JP3305453B2 - Laminated non-woven structure - Google Patents

Laminated non-woven structure

Info

Publication number
JP3305453B2
JP3305453B2 JP24362393A JP24362393A JP3305453B2 JP 3305453 B2 JP3305453 B2 JP 3305453B2 JP 24362393 A JP24362393 A JP 24362393A JP 24362393 A JP24362393 A JP 24362393A JP 3305453 B2 JP3305453 B2 JP 3305453B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fibers
fiber
laminated
fabric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24362393A
Other languages
Japanese (ja)
Other versions
JPH0768687A (en
Inventor
創 山口
芳基 宮原
重孝 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP24362393A priority Critical patent/JP3305453B2/en
Publication of JPH0768687A publication Critical patent/JPH0768687A/en
Application granted granted Critical
Publication of JP3305453B2 publication Critical patent/JP3305453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,熱可塑性極細繊維不織
布層と熱可塑性長繊維不織布層と天然繊維不織布層とが
積層されてなる積層不織構造体であって,引張り強力と
剥離強力が高く,柔軟性が優れ,良好なバクテリアバリ
ア性と吸水性を有し,しかも耐水圧と耐磨耗性も高く,
医療・衛生材用,衣料用あるいは生活関連材用の素材と
して好適な積層不織構造体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated non-woven structure comprising a thermoplastic non-woven fabric non-woven fabric layer, a thermoplastic long-fiber non-woven fabric layer, and a natural fiber non-woven fabric layer. It has high flexibility, excellent bacterial barrier properties and water absorption, and high water pressure and abrasion resistance.
The present invention relates to a laminated nonwoven structure suitable as a material for medical / sanitary materials, clothing or living-related materials.

【0002】[0002]

【従来の技術】従来から,熱可塑性繊維不織布層と天然
繊維不織布層とが積層されてなる積層不織構造体が知ら
れている。例えば,特公昭54−24506号公報に
は,熱可塑性繊維不織布からなる通気性熱溶着層と天然
繊維等からなる通気性非熱溶着層とが積層され,非熱溶
着層上に熱溶着性物質が点在的に配置され,かつ熱溶着
性物質と熱溶着層との溶融部が非熱溶着層の両面から浸
透して前記非熱溶着層を接着挟持した構造を有する積層
不織構造体が提案されている。しかしながら,この積層
不織構造体は,天然繊維が積層されているため吸水性は
優れるものの,上述したように通気性の向上を目的とす
ることからも明らかなようにバクテリアバリア性を有し
ないものである。しかも,この積層不織構造体は,これ
を製造するに際して通気性熱溶着層と通気性非熱溶着層
とを積層する工程と,非熱溶着層上に含浸用熱溶着性シ
ート層を重合し,超音波融着処理により熱溶着性物質と
熱溶着層との溶融部が非熱溶着層の両面から浸透して前
記非熱溶着層を接着挟持した構造を発現する工程と,前
記含浸用熱溶着性シートをその溶融部を残して剥離する
工程とを必要とするなど製造技術の観点からすれば煩雑
で,経済性にも劣るものであった。
2. Description of the Related Art Conventionally, a laminated nonwoven structure in which a thermoplastic fiber nonwoven layer and a natural fiber nonwoven layer are laminated has been known. For example, Japanese Patent Publication No. 54-24506 discloses that a gas-permeable heat-welding layer made of a thermoplastic fiber nonwoven fabric and a gas-permeable non-heat-welding layer made of natural fibers and the like are laminated, and a heat-weldable material is formed on the non-heat-welding layer. Are laminated, and a fused portion of the heat-sealable substance and the heat-sealable layer penetrates from both sides of the non-sealable layer, and has a structure in which the non-sealable layer is bonded and sandwiched. Proposed. However, although the laminated nonwoven structure has excellent water absorbability due to the laminated natural fibers, it does not have a bacterial barrier property as is apparent from the purpose of improving the air permeability as described above. It is. In addition, this laminated nonwoven structure is manufactured by laminating a gas-permeable heat-sealing layer and a gas-permeable non-heat-welding layer when manufacturing the same, and by superposing a heat-sealing sheet layer for impregnation on the non-heat-sealing layer. Forming a structure in which a welded portion of the heat-weldable substance and the heat-weldable layer penetrates from both sides of the non-heat-weldable layer by ultrasonic welding to form a structure in which the non-heat-weldable layer is adhered and sandwiched; From the viewpoint of manufacturing technology, the method requires a step of peeling off the weldable sheet while leaving the fused portion thereof, which is complicated and inferior in economy.

【0003】[0003]

【発明が解決しようとする課題】本発明は,熱可塑性極
細繊維不織布層と熱可塑性長繊維不織布層と天然繊維不
織布層とが積層されてなる積層不織構造体であって,引
張り強力と剥離強力が高く,柔軟性が優れ,吸水性を有
し,しかも上述した従来の積層不織構造体が有しない機
能である良好なバクテリアバリア性と耐水圧と耐磨耗性
をも有し,医療・衛生材用,衣料用あるいは生活関連材
用の素材として好適な積層不織構造体を提供しようとす
るものである。
SUMMARY OF THE INVENTION The present invention relates to a laminated nonwoven structure in which a thermoplastic ultrafine fiber nonwoven layer, a thermoplastic long fiber nonwoven layer and a natural fiber nonwoven layer are laminated. It has high strength, excellent flexibility, water absorption, and also has good bacterial barrier properties, water pressure and abrasion resistance, which are functions not possessed by the conventional laminated nonwoven structure described above, -It is an object of the present invention to provide a laminated non-woven structure suitable as a material for sanitary materials, clothing or living-related materials.

【0004】[0004]

【課題を解決するための手段】本発明者らは,前記課題
を達成すべく鋭意検討の結果,本発明に到達した。すな
わち,本発明は,以下の構成をその要旨とするものであ
る。 1)単繊維繊度が0.2デニール以下の熱可塑性極細繊
維からなる不織布層Aの片面に単繊維繊度が1.0デニ
ール以上の熱可塑性長繊維からなる不織布層Bが積層さ
れ,前記不織布層Aの他面に天然繊維同士が機械的に交
絡してなる不織布層Cが積層され,かつ前記極細繊維と
長繊維と,前記極細繊維と天然繊維とが超音波融着処理
により融着されてなる点状融着区域を有する積層不織構
造体であって,前記点状融着区域において前記不織布層
Aの極細繊維と前記不織布層Bの長繊維とが融解部を形
成した状態で固定され,かつ前記不織布層Aと前記不織
布層Cの少なくとも境界面に位置する天然繊維が前記極
細繊維の融解部に埋設された状態で固定されることによ
り全体として一体化されてなることを特徴とする積層不
織構造体。 2)不織構造体全表面積に対する全点状融着区域の面積
の比が2〜40%及び点状融着区域密度が7〜80点/
cm2であることを特徴とする前記積層不織構造体。 3)通気度が50cc/cm2/秒以下であることを特
徴とする前記積層不織構造体
Means for Solving the Problems The inventors of the present invention have made intensive studies to achieve the above object, and have reached the present invention. That is, the present invention has the following configuration as its gist. 1) A nonwoven fabric layer A made of a thermoplastic long fiber having a single fiber fineness of 1.0 denier or more is laminated on one surface of a nonwoven fabric layer A made of a thermoplastic ultrafine fiber having a single fiber fineness of 0.2 denier or less. A nonwoven fabric layer C in which natural fibers are mechanically entangled with each other is laminated on the other surface of A, and the ultrafine fibers and long fibers, and the ultrafine fibers and natural fibers are subjected to ultrasonic fusion treatment.
Forming a laminated nonwoven structure having a point-like fused area formed by fusing, melting portion and the long fibers of the ultrafine fibers and the nonwoven fabric layer B of the nonwoven fabric layer A at the point-like fused area by The natural fibers located at least at the boundary surface between the nonwoven fabric layer A and the nonwoven fabric layer C are fixed in a state where they are embedded in the melted portion of the ultrafine fibers, so that they are integrated as a whole. A laminated nonwoven structure characterized by the above-mentioned. 2) The ratio of the area of all the point-like fusion zones to the total surface area of the nonwoven structure is 2 to 40%, and the density of the point-like fusion zone is 7 to 80 points /
cm 2 , wherein: 3) The laminated nonwoven structure having an air permeability of 50 cc / cm 2 / sec or less.

【0005】次に,本発明を詳細に説明する。まず,本
発明における熱可塑性極細繊維不織布層Aに関してであ
るが,この不織布層Aは,例えばポリオレフイン系重合
体,ポリエステル系重合体あるいはポリアミド系重合体
等の繊維形成性を有する熱可塑性合成重合体からなるも
のである。ポリオレフイン系重合体としては,炭素原子
数2〜18の脂肪族α−モノオレフイン,例えばエチレ
ン,プロピレン,ブテン−1,ペンテン−1,3−メチ
ルブテン−1,ヘキセン−1,オクテン−1,ドデセン
−1,オクタデセン−1からなるホモポリオレフイン重
合体が挙げられる。この脂肪族α−モノオレフインは,
他のエチレン系不飽和モノマ,例えばブタジエン,イソ
プレン,ペンタジエン−1・3,スチレン,α−メチル
スチレンのような類似のエチレン系不飽和モノマが共重
合されたポリオレフイン系共重合体であってもよい。ま
た,ポリエチレン系重合体の場合には,エチレンに対し
てプロピレン,ブテン−1,ヘキセン−1,オクテン−
1又は類似の高級α−オレフインが10重量%以下共重
合されたものであってもよく,ポリプロピレン系重合体
の場合には,プロピレンに対してエチレン又は類似の高
級α−オレフインが10重量%以下共重合されたもので
あってもよいが,前記これらの共重合物の共重合率が前
記重量%を超えると共重合体の融点が低下し,これら共
重合体の繊維からなる不織布を用いて得た積層不織構造
体を高温条件下で使用したとき,機械的特性や寸法安定
性が低下するので好ましくない。
Next, the present invention will be described in detail. First, with respect to the thermoplastic ultrafine fiber nonwoven fabric layer A in the present invention, this nonwoven fabric layer A is made of a thermoplastic synthetic polymer having a fiber-forming property such as a polyolefin polymer, a polyester polymer or a polyamide polymer. It consists of Examples of the polyolefin polymer include aliphatic α-monoolefins having 2 to 18 carbon atoms, such as ethylene, propylene, butene-1, pentene-1,3-methylbutene-1, hexene-1, octene-1, and dodecene. A homopolyolefin polymer composed of 1, octadecene-1 is exemplified. This aliphatic α-monoolefin is
It may be a polyolefin copolymer obtained by copolymerizing other ethylenically unsaturated monomers, for example, similar ethylenically unsaturated monomers such as butadiene, isoprene, pentadiene-1,3, styrene and α-methylstyrene. . In the case of a polyethylene-based polymer, propylene, butene-1, hexene-1, octene-
One or similar higher α-olefin may be copolymerized in an amount of 10% by weight or less, and in the case of a polypropylene polymer, ethylene or similar higher α-olefin is 10% by weight or less based on propylene. The copolymer may be used, but if the copolymerization ratio of the above-mentioned copolymers exceeds the above-mentioned weight%, the melting point of the copolymer decreases, and a non-woven fabric made of fibers of these copolymers is used. When the obtained laminated nonwoven structure is used under high temperature conditions, the mechanical properties and dimensional stability are undesirably reduced.

