollow core-sheath composite fibers with short fibers having a flat cross section exhibiting excellent confounding ability and cotton as composite synthetic short fibers. Although it was slightly inferior in flexibility and bulkiness, it was particularly excellent in mechanical properties.

【0109】実施例12で得られた不織布は、中実芯鞘
型複合繊維と木綿の代わりのレーヨンとを混綿したの
で、吸水性にはやや劣るものの他の性能には優れるもの
であった。
The nonwoven fabric obtained in Example 12 was a mixture of solid core-sheath type composite fiber and rayon instead of cotton, so that the nonwoven fabric was slightly inferior in water absorption and excellent in other performances.

【0110】実施例13で得られた不織布は、複合合成
短繊維として中実芯鞘型複合繊維と細繊度よりなる短繊
維とを混綿して用い、これに更に木綿を混綿したので、
嵩高性にはやや劣るものの柔軟性及び機械的特性には優
れるものであった。
The nonwoven fabric obtained in Example 13 was used by mixing a solid core-sheath composite fiber and a short fiber having a fine fineness as a composite synthetic short fiber, and further mixing cotton.
Although the bulkiness was slightly inferior, the flexibility and mechanical properties were excellent.

【0111】比較例1 実施例2と同一の木綿の晒し綿と複合合成短繊維との不
織ウエブに、実施例1と同一の条件にて三次元交絡処理
を行い、乾燥機により乾燥処理を行った。そして部分的
な熱接着処理を施すことなく目付けが60g/m2
不織ウエブを作成した。
Comparative Example 1 The same nonwoven web of bleached cotton and composite synthetic staple fiber as in Example 2 was subjected to three-dimensional entanglement under the same conditions as in Example 1, and dried with a dryer. went. Then, a nonwoven web having a basis weight of 60 g / m 2 was prepared without performing a partial heat bonding treatment.

【0112】得られた不織布の性能等を表3に示す。Table 3 shows the performance and the like of the obtained nonwoven fabric.

【0113】[0113]

【表3】 [Table 3]

【0114】比較例2 実施例1で用いた木綿の晒し綿と複合合成短繊維との配
合比を、木綿晒し綿/複合合成短繊維=30/70(重
量%)とした。そして、それ以外は実施例1と同一条件
により目付けが60g/m2 の不織布を作成した。
Comparative Example 2 The blending ratio of bleached cotton cotton and composite synthetic staple fiber used in Example 1 was set to be cotton bleached cotton / composite synthetic staple fiber = 30/70 (% by weight). Then, a nonwoven fabric having a basis weight of 60 g / m 2 was prepared under the same conditions as in Example 1 except for the above.

【0115】得られた不織布の性能等を表3に示す。Table 3 shows the performance and the like of the obtained nonwoven fabric.

【0116】比較例3 実施例1における木綿晒し綿と複合合成短繊維との混綿
の割合を、木綿晒し綿/複合合成短繊維=95/5(重
量%)とした。そして、それ以外は実施例1と同一条件
で目付けが60g/m2 の不織布を作成した。
Comparative Example 3 The ratio of the cotton blended cotton bleached cotton and the composite synthetic staple fiber in Example 1 was set to be cotton bleached cotton / composite synthetic staple fiber = 95/5 (% by weight). Then, a nonwoven fabric having a basis weight of 60 g / m 2 was prepared under the same conditions as in Example 1 except for the above.

【0117】得られた不織布の性能等を表3に示す。Table 3 shows the performance and the like of the obtained nonwoven fabric.

【0118】比較例4 実施例2における部分的な熱接着処理において、ロール
表面の温度を低融点重合体としてのポリエチレンの融点
(130℃)よりも高温の135℃とした。そして、そ
れ以外は実施例1と同一条件で目付けが60g/m2
の不織布を作成した。
Comparative Example 4 In the partial heat bonding treatment in Example 2, the temperature of the roll surface was set to 135 ° C., which was higher than the melting point (130 ° C.) of polyethylene as a low melting point polymer. Otherwise, the basis weight was 60 g / m 2 under the same conditions as in Example 1.
Was prepared.

【0119】得られた不織布の性能等を表3に示す。Table 3 shows the performance and the like of the obtained nonwoven fabric.

【0120】比較例5 実施例2における部分的な熱接着処理において、ロール
表面の温度を85℃とした。そして、それ以外は実施例
1と同一条件で目付けが60g/m2 の不織布を作成
した。
Comparative Example 5 In the partial thermal bonding treatment in Example 2, the temperature of the roll surface was set to 85 ° C. Then, a nonwoven fabric having a basis weight of 60 g / m 2 was prepared under the same conditions as in Example 1 except for the above.

【0121】得られた不織布の性能等を表3に示す。Table 3 shows the performance and the like of the obtained nonwoven fabric.