【0006】ポリエステル系重合体としては,テレフタ
ル酸,イソフタル酸,ナフタリン−2・6−ジカルボン
酸等の芳香族ジカルボン酸あるいはアジピン酸,セバチ
ン酸等の脂肪族ジカルボン酸又はこれらのエステル類を
酸成分とし,かつエチレングリコール,ジエチレングリ
コール,1・4−ブタジオール,ネオペンチルグリコー
ル,シクロヘキサン−1・4−ジメタノール等のジオー
ル化合物をエステル成分とするホモポリエステル重合体
あるいは共重合体が挙げられる。なお,これらのポリエ
ステル系重合体には,パラオキシ安息香酸,5−ソジウ
ムスルホイソフタール酸,ポリアルキレングリコール,
ペンタエリスススリトール,ビスフエノールA等が添加
あるいは共重合されていてもよい。
Examples of the polyester polymer include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and naphthalene-2,6-dicarboxylic acid, and aliphatic dicarboxylic acids such as adipic acid and sebacic acid, and esters thereof. And a homopolyester polymer or copolymer containing a diol compound such as ethylene glycol, diethylene glycol, 1,4-butadiol, neopentyl glycol, cyclohexane-1,4-dimethanol as an ester component. In addition, these polyester polymers include p-hydroxybenzoic acid, 5-sodium sulfoisophthalic acid, polyalkylene glycol,
Pentaerythritol, bisphenol A and the like may be added or copolymerized.

【0007】ポリアミド系重合体としては,ポリイミノ
−1−オキソテトラメチレン(ナイロン4),ポリテト
ラメチレンアジパミド(ナイロン46),ポリカプラミ
ド(ナイロン6),ポリヘキサメチレンアジパミド(ナ
イロン66),ポリウンデカナミド(ナイロン11),
ポリラウロラクタミド(ナイロン12),ポリメタキシ
レンアジパミド,ポリパラキシリレンデカナミド,ポリ
ビスシクロヘキシルメタンデカナミド又はこれらのモノ
マを構成単位とするポリアミド系共重合体が挙げられ
る。特に,ポリテトラメチレンアジパミドの場合,ポリ
テトラメチレンアジパミドにポリカプラミドやポリヘキ
サメチレンアジパミド,ポリウンデカメチレンテレフタ
ラミド等の他のポリアミド成分が30モル%以下共重合
されたポリテトラメチレンアジパミド系共重合体であっ
てもよい。前記他のポリアミド成分の共重合率が30モ
ル%を超えると共重合体の融点が低下し,これら共重合
体の繊維からなる不織布を用いて得た積層不織構造体を
高温条件下で使用したとき,機械的特性や寸法安定性が
低下するので好ましくない。なお,本発明において,前
記繊維形成性を有する熱可塑性重合体には,必要に応じ
て,例えば艶消し剤,顔料,消臭剤,光安定剤,熱安定
剤,酸化防止剤等の各種添加剤を本発明の効果を損なわ
ない範囲内で添加することができる。
Examples of polyamide polymers include polyimino-1-oxotetramethylene (nylon 4), polytetramethylene adipamide (nylon 46), polycapramide (nylon 6), polyhexamethylene adipamide (nylon 66), Polyundecanamide (nylon 11),
Examples thereof include polylaurolactamide (nylon 12), polymethaxylene adipamide, polyparaxylylene decanamide, polybiscyclohexylmethanedecanamide, and a polyamide copolymer having these monomers as a constitutional unit. In particular, in the case of polytetramethylene adipamide, polytetramethylene adipamide is copolymerized with other polyamide components such as polycapramid, polyhexamethylene adipamide, polyundecamethylene terephthalamide and the like in an amount of 30 mol% or less. It may be a tetramethylene adipamide copolymer. If the copolymerization ratio of the other polyamide component exceeds 30 mol%, the melting point of the copolymer decreases, and a laminated nonwoven structure obtained using a nonwoven fabric made of fibers of these copolymers is used under high temperature conditions. In such a case, the mechanical properties and dimensional stability decrease, which is not preferable. In the present invention, various additives such as matting agents, pigments, deodorants, light stabilizers, heat stabilizers, antioxidants and the like may be added to the fiber-forming thermoplastic polymer as required. An agent can be added within a range that does not impair the effects of the present invention.

【0008】本発明における熱可塑性極細繊維不織布層
Aは,前記重合体からなり,かつ単繊維繊度が0.2デ
ニール以下の繊維から構成されるメルトブローン不織布
である。この極細繊維は,前記重合体単独からなるもの
の他に,前記重合体の中から選択された2種以上の相異
なる重合体が各々溶融紡糸性を損なわない範囲内でブレ
ンドされたブレンド物からなるものであってもよく,例
えばポリエステル系重合体とポリオレフイン系重合体と
がブレンドされたものや,2種の相異なるポリアミド系
重合体がブレンドされたものが挙げられる。また,この
極細繊維の形態は,前記重合体の中から選択された2種
の相異なる重合体が芯鞘型あるいは並列型に配されたも
のであってもよい。
The thermoplastic ultrafine fiber non-woven fabric layer A in the present invention is a melt blown non-woven fabric composed of the above-mentioned polymer and having a single fiber fineness of 0.2 denier or less. This ultrafine fiber is composed of a blend of two or more different polymers selected from the above polymers in a range that does not impair the melt spinnability, in addition to the one consisting of the above polymer alone. For example, a blend of a polyester polymer and a polyolefin polymer or a blend of two different polyamide polymers may be used. Further, the form of the ultrafine fibers may be such that two different polymers selected from the above polymers are arranged in a core-sheath type or a parallel type.

【0009】メルトブローン不織布は,前述した重合体
を重合体を単独で,あるいは前記重合体の中から選択さ
れた2種以上の相異なる重合体がブレンドされたブレン
ド物を,あるいは前記重合体の中から選択された2種の
相異なる重合体を芯鞘型あるいは並列型に配するように
していわゆるメルトブローン法で溶融紡出し,すなわち
紡糸口金に配設された孔径0.1〜1.0mm程度の紡
糸孔から吐出し,吐出された溶融重合体流を溶融温度よ
り20〜50℃高い温度で幅0.1〜0.5mm程度の
スリツト状ノズルから噴出される高圧気体流により牽引
・細化し,冷却した後,移動する捕集面上に捕集・堆積
させることによって,容易に単繊維繊度が0.2デニー
ル以下の繊維から構成される不織ウエブを得ることがで
きる。メルトブローン法で溶融紡出するに際し,紡糸温
度は用いる重合体の溶融特性に応じて適宜選択するが,
このとき,溶融重合体の溶融粘度を通常の溶融紡糸の場
合よりも低くしなければ紡糸孔から吐出された溶融重合
体流の細化が困難で,細繊度の繊維を得ることができな
い。このことより,紡糸温度は,通常は重合体の融点よ
り50〜100℃高い温度とするのが好ましく,紡糸温
度が重合体の融点+50℃未満であると,溶融粘度が高
過ぎて溶融重合体流の細化が困難となって細繊度の繊維
を得ることができず,一方,紡糸温度が重合体の融点+
100℃を超えると,重合体が熱分解を生じ,いずれも
好ましくない。また,吐出された溶融重合体流を牽引・
細化する高圧気体流は,その温度を重合体流の溶融温度
より20〜50℃高い温度とし,この温度が重合体流の
溶融温度より+20℃未満であると,製糸性が低下して
極細繊維の形成が困難となり,一方,この温度が重合体
流の溶融温度より+50℃を超えると,重合体の熱分解
により紡糸口金の吐出孔が経時的に汚れて操業性が低下
し,いずれも好ましくない。さらに,高圧気体流の流速
は,通常は80〜300m/秒程度とし,その噴出方向
は,紡糸線方向に対して5〜45度の角度をなす方向と
するのが好ましい。
[0009] The melt blown nonwoven fabric is prepared by using the above-mentioned polymer alone, a blend of two or more different polymers selected from the above-mentioned polymers, or the above-mentioned polymer. The two different polymers selected from are melt-spun by a so-called melt blown method by disposing them in a core-in-sheath type or a parallel type, that is, a hole diameter of about 0.1 to 1.0 mm provided in a spinneret. The molten polymer stream discharged from the spinning hole is drawn and thinned by a high-pressure gas stream ejected from a slit-like nozzle having a width of about 0.1 to 0.5 mm at a temperature 20 to 50 ° C. higher than the melting temperature, After cooling, the nonwoven web composed of fibers having a single-fiber fineness of 0.2 denier or less can be easily obtained by collecting and depositing it on a moving collecting surface. When melt spinning by the melt blown method, the spinning temperature is appropriately selected according to the melting characteristics of the polymer used.
At this time, unless the melt viscosity of the molten polymer is set lower than in the case of ordinary melt spinning, it is difficult to reduce the flow of the molten polymer discharged from the spinning hole, and it is not possible to obtain fibers with fineness. For this reason, the spinning temperature is usually preferably 50 to 100 ° C. higher than the melting point of the polymer. If the spinning temperature is lower than the melting point of the polymer + 50 ° C., the melt viscosity is too high and the molten polymer is too high. It is difficult to make the flow thinner and it is not possible to obtain fine fibers, while the spinning temperature is higher than the melting point of the polymer.
When the temperature exceeds 100 ° C., the polymer is thermally decomposed, which is not preferable. It also pulls the discharged molten polymer flow.
The temperature of the high-pressure gas stream to be reduced is set to a temperature 20 to 50 ° C. higher than the melting temperature of the polymer stream. Fiber formation becomes difficult. On the other hand, if this temperature exceeds + 50 ° C. from the melting temperature of the polymer stream, the discharge hole of the spinneret becomes dirty with time due to the thermal decomposition of the polymer, resulting in reduced operability. Not preferred. Further, the flow rate of the high-pressure gas stream is usually about 80 to 300 m / sec, and the jetting direction is preferably a direction forming an angle of 5 to 45 degrees with respect to the direction of the spinning line.

【0010】本発明における熱可塑性極細繊維不織布層
Aは,前述したように単繊維繊度が0.2デニール以下
の繊維から構成されるものである。単繊維繊度が0.2
デニールを超えると,得られる不織布の風合いが硬くな
って柔軟性に富む積層不織構造体を得ることができず,
しかも不織布表面のポアサイズが大きくなって十分なバ
クテリアバリア性が発現せず,好ましくない。
The thermoplastic microfiber nonwoven fabric layer A in the present invention is composed of fibers having a single fiber fineness of 0.2 denier or less as described above. Single fiber fineness is 0.2
If the denier is exceeded, the texture of the obtained nonwoven fabric becomes hard, and a laminated nonwoven structure with high flexibility cannot be obtained.
In addition, the pore size of the surface of the nonwoven fabric increases, and sufficient bacterial barrier properties are not exhibited, which is not preferable.