【0122】比較例1で得られた不織布は、部分的な熱
接着処理を施されていないので、柔軟性及び嵩高性には
優れるものの、機械的特性及び耐摩耗性に著しく劣っ
た。比較例2で得られた不織布は、天然繊維である木綿
の混綿比率が低過ぎたため、嵩高性や柔軟性や吸水性に
劣った。
Since the nonwoven fabric obtained in Comparative Example 1 was not subjected to a partial heat bonding treatment, it was excellent in flexibility and bulkiness, but remarkably inferior in mechanical properties and abrasion resistance. The nonwoven fabric obtained in Comparative Example 2 was inferior in bulkiness, flexibility, and water absorption because the cotton mixing ratio of cotton, which is a natural fiber, was too low.

【0123】比較例3で得られた不織布は、複合合成短
繊維である中実芯鞘型複合繊維の混綿比率が低過ぎたた
め、部分的熱接着処理を施しても接着機能が不十分で、
機械的特性及び耐摩耗性に著しく劣った。
The nonwoven fabric obtained in Comparative Example 3 had an insufficient bonding function even when subjected to a partial heat bonding treatment because the mixing ratio of the solid core-sheath type conjugate fiber which is a conjugate synthetic short fiber was too low.
The mechanical properties and wear resistance were remarkably poor.

【0124】比較例4で得られた不織布は、熱接着工程
において、ロール表面温度と低融点重合体との融点差を
+5℃としてロール表面温度の方を高くしたため、熱接
着工程において不織布ウエブがロールに取られ、目的と
する不織布を得ることができなかった。
In the non-woven fabric obtained in Comparative Example 4, the roll surface temperature was set higher by setting the difference between the roll surface temperature and the low-melting polymer to + 5 ° C. in the heat bonding step. It was taken up in a roll and the desired nonwoven fabric could not be obtained.

【0125】比較例5で得られた不織布は、熱接着工程
において、ロール表面温度を低融点重合体との融点より
も45℃も低くしたため、機械的特性及び耐摩耗性に著
しく劣った。
In the heat bonding step, the nonwoven fabric obtained in Comparative Example 5 had a roll surface temperature 45 ° C. lower than the melting point of the low-melting polymer, so that the nonwoven fabric was remarkably inferior in mechanical properties and abrasion resistance.

【0126】[0126]

【発明の効果】本発明によると、吸水性を有する繊維と
複合合成短繊維とが混綿された状態で三次元交絡を有
し、さらに部分的熱接着処理によりこの三次元交絡を有
した繊維同士を前記低融点重合体が熱融着しているた
め、繊維同士の三次元交絡と熱融着とによって優れた不
織布強力と寸法安定性とを得ることができる。また三次
元交絡処理に加えて部分的熱接着処理がなされているた
め、非部分的熱接着部分では三次元的交絡処理が施され
ていることによって繊維同士が絡まりあい押さえ込みあ
っているため毛羽立ちが防止され且つ耐摩耗性を向上さ
せることができ、また部分的熱接着部分でもそれにより
耐摩耗性を向上させることができる。さらに天然繊維や
再生繊維などの吸水性を有する繊維を含むために吸水性
に富んだ不織布を得ることができ、このため各種用途に
おいて効果的に用いることができる不織布を得ることが
できる。
According to the present invention, three-dimensional entanglement is obtained in a state where the fiber having water absorption and the conjugate synthetic short fiber are mixed, and the fibers having this three-dimensional entanglement by partial heat bonding are used. Since the low melting point polymer is thermally fused, excellent strength and dimensional stability of the nonwoven fabric can be obtained by three-dimensional entanglement of fibers and thermal fusion. In addition to the three-dimensional entanglement process, the partial thermal bonding process is performed, and the non-partial thermal bonding portion is subjected to the three-dimensional entanglement process. It is possible to prevent and improve the wear resistance, and also to improve the wear resistance in the partially heat-bonded part. Furthermore, a nonwoven fabric rich in water absorption can be obtained because it contains fibers having water absorption such as natural fibers and regenerated fibers, and thus a nonwoven fabric that can be effectively used in various applications can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にもとづく芯鞘複合断面の複合合成短繊
維の繊維横断面を示す図である。
FIG. 1 is a diagram showing a fiber cross section of a composite synthetic short fiber having a core-sheath composite cross section according to the present invention.

【図2】本発明にもとづく中空芯鞘型複合断面の複合合
成短繊維の繊維横断面を示す図である。
FIG. 2 is a view showing a fiber cross section of a composite synthetic short fiber having a hollow core-sheath type composite cross section according to the present invention.

【図3】本発明にもとづく偏平型断面の合成短繊維の繊
維横断面を示す図である。
FIG. 3 is a diagram showing a fiber cross section of a synthetic short fiber having a flat cross section according to the present invention.