【0011】本発明における熱可塑性極細繊維不織布層
Aは,その目付けが10〜120g/m2 のものである
のが好ましい。目付けが10g/m2 未満であると,繊
維同士の緻密な重なりの程度が低く,この不織布と熱可
塑性長繊維不織布と天然繊維不織布とを積層・一体化し
て得られる積層不織構造体の地合いが低下するため,好
ましくない。一方,目付けが120g/m2 を超える
と,バクテリアバリア性は向上するものの厚みが大きく
なり過ぎるため,得られる積層不織構造体を例えば柔軟
性が要求されるような分野に適用することが困難とな
り,しかもこの不織布に熱可塑性長繊維不織布と天然繊
維不織布を積層した後,超音波融着装置を用い融着処理
を施して一体化するに際し,加工速度を遅くしたりある
いは多大の超音波エネルギを供給するなどの必要が生
じ,好ましくない。したがって,本発明では,この極細
繊維不織布層の目付けを10〜120g/m2 ,好まし
くは20〜100g/m2 とする。
The thermoplastic ultrafine fiber nonwoven fabric layer A in the present invention preferably has a basis weight of 10 to 120 g / m 2 . When the basis weight is less than 10 g / m 2 , the degree of dense overlap between the fibers is low, and the formation of a laminated nonwoven structure obtained by laminating and integrating this nonwoven fabric, thermoplastic long-fiber nonwoven fabric, and natural fiber nonwoven fabric Is not preferred since On the other hand, if the basis weight exceeds 120 g / m 2 , the bacterial barrier property is improved but the thickness becomes too large, so that it is difficult to apply the obtained laminated nonwoven structure to a field where flexibility is required, for example. In addition, after laminating a thermoplastic long-fiber nonwoven fabric and a natural fiber nonwoven fabric on this nonwoven fabric, and performing fusion processing using an ultrasonic fusion device, the processing speed is slowed down or a large amount of ultrasonic energy is used. It is necessary to supply the water, which is not preferable. Therefore, in the present invention, the basis weight of the ultrafine fiber nonwoven fabric layer is 10 to 120 g / m 2 , preferably 20 to 100 g / m 2 .

【0012】次に,本発明における熱可塑性長繊維不織
布層Bに関してであるが,この不織布層Bは,前記の重
合体からなり,かつ単繊維繊度が1.0デニール以上の
長繊維から構成されるスパンボンド不織布である。この
長繊維は,前記重合体単独からなるものの他に前記重合
体の中から選択された2種以上の相異なる重合体が各々
溶融紡糸性を損なわない範囲内でブレンドされたブレン
ド物からなるものであってもよく,例えばポリエステル
系重合体とポリオレフイン系重合体とがブレンドされた
ものや,2種の相異なるポリアミド系重合体がブレンド
されたものが挙げられる。また,この極細繊維の形態
は,前記重合体の中から選択された2種の相異なる重合
体が芯鞘型あるいは並列型に配されたものであってもよ
い。
Next, regarding the thermoplastic long-fiber non-woven fabric layer B in the present invention, the non-woven fabric layer B is made of the above-mentioned polymer and has a single-fiber fineness of 1.0 denier or more. Spunbond nonwoven fabric. The long fiber is formed of a blend of two or more different polymers selected from the above polymers, as well as a blend of the above polymers alone, as long as the melt spinnability is not impaired. Examples thereof include a blend of a polyester polymer and a polyolefin polymer, and a blend of two different polyamide polymers. Further, the form of the ultrafine fibers may be such that two different polymers selected from the above polymers are arranged in a core-sheath type or a parallel type.

【0013】スパンボンド不織布は,前述した重合体を
単独で,あるいは前記重合体の中から選択された2種以
上の相異なる重合体がブレンドされたブレンド物を,あ
るいは前記重合体の中から選択された2種の相異なる重
合体を芯鞘型あるいは並列型に配するようにしていわゆ
るスパンボンド法で溶融紡出し,すなわち紡糸口金から
溶融紡出・冷却し,エアーサツカ等の引き取り手段を用
い引取り速度を3000〜6000m/分として牽引・
細化した後,開繊器を用いて開繊し,移動する捕集面上
に捕集・堆積させることによって,単繊維繊度が1.0
デニール以上の繊維から構成される不織ウエブを得るこ
とができる。スパンボンド法で溶融紡出するに際して
は,その引取り速度を3000〜6000m/分とする
のがよい。引取り速度が3000m/分未満であると,
紡出繊維の分子配向度が十分に増大しないため得られる
ウエブの機械的特性や寸法安定性が向上せず,一方,引
取り速度が6000m/分を超えると,溶融紡糸時の製
糸性が低下し,いずれも好ましくない。
[0013] The spunbonded nonwoven fabric is selected from the above-mentioned polymers alone, or a blend of two or more different polymers selected from the above-mentioned polymers, or from the above-mentioned polymers. The two different polymers obtained are melt-spun by a so-called spunbond method by disposing them in a core-sheath type or a side-by-side type, that is, melt-spun from a spinneret and cooled, and are taken up by a take-off means such as an air sucker. Towing speed of 3000 to 6000 m / min.
After thinning, the fiber is opened using an opening device, and collected and deposited on a moving collecting surface, so that the single fiber fineness is 1.0.
A nonwoven web composed of fibers of denier or more can be obtained. When the melt spinning is performed by the spunbond method, the take-off speed is preferably 3000 to 6000 m / min. If the take-off speed is less than 3000 m / min,
The mechanical properties and dimensional stability of the obtained web are not improved because the degree of molecular orientation of the spun fiber is not sufficiently increased. On the other hand, if the take-up speed exceeds 6000 m / min, the spinnability during melt spinning decreases. However, neither is preferred.

【0014】本発明における熱可塑性長繊維不織布層B
は,前述したように単繊維繊度が1.0デニール以上の
繊維から構成されるものである。単繊維繊度が1.0デ
ニール未満であると,得られる不織布の機械的特性が低
くなって引張り強力の優れた積層不織構造体を得ること
ができず,好ましくない。
The thermoplastic long-fiber nonwoven fabric layer B in the present invention
Is composed of fibers having a single fiber fineness of 1.0 denier or more as described above. If the single-fiber fineness is less than 1.0 denier, the resulting nonwoven fabric has poor mechanical properties and cannot obtain a laminated nonwoven structure having excellent tensile strength, which is not preferable.

【0015】本発明における熱可塑性長繊維不織布層B
は,その目付けが10〜150g/m2 のものであるの
が好ましい。目付けが10g/m2 未満であると,機械
的特性が低下するばかりか繊維同士の緻密な重なりの程
度が低くなり,この不織布と熱可塑性極細繊維不織布と
天然繊維不織布とを積層・一体化して得られる積層不織
構造体の地合いが低下し,一方,目付けが150g/m
2 を超えると,柔軟性が低下するばかりか,この不織布
に熱可塑性極細繊維不織布と天然繊維不織布を積層した
後,超音波融着装置を用い融着処理を施して一体化する
に際し,加工速度を遅くしたりあるいは多大の超音波エ
ネルギを供給するなどの必要が生じ,好ましくない。し
たがって,本発明では,この長繊維不織布層の目付けを
10〜150g/m2 ,好ましくは20〜100g/m
2 とする。
The thermoplastic long-fiber nonwoven fabric layer B in the present invention
Preferably has a basis weight of 10 to 150 g / m 2 . If the basis weight is less than 10 g / m 2 , not only the mechanical properties are reduced but also the degree of dense overlapping between the fibers is reduced, and the nonwoven fabric, the thermoplastic ultrafine fiber nonwoven fabric and the natural fiber nonwoven fabric are laminated and integrated. The texture of the obtained laminated nonwoven structure is reduced, while the basis weight is 150 g / m.
If it exceeds 2 , not only the flexibility will be reduced, but also, after laminating a thermoplastic ultrafine fiber nonwoven fabric and a natural fiber nonwoven fabric on this nonwoven fabric, apply a fusion process using an ultrasonic fusion device to integrate them. It is necessary to slow down the operation or supply a large amount of ultrasonic energy, which is not preferable. Therefore, in the present invention, the basis weight of the long-fiber nonwoven fabric layer is 10 to 150 g / m 2 , preferably 20 to 100 g / m 2 .
Assume 2 .

【0016】次に,本発明における天然繊維同士が機械
的に交絡してなる不織布層Cに関してであるが,この不
織布層Cを構成する天然繊維とは,木綿繊維や麻繊維等
のセルロース系繊維の他に,ラミー等の動物繊維,絹短
繊維,天然パルプ,レーヨンに代表される各種再生短繊
維をも包含するものである。本発明では,この不織布層
Cの出発原料として,晒し加工の施されていないコーマ
糸,晒し加工された晒し綿,あるいは織物・編物から得
られる各種の反毛を用いることもできる。出発原料とし
て反毛を用いる場合,効果的に用い得る反毛機として
は,ラツグマシン,ノツトブレーカ,ガーネツトマシ
ン,廻切機が挙げられる。用いる反毛機の種類と組み合
わせは,反毛される織物・編物等の布帛形状や構成する
糸の太さあるいは撚りの強さにもよるが,同一の反毛機
を複数台直列に連結したり,2種以上の反毛機を組み合
わせて使用したりするとより効果的である。この反毛機
による解繊率(%)は30〜95%の範囲であるのが好
ましい。この解繊率が30%未満であると,カードウエ
ブ中に未解繊繊維が存在するため不織布表面にザラツキ
が生じるのみでなく,例えば高圧液体柱状流処理により
天然繊維同士を三次元的機械的交絡を施すに際して未解
繊繊維部分を高圧液体柱状流が十分貫通せず,一方,解
繊率が95%を超えると,前記熱可塑性極細繊維不織布
層と熱可塑性長繊維不織布層と積層・一体化して得られ
る積層不織構造体において十分な表面摩擦強度が得られ
ず,いずれも好ましくない。なお,ここでいう解繊率
(%)とは,下記式(1)により求められるものであ
る。 解繊率(%)=(被反毛重量−糸状物重量)×100/被反毛重量・・(1)
Next, regarding the nonwoven fabric layer C in which the natural fibers are mechanically entangled with each other in the present invention, the natural fibers constituting the nonwoven fabric layer C are cellulosic fibers such as cotton fibers and hemp fibers. In addition, various recycled short fibers represented by animal fibers such as ramie, silk short fibers, natural pulp, and rayon are also included. In the present invention, as a starting material of the nonwoven fabric layer C, combed yarn that has not been subjected to bleaching processing, bleached cotton that has been bleached, or various types of bristles obtained from a woven or knitted fabric can be used. When anti-hair is used as a starting material, examples of anti-hair machines that can be used effectively include a rat machine, a knot breaker, a garnet machine, and a turning machine. The type and combination of anti-hair machines to be used depends on the shape of the fabric, such as woven or knitted fabric, and the thickness or twist strength of the constituent yarns. It is more effective to use a combination of two or more types of anti-hair machines. It is preferable that the defibration rate (%) by this anti-hair machine is in the range of 30 to 95%. When the defibration rate is less than 30%, not only the unwoven fibers are present in the card web, but also the surface of the nonwoven fabric becomes rough, and the natural fibers are three-dimensionally mechanically processed by, for example, high pressure liquid column flow treatment. When entangled, the high-pressure liquid columnar flow does not penetrate sufficiently through the unfibrillated fiber portion, while when the defibration rate exceeds 95%, the thermoplastic ultrafine fiber nonwoven fabric layer and the thermoplastic long fiber nonwoven fabric layer are laminated and integrated. A sufficient surface frictional strength cannot be obtained in the laminated nonwoven structure obtained by the formation, and neither is preferable. Here, the defibration rate (%) is determined by the following equation (1). Fibrillation rate (%) = (weight of bristles-weight of thread) x 100 / weight of bristles ... (1)

【0017】本発明における天然繊維不織布層Cは,前
記天然繊維からなり,かつ繊維同士が機械的に交絡して
なるものである。すなわち,天然繊維同士が,高圧液体
柱状流処理あるいはニードルパンチング処理により機械
的に交絡したものであり,特に前者の場合,繊維同士が
三次元的に交絡して不織布の機械的性能が向上すると共
に柔軟性も向上するため,例えば前記熱可塑性極細繊維
不織布層と熱可塑性長繊維不織布層と積層・一体化して
得られる積層不織構造体を衛生材用あるいは生活関連材
用の素材として用いる上で好ましい。この不織布層は,
前記天然繊維素材の中から選択された単一素材あるいは
複数種の素材が混合されてなるものを出発原料とし,カ
ード機を用いて所定目付けのカードウエブを作成し,次
いで得られたウエブに高圧液体柱状流処理あるいはニー
ドルパンチング処理により繊維間に機械的交絡を施すこ
とにより容易に得ることができる。このカードウエブ
は,構成繊維の配列度合によって種々選択することがで
き,例えばカード機の進行方向に配列したパラレルウエ
ブ,パラレルウエブがクロスレイドされたウエブ,ラン
ダムに配列したランダムウエブあるいは両者の中程度に
配列したセミランダムウエブ等が挙げられる。また,衣
料用素材としての展開を図りたい場合には,不織布強力
の縦/横比が概ね1/1となるカードウエブを使用する
のが好ましい。
The natural fiber nonwoven fabric layer C in the present invention is made of the above-mentioned natural fibers, and the fibers are mechanically entangled with each other. In other words, natural fibers are mechanically entangled with each other by a high-pressure liquid columnar flow treatment or needle punching treatment. In the former case, in particular, the fibers are entangled three-dimensionally to improve the mechanical performance of the nonwoven fabric. In order to improve the flexibility, for example, a laminated nonwoven structure obtained by laminating and integrating the thermoplastic ultrafine fiber nonwoven layer and the thermoplastic long fiber nonwoven layer as a material for a sanitary material or a living-related material is used. preferable. This nonwoven layer
Using a single material selected from the above natural fiber materials or a mixture of a plurality of types of materials as a starting material, a card web having a predetermined basis weight is prepared using a card machine, and then a high pressure It can be easily obtained by subjecting fibers to mechanical entanglement by liquid column flow treatment or needle punching treatment. This card web can be selected variously according to the degree of arrangement of the constituent fibers. For example, a parallel web arranged in the traveling direction of the card machine, a web in which parallel webs are cross-laid, a random web arranged randomly, or a medium degree of both. And the like. Further, when it is desired to develop the material as a clothing material, it is preferable to use a card web in which the aspect ratio of the nonwoven fabric is approximately 1/1.

【0018】高圧液体柱状流処理の場合,例えば孔径が
0.05〜1.5mm特に0.1〜0.4mmの噴射孔
を孔間隔を0.05〜5mmで1列あるいは複数列に多
数配列した装置を用い,噴射圧力が5〜150kg/c
2 Gの高圧液体を前記噴射孔から噴射し,多孔性支持
部材上に載置したカードウエブに衝突させることにより
繊維間に三次元的交絡を付与する方法を採用する。噴射
孔の配列は,このカードウエブの進行方向と直交する方
向に列状に配列する。高圧液体としては,常温の水ある
いは温水を用いることができる。噴射孔とウエブとの間
の距離は,1〜15cmとするのがよい。この距離が1
cm未満であるとこの処理により得られる複合不織布の
地合いが乱れ,一方,この距離が15cmを超えると液
体流が積層物に衝突したときの衝撃力が低下して三次元
的な交絡が十分に施されず,いずれも好ましくない。こ
の高圧液体柱状流による処理は,少なくとも2段階に分
けて施すとよい。すなわち,第1段階の処理として圧力
が5〜40kg/cm2 Gの高圧液体流を噴出し前記ウ
エブに衝突させ,ウエブの構成繊維同士を予備的に交絡
させる。この第1段階の処理において,液体流の圧力が
5kg/cm2 G未満であるとウエブの構成繊維同士を
予備的に交絡させることができず,一方,液体流の圧力
が40kg/cm2 Gを超えるとウエブに高圧液体流を
噴出し衝突させたときウエブの構成繊維が液体流の作用
によって乱れ,ウエブに地合いの乱れや目付け斑が生じ
るため,いずれも好ましくない。引き続き,第2段階の
処理として圧力が50〜150kg/cm2 Gの高圧液
体流を噴出し前記ウエブに衝突させ,ウエブの構成繊維
同士を三次元的に交絡させて全体として緻密に一体化さ
せる。この第2段階の処理において,液体流の圧力が5
0kg/cm2 G未満であると,上述したような繊維間
の三次元的交絡を十分に形成することができず,一方,
液体流の圧力が150kg/cm2 Gを超えると,得ら
れる不織布の嵩高性と柔軟性が向上せず,いずれも好ま
しくない。なお,ウエブの目付けによっては,第2段階
の処理に引き続き第3段階の処理として,第2段階の処
理側と逆の側から第2段階の処理と同様の条件にて再度
処理を施すことにより,表裏共に緻密に繊維同士が交絡
した不織布を得ることができる。高圧液体柱状流処理を
施すに際して用いる前記ウエブを担持する多孔性支持部
材としては,例えば20〜100メツシユの金網製ある
いは合成樹脂製等のメツシユスクリーンや有孔板など,
高圧液体流がウエブを貫通し得るものであれば特に限定
されない。20メツシユ未満であると,高圧液体柱状流
がウエブに衝突した際に繊維が柱状流と共にメツシユス
クリーンを通過して繊維の脱落が発生し,一方,200
メツシユを超えると,高圧液体柱状流がウエブとメツシ
ユスクリーンとを通過するに要するエネルギー量が多大
になって生産コストが上昇し,いずれも好ましくない。
高圧液体流処理を施した後,処理後の前記ウエブから過
剰水分を除去する。この過剰水分を除去するに際して
は,公知の方法を採用することができる。例えばマング
ルロール等の絞り装置を用いて過剰水分をある程度機械
的に除去し,引き続きサクシヨンバンド方式の熱風循環
式乾燥機等の乾燥装置を用いて残余の水分を除去して不
織布を得ることができる。
In the case of the high pressure liquid columnar flow treatment, for example, a large number of injection holes having a hole diameter of 0.05 to 1.5 mm, particularly 0.1 to 0.4 mm are arranged in one or more rows with a hole interval of 0.05 to 5 mm. The injection pressure is 5 to 150 kg / c.
A method is adopted in which high-pressure liquid of m 2 G is ejected from the ejection hole and impinged on a card web placed on a porous support member to impart three-dimensional entanglement between fibers. The ejection holes are arranged in rows in a direction perpendicular to the direction of travel of the card web. Room temperature water or warm water can be used as the high-pressure liquid. The distance between the injection hole and the web is preferably 1 to 15 cm. This distance is 1
If the distance is less than 15 cm, the formation of the composite nonwoven fabric obtained by this treatment is disturbed. On the other hand, if the distance exceeds 15 cm, the impact force when the liquid stream collides with the laminate is reduced, and three-dimensional confounding is sufficiently caused. Not applied, neither of which is preferred. The treatment by the high-pressure columnar flow is preferably performed in at least two stages. That is, a high-pressure liquid stream having a pressure of 5 to 40 kg / cm 2 G is jetted as a first-stage treatment so as to impinge on the web to preliminarily entangle the constituent fibers of the web. In the first stage treatment, if the pressure of the liquid flow is less than 5 kg / cm 2 G, the constituent fibers of the web cannot be pre-entangled with each other, while the pressure of the liquid flow is 40 kg / cm 2 G If the pressure exceeds the above, when the high-pressure liquid flow is jetted and collides with the web, the constituent fibers of the web are disturbed by the action of the liquid flow, and the formation of the web is disturbed and the weight of the web is uneven. Subsequently, a high-pressure liquid stream having a pressure of 50 to 150 kg / cm 2 G is jetted as a second stage treatment to impinge on the web, and the constituent fibers of the web are three-dimensionally entangled to form a densely integrated structure as a whole. . In this second stage of processing, the pressure of the liquid stream is 5
If it is less than 0 kg / cm 2 G, the above-mentioned three-dimensional entanglement between fibers cannot be sufficiently formed.
When the pressure of the liquid flow exceeds 150 kg / cm 2 G, the bulkiness and flexibility of the obtained nonwoven fabric are not improved, and neither is preferable. Depending on the basis weight of the web, the third stage process may be performed again from the side opposite to the second stage process under the same conditions as the second stage process, following the second stage process. Thus, a nonwoven fabric in which the fibers are entangled densely on both the front and back sides can be obtained. Examples of the porous support member for supporting the web used in performing the high-pressure columnar flow treatment include a mesh screen or a perforated plate made of a wire mesh or a synthetic resin of 20 to 100 meshes.
There is no particular limitation as long as the high-pressure liquid flow can penetrate the web. When the pressure is less than 20 mesh, when the high pressure liquid columnar stream collides with the web, the fiber passes through the mesh screen together with the columnar flow, and the fiber drops off.
When the pressure exceeds the mesh, the amount of energy required for the high-pressure liquid columnar flow to pass through the web and the mesh screen is increased, and the production cost is increased.
After the high-pressure liquid flow treatment, excess water is removed from the treated web. In removing the excess moisture, a known method can be employed. For example, the excess water is mechanically removed to some extent using a squeezing device such as a mangle roll, and the remaining moisture is subsequently removed using a drying device such as a suction band type hot air circulation dryer to obtain a nonwoven fabric. it can.

【0019】本発明における天然繊維不織布層は,その
目付けが30〜200g/m2 のものであるのが好まし
い。目付けが30g/m2 未満であると,天然繊維の単
位面積当たりの存在量が小さ過ぎて本発明が目的とする
吸水性が十分に具備されず,一方,目付けが200g/
2 を超えると,前記熱可塑性極細繊維不織布と熱可塑
性長繊維不織布との積層後に超音波融着装置を用いて点
状融着区域を形成することにより一体化して得られる積
層不織構造体においてその剥離強力が十分に向上せず,
いずれも好ましくない。したがって,本発明では,この
天然繊維不織布層の目付けを30〜200g/m2
し,好ましくは50〜150g/m2 とする。
It is preferable that the basis weight of the natural fiber nonwoven fabric layer in the present invention is 30 to 200 g / m 2 . If the basis weight is less than 30 g / m 2 , the amount of natural fiber per unit area is too small to sufficiently provide the water absorbency targeted by the present invention, while the basis weight is 200 g / m 2.
Beyond m 2, the thermoplastic microfine fiber nonwoven fabric and a thermoplastic filament nonwoven fabric laminated nonwoven structure obtained by integrally by forming a point-like fusion zone using an ultrasonic welding device after the lamination of the The peel strength did not improve sufficiently at
Neither is preferred. Therefore, in the present invention, the basis weight of the natural fiber nonwoven fabric layer is 30 to 200 g / m 2 , preferably 50 to 150 g / m 2 .