【符号の説明】[Explanation of symbols]

1 鞘成分 2 芯成分 3 中空部 1 sheath component 2 core component 3 hollow part

フロントページの続き (51)Int.Cl.6 識別記号 FI D01F 8/14 D01F 8/14 Z Continued on the front page (51) Int.Cl. 6 Identification code FI D01F 8/14 D01F 8/14 Z

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 吸水性を有する繊維と複合合成短繊維と
が混綿された状態で三次元交絡を有しており、複合合成
短繊維が融点の異なる2種以上の熱可塑性重合体からな
り、この2種以上の熱可塑性重合体のうち最も融点の低
い熱可塑性重合体が複合合成短繊維表面に露出してお
り、前記三次元交絡を有した繊維同士を前記最も融点の
低い熱可塑性重合体が熱融着している部分的熱接着部分
を有していることを特徴とする不織布。
Claims: 1. A three-dimensional entangled fiber in which a fiber having a water-absorbing property and a conjugated synthetic staple fiber are mixed, wherein the conjugated staple fiber is composed of two or more kinds of thermoplastic polymers having different melting points, The thermoplastic polymer having the lowest melting point of the two or more thermoplastic polymers is exposed on the surface of the composite synthetic short fiber, and the fibers having the three-dimensional entanglement are separated from each other by the thermoplastic polymer having the lowest melting point. Characterized by having a partially heat-bonded portion which is heat-sealed.
【請求項2】 複合合成短繊維が、最も融点の低い熱可
塑性重合体を鞘成分とし、この熱可塑性重合体よりも融
点が25℃以上高い熱可塑性重合体を芯成分とする中実
芯鞘型複合断面と、前記中実芯鞘型複合断面において繊
維横断面内部に中空部を有した中空芯鞘型複合断面との
うちのいずれかを有することを特徴とする請求項1記載
の不織布。
2. A solid core-sheath comprising a composite synthetic short fiber having a thermoplastic polymer having a lowest melting point as a sheath component and a thermoplastic polymer having a melting point higher than that of the thermoplastic polymer by 25 ° C. or more as a core component. The nonwoven fabric according to claim 1, wherein the nonwoven fabric has one of a mold composite cross section and a hollow core-sheath composite cross section having a hollow portion inside a fiber cross section in the solid core-sheath composite cross section.
【請求項3】 吸水性を有する繊維と複合合成短繊維と
の混綿割合が、(吸水性を有する繊維)/(複合合成短
繊維)=50/50〜90/10(重量%)であること
を特徴とする請求項1または2記載の不織布。
3. The mixing ratio of the water-absorbing fiber and the composite synthetic short fiber is (water-absorbing fiber) / (composite synthetic short fiber) = 50/50 to 90/10 (% by weight). The nonwoven fabric according to claim 1 or 2, wherein
【請求項4】 吸水性を有する繊維が、木綿、ラミー、
ウール、短繊維状に裁断された絹などの天然繊維と、ビ
スコースレーヨン、銅アンモニアレーヨン、溶剤紡糸さ
れたレーヨンなどの再生繊維とのいずれかであることを
特徴とする請求項1から3までのいずれか1項記載の不
織布。
4. The fiber having water absorbency is cotton, ramie,
4. A natural fiber such as wool or silk cut into short fibers and a regenerated fiber such as viscose rayon, cuprammonium rayon, or solvent spun rayon. The nonwoven fabric according to any one of the above.
【請求項5】 複合合成短繊維の単糸繊度が1.5デニ
ール以上かつ7デニール未満であることを特徴とする請
求項1から4までのいずれか1項記載の不織布。
5. The nonwoven fabric according to claim 1, wherein the single-filament fineness of the conjugate synthetic short fiber is 1.5 denier or more and less than 7 denier.
【請求項6】 1デニール以上かつ15デニール以下の
合成短繊維を含むことを特徴とする請求項5記載の不織
布。
6. The nonwoven fabric according to claim 5, comprising synthetic short fibers of 1 denier or more and 15 denier or less.
【請求項7】 偏平断面の合成短繊維を含むことを特徴
とする請求項1から6までのいずれか1項記載の不織
布。
7. The nonwoven fabric according to claim 1, comprising synthetic short fibers having a flat cross section.
【請求項8】 融点の異なる2種以上の熱可塑性重合体
からなり、この2種以上の熱可塑性重合体のうち最も融
点の低い熱可塑性重合体が繊維表面に露出した複合合成
短繊維と吸水性を有する繊維とを混綿して開繊すること
により不織ウエブを形成し、次いで、この不織ウエブに
高圧液体流処理を施すことにより構成繊維相互間に三次
元交絡を形成し、その後、前記複合合成短繊維を構成す
る最も融点の低い熱可塑性重合体の融点を(Tm)℃と
したときに(Tm−30)℃〜(Tm−5)℃の温度に
て部分的熱接着処理を施すことを特徴とする不織布の製
造方法。
8. A synthetic short fiber composed of two or more kinds of thermoplastic polymers having different melting points, wherein the thermoplastic polymer having the lowest melting point among the two or more kinds of thermoplastic polymers is exposed to the fiber surface and a water absorbing material. A nonwoven web is formed by blending with fibers having properties to form a nonwoven web, and then the nonwoven web is subjected to a high-pressure liquid flow treatment to form a three-dimensional entanglement between the constituent fibers. When the melting point of the thermoplastic polymer having the lowest melting point that constitutes the composite synthetic short fiber is (Tm) ° C, the partial thermal bonding treatment is performed at a temperature of (Tm-30) ° C to (Tm-5) ° C. A method for producing a nonwoven fabric, characterized in that the nonwoven fabric is applied.
JP9270262A 1996-10-04 1997-10-03 Nonwoven fabric and its production Pending JPH10158968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9270262A JPH10158968A (en) 1996-10-04 1997-10-03 Nonwoven fabric and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26387296 1996-10-04
JP8-263872 1996-10-04
JP9270262A JPH10158968A (en) 1996-10-04 1997-10-03 Nonwoven fabric and its production