【0020】次に,本発明の積層不織構造体に関して説
明する。本発明の積層不織構造体は,前記熱可塑性極細
繊維不織布層Aの片面に前記熱可塑性長繊維不織布層B
が積層され,前記不織布層Aの他面に天然繊維不織布層
Cが積層され,かつ前記極細繊維と長繊維と,前記極細
繊維と天然繊維とが融着されてなる点状融着区域を有
し,前記点状融着区域において前記不織布層Aの極細繊
維と前記不織布層Bの長繊維とが融解部を形成した状態
で固定され,かつ前記不織布層Aと前記不織布層Cの少
なくとも境界面に位置する天然繊維が前記極細繊維の融
解部に埋設された状態で固定されることにより全体とし
て一体化されてなるものである。この点状融着区域と
は,周波数が約20KHz程度の通常ホーンと呼称され
る超音波発振器と,円周上に点状又は帯状に凸状突起部
を具備するパターンロールとからなる超音波融着装置を
用いて形成され,前記凸状突起部に該当する部分に当接
する繊維同士を融着させたものである。さらに詳しく
は,この点状融着区域は,不織構造体全表面積に対して
特定の領域と特定の配置とを有し,個々の点状融着区域
は必ずしも円形の形状である必要はないが,不織構造体
全表面積に対する全点状融着区域の面積の比が2〜40
%,好ましくは4〜25%及び同区域密度が7〜80点
/cm2 ,好ましくは8〜50点/cm2 であるものが
よい。不織構造体全表面積に対する全点状融着区域の面
積の比が2%未満であると,前記熱可塑性極細繊維不織
布層と熱可塑性長繊維層と天然繊維不織布層との積層後
に超音波融着装置を用いて点状融着区域を形成すること
により一体化して得られる積層不織構造体においてその
剥離強力が十分に向上せず,一方,前記面積の比が40
%を超えると,得られる積層不織構造体の柔軟性と嵩高
性が低下し,いずれも好ましくない。また,同区域密度
が7点/cm2 未満であると,得られる積層不織構造体
の接着力すなわち剥離強力に斑が生じるのみならずバク
テリアバリア性が低下し,一方,同区域密度が80点/
cm2 を超えると,得られる積層不織構造体の柔軟性と
嵩高性が低下し,いずれも好ましくない。
Next, the laminated nonwoven structure of the present invention will be described. The laminated nonwoven structure according to the present invention comprises a thermoplastic long-fiber nonwoven fabric layer B on one side of the thermoplastic microfiber nonwoven fabric layer A.
Are laminated, a natural fiber non-woven fabric layer C is laminated on the other surface of the non-woven fabric layer A, and a point-like fusion zone in which the ultrafine fibers and long fibers are fused together with the ultrafine fibers and natural fibers is provided. The ultrafine fibers of the nonwoven fabric layer A and the long fibers of the nonwoven fabric layer B are fixed in the point-like fusion zone in a state where a fused portion is formed, and at least an interface between the nonwoven fabric layer A and the nonwoven fabric layer C is formed. Is fixed in a state where the natural fibers are embedded in the melted portion of the ultrafine fibers to be integrated as a whole. And the point-like fused area, the ultrasonic waves consists of a ultrasonic oscillator frequency is commonly referred to as a horn of about 20 KHz, the pattern roll having a convex protrusion on point-like or band on the circumference The fibers which are formed by using a fusion device and which abut against the portions corresponding to the convex protrusions are fused together. More specifically, the point fusion zones have a specific area and a specific arrangement with respect to the total surface area of the nonwoven structure, and the individual point fusion zones do not necessarily have to be circular in shape. However, the ratio of the area of the whole point fusion zone to the total surface area of the nonwoven structure is 2 to 40.
%, Preferably 4 to 25%, and the area density of 7 to 80 points / cm 2 , preferably 8 to 50 points / cm 2 . When the ratio of the area of the whole point-like fusion zone to the total surface area of the nonwoven structure is less than 2%, the ultrasonic fusion after lamination of the thermoplastic ultrafine fiber nonwoven layer, the thermoplastic long fiber layer and the natural fiber nonwoven layer is performed. The peel strength is not sufficiently improved in the laminated non-woven structure obtained by forming the point-like fusion zone by using the bonding apparatus, while the area ratio is 40%.
%, The flexibility and bulkiness of the obtained laminated nonwoven structure decrease, and both are not preferred. If the density of the area is less than 7 points / cm 2 , not only will the resulting laminated nonwoven structure have uneven adhesion, that is, peeling strength, but also the bacterial barrier property will be reduced. point/
If it exceeds cm 2 , the flexibility and bulkiness of the obtained laminated nonwoven structure decrease, and both are not preferred.

【0021】本発明において用い得る超音波融着装置と
は,公知の装置すなわち周波数が約20KHz程度の通
常ホーンと呼称される超音波発振器と,円周上に点状又
は帯状に凸状突起部を具備するパターンロールとからな
る装置である。前記超音波発振器の下部に前記パターン
ロールが配設され,被処理物は超音波発振器とパターン
ロールとの間に通される。このパターンロールに配設さ
れる凸状突起部は1列あるいは複数列であってもよく,
また,その配設が複数列の場合には,並列あるいは千鳥
型のいずれの配列でもよい。融着処理に際しては,ホー
ンに空気圧を印加して加圧する。ホーンとパターンロー
ル間の線圧は,通常1〜10kg/cmとし,線圧が1
kg/cm未満であると,前記熱可塑性極細繊維不織布
層と熱可塑性長繊維層と天然繊維不織布層との積層物に
対する押し圧が不足して融着が生じなく,一方,線圧が
10kg/cmを超えると,点状融着区域に対する押し
圧が高過ぎて融着区域に相当する前記熱可塑性極細繊維
不織布層と熱可塑性長繊維層とが熱分解したり,あるい
は極端な場合には穿孔が生じたりして得られる積層不織
構造体の接着力が低下し,いずれも好ましくない。本発
明の積層不織構造体は,前記熱可塑性極細繊維不織布層
と熱可塑性長繊維不織布層と天然繊維不織布層との積層
物に前述した超音波融着装置を用いて融着処理を施すこ
とにより,点状融着区域において前記不織布層Aの極細
繊維と前記不織布層Bの長繊維とが融解部を形成した状
態で固定され,かつ前記不織布層Aと前記不織布層Cの
少なくとも境界面に位置する天然繊維が前記極細繊維の
融解部に埋設された状態で固定され全体として一体化さ
れたものである。図1は,本発明の積層不織構造体にお
ける前記点状融着区域の断面を示す模式図である。図に
おいて,1は点状融着区域において融解した熱可塑性極
細繊維層,2は点状融着区域において融解した熱可塑性
長繊維,3は天然繊維で,同図から明らかなように点状
融着区域において熱可塑性極細繊維と熱可塑性長繊維と
は融解接着しており,かつ熱可塑性極細繊維不織布層と
天然繊維不織布層の少なくとも境界面に位置する天然繊
維2は,熱可塑性極細繊維が融解した融解部すなわち1
に埋設された状態で固定されており,各不織布層が点状
融着区域においてこのような接着構造を有するため,剥
離強力の高い積層不織構造体となる。
[0021] The ultrasonic welding apparatus which can be used in the present invention, the convex protrusion and the ultrasonic oscillator known devices or frequency is commonly referred to as a horn of about 20 KHz, the point-like or band on the circumference And a pattern roll having a section. The pattern roll is disposed below the ultrasonic oscillator, and an object is passed between the ultrasonic oscillator and the pattern roll. The convex projections provided on the pattern roll may be in one row or in a plurality of rows.
When the arrangement is a plurality of rows, either a parallel arrangement or a staggered arrangement may be employed. At the time of the fusion process, the horn is pressurized by applying air pressure. The linear pressure between the horn and the pattern roll is usually 1 to 10 kg / cm, and the linear pressure is 1
When the pressure is less than kg / cm, the pressing force on the laminate of the thermoplastic ultrafine fiber nonwoven fabric layer, the thermoplastic long fiber layer, and the natural fiber nonwoven fabric layer is insufficient to cause fusion, while the linear pressure is 10 kg / cm. cm, the pressing pressure on the point-like fusion zone is too high, and the thermoplastic ultrafine fiber nonwoven fabric layer and the thermoplastic long fiber layer corresponding to the fusion zone are thermally decomposed or, in extreme cases, perforated. And the adhesive strength of the laminated nonwoven structure obtained is lowered, and both are not preferable. The laminated nonwoven structure of the present invention is obtained by subjecting a laminate of the thermoplastic ultrafine fiber nonwoven layer, the thermoplastic long fiber nonwoven layer, and the natural fiber nonwoven layer to a fusion treatment using the above-mentioned ultrasonic fusion device. Thereby, the ultrafine fibers of the non-woven fabric layer A and the long fibers of the non-woven fabric layer B are fixed in a state where a fusion portion is formed in the point-like fusion zone, and at least at the boundary surface between the non-woven fabric layer A and the non-woven fabric layer C. The located natural fibers are fixed in a state of being embedded in the melted portion of the ultrafine fibers, and are integrated as a whole. FIG. 1 is a schematic view showing a cross section of the point-like fusion zone in the laminated nonwoven structure of the present invention. In the figure, 1 is a thermoplastic ultrafine fiber layer melted in a point fusion zone, 2 is a thermoplastic long fiber melted in a point fusion zone, and 3 is a natural fiber. In the attachment area, the thermoplastic ultrafine fibers and the thermoplastic long fibers are fused and bonded, and the natural fibers 2 located at least at the interface between the thermoplastic ultrafine fiber nonwoven fabric layer and the natural fiber nonwoven fabric layer are formed by melting the thermoplastic ultrafine fibers. Melted part, ie 1
Since the nonwoven fabric layers have such an adhesive structure in the point-like fusing area, a laminated nonwoven structure having a high peeling strength is obtained.

【0022】本発明の積層不織構造体は,前記重合体か
らなり,単繊維繊度が1.0デニール以上の長繊維から
構成されるスパンボンド不織布層Bが積層されているた
め,引張り強力が向上する。そして,本発明の積層不織
構造体では,この不織布層Bとして前述した重合体の内
のポリオレフイン系あるいはポリエステル系等の疎水性
熱可塑性重合体長繊維からなるものを採用すると,積層
不織構造体における熱可塑性長繊維不織布層Bの側に撥
水性を具備させることができる。
The laminated nonwoven structure of the present invention has a high tensile strength because the spunbonded nonwoven layer B made of the above polymer and having a single fiber fineness of 1.0 denier or more and composed of long fibers is laminated. improves. In the laminated nonwoven structure of the present invention, when the nonwoven fabric layer B is made of a polyolefin-based or polyester-based hydrophobic thermoplastic polymer filament among the above-mentioned polymers, the laminated nonwoven structure Can be provided with water repellency on the side of the thermoplastic long-fiber nonwoven fabric layer B.

【0023】本発明の積層不織構造体は,通気度が50
cc/cm2 /秒以下のものであることが,例えば医療
・衛生材用の素材等のバクテリアバリア性が要求される
分野では好ましい。この積層不織構造体は,前述したよ
うに熱可塑性長繊維不織布層Bと天然繊維不織布層Cの
中間部に単繊維繊度が0.2デニール以下の熱可塑性極
細繊維からなる不織布層Aが積層されているため不織布
のポアサイズが小さく,したがってバクテリアバリア性
が向上するのである。
The laminated nonwoven structure of the present invention has an air permeability of 50
A cc / cm 2 / sec or less is preferable in a field where a bacterial barrier property is required, such as a material for medical and sanitary materials. In this laminated nonwoven structure, as described above, a nonwoven fabric layer A made of a thermoplastic ultrafine fiber having a single fiber fineness of 0.2 denier or less is laminated at an intermediate portion between the thermoplastic long fiber nonwoven fabric layer B and the natural fiber nonwoven fabric layer C. As a result, the pore size of the nonwoven fabric is small, and thus the bacterial barrier property is improved.

【0024】[0024]

【作用】本発明の積層不織構造体は,片面が単繊維繊度
が1.0デニール以上の熱可塑性長繊維からなる不織布
層Bから構成されるため引張り強力と耐磨耗性が高く,
他面が天然繊維同士が機械的に交絡してなる不織布層C
から構成されるため吸水性を有し,また,中間部が単繊
維繊度が0.2デニール以下の熱可塑性極細繊維からな
る不織布層Aから構成されるため通気度が50cc/c
2 /秒以下と低く,良好なバクテリアバリア性を有す
る。また,前記天然繊維同士が三次元的に交絡してなる
場合,前記極細繊維と相乗して優れた柔軟性が具備され
る。さらに,前記極細繊維と長繊維と天然繊維とが融着
されてなる点状融着区域において,前記不織布層Aの極
細繊維と前記不織布層Bの長繊維とが融解部を形成した
状態で固定され,かつ前記不織布層Aと前記不織布層C
の少なくとも境界面に位置する天然繊維が前記極細繊維
の融解部に埋設された状態で固定された接着構造を有す
るため,剥離強力の高い積層不織構造体となる。
The laminated nonwoven structure of the present invention has a high tensile strength and high abrasion resistance because one side thereof is composed of a nonwoven fabric layer B made of thermoplastic filaments having a single fiber fineness of 1.0 denier or more.
Non-woven fabric layer C in which natural fibers are mechanically entangled with each other on the other side
And a nonwoven fabric layer A made of a thermoplastic ultrafine fiber having a single fiber fineness of 0.2 denier or less, so that the air permeability is 50 cc / c.
m 2 / sec or less, and has good bacterial barrier properties. Further, when the natural fibers are three-dimensionally entangled with each other, excellent flexibility is provided in synergy with the ultrafine fibers. Further, in the point-like fusion zone where the ultrafine fibers, long fibers and natural fibers are fused, the ultrafine fibers of the nonwoven fabric layer A and the long fibers of the nonwoven fabric layer B are fixed in a state where a fused portion is formed. And the nonwoven fabric layer A and the nonwoven fabric layer C
Since the natural fibers located at least at the boundary surface have an adhesive structure embedded and fixed in the melted portion of the ultrafine fibers, a laminated nonwoven structure having high peel strength is obtained.

【0025】[0025]

【実施例】次に,実施例に基づき本発明を具体的に説明
するが,本発明は,これらの実施例によって何ら限定さ
れるものではない。実施例において,各特性値の測定を
次の方法により実施した。 メルトフローレート値(g/10分):ASTM−D−
1238(L)に記載の方法に準じて測定した。 相対粘度:フエノールと四塩化エタンの等重量混合溶液
を溶媒とし,試料濃度0.5g/100cc,温度20
℃の条件で測定した。 融点(℃):パーキンエルマ社製示差走査型熱量計DS
C−2型を用い,試料重量を5mg,昇温速度を20℃
/分として測定して得た融解吸熱曲線の最大極値を与え
る温度を融点(℃)とした。 目付け(g/m2 ):標準状態の試料から縦10cm×
横10cmの試料片計10点を作成し平衡水分に到らし
めた後,各試料片の重量(g)を秤量し,得られた値の
平均値を単位面積(m2 )当たりに換算し目付け(g/
2 )とした。 引張り強力(kg/5cm幅)及び引張り伸度(%):
JIS−L−1096Aに記載の方法に準じて測定し
た。すなわち,試料長が10cm,試料幅が5cmの試
料片計10点を作成し,各試料片毎に不織布の経及び緯
方向について,定速伸長型引張り試験機(東洋ボールド
ウイン社製テンシロンUTM−4−1−100)を用い
て引張り速度10cm/分で伸長し,得られた切断時荷
重値(kg/5cm幅)の平均値を引張り強力(kg/
5cm幅),切断時伸長率(%)の平均値を引張り伸度
(%)とした。 引裂き強力(kg):JIS−K−7311に記載のエ
ルメンドルフ型に準じて,不織布の経及び緯方向につい
て測定した。 層間剥離強力(g/5cm幅):試料長が10cm,試
料幅が5cmの試料片計10点を作成し,各試料片毎に
不織布の経方向について,定速伸長型引張り試験機(東
洋ボールドウイン社製テンシロンUTM−4−1−10
0)を用いて引張速度10cm/分で天然繊維不織布層
が極細繊維不織布層から積層構造体の端部から計って5
cmの位置まで強制的に剥離させ,得られた荷重値(g
/5cm幅)の平均値を層間剥離強力(g/5cm幅)
とした。なお,層間剥離強力(g/5cm幅)は,不織
布層Aと不織布層Bと不織布層Cとの3層の場合にA〜
B間を層間剥離強力3AB,A〜C間を層間剥離強力3
ACとして,また,不織布層Aと不織布層Bとの2層の
場合にA〜B間を層間剥離強力2AB,不織布層Bと不
織布層Cとの2層の場合にB〜C間を層間剥離強力2B
Cとして,各々測定した。 剛軟度(g):試料長が10cm,試料幅が5cmの試
料片計5点を作成し,各試料片毎に横方向に曲げて円筒
状物とし,各々その端部を接合したものを剛軟度測定試
料とした。次いで,各測定試料毎にその軸方向につい
て,定速伸長型引張り試験機(東洋ボールドウイン社製
テンシロンUTM−4−1−100)を用いて圧縮速度
5cm/分で圧縮し,得られた最大荷重値(g)の平均
値を剛軟度(g)とした。 嵩高度(g/cm3 ):試料の目付けW(g/m2 )と
厚みt(mm)を測定し,下記式(2)により嵩高度
(g/cm3 )を求めた。 嵩高度(g/cm3 )=W/(t×1000)・・・・・・・・・・・(2) 通気度(cc/cm2 /秒):JIS−L−1096に
記載のフラジール法に準じて測定した。 耐水圧(mm水柱):JIS−L−1092に記載の
水圧法に準じて測定した。 吸水性(mm):JIS−L−1096に記載のバイレ
ツク法に準じて測定した。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the examples, the measurement of each characteristic value was performed by the following method. Melt flow rate value (g / 10 minutes): ASTM-D-
It was measured according to the method described in 1238 (L). Relative viscosity: A solution of an equal weight mixture of phenol and ethane tetrachloride as a solvent, sample concentration 0.5 g / 100 cc, temperature 20
It was measured under the condition of ° C. Melting point (° C): Differential scanning calorimeter DS manufactured by PerkinElmer
Using C-2 type, sample weight 5mg, heating rate 20 ℃
The temperature at which the maximum extremum of the melting endothermic curve obtained by measuring per minute was obtained was defined as the melting point (° C.). Basis weight (g / m 2 ): 10 cm long from the sample in the standard state
After making a total of 10 specimens of 10 cm width and reaching equilibrium moisture, the weight (g) of each specimen was weighed, and the average of the obtained values was converted to unit area (m 2 ). Weight (g /
m 2 ). Tensile strength (kg / 5cm width) and tensile elongation (%):
It measured according to the method of JIS-L-1096A. That is, a total of 10 sample pieces each having a sample length of 10 cm and a sample width of 5 cm were prepared, and a constant-speed elongation type tensile tester (Tensilon UTM- manufactured by Toyo Baldwin Co., Ltd.) was used for each sample piece in the warp and weft directions of the nonwoven fabric. 4-1-100) at a tensile speed of 10 cm / min, and the average value of the obtained load values at cutting (kg / 5 cm width) is used as the tensile strength (kg / cm).
The average value of the elongation at break (5 cm width) and the elongation at break (%) was defined as the tensile elongation (%). Tear strength (kg): Measured in the warp and weft directions of the nonwoven fabric according to the Elmendorf type described in JIS-K-7311. Delamination strength (g / 5 cm width): A total of 10 specimens each having a sample length of 10 cm and a specimen width of 5 cm were prepared, and a constant-speed elongation type tensile tester (Toyo Bold Co., Ltd.) was prepared for each specimen in the longitudinal direction of the nonwoven fabric. Wins Tensilon UTM-4-1-10
0), the natural fiber non-woven fabric layer was measured at a tensile rate of 10 cm / min from the microfiber non-woven fabric layer to the end of the laminated structure by 5 cm.
cm to the position, and the obtained load value (g
/ 5cm width) is the average value of delamination strength (g / 5cm width)
And The delamination strength (g / 5 cm width) is A to A in the case of three layers of the nonwoven fabric layer A, the nonwoven fabric layer B, and the nonwoven fabric layer C.
B between layers B delamination strength 3 AB, between A and C delamination strength 3
As AC, delamination strength 2AB between A and B in the case of two layers of nonwoven layer A and nonwoven layer B, and delamination between B and C in the case of two layers of nonwoven layer B and nonwoven layer C Powerful 2B
Each was measured as C. Softness (g): A sample length of 10 cm and a sample width of 5 cm were prepared, and a total of five sample pieces were formed. Each sample piece was bent in the horizontal direction to form a cylindrical object, and the end of each was joined. It was used as a sample for measuring the hardness. Next, each measurement sample was compressed in the axial direction at a compression rate of 5 cm / min using a constant-speed elongation-type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.). The average value of the load values (g) was defined as the softness (g). Bulk altitude (g / cm 3 ): The basis weight W (g / m 2 ) and thickness t (mm) of the sample were measured, and the bulk altitude (g / cm 3 ) was determined by the following equation (2). Bulk altitude (g / cm 3 ) = W / (t × 1000) (2) Air permeability (cc / cm 2 / sec): Frazier described in JIS-L-1096 It was measured according to the method. Water pressure (mm water column): according to JIS-L-1092 A
It was measured according to the low water pressure method. Water absorption (mm): Measured according to the birec method described in JIS-L-1096.

【0026】実施例1 まず,融点が155℃,メルトフローレート値が600
g/10分のポリプロピレンチツプを用い,ポリプロピ
レン極細繊維からなるメルトブローン不織布を作成し
た。すなわち,前記重合体チツプをエクストルーダ型溶
融押出し機を用いて溶融し,これを孔径0.15mmの
紡糸孔を200孔有する紡糸口金を通して紡糸温度を2
80℃かつ吐出量を30g/分として溶融吐出し,吐出
された溶融重合体流を溶融温度より30℃高い温度の高
圧空気流を速度170m/秒で紡糸線方向に対して25
度の角度をなす方向に噴出して牽引・細化し,冷却した
後,紡糸口金の下方10cmの位置に配設されたサクシ
ヨンドラム上に捕集・堆積させ,平均単繊維繊度が0.
1デニールで,目付けが20g/m2 のポリプロピレン
極細繊維メルトブローン不織布Aを得た。別途,融点が
156℃,メルトフローレート値が56g/10分のポ
リプロピレンチツプを用い,ポリプロピレン長繊維から
なるスパンボンド不織布を作成した。すなわち,前記重
合体チツプをエクストルーダ型溶融押出し機を用いて溶
融し,これを紡糸口金を通して紡糸温度を250℃とし
て溶融紡出・冷却し,エアーサツカを用い引取り速度を
4000m/分として牽引・細化した後,開繊器を用い
て開繊し,移動する捕集面上に捕集・堆積させてウエブ
とし,得られたウエブに円形換算にて直径0.6mmの
突起状彫刻模様部が圧接面積率13.2%,配設密度2
0点/cm2 で配設された熱エンボスローラと表面平滑
な金属ローラとを用い,処理温度を130℃,かつ線圧
を25kg/cmとして加工速度10m/分で部分熱圧
着処理を施し,単繊維繊度が3.0デニールで,目付け
が20g/m2 のポリプロピレン長繊維スパンボンド不
織布Bを得た。
Example 1 First, the melting point was 155 ° C. and the melt flow rate was 600.
Using a g / 10 min. polypropylene chip, a meltblown nonwoven fabric made of polypropylene ultrafine fibers was prepared. That is, the polymer chip was melted using an extruder-type melt extruder, and the melt was passed through a spinneret having 200 spinning holes having a hole diameter of 0.15 mm and the spinning temperature was adjusted to 2 °.
The melted polymer stream was discharged at a temperature of 80 ° C. and a discharge rate of 30 g / min. A high-pressure air stream at a temperature 30 ° C. higher than the melting temperature was discharged at a speed of 170 m / sec.
After squirting in a direction at an angle of degree, drawing, thinning, and cooling, it is collected and deposited on a suction drum 10 cm below the spinneret, and has an average single fiber fineness of 0.
A 1 denier, polypropylene ultrafine fiber meltblown nonwoven fabric A having a basis weight of 20 g / m 2 was obtained. Separately, a spunbonded nonwoven fabric made of long polypropylene fibers was prepared using a polypropylene chip having a melting point of 156 ° C. and a melt flow rate of 56 g / 10 minutes. That is, the polymer chip is melted using an extruder-type melt extruder, melt-spun and cooled through a spinneret at a spinning temperature of 250 ° C., and a drawing speed of 4000 m / min. After that, the fiber is opened using a fiber opening device, and collected and deposited on a moving collecting surface to form a web. Pressing area ratio 13.2%, installation density 2
Using a hot embossing roller and a metal roller having a smooth surface arranged at 0 points / cm 2 , a partial thermocompression treatment is performed at a processing temperature of 130 ° C. and a linear pressure of 25 kg / cm at a processing speed of 10 m / min. A polypropylene long fiber spunbond nonwoven fabric B having a single fiber fineness of 3.0 denier and a basis weight of 20 g / m 2 was obtained.