Publications (1)

Publication Number Publication Date
JPH10158968A true JPH10158968A (en) 1998-06-16

Family

ID=26546235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9270262A Pending JPH10158968A (en) 1996-10-04 1997-10-03 Nonwoven fabric and its production

Country Status (1)

Country Link
JP (1) JPH10158968A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104629A (en) * 2004-10-08 2006-04-20 Unitika Ltd Spun lace nonwoven fabric imparted with uneven pattern and method for producing the same
JP2007008145A (en) * 2005-05-31 2007-01-18 Unitika Ltd Nonwoven structure with embossed pattern, and method for producing the same
JP2017048475A (en) * 2015-08-31 2017-03-09 トヨタ紡織株式会社 Fiber substrate
WO2017176238A1 (en) * 2016-04-04 2017-10-12 Kimberly-Clark Worldwide, Inc. Cleaning product with low lint and high fluid absorbency and release properties

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104629A (en) * 2004-10-08 2006-04-20 Unitika Ltd Spun lace nonwoven fabric imparted with uneven pattern and method for producing the same
JP2007008145A (en) * 2005-05-31 2007-01-18 Unitika Ltd Nonwoven structure with embossed pattern, and method for producing the same
JP2017048475A (en) * 2015-08-31 2017-03-09 トヨタ紡織株式会社 Fiber substrate
WO2017176238A1 (en) * 2016-04-04 2017-10-12 Kimberly-Clark Worldwide, Inc. Cleaning product with low lint and high fluid absorbency and release properties
GB2566167A (en) * 2016-04-04 2019-03-06 Kimberly Clark Co Cleaning product with low lint and high fluid absorbency and release properties
GB2566167B (en) * 2016-04-04 2022-05-11 Kimberly Clark Co Cleaning product with low lint and high fluid absorbency and release properties
US11344175B2 (en) 2016-04-04 2022-05-31 Kimberly-Clark Worldwide, Inc. Cleaning product with low lint and high fluid absorbency and release properties

Similar Documents

Publication Publication Date Title
EP0933459B1 (en) Staple fiber non-woven fabric and process for producing the same
JP3145067B2 (en) Nonwoven fabric and method for producing the same
JPH10219555A (en) Laminated nonwoven fabric and its production
JP3948781B2 (en) Short fiber nonwoven fabric and method for producing the same
JPH10331063A (en) Composite nonwoven fabric and its production
JPH10158968A (en) Nonwoven fabric and its production
JP4015831B2 (en) Ultrafine fiber nonwoven fabric and method for producing the same
JPH10280262A (en) Nonwoven fabric and its production
JPH1096153A (en) Stretchable nonwoven fabric and its production
JPH11229256A (en) Composite nonwoven fabric and its production
JP3580626B2 (en) Nonwoven fabric for hook-and-loop fastener and method for producing the same
JPH10280258A (en) Nonwoven fabric and its production
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JP4453179B2 (en) Split fiber and fiber molded body using the same
JPH11158763A (en) Conjugate nonwoven cloth and its production
JP2000034661A (en) Composite nonwoven fabric and its production
JP2000136477A (en) Laminated nonwoven fabric and its production
JPH10280263A (en) Nonwoven fabric for wipping material and its production
JP2004313425A (en) Wiping sheet
JPH1077560A (en) Nonwoven fabric and its production
JPH11350321A (en) Spun lace nonwoven cloth and its production
JPH08311758A (en) Stretchable composite web and its production
JPH10195750A (en) Composite nonwoven fabric and its production
JPH11100764A (en) Nonwoven fabric and its production
JPH10195749A (en) Laminated nonwoven fabric and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522