【0027】また,平均単繊維繊度が1.5デニール
で,かつ平均繊維長が25mmの木綿晒し綿を用い,木
綿繊維同士が三次元的に交絡してなる不織布を作成し
た。すなわち,前記晒し綿を出発原料とし,ランダムカ
ード機により繊維配列がランダムで目付けが45g/m
2 のランダムカードウエブを作成し,次いで得られたウ
エブを移動速度20m/分で移動する70メツシユの金
網上に載置して高圧液体流処理を施した。高圧液体流処
理は,孔径0.1mmの噴射孔が孔間隔0.6mmで一
列に配設された高圧柱状水流処理装置を用い,ウエブの
上方50mmの位置から2段階に別けて柱状水流を作用
させた。第1段階の処理では圧力を30kg/cm2
とし,第2段階の処理では圧力を70kg/cm2 Gと
した。なお,第2段階の処理は,ウエブの表裏から各々
2回施した。次いで,得られた処理物からマングルロー
ルを用いて過剰水分を除去した後,処理物に熱風乾燥機
を用い温度100℃の条件で乾燥処理を施し,木綿繊維
同士が緻密に三次元的交絡をした目付けが45g/m2
の不織布Cを得た。次いで,前記で得られたポリプロピ
レン極細繊維メルトブローン不織布Aの両面にポリプロ
ピレン長繊維スパンボンド不織布Bと木綿繊維不織布C
とをそれぞれ積層し,周波数が19.5KHzの超音波
発振器と円周上に点状に凸状突起部が面積比(ロール全
表面積に対する全凸状突起部の面積の比)11%かつ密
度18点/cm2 で配設されたパターンロールとからな
る超音波融着装置を用い,加工速度を30m/分,線圧
を2.5kg/cmとして超音波融着処理を施して3層
構造の積層不織構造体を得た。得られた積層不織構造体
の特性を表1に示す。
Using a bleached cotton having an average monofilament fineness of 1.5 denier and an average fiber length of 25 mm, a nonwoven fabric in which cotton fibers are three-dimensionally entangled was prepared. That is, the bleached cotton is used as a starting material, and the fiber arrangement is random with a basis weight of 45 g / m2 by a random card machine.
2 random card webs were prepared, and the obtained webs were placed on a 70-mesh wire mesh moving at a moving speed of 20 m / min, and subjected to high-pressure liquid flow treatment. The high-pressure liquid flow treatment uses a high-pressure columnar water flow treatment device in which injection holes with a hole diameter of 0.1 mm are arranged in a row with a hole interval of 0.6 mm, and applies a columnar water flow in two stages from a position 50 mm above the web. I let it. In the first stage processing, the pressure is 30 kg / cm 2 G
In the second stage treatment, the pressure was set to 70 kg / cm 2 G. In addition, the processing of the second stage was performed twice from the front and back of the web, respectively. Next, after removing excess moisture from the obtained processed material using mangle rolls, the processed material is subjected to a drying treatment at a temperature of 100 ° C. using a hot-air drier, and the cotton fibers are densely three-dimensionally entangled. 45g / m 2
Non-woven fabric C was obtained. Next, a polypropylene long fiber spunbonded nonwoven fabric B and a cotton fiber nonwoven fabric C are formed on both sides of the polypropylene microfiber meltblown nonwoven fabric A obtained above.
And an ultrasonic oscillator having a frequency of 19.5 KHz and a dot-shaped convex protrusion on the circumference having an area ratio (ratio of the area of the total convex protrusion to the total surface area of the roll) of 11% and a density of 11%. Using an ultrasonic fusion device consisting of pattern rolls arranged at 18 points / cm 2 , a three-layer structure by applying ultrasonic fusion treatment at a processing speed of 30 m / min and a linear pressure of 2.5 kg / cm. Was obtained. Table 1 shows the properties of the obtained laminated nonwoven structure.

【0028】実施例2 相対粘度が1.36のポリエチレンテレフタレートチツ
プを用い,紡糸温度を350℃とした以外は実施例1と
同様にして,ポリエチレンテレフタレート極細繊維から
なるメルトブローン不織布Aを得た。次いで,実施例1
と同様にして,3層構造の積層不織構造体を得た。得ら
れた積層不織構造体の特性を表1に示す。
Example 2 A melt blown nonwoven fabric A made of polyethylene terephthalate ultrafine fibers was obtained in the same manner as in Example 1 except that a polyethylene terephthalate chip having a relative viscosity of 1.36 was used and the spinning temperature was 350 ° C. Next, Example 1
In the same manner as in the above, a laminated nonwoven structure having a three-layer structure was obtained. Table 1 shows the properties of the obtained laminated nonwoven structure.

【0029】実施例3〜6 超音波融着装置におけるパターンロールの凸状突起部面
積比を5%(実施例3),16%(実施例4),20%
(実施例5)及び33%(実施例6)とした以外は実施
例1と同様にして,3層構造の積層不織構造体を得た。
得られた積層不織構造体の特性を表2に示す。
Examples 3 to 6 The area ratio of the convex projections of the pattern roll in the ultrasonic welding apparatus was 5% (Example 3), 16% (Example 4), and 20%.
A laminated nonwoven structure having a three-layer structure was obtained in the same manner as in Example 1 except that (Example 5) and 33% (Example 6) were used.
Table 2 shows the properties of the obtained laminated nonwoven structure.

【0030】実施例7〜9 超音波融着装置におけるパターンロールの凸状突起部配
設密度を9点/cm2(実施例7),36点/cm
2 (実施例8)及び72点/cm2 (実施例9)とした
以外は実施例1と同様にして,3層構造の積層不織構造
体を得た。得られた積層不織構造体の特性を表2に示
す。
Examples 7 to 9 In the ultrasonic fusing apparatus, the density of the projections on the pattern roll was 9 points / cm 2 (Example 7), 36 points / cm.
A three-layer laminated nonwoven structure was obtained in the same manner as in Example 1 except that 2 (Example 8) and 72 points / cm 2 (Example 9) were used. Table 2 shows the properties of the obtained laminated nonwoven structure.

【0031】比較例1 実施例1で作成したポリプロピレン極細繊維メルトブロ
ーン不織布Aの片面にポリプロピレン長繊維スパンボン
ド不織布Bを積層し,以降は実施例1と同様にして超音
波融着処理を施して2層構造の積層不織構造体を得た。
得られた積層不織構造体の特性を表1に示す。
Comparative Example 1 A polypropylene long-fiber spunbonded nonwoven fabric B was laminated on one surface of the polypropylene ultrafine fiber meltblown nonwoven fabric A prepared in Example 1, and then subjected to ultrasonic fusion treatment in the same manner as in Example 1 A laminated nonwoven structure having a layer structure was obtained.
Table 1 shows the properties of the obtained laminated nonwoven structure.

【0032】比較例2 実施例1で作成したポリプロピレン長繊維スパンボンド
不織布Bの片面に木綿繊維不織布Cを積層し,以降は実
施例1と同様にして超音波融着処理を施して2層構造の
積層不織構造体を得た。得られた積層不織構造体の特性
を表1に示す。
Comparative Example 2 A cotton long-fiber nonwoven fabric C was laminated on one side of the polypropylene long-fiber spunbond nonwoven fabric B prepared in Example 1, and then subjected to ultrasonic fusion treatment in the same manner as in Example 1 to form a two-layer structure. Was obtained. Table 1 shows the properties of the obtained laminated nonwoven structure.

【0033】比較例3 超音波融着処理に代わり圧接面積率が12%の熱エンボ
スローラと表面平滑な金属ローラとを用い,処理温度を
140℃,かつ線圧を100kg/cmとして加工速度
10m/分で部分熱圧着処理を施した以外は実施例1と
同様にして,3層構造の積層不織構造体を得た。得られ
た積層不織構造体の特性を表1に示す。
Comparative Example 3 A hot embossing roller having a contact area ratio of 12% and a metal roller having a smooth surface were used in place of the ultrasonic fusion treatment, a processing temperature of 140 ° C., a linear pressure of 100 kg / cm, and a processing speed of 10 m. A three-layer laminated nonwoven structure was obtained in the same manner as in Example 1 except that the partial thermocompression treatment was performed at / min. Table 1 shows the properties of the obtained laminated nonwoven structure.

【0034】比較例4 実施例1で作成したポリプロピレン極細繊維メルトブロ
ーン不織布Aの両面にポリプロピレン長繊維スパンボン
ド不織布Bを積層し,以降は比較例3と同様にして部分
熱圧着処理を施して3層構造の積層不織構造体を得た。
得られた積層不織構造体の特性を表1に示す。
Comparative Example 4 A polypropylene long-fiber spunbonded nonwoven fabric B was laminated on both surfaces of the polypropylene ultrafine fiber melt-blown nonwoven fabric A prepared in Example 1, and then subjected to a partial thermocompression treatment in the same manner as in Comparative Example 3 to form a three-layer structure. A laminated nonwoven structure having a structure was obtained.
Table 1 shows the properties of the obtained laminated nonwoven structure.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】実施例1,2,4,5,8及び9で得られ
た積層不織構造体は,表1及び2から明らかなように引
張り強力と剥離強力が高く,柔軟性が優れ,良好なバク
テリアバリア性と吸水性を有し,しかも耐水圧と耐磨耗
性も高いものであった。実施例2で得られた積層不織構
造体は,実施例1のポリプロピレン極細繊維メルトブロ
ーン不織布に代わりポリエチレンテレフタレート極細繊
維メルトブローン不織布を用いたものであり,実施例1
に比べて遜色のないものであった。実施例3で得られた
積層不織構造体は,超音波融着装置におけるパターンロ
ールの凸状突起部面積比が5%で,不織構造体全表面積
に対する全点状融着区域の面積の比が低目であるため,
剥離強力が実施例1に比べると若干低いものであり,実
施例6で得られた積層不織構造体は,同面積比が33%
で,不織構造体全表面積に対する全点状融着区域の面積
の比が高目であるため,剥離強力は優れるものの柔軟性
が実施例1に比べるとやや劣るものであった。また,実
施例7で得られた積層不織構造体は,凸状突起部配設密
度が9点/cm2 で,不織構造体における点状融着区域
の密度が低目であるため,剥離強力に斑を有するもので
あった。これに対し,比較例1と4で得られた積層不織
構造体は,天然繊維を含有していないため,表1から明
らかなように吸水性の低いものであった。比較例2で得
られた積層不織構造体は,単繊維繊度の高いポリプロピ
レン繊維スパンボンド不織布が積層されているとはいえ
極細繊維メルトブローン不織布が積層されていないた
め,通気度が高く,耐水圧が低く,バクテリアバリア性
を有しないものであった。比較例3で得られた積層不織
構造体は,熱エンボスローラを用いた部分熱圧着処理が
施されたものであるため,剥離強力が極めて低いもので
あった。
The laminated nonwoven structures obtained in Examples 1, 2, 4, 5, 8, and 9 have high tensile strength and peeling strength, excellent flexibility, and good flexibility as apparent from Tables 1 and 2. It had excellent bacterial barrier properties and water absorption, and also had high water pressure resistance and abrasion resistance. The laminated nonwoven structure obtained in Example 2 was obtained by using a polyethylene terephthalate ultrafine fiber meltblown nonwoven fabric instead of the polypropylene ultrafine fiber meltblown nonwoven fabric of Example 1.
It was no inferior to. The laminated non-woven structure obtained in Example 3 had an area ratio of the convex projections of the pattern roll of 5% in the ultrasonic fusing apparatus, and the ratio of the area of all the point-shaped fusing areas to the total surface area of the non-woven structure. Because the ratio is low,
The peel strength was slightly lower than that of Example 1, and the laminated nonwoven structure obtained in Example 6 had the same area ratio of 33%.
Since the ratio of the area of the whole point-like fusion zone to the total surface area of the nonwoven structure was high, the peel strength was excellent, but the flexibility was slightly inferior to that of Example 1. In addition, the laminated nonwoven structure obtained in Example 7 has a density of the convex protrusions of 9 points / cm 2 , and the density of the point fusion area in the nonwoven structure is low. The peeling strength was uneven. On the other hand, the laminated nonwoven structures obtained in Comparative Examples 1 and 4 did not contain natural fibers, and thus had low water absorption as is clear from Table 1. The laminated nonwoven structure obtained in Comparative Example 2 has a high air permeability and a water pressure due to the fact that, although the polypropylene fiber spunbonded nonwoven fabric having a high single fiber fineness is laminated, the ultrafine fiber meltblown nonwoven fabric is not laminated. And had no bacterial barrier properties. Since the laminated nonwoven structure obtained in Comparative Example 3 was subjected to the partial thermocompression bonding using a hot embossing roller, the peel strength was extremely low.

【0038】[0038]

【発明の効果】本発明の積層不織構造体は,前記特定の
熱可塑性極細繊維不織布層Aの片面に前記特定の熱可塑
性長繊維不織布層Bが積層され,前記不織布層Aの他面
に天然繊維同士が機械的に交絡してなる不織布層Cが積
層され,かつ前記極細繊維と長繊維と,前記極細繊維と
天然繊維とが超音波融着処理により融着されてなる点状
融着区域を有し,前記点状融着区域において前記不織布
層Aの極細繊維と前記不織布層Bの長繊維とが融解部を
形成した状態で固定され,かつ前記不織布層Aと前記不
織布層Cの少なくとも境界面に位置する天然繊維が前記
極細繊維の融解部に埋設された状態で固定されることに
より全体として一体化されてなるものであって,引張り
強力と剥離強力が高く,柔軟性が優れ,良好なバクテリ
アバリア性と吸水性を有し,しかも耐水圧と耐磨耗性も
高く,医療・衛生材用,衣料用あるいは生活関連材用の
素材として好適である。
The laminated nonwoven structure of the present invention has a structure in which the specific thermoplastic long-fiber nonwoven fabric layer B is laminated on one surface of the specific thermoplastic microfiber nonwoven fabric layer A and the other surface of the nonwoven fabric layer A on the other surface. A non-woven fabric layer C in which natural fibers are mechanically entangled with each other is laminated, and the ultrafine fibers and the long fibers, and the ultrafine fibers and the natural fibers are welded by ultrasonic fusion to form a point fusion. And the long fibers of the non-woven fabric layer A and the long fibers of the non-woven fabric layer B are fixed in the point-like fusion zone in a state where a fused portion is formed. At least the natural fiber located at the boundary surface is integrated as a whole by being fixed in a state of being embedded in the melted portion of the ultrafine fiber, and has high tensile strength and peeling strength, and excellent flexibility. , Good bacterial barrier properties and water absorption Has, moreover water pressure resistance and abrasion resistance is high, for medical and hygiene material, is suitable as a material for clothing or lifestyle material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の積層不織構造体における点状融着区域
の断面を示す模式図である。
FIG. 1 is a schematic view showing a cross section of a point fusion zone in a laminated nonwoven structure of the present invention.

【符号の説明】[Explanation of symbols]

1:融解した熱可塑性極細繊維層 2:融解した熱可塑性長繊維層 3:天然繊維 1: molten thermoplastic ultrafine fiber layer 2: molten thermoplastic long fiber layer 3: natural fiber

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−191758(JP,A) 特開 平2−88058(JP,A) 特開 平6−226899(JP,A) 特開 平4−180808(JP,A) 特開 平7−68686(JP,A) (58)調査した分野(Int.Cl.7,DB名) B32B 1/00 - 35/00 D04H 1/00 - 18/00 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-2-191758 (JP, A) JP-A-2-88058 (JP, A) JP-A-6-226899 (JP, A) JP-A-4- 180808 (JP, A) JP-A-7-68686 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B32B 1/00-35/00 D04H 1/00-18/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単繊維繊度が0.2デニール以下の熱可
塑性極細繊維からなる不織布層Aの片面に単繊維繊度が
1.0デニール以上の熱可塑性長繊維からなる不織布層
Bが積層され,前記不織布層Aの他面に天然繊維同士が
機械的に交絡してなる不織布層Cが積層され,かつ前記
極細繊維と長繊維と,前記極細繊維と天然繊維とが超音
波融着処理により融着されてなる点状融着区域を有する
積層不織構造体であって,前記点状融着区域において前
記不織布層Aの極細繊維と前記不織布層Bの長繊維とが
融解部を形成した状態で固定され,かつ前記不織布層A
と前記不織布層Cの少なくとも境界面に位置する天然繊
維が前記極細繊維の融解部に埋設された状態で固定され
ることにより全体として一体化されてなることを特徴と
する積層不織構造体。
1. A nonwoven fabric layer B comprising a thermoplastic filament having a single fiber fineness of 1.0 denier or more is laminated on one surface of a nonwoven fabric layer A comprising a thermoplastic ultrafine fiber having a single fiber fineness of 0.2 denier or less, On the other surface of the nonwoven fabric layer A, a nonwoven fabric layer C formed by mechanically entanglement of natural fibers is laminated, and the ultrafine fibers and long fibers, and the ultrafine fibers and natural fibers are supersonic.
A laminated nonwoven structure having a point-like fusion zone fused by a wave fusion treatment , wherein the ultrafine fibers of the nonwoven fabric layer A and the long fibers of the nonwoven fabric layer B in the point-like fusion zone. The non-woven fabric layer A
And a natural fiber located at least on the boundary surface of the nonwoven fabric layer C and fixed in a state where the natural fiber is embedded in the melted portion of the ultrafine fiber, thereby being integrated as a whole.
【請求項2】 不織構造体全表面積に対する全点状融着
区域の面積の比が2〜40%及び点状融着区域密度が7
〜80点/cm2であることを特徴とする請求項1記載
の積層不織構造体。
2. The ratio of the area of all the point-like fusion zones to the total surface area of the nonwoven structure is 2 to 40% and the density of the point-like fusion zone is 7
2. The laminated nonwoven structure according to claim 1, wherein the number is from 80 to 80 points / cm < 2 >.
【請求項3】 通気度が50cc/cm2/秒以下であ
ることを特徴とする請求項1又は2記載の積層不織構造
体。
3. The laminated nonwoven structure according to claim 1, wherein the air permeability is 50 cc / cm 2 / sec or less.
JP24362393A 1993-09-02 1993-09-02 Laminated non-woven structure Expired - Fee Related JP3305453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24362393A JP3305453B2 (en) 1993-09-02 1993-09-02 Laminated non-woven structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24362393A JP3305453B2 (en) 1993-09-02 1993-09-02 Laminated non-woven structure

Publications (2)

Publication Number Publication Date
JPH0768687A JPH0768687A (en) 1995-03-14
JP3305453B2 true JP3305453B2 (en) 2002-07-22

Family

ID=17106584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24362393A Expired - Fee Related JP3305453B2 (en) 1993-09-02 1993-09-02 Laminated non-woven structure

Country Status (1)

Country Link
JP (1) JP3305453B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004100068A (en) * 2002-09-09 2004-04-02 Kuraray Co Ltd Bulky composite nonwoven fabric
EP1687480B1 (en) 2003-10-22 2011-06-08 E.I. Du Pont De Nemours And Company Porous fibrous sheets of nanofibers
WO2022004505A1 (en) * 2020-07-02 2022-01-06 ユニチカ株式会社 Surface material for sanitary material and production method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288058A (en) * 1988-09-26 1990-03-28 Oji Paper Co Ltd Surface material for sanitary good
JP2571889B2 (en) * 1989-01-12 1997-01-16 三井石油化学工業株式会社 Water-resistant nonwoven and disposable diapers
JP2981533B2 (en) * 1990-11-13 1999-11-22 旭化成工業株式会社 Molded filter
JPH06226899A (en) * 1993-02-05 1994-08-16 Unitika Ltd Multilayer structure nonwoven sheet
JPH0768686A (en) * 1993-08-31 1995-03-14 Unitika Ltd Laminated nonwoven structure

Also Published As

Publication number Publication date
JPH0768687A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
EP0796940B1 (en) Water jet intertwined nonwoven cloth and method of manufacturing the same
JPH0698728B2 (en) Composite lining cloth and manufacturing method thereof
JPH10219555A (en) Laminated nonwoven fabric and its production
JP3305453B2 (en) Laminated non-woven structure
JPH10331063A (en) Composite nonwoven fabric and its production
JP3201671B2 (en) Manufacturing method of composite nonwoven fabric
JPH073606A (en) Laminated non-woven fabric and production thereof
JP3636813B2 (en) Nonwoven fabric and method for producing the same
JP3262430B2 (en) Method for producing biodegradable laminated nonwoven structure
JP3580626B2 (en) Nonwoven fabric for hook-and-loop fastener and method for producing the same
JP3905916B2 (en) Method for producing composite nonwoven fabric containing ultrafine fibers
JP3259936B2 (en) Laminated nonwoven fabric and method for producing the same
JPH0768686A (en) Laminated nonwoven structure
JP3784093B2 (en) Disposable handbag
JPH08109567A (en) Laminated nonwoven structure and its production
JPH11158763A (en) Conjugate nonwoven cloth and its production
JPH07316968A (en) Composite non-woven fabric and its production
JP3213460B2 (en) Method for producing biodegradable laminated nonwoven structure
JPH07266479A (en) Laminated nonwoven structure
JPH07238403A (en) Apron
JPH08232149A (en) Sewing of nonwoven fabric
JPH083855A (en) Laminated nonwoven structure
JPH08150169A (en) Sack for disposable pocket heater
JPH10195750A (en) Composite nonwoven fabric and its production
JPH0889527A (en) Bag for disposable body warmer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees