JPH10131021A - Composite nonwoven fabric and its production - Google Patents

Composite nonwoven fabric and its production

Info

Publication number
JPH10131021A
JPH10131021A JP9235607A JP23560797A JPH10131021A JP H10131021 A JPH10131021 A JP H10131021A JP 9235607 A JP9235607 A JP 9235607A JP 23560797 A JP23560797 A JP 23560797A JP H10131021 A JPH10131021 A JP H10131021A
Authority
JP
Japan
Prior art keywords
fiber web
polymer
nonwoven fabric
short
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9235607A
Other languages
Japanese (ja)
Inventor
Koichi Nagaoka
孝一 長岡
Atsushi Matsunaga
篤 松永
Michiyo Kato
美智代 加藤
Katsunori Suzuki
克昇 鈴木
Yasuhiro Yonezawa
安広 米沢
Nobuo Kensei
伸夫 見正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP9235607A priority Critical patent/JPH10131021A/en
Publication of JPH10131021A publication Critical patent/JPH10131021A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a composite nonwoven fabric that has high ply separation strength and excellent flexibility, filter performance and water absorptivity, and is useful as a medical and hygienic material by laminating specific long-fiber webs with specific short-fiber webs to be three-dimensionally integrated into a confounding condition. SOLUTION: This composite nonwoven fabric is produced by fusion-spinning a separate-type two-component composite continuous-yarn aggregate composed of a fiber-forming polymer of lower melting point and a fiber-forming polymer of higher melting point which is incompatible with the polymer of low melting point and has a melting point of 30-180 deg.C higher than that of the polymer of low melting point, taking up the spun yarns with an air sucker, accumulating the yarns on a traveling collector surface in opening condition to form webs, heat-compressing partly the composite single yarn aggregates of the webs to obtain a long-fiber web, laminating a short-fiber web composed of short fibers, such as cotton, wool and rayon, on the long-fiber web, then treating the web laminate with a high-pressure fluid, thereby integrating the long-fiber webs mutually, the long-fiber web with the short-fiber web, and the short-fiber webs mutually three-dimensionally in confounding condition, thus forming the objective composite nonwoven fabric.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2種類の繊維形成
性重合体から構成される極細割繊フイラメント郡より構
成された不織布層と主として天然繊維及び/又は再生繊
維よりなる不織布層とが積層一体化されてなる複合不織
布であって、層間剥離強力が高く、柔軟性に優れ、更に
良好なフイルター性能及び吸水性を有しており、医療・
衛生材料,衣料用,生活関連資材用,産業資材用と広範
囲の用途に適用できる複合不織布及びその製造方法に関
するものである。
BACKGROUND OF THE INVENTION The present invention relates to a laminate of a nonwoven fabric layer composed of ultrafine split filaments composed of two types of fiber-forming polymers and a nonwoven fabric layer mainly composed of natural fibers and / or regenerated fibers. A composite nonwoven fabric that is integrated, has high delamination strength, excellent flexibility, and has excellent filter performance and water absorption.
The present invention relates to a composite nonwoven fabric applicable to a wide range of uses including sanitary materials, clothing, living-related materials, industrial materials, and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、基布上に短繊維ウエブを積層
した種々の複合不織布が開示されている。例えば、特開
昭53−114975号公報や特開昭53−12460
1号公報には、織編物を基布としこの上に分割型二成分
系複合短繊維からなる不織ウエブあるいはメルトブロー
ン法により得られる極細繊維ウエブを積層した複合不織
布が開示されている。しかしながら、これらの複合不織
布はその用途が合成皮革に限定されしかもコスト的に極
めて高価で経済的にも劣るものであった。更に、特開昭
63−211354号公報には、スパンボンド法によっ
て得られる長繊維不織布を基布としこの片面あるいは両
面に存在する長繊維を部分的に切断して繊維端を形成
し、この繊維端と基布上に短繊維ウエブを積層した繊維
とを絡合させた複合不織布が開示されている。しかしな
がら、この複合不織布は長繊維を部分的に切断するため
機械的特性が低下し、しかも長繊維不織布特有の表面平
滑性が損なわれるという問題を有している。又、特公昭
54−24506号公報には、熱可塑性繊維不織布から
なる通気性熱溶着層と天然繊維等からなる通気性非熱溶
着層とが積層され、非熱溶着層上に熱溶着性物質が点在
的に配置され、かつ熱溶着性物質と熱溶着層との溶融部
が非熱溶着層の両面から浸透して前記非熱溶着層を接着
狭持した構造を有する積層不織構造体が提案されてい
る。しかしながら、この積層不織構造体は、天然繊維が
積層されているため吸水性には優れるものの、通気性の
向上を目的とすることからも明らかなようにフイルター
性能を有しないものである。しかも、この積層不織構造
体は、これを製造するに際して通気性熱溶着層と通気性
非熱溶着層とを積層する工程と、非熱溶着層上に含浸用
熱溶着性シート層を重合し超音波融着処理により熱溶着
性物質と熱溶着層との溶融部が非熱溶着層の両面から浸
透して前記非熱溶着層を接着狭持した構造を発現する工
程と、前記含浸用熱溶着性シートをその溶融部を残して
剥離する工程とを必要とするなど製造技術の観点からす
れば煩雑で経済的にも劣るものであった。
2. Description of the Related Art Conventionally, various composite nonwoven fabrics in which short fiber webs are laminated on a base fabric have been disclosed. For example, JP-A-53-114975 and JP-A-53-12460
No. 1 discloses a composite nonwoven fabric in which a woven or knitted fabric is used as a base fabric and a nonwoven web made of split type bicomponent conjugate short fibers or an ultrafine fiber web obtained by a melt blown method is laminated thereon. However, the use of these composite nonwoven fabrics is limited to synthetic leather, and is extremely cost-effective and economically inferior. Further, JP-A-63-21354 discloses that a long fiber nonwoven fabric obtained by a spunbond method is used as a base fabric, and a long fiber present on one side or both sides is partially cut to form a fiber end. A composite nonwoven fabric is disclosed in which an end and a fiber obtained by laminating a short fiber web on a base fabric are entangled. However, this composite nonwoven fabric has a problem that the mechanical properties are deteriorated because the long fibers are partially cut, and the surface smoothness peculiar to the long fiber nonwoven fabric is impaired. Japanese Patent Publication No. 54-24506 discloses that a gas-permeable heat-sealing layer made of a thermoplastic fiber non-woven fabric and a gas-permeable non-heat-welding layer made of natural fibers and the like are laminated, and a heat-welding material is formed on the non-heat-welding layer. Are disposed intermittently, and a fused portion of the heat-welding substance and the heat-welding layer penetrates from both sides of the non-heat-welding layer, and has a structure in which the non-heat-welding layer is adhered and sandwiched. Has been proposed. However, although this laminated nonwoven structure has excellent water absorbability because natural fibers are laminated, it does not have a filter performance as is apparent from the purpose of improving the air permeability. In addition, the laminated nonwoven structure is manufactured by laminating a gas-permeable heat-sealing layer and a gas-permeable non-heat-welding layer when manufacturing the same, and polymerizing a heat-sealing sheet layer for impregnation on the non-heat-sealing layer. A step in which a fused portion of the heat-weldable substance and the heat-weldable layer penetrates from both surfaces of the non-heat-weldable layer by ultrasonic welding to develop a structure in which the non-heat-welded layer is adhered and sandwiched; From the viewpoint of the production technology, it is complicated and economically inferior from the viewpoint of the production technique, for example, requiring a step of peeling off the weldable sheet while leaving the fused portion.

【0003】[0003]

【発明が解決しょうとする課題】そこで、本発明は、2
種類の繊維形成性重合体から構成される極細割繊フイラ
メント郡より構成された不織布層と主として天然繊維及
び/又は再生繊維よりなる不織布層とが積層されてなる
複合不織布であって、両不織布の層間剥離強力が高く、
柔軟性に優れ、良好なフイルター特性及び吸水性を有す
る複合不織布と、それを効率良く製造できる方法を提供
しようとするものである。
Therefore, the present invention provides a
A composite nonwoven fabric comprising a nonwoven fabric layer composed of an ultrafine split filament group composed of various types of fiber-forming polymers and a nonwoven fabric layer mainly composed of natural fibers and / or regenerated fibers. High delamination strength,
An object of the present invention is to provide a composite nonwoven fabric which is excellent in flexibility and has good filter characteristics and water absorption, and a method for efficiently producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を達成すべく鋭意検討の結果、本発明に到達した。すな
わち、本発明は、以下の構成をその要旨とするものであ
る。
Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, have reached the present invention. That is, the present invention has the following configuration as its gist.

【0005】繊維形成性低融点重合体と前記低融点重合
体に対し非相溶性でかつ前記低融点重合体の融点より3
0〜180℃高い融点を有する繊維形成性高融点重合体
とからなる分割型二成分系複合連続単糸の分割により発
現した前記低融点重合体と前記高融点重合体から構成さ
れる極細割繊フイラメント群からなる長繊維ウエブと、
主として天然繊維及び/又は再生繊維からなる短繊維ウ
エブとが積層されてなり、長繊維ウエブの構成繊維同士
および長繊維ウエブと短繊維ウエブとの構成繊維同士お
よび短繊維ウエブの構成繊維同士が三次元交絡により一
体化してなることを特徴とする複合不織布。
The fiber-forming low-melting polymer is incompatible with the low-melting polymer and has a melting point lower than the melting point of the low-melting polymer by 3%.
An ultrafine splitting fiber composed of the low-melting polymer and the high-melting polymer developed by dividing a split type two-component composite continuous single yarn comprising a fiber-forming high-melting polymer having a high melting point of 0 to 180 ° C. A long fiber web consisting of a group of filaments,
A short fiber web mainly composed of natural fibers and / or regenerated fibers is laminated, and the constituent fibers of the long fiber web, the constituent fibers of the long fiber web and the short fiber web, and the constituent fibers of the short fiber web are tertiary. A composite nonwoven fabric characterized by being integrated by original confounding.

【0006】繊維形成性低融点重合体と前記低融点重合
体に対し非相溶性でかつ前記低融点重合体の融点より3
0〜180℃高い融点を有する繊維形成性高融点重合体
とからなる分割型二成分系複合連続単糸群を溶融紡糸
し、前記複合連続単糸群をエア−サツカ−を用いて引取
り、スクリ−ンコンベア等の移動式捕集面上に開繊堆積
させてウエブとし、前記ウエブの前記複合連続単糸群を
部分熱圧着装置を用いて部分的な熱圧着処理を施して、
前記複合連続単糸群を部分的に熱圧着して、長繊維ウエ
ブを得、前記長繊維ウエブの少なくとも片面に主として
天然繊維及び/又は再生繊維からなる短繊維ウエブを積
層し、次いで、前記積層体に高圧液体流処理を施し、長
繊維ウエブの構成繊維同士および長繊維ウエブと短繊維
ウエブとの構成繊維同士および短繊維ウエブの構成繊維
同士を三次元的に交絡一体化させることを特徴とする複
合不織布の製造方法。
The fiber-forming low-melting polymer is incompatible with the low-melting polymer and has a melting point lower than the melting point of the low-melting polymer by 3%.
A split type two-component composite continuous single yarn group consisting of a fiber-forming high melting point polymer having a high melting point of 0 to 180 ° C. is melt-spun, and the composite continuous single yarn group is taken up using an air sucker. Spreading and depositing on a movable collecting surface such as a conveyor to form a web, and performing a partial thermocompression treatment on the composite continuous single yarn group of the web using a partial thermocompression device,
The composite continuous single yarn group is partially thermocompression-bonded to obtain a long fiber web, and a short fiber web mainly composed of natural fibers and / or regenerated fibers is laminated on at least one surface of the long fiber web. Is subjected to high-pressure liquid flow treatment, and the constituent fibers of the long fiber web and the constituent fibers of the long fiber web and the short fiber web and the constituent fibers of the short fiber web are three-dimensionally entangled and integrated. A method for producing a composite nonwoven fabric.

【0007】前記複合不織布の製造方法において、短繊
維ウエブを積層する長繊維ウエブとして、部分的に熱圧
着した長繊維ウエブを座屈処理にて熱圧着されていない
部位に存在する前記複合連続単糸を分割割繊させて、低
融点重合体又は高融点重合体から構成される極細割繊フ
イラメント群を少なくとも一部発現させ、かつ極細割繊
フイラメント群は非交絡状態とした長繊維ウエブを用い
ることを特徴とする複合不織布の製造方法。
In the method for producing a composite nonwoven fabric, as the long fiber web for laminating the short fiber webs, the long continuous fiber web which is partially thermocompression-bonded is present at the portion which is not thermocompression-bonded by buckling treatment. By splitting the yarn, at least a part of the ultrafine splitting filament group composed of a low-melting polymer or a high melting polymer is expressed, and the ultrafine splitting filament group uses a long fiber web in an unentangled state. A method for producing a composite nonwoven fabric, comprising:

【0008】前記複合不織布の製造方法において、短繊
維ウエブを積層する長繊維ウエブとして、部分的に熱圧
着した長繊維ウエブに高圧液体流を作用させることによ
り熱圧着されていない部位に存在する前記複合連続単糸
を分割させて、低融点重合体又は高融点重合体から構成
される極細割繊フイラメント群を少なくとも一部発現さ
せ、かつ極細割繊フイラメント群同士を三次元的に交絡
させた長繊維ウエブを用いることを特徴とする複合不織
布の製造方法。
In the method for producing a composite nonwoven fabric, as the long fiber web for laminating the short fiber web, a high-pressure liquid flow is applied to the partially thermocompressed long fiber web to thereby form a long fiber web which is not thermocompressed. By splitting the composite continuous single yarn, at least partially expressing a group of ultrafine split filaments composed of a low-melting polymer or a high-melting polymer, and three-dimensionally entangled the ultrafine split filament groups. A method for producing a composite nonwoven fabric, comprising using a fiber web.

【0009】[0009]

【発明の実施の形態】次に、本発明を詳細に説明する。
まず、本発明に使用する分割型二成分系複合連続単糸よ
り構成された長繊維ウエブについて説明する。該分割型
二成分系複合連続単糸は、繊維形成性低融点重合体と、
該低融点重合体に対し非相溶性の繊維形成性高融点重合
体とからなるものである。該低融点重合体と該高融点重
合体とが互いに非相溶性であるのは、単糸に衝撃を与え
たときに分割しやすいようにするためである。
Next, the present invention will be described in detail.
First, a long fiber web composed of a split type two-component composite continuous single yarn used in the present invention will be described. The split type two-component composite continuous single yarn, a fiber-forming low-melting polymer,
A fiber-forming high-melting polymer that is incompatible with the low-melting polymer. The reason that the low-melting polymer and the high-melting polymer are incompatible with each other is that the single yarn is easily split when subjected to impact.

【0010】分割型二成分系複合連続単糸の繊維形成性
高融点重合体の融点は繊維形成性低融点重合体の融点よ
り30〜180℃高くなければならない。両者の融点差
が30℃未満であると、部分熱圧着装置を用いて熱圧着
処理する際に、低融点重合体のみでなく高融点重合体も
軟化溶融することとなり、柔軟性を有する複合不織布が
得られないこと及び後の分割割繊工程において両成分が
分割割繊しにくくなり、目標の複合不織布が得られない
こととなる。逆に融点差が180℃を超えると、両重合
体を溶融複合紡糸する際に低融点重合体が熱劣化を起こ
しやすく、現実的に複合連続単糸を製造しにくくなるた
め、好ましくない。
The melting point of the fiber-forming high melting point polymer of the split type two-component composite continuous single yarn must be 30 to 180 ° C. higher than the melting point of the fiber-forming low melting point polymer. If the difference in melting point between the two is less than 30 ° C, not only the low-melting polymer but also the high-melting polymer will be softened and melted during thermocompression bonding using a partial thermocompression bonding apparatus, and the composite nonwoven fabric having flexibility Is not obtained, and in the subsequent split splitting step, both components are hardly split and split, and a target composite nonwoven fabric cannot be obtained. Conversely, if the difference in melting point exceeds 180 ° C., the low-melting-point polymer tends to undergo thermal deterioration when melt-spinning both polymers, which makes it difficult to produce a composite continuous single yarn, which is not preferable.

【0011】分割型二成分系複合連続単糸の具体例とし
ては、図1〜図4に示した如き横断面を持つものが好ま
しい。これらは、繊維形成性低融点重合体及び繊維形成
性高融点重合体の両成分が共に繊維の表面に露出してお
り、かつ繊維の断面内において、一方の成分が他方の成
分により分割割繊可能な形に仕切られているものであ
る。
As a specific example of the split type two-component composite continuous single yarn, one having a cross section as shown in FIGS. 1 to 4 is preferable. In these, both components of the fiber-forming low-melting polymer and the fiber-forming high-melting polymer are both exposed on the surface of the fiber, and within the cross section of the fiber, one component is split by the other component. It is divided into possible forms.

【0012】分割型二成分系複合連続単糸の単糸繊度
は、1〜12デニールであることが好ましい。単糸繊度
が1デニール未満になると、溶融紡糸する際の紡糸口金
の単孔当たりの吐出量が低下し、生産量が低下する傾向
にあり、また、生産量を向上させるために、紡糸口金の
孔数を増加させると、紡糸工程が不安定になる。一方、
単糸繊度が12デニールを超えると、溶融紡糸された糸
条の冷却やエアーサッカーによる引き取りが困難になる
傾向にあり、また、糸条の冷却を促進させるため、紡糸
口金の孔数を減らすと、生産量が低下する。
The fineness of the split type two-component composite continuous single yarn is preferably 1 to 12 denier. When the single-fiber fineness is less than 1 denier, the discharge amount per single hole of the spinneret during melt spinning decreases, and the production amount tends to decrease. Increasing the number of holes makes the spinning process unstable. on the other hand,
If the single yarn fineness exceeds 12 denier, it tends to be difficult to cool the melt-spun yarn or take it off by air soccer, and to reduce the number of holes in the spinneret to promote cooling of the yarn. , The production volume decreases.

【0013】分割型二成分系複合連続単糸は、後の分割
割繊処理により、低融点重合体と高融点重合体との境界
で分割され、低融点重合体からなる割繊フイラメント及
び高融点重合体からなる割繊フイラメントが少なくとも
一部発現する。本発明において、少なくとも一部発現す
る割繊フイラメントの単糸繊度は、0.8デニール以下
が好ましく、より好ましくは0.05〜0.8デニー
ル、さらに好ましくは0.1〜0.5デニールである。
単糸繊度が0.05デニール未満であると、現実的に紡
糸が困難となり分割型二成分系複合連続単糸が安価で合
理的に得られにくい。また、十分に分割割繊を行うこと
が困難となる傾向にある。一方、0.8デニールを超え
ると、得られた複合不織布は柔軟性に劣り粗硬感が発生
する傾向にあり、また、短繊維ウエブとの交絡性が弱く
なるため複合不織布の層間剥離強力に劣る傾向になる。
The split type two-component composite continuous single yarn is split at the boundary between the low-melting polymer and the high-melting polymer by the split splitting process, and the split filament made of the low-melting polymer and the high-melting polymer. The split filament composed of a polymer is at least partially expressed. In the present invention, the single fiber fineness of the split filament that is expressed at least partially is preferably 0.8 denier or less, more preferably 0.05 to 0.8 denier, and still more preferably 0.1 to 0.5 denier. is there.
When the single yarn fineness is less than 0.05 denier, spinning is difficult in practice, and it is difficult to obtain a split type two-component composite continuous single yarn at low cost and rationally. In addition, there is a tendency that it is difficult to sufficiently perform split splitting. On the other hand, if it exceeds 0.8 denier, the obtained composite nonwoven fabric is inferior in flexibility and tends to have a rough and hard feeling, and the entanglement with the short fiber web is weakened, so that the delamination strength of the composite nonwoven fabric is increased. It tends to be inferior.

【0014】本発明において、分割型二成分系複合連続
単糸を構成する低融点重合体と高融点重合体との組み合
わせとしては、ポリオレフイン/ポリアミド、ポリオレ
フイン/ポリエステル、ポリアミド/ポリエステル等が
挙げられるが、これらは代表例であって他の各種の組み
合わせも任意に採用される。
In the present invention, examples of the combination of the low-melting polymer and the high-melting polymer constituting the split type two-component composite continuous single yarn include polyolefin / polyamide, polyolefin / polyester, and polyamide / polyester. These are representative examples, and other various combinations may be arbitrarily adopted.

【0015】本発明に使用しうる繊維形成性ポリオレフ
イン系重合体の例としては、炭素原子数が2〜16の脂
肪族α−モノオレフイン、例えばエチレン、プロピレ
ン、1−ブテン、1−ペンテン、3−メチル1−ブテ
ン、1−ヘキセン、1−オクテン、1−ドデセン、1−
オクタデセンのホモポリオレフイン又は共重合ポリオレ
フインがある。脂肪族α−モノオレフインは他のオレフ
イン及び/又は少量(重合体重量の約10重量%まで)
の他のエチレン系不飽和モノマ−、例えばブタジエン、
イソプレン、ペンタジエン−1,3、スチレン、α−メ
チルスチレンの如き類似のエチレン系不飽和モノマーと
共重合されていてもよい。特にポリエチレンの場合、重
合体重量の約10重量%までのプロピレン、ブテン−
1、ヘキセン−1、オクテン−1又は類似の高級α−オ
レフインと共重合させたものが製糸性がよくなるため好
ましい。
Examples of the fiber-forming polyolefin polymer which can be used in the present invention include aliphatic α-monoolefins having 2 to 16 carbon atoms, for example, ethylene, propylene, 1-butene, 1-pentene, 3 -Methyl 1-butene, 1-hexene, 1-octene, 1-dodecene, 1-
There is a homopolyolefin or a copolymerized polyolefin of octadecene. Aliphatic α-monoolefins may contain other olefins and / or small amounts (up to about 10% by weight of polymer weight)
Other ethylenically unsaturated monomers such as butadiene,
It may be copolymerized with similar ethylenically unsaturated monomers such as isoprene, pentadiene-1,3, styrene and α-methylstyrene. Especially in the case of polyethylene, up to about 10% by weight of the polymer weight of propylene, butene-
Those copolymerized with 1, hexene-1, octene-1 or a similar higher α-olefin are preferred because of improved spinning properties.

【0016】本発明に使用しうる繊維形成性ポリアミド
系重合体の例としては、ナイロン−4、ナイロン−4
6、ナイロン−6、ナイロン−66、ナイロン−61
0、ナイロン−11、ナイロン−12やポリメタキシレ
ンアジパミド(MXD−6)、ポリパラキシレンデカン
アミド(PXD−12)、ポリビスシクロヘキシルメタ
ンデカンアミド(PCM−12)又はこれらのモノマー
を構成単位とする共重合ポリアミドがある。本発明に使
用しうる繊維形成性ポリエステル系重合体の例として
は、酸成分としてテレフタル酸、イソフタル酸、フタル
酸、ナフタリン−2・6ジカルボン酸等の芳香族ジカル
ボン酸もしくはアジピン酸、セバシン酸などの脂肪族ジ
カルボン酸またはこれらのエステル類と、アルコール成
分としてエチレングリコール、ジエチレングリコール、
1・4−ブタンジオール、ネオペンチルグリコール、シ
クロヘキサン−1・4−ジメタノール等のジオール化合
物とから合成されるホモポリエステルないしは共重合ポ
リエステルであり、上記ポリエステルにパラオキシ安息
香酸、5−ソジュームスルフオイソフタール酸、ポリア
ルキレングリコール、ペンタエリスリトール、ビスフエ
ノールA等が添加あるいは共重合されていてもよい。
Examples of the fiber-forming polyamide polymer usable in the present invention include nylon-4 and nylon-4.
6, Nylon-6, Nylon-66, Nylon-61
0, nylon-11, nylon-12, polymetaxylene adipamide (MXD-6), polyparaxylenedecaneamide (PXD-12), polybiscyclohexylmethanedecaneamide (PCM-12) or a monomer of these There is a copolyamide as a unit. Examples of the fiber-forming polyester-based polymer that can be used in the present invention include, as an acid component, terephthalic acid, isophthalic acid, phthalic acid, aromatic dicarboxylic acids such as naphthalene-2.6 dicarboxylic acid or adipic acid, sebacic acid, etc. Aliphatic dicarboxylic acids or esters thereof, and alcohol components as ethylene glycol, diethylene glycol,
A homopolyester or a copolyester synthesized from a diol compound such as 1,4-butanediol, neopentylglycol, cyclohexane-1,4-dimethanol, etc., wherein paraoxybenzoic acid, 5-sodium sulfo Isophthalic acid, polyalkylene glycol, pentaerythritol, bisphenol A and the like may be added or copolymerized.

【0017】その他の繊維形成性重合体の例としては、
例えばビニル系重合体が用いられ、具体的にはポリビニ
ルアルコール、ポリ酢酸ビニル、ポリアクリル酸エステ
ル、エチレン酢酸ビニル共重合体、ポリ塩化ビニル、ポ
リ塩化ビニリデン、または、これらの共重合体が用いら
れる。また、ポリフエニレン系重合体またはその共重合
体を使用することもできる。
Examples of other fiber-forming polymers include:
For example, a vinyl polymer is used, and specifically, polyvinyl alcohol, polyvinyl acetate, polyacrylate, ethylene vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, or a copolymer thereof is used. . Further, a polyphenylene-based polymer or a copolymer thereof can also be used.

【0018】なお、繊維形成性低融点重合体、繊維形成
性高融点重合体には、本発明の目的を阻害しない範囲
で、艶消し剤、顔料、防炎剤、消臭剤、帯電防止剤、酸
化防止剤、紫外線吸収剤、抗菌剤等の任意の添加物が添
加されていてもよい。
The fiber-forming low-melting polymer and the fiber-forming high-melting polymer include matting agents, pigments, flame retardants, deodorants, antistatic agents as long as the object of the present invention is not impaired. Optional additives such as antioxidants, ultraviolet absorbers, and antibacterial agents may be added.

【0019】本発明で用いる分割型二成分系複合連続単
糸からなる長繊維ウエブは、一般に以下の如き方法で製
造される。即ち、従来公知の溶融複合紡糸法で紡糸さ
れ、横吹付や環状吹付等の従来公知の冷却装置を用い
て、吹付風により冷却された後、一般的にエアーサッカ
ーを用いて、目標繊度となるように牽引細化されて引き
取られる。牽引速度は3000m/分以上、特に、40
00m/分以上が不織布の寸法安定性が向上するため更
に好適である。エアーサッカーから排出される分割型二
成分系複合連続単糸は、一般的には、高圧電場中のコロ
ナ放電域か、又は、摩擦衝突帯域を通過せしめて帯電開
繊させた後、スクリーンからなるコンベアーの如き移動
堆積装置上に開繊集積させて長繊維ウエブを得ることが
できる。
The long fiber web composed of the split type bicomponent composite continuous single yarn used in the present invention is generally produced by the following method. That is, spun by a conventionally known melt composite spinning method, using a conventionally known cooling device such as horizontal spraying or annular spraying, and cooled by spraying wind, and then generally using air soccer to reach a target fineness. As if towed and taken off. The towing speed is over 3000 m / min, especially 40
More than 00 m / min is more preferable because the dimensional stability of the nonwoven fabric is improved. The split-type two-component composite continuous single yarn discharged from air soccer generally consists of a screen after passing through a corona discharge area in a high-voltage field or through a frictional collision zone to be charged and spread. It is possible to obtain a long fiber web by spreading and accumulating on a moving deposition device such as a conveyor.

【0020】次に、該長繊維ウエブを部分熱圧着装置を
用いて処理し部分的に熱圧着する。部分的な熱圧着と
は、例えば繊維形成性低融点重合体の融点以下の温度で
加熱され表面に彫刻模様が刻印された金属ロールすなわ
ちエンボスロールと、加熱され表面が平滑な金属ロール
との間に、長繊維ウエブを通すことによって、いわゆる
熱エンボスロールを用いて、また超音波融着機を用い
て、前記彫刻模様に当接する長繊維ウエブ同士を熱的に
圧着せしめることをいう。
Next, the long fiber web is processed using a partial thermocompression bonding apparatus and partially thermocompression bonded. Partial thermocompression bonding means, for example, between a metal roll or embossing roll heated at a temperature equal to or lower than the melting point of the fiber-forming low-melting polymer and having an engraved pattern engraved on the surface, and a heated metal roll having a smooth surface. Means that the long fiber webs that are in contact with the engraved pattern are thermally pressed by using a so-called hot embossing roll or by using an ultrasonic fusing machine.

【0021】個々の熱圧着形状は、円形である必要は無
く、菱形、三角形、T形等任意の形状を適宜選択すれば
よい。個々の熱圧着部の面積は、0.1〜1.0mm2
の範囲で、その密度すなわち圧接点密度が4〜80点/
cm2 のものであるのがよい。また、長繊維ウエブの全
表面積に対する全圧接領域の面積の比すなわち圧接面積
率は5〜30%が好ましく、さらには5〜20%が好ま
しい。圧接面積率が5%未満であると、複合不織布の機
械的特性及び寸法安定性が劣る傾向にある。逆に30%
を超えると、短繊維ウエブを積層し液体流処理にて交絡
処理を施す際に、交絡部分の減少により両ウエブ層の層
間剥離強力が低下する傾向にある。
Each thermocompression bonding shape does not need to be circular, and any shape such as a rhombus, a triangle, and a T shape may be appropriately selected. The area of each thermocompression bonding part is 0.1 to 1.0 mm 2
In the range of 4 to 80 points /
cm 2 is good. Further, the ratio of the area of the entire press contact area to the total surface area of the long fiber web, that is, the press contact area ratio is preferably 5 to 30%, and more preferably 5 to 20%. If the pressed area ratio is less than 5%, the mechanical properties and dimensional stability of the composite nonwoven fabric tend to be poor. 30% conversely
When it exceeds, when laminating short fiber webs and performing entanglement treatment by liquid flow treatment, the delamination strength of both web layers tends to decrease due to a decrease in entangled portions.

【0022】熱圧着処理における熱圧着温度(エンボス
ロール温度)は、繊維形成性低融点重合体の融点以下の
温度、好ましくは繊維形成性低融点重合体の融点より5
〜30℃低い温度とする。例えば、融点より高い温度で
加工を行うと、熱圧着装置に長繊維ウエブが固着し著し
く操業性を悪化させることとなる。熱圧着温度が繊維形
成性低融点重合体の融点に近い温度であると、熱圧着は
強固なものとなるため、長繊維ウエブの寸法安定性は優
れ、また、後の高圧液体流処理において、複合連続単糸
の分割割繊及び交絡一体化の際に、部分的熱圧着部は残
存し、非熱圧着部に存在する割繊フイラメント群が三次
元的に交絡する。よって、得られる複合不織布は、縦・
横の破断伸度が高く寸法安定性に優れ、機械的強力が高
いものとなる。一方、熱圧着温度が繊維形成性低融点重
合体の融点に遠い温度であると、部分的熱圧着部は繊維
形態を残した仮熱圧着の状態となり、後の高圧液体流処
理において、複合連続単糸の分割割繊及び交絡一体化の
際に、部分的熱圧着部は剥離されて繊維状となり、複合
連続単糸群や割繊フイラメント群は自由に運動すること
ができ、よりランダムに三次元的に交絡する。よって、
得られる複合不織布は、柔軟性に優れ、層間剥離強力の
高いものとなる。
The thermocompression bonding temperature (embossing roll temperature) in the thermocompression bonding treatment is lower than the melting point of the fiber-forming low-melting polymer, preferably 5 to the melting point of the fiber-forming low-melting polymer.
-30 ° C lower temperature. For example, if the processing is performed at a temperature higher than the melting point, the long fiber web sticks to the thermocompression bonding apparatus and the operability is remarkably deteriorated. When the thermocompression bonding temperature is a temperature close to the melting point of the fiber-forming low-melting polymer, thermocompression bonding becomes strong, so that the dimensional stability of the long fiber web is excellent, and in the subsequent high-pressure liquid flow treatment, At the time of split splitting and entanglement integration of the composite continuous single yarn, the partial thermocompression bonding portion remains, and the split filament groups existing in the non-thermocompression bonding portion are three-dimensionally entangled. Therefore, the obtained composite nonwoven fabric is
High lateral elongation at break, excellent dimensional stability, and high mechanical strength. On the other hand, if the thermocompression bonding temperature is a temperature far from the melting point of the fiber-forming low-melting polymer, the partial thermocompression bonding section will be in a state of temporary thermocompression bonding in which the fiber form is left. During split splitting and entanglement integration of single yarn, the partial thermocompression bonding part is peeled off and becomes fibrous, and the composite continuous single yarn group and split filament group can move freely, and more randomly three-dimensionally. Confoundingly. Therefore,
The resulting composite nonwoven fabric has excellent flexibility and high delamination strength.

【0023】長繊維ウエブの目付は100g/m2 程度
以下が好ましい。目付が100g/m2 を超えると、後
の分割割繊処理において、実質上、長繊維ウエブの全厚
みを通じて、十分に分割型二成分系複合連続単糸が割繊
されない傾向となる。即ち、長繊維ウエブの厚みの中心
部に未割繊の分割型二成分系複合連続単糸が残存する傾
向となる。しかし、このような場合であっても、本発明
の実施態様の一つであることには変わりない。長繊維ウ
エブの目付の下限については、特に限定されないが、得
られる複合不織布の地合い等を考慮すると10g/m2
程度までが好ましい。
The basis weight of the long fiber web is preferably about 100 g / m 2 or less. If the basis weight exceeds 100 g / m 2 , in the subsequent split splitting treatment, the split type two-component composite continuous single yarn tends to not be split sufficiently throughout the entire thickness of the long fiber web. That is, the split-type two-component composite continuous single yarn of the undivided fiber tends to remain at the center of the thickness of the long fiber web. However, even in such a case, it is still one of the embodiments of the present invention. Although the lower limit of the basis weight of the long fiber web is not particularly limited, it is 10 g / m 2 in consideration of the formation of the obtained composite nonwoven fabric.
Up to a degree is preferred.

【0024】本発明は、前記長繊維ウエブの少なくとも
片面に短繊維ウエブが積層されて構成繊維同士が交絡一
体化したものであるが、短繊維ウエブを積層する長繊維
ウエブとしては、分割型二成分系複合連続単糸からなる
部分的に熱圧着された長繊維ウエブであっても、予め単
糸を形成する二成分を分割割繊させて極細割繊フイラメ
ント群を少なくとも一部発現させた長繊維ウエブであっ
てもよい。
In the present invention, the short fiber web is laminated on at least one surface of the long fiber web, and the constituent fibers are entangled and integrated. The long fiber web for laminating the short fiber web is a split-type web. Even in the case of a long fiber web which is partially thermocompressed and made of a component-based composite continuous single yarn, a length in which the two components forming the single yarn are split in advance and at least a part of the ultrafine split filament group is developed. It may be a fiber web.

【0025】部分的に熱圧着された長繊維ウエブを予め
単糸を形成する二成分を分割割繊させて極細割繊フイラ
メント群を少なくとも一部発現させる方法として、長繊
維ウエブを液体中あるいは機械的に揉み加工(座屈処
理)して分割割繊する方法、長繊維ウエブに高圧液体流
を施し衝撃を与えて分割割繊する方法が適用される。
[0025] As a method of splitting the two components forming a single yarn in advance from a partially fibrous web that has been partially thermocompression-bonded to at least partially express a group of ultrafine split filaments, the long fiber web is placed in a liquid or mechanically. A method of splitting by splitting by rubbing (buckling), or a method of splitting the web by applying a high-pressure liquid flow to a long fiber web and giving an impact thereto is applied.

【0026】液体中あるいは機械的な揉み加工(座屈処
理)にて分割割繊する方法としては、例えば、座屈加工
機すなわち一対のロールを通じて長繊維ウエブを押し込
み式クリンパー内へ押し込み、揉み加工により分割割繊
する方法、長繊維ウエブを一対のギアロールに通して座
屈させることにより分割割繊する方法、長繊維ウエブを
複数のガイド間に通し擦過屈曲させて分割割繊する方
法、長繊維ウエブを液体中に浸漬して液流により分割割
繊する方法等が挙げられる。
As a method of splitting splitting in a liquid or by mechanical kneading (buckling), for example, a long fiber web is pushed into a push-type crimper through a buckling machine, that is, a pair of rolls, and kneading is performed. Splitting by buckling the long fiber web through a pair of gear rolls, splitting by passing the long fiber web through a plurality of guides, bending and bending, long fiber A method of immersing a web in a liquid and splitting the web by a liquid flow may be used.

【0027】高圧液体流を施し衝撃を与えて分割割繊す
る方法とは、後の本発明の長繊維ウエブと短繊維ウエブ
とを交絡一体化させる際に用いる水流と同様で、水を噴
射孔から高圧力で噴射させて得られる水流(高圧液体
流)により長繊維ウエブを分割割繊することをいう。
The method of splitting by splitting by applying a high-pressure liquid stream and applying an impact is the same as the water stream used when the long-fiber web and short-fiber web of the present invention are entangled and integrated with each other. Refers to splitting and splitting the long fiber web by a water stream (high-pressure liquid stream) obtained by jetting the web at a high pressure.

【0028】予め分割割繊処理を施すことにより、後の
短繊維ウエブとの積層一体化交絡処理において、低い高
圧液体流のエネルギーで構成繊維同士の交絡一体化を行
うことができる。よって、予め施す分割割繊処理での割
繊率が高い程、低い高圧液体流のエネルギーで構成繊維
同士の交絡一体化を行うことができる。ここで割繊率と
は、長繊維ウエブの任意の10個所を選び、その断面を
100倍に拡大して断面写真を撮影する。1枚の断面写
真からランダムに30本のフイラメントを選び、下記式
により割繊率を求める。同様の操作を10枚の断面写真
について行い、得られた値の平均値をその長繊維ウエブ
の割繊率とする。 割繊率(%)=(30/X)×100
上式において、Xは完全に割繊されたと仮定したときの
低融点重合体からなる割繊フイラメントと高融点重合体
からなる割繊フイラメントとの総数を表す。
By preliminarily performing the split splitting treatment, in the subsequent lamination and integration entanglement with the short fiber web, entanglement and integration of the constituent fibers can be performed with the energy of the low-pressure liquid flow. Therefore, the higher the splitting rate in the split splitting process to be performed in advance, the lower the energy of the high-pressure liquid flow can be to perform the confounding integration of the constituent fibers. Here, the splitting rate means that any ten places of the long fiber web are selected, and the cross section is magnified 100 times and a cross-sectional photograph is taken. Thirty filaments are randomly selected from one cross-sectional photograph, and the splitting rate is determined by the following equation. The same operation is performed for ten cross-sectional photographs, and the average value of the obtained values is defined as the splitting rate of the long fiber web. Splitting rate (%) = (30 / X) × 100
In the above formula, X represents the total number of split filaments made of a low-melting polymer and split filaments made of a high-melting polymer, assuming that the splitting is complete.

【0029】特に、本発明においては、後の構成繊維同
士の交絡一体化処理を効率的に行えて、層間剥離強力に
優れた複合不織布を得るには、割繊率は60%以上が好
ましく、より好ましくは80%以上、さらに好ましくは
90%以上である。
In particular, in the present invention, the splitting rate is preferably 60% or more in order to efficiently perform the subsequent entanglement and integration processing of the constituent fibers and obtain a composite nonwoven fabric having excellent delamination strength. It is more preferably at least 80%, further preferably at least 90%.

【0030】本発明において、短繊維ウエブを積層する
長繊維ウエブは、後の積層一体化交絡処理での高圧液体
流エネルギーの仕様及び複合不織布の要求性能等に応じ
て、予め割繊処理を施していない長繊維ウエブや前記種
々の方法により予め割繊処理を施した長繊維ウエブを適
宜選択すればよい。
In the present invention, the long fiber web on which the short fiber web is laminated is preliminarily subjected to splitting processing in accordance with the specification of the high-pressure liquid flow energy in the subsequent lamination integrated entanglement processing and the required performance of the composite nonwoven fabric. It is only necessary to appropriately select a long fiber web that has not been split or a long fiber web that has been split in advance by the above various methods.

【0031】液体中あるいは機械的な揉み加工(座屈)
にて分割割繊する方法により、予め極細割繊フイラメン
ト群を発現させた長繊維ウエブは、極細割繊フイラメン
ト群が非交絡状態であるのでフイラメントの自由度が大
きく、またフイラメント間の空隙が大きいため、後の短
繊維ウエブとの積層一体化交絡処理において、極細割繊
フイラメント群の間に短繊維ウエブの構成繊維が制限さ
れることなく入り込み絡みやすい。従って積層体の交絡
一体化は、低い液体流エネルギーで行うことができ、得
られる複合不織布は、柔軟性に優れる上、層間剥離強力
に優れたものとなる。
In-liquid or mechanical kneading (buckling)
By the method of splitting at, the long fiber web in which the ultrafine splitting filament group is expressed in advance has a high degree of freedom of the filament because the ultrafine splitting filament group is in an unentangled state, and the gap between the filaments is large. Therefore, in the subsequent lamination and integration entanglement treatment with the short fiber web, the constituent fibers of the short fiber web easily enter and entangle between the ultrafine split filament groups without restriction. Therefore, the entanglement and integration of the laminate can be performed with low liquid flow energy, and the resulting composite nonwoven fabric has excellent flexibility and excellent delamination strength.

【0032】高圧液体流を施し衝撃を与えて分割割繊す
る方法により、予め極細割繊フイラメント群を発現させ
た長繊維ウエブは、分割型二成分系複合連続単糸の殆ど
が割繊されて交絡状態の極細割繊フイラメント群を発現
している。よって、後の短繊維ウエブとの積層一体化交
絡処理において、構成繊維同士の交絡一体化のみの目的
で高圧液体流処理を施せばよい。
A long fiber web in which a group of ultrafine splitting filaments is developed in advance by a method of splitting splitting by applying a high-pressure liquid flow and giving an impact is obtained by splitting almost all split-type bicomponent composite continuous single yarns. An ultra-fine split filament group in a confounding state is exhibited. Therefore, in the subsequent lamination and integration entanglement with the short fiber web, the high-pressure liquid flow treatment may be performed only for the purpose of entanglement and integration of the constituent fibers.

【0033】予め割繊処理を施していない長繊維ウエブ
では、後の短繊維ウエブとの積層一体化交絡処理におい
て、分割型二成分系複合連続単糸の分割割繊する作用と
発現した極細割繊フイラメント群同士又は割繊フイラメ
ント群と短繊維又は短繊維同士とが三次元的に交絡一体
化させる作用と同時に行われる。よって予め極細割繊フ
イラメント群を発現させた長繊維ウエブを用いる方法と
比較して交絡一体化処理における高圧液体流のエネルギ
ーが高く、又、得られた複合不織布は柔軟性にやや劣る
ものの、生産工程が簡略化される。また、得られる複合
不織布は緻密に交絡一体化したフイルター性能に優れた
ものとなる。
In the case of the long fiber web which has not been subjected to the splitting treatment in advance, in the subsequent lamination and integration entanglement treatment with the short fiber web, the action of splitting and splitting the split type two-component composite continuous single yarn has been demonstrated. This is performed simultaneously with the action of three-dimensionally confounding and integrating the fine filament groups or the split filament group with the short fibers or short fibers. Therefore, the energy of the high-pressure liquid flow in the confounding integration process is higher than the method using a long fiber web in which a group of ultrafine splitting filaments is expressed in advance, and the obtained composite nonwoven fabric is slightly inflexible. The process is simplified. In addition, the obtained composite nonwoven fabric has excellent filter performance that is densely entangled and integrated.

【0034】本発明の複合不織布は、前記長繊維ウエブ
の少なくとも片面に短繊維ウエブが積層されており、構
成繊維同士が交絡一体化している。短繊維ウエブは、主
として、コツトン、ウール、リネン、シルク等の天然繊
維あるいはレーヨン等の再生繊維の少なくともいずれか
一種からなり、本発明の目的を損なわない範囲で他の繊
維が含まれていてもよい。本発明において、短繊維ウエ
ブの構成繊維として天然繊維及び/又は再生繊維を用い
ることで、得られる複合繊維に優れた吸水性を付与する
ことができる。
In the composite nonwoven fabric of the present invention, short fiber webs are laminated on at least one surface of the long fiber web, and the constituent fibers are entangled and integrated. The short fiber web is mainly made of at least one kind of natural fiber such as cotton, wool, linen and silk or regenerated fiber such as rayon, and may contain other fibers as long as the object of the present invention is not impaired. Good. In the present invention, by using natural fibers and / or regenerated fibers as constituent fibers of the short fiber web, it is possible to impart excellent water absorption to the obtained conjugate fibers.

【0035】また、前記繊維からなる反毛を用いてもよ
く、その場合、効果的に用い得る反毛機としては、ラツ
グマシン、ノツトブレーカー、ガーネツトマシン、廻切
機が挙げられる。用いる反毛機と種類と組み合わせは、
反毛される織編物等の布帛形状や構成する糸の太さある
いは撚りの強さにもよるが、同一の反毛機を複数台直列
に連結したり、2種以上の反毛機を組み合わせて使用し
たりするとより効果的である。この反毛機による解繊率
は30〜95%の範囲であるのが好ましい。この解繊率
が30%未満であると、カードウエブ中に未解繊繊維が
存在するため不織布表面にザラツキが生じるのみでな
く、例えば高圧液体流にて交絡処理を施すに際して、未
解繊繊維部分を高圧液体流が十分貫通せず好ましくな
い。なお、ここでいう解繊率とは、下記式で求めたもの
である。
In addition, a bristles made of the above fibers may be used. In this case, examples of the bristles that can be effectively used include a rat machine, a knot breaker, a garnet machine, and a turning machine. The anti-hair machine to be used and the type and combination
Depending on the shape of the fabric, such as woven or knitted fabric, and the thickness or twist strength of the constituent yarns, the same anti-hair machines can be connected in series, or two or more anti-hair machines can be combined. It is more effective when used. It is preferable that the defibration rate by this anti-hair machine is in the range of 30 to 95%. If the defibration rate is less than 30%, not only the unwoven fibers are present in the card web, but also the surface of the nonwoven fabric becomes rough. The high pressure liquid flow does not sufficiently penetrate the portion, which is not preferable. Here, the defibration rate is obtained by the following equation.

【0036】解繊率(%)=(被反毛重量−糸条物重
量)×100/被反毛重量 又、短繊維ウエブには、例えば、より高い機械的特性の
付与あるいは嵩高性の付与等の要求性能により熱可塑性
重合体からなる短繊維を30重量%未満混綿してもよ
い。熱可塑性重合体の代表例としては、ポリオレフイン
系重合体、ポリアミド系重合体、ポリエステル系重合体
が挙げられ、これらの重合体と他成分との共重合体であ
ってもよい。また、糸の断面形状は、丸断面に限らず中
空断面、扁平断面、異形断面、多葉断面等適宜選択すれ
ばよい。
Fibrillation ratio (%) = (weight of bristles-weight of yarn) × 100 / weight of bristles Also, for example, higher mechanical properties or bulkiness are imparted to the short fiber web. Depending on the required performance, short fibers made of a thermoplastic polymer may be mixed in less than 30% by weight. Representative examples of the thermoplastic polymer include a polyolefin-based polymer, a polyamide-based polymer, and a polyester-based polymer, and may be a copolymer of these polymers and other components. Further, the cross-sectional shape of the yarn is not limited to a round cross-section, and may be appropriately selected, such as a hollow cross-section, a flat cross-section, a modified cross-section, or a multi-leaf cross-section.

【0037】短繊維ウエブの目付は100g/m2 程度
以下が好ましい。目付が100g/m2 を超えると、長
繊維ウエブと短繊維ウエブとの交絡処理において大きな
高圧液体流エネルギ−を要するとともに用途が限定され
ることとなる。目付の下限については特に限定されない
が10g/m2 程度であればよい。
The basis weight of the short fiber web is preferably about 100 g / m 2 or less. When the basis weight exceeds 100 g / m 2 , a large high-pressure liquid flow energy is required in the entanglement treatment of the long fiber web and the short fiber web, and the application is limited. The lower limit of the basis weight is not particularly limited, but may be about 10 g / m 2 .

【0038】短繊維ウエブは、カード機を用いて所定目
付のものを得ることができ、また、構成繊維の配列度合
は複合不織布の用途等に合わせて種々選択することがで
きる。例えば、短繊維ウエブの構成繊維の配列パターン
としては、構成繊維が一方向に配列したパラレルウエ
ブ、パラレルウエブがクロスレイドされたウエブ、構成
繊維がランダムに配列したランダムウエブあるいは両者
の中程度に配列したセミランダムウエブ等が挙げられ
る。
The short fiber web can be obtained with a predetermined weight using a carding machine, and the degree of arrangement of the constituent fibers can be selected variously according to the use of the composite nonwoven fabric. For example, as the arrangement pattern of the constituent fibers of the short fiber web, a parallel web in which the constituent fibers are arranged in one direction, a web in which the parallel webs are cross-laid, a random web in which the constituent fibers are randomly arranged, or a medium arrangement of both. Semi-random webs and the like.

【0039】本発明は、前記長繊維ウエブ(分割型二成
分系複合連続単糸からなる部分的に熱圧着された長繊維
ウエブ又は予め繊維を形成する二成分を分割割繊させて
極細割繊フイラメント群を少なくとも一部発現させた長
繊維ウエブ)の少なくとも片面に短繊維ウエブを積層し
た積層体に高圧液体流処理を施し、長繊維ウエブの構成
繊維同士および長繊維ウエブと短繊維ウエブとの構成繊
維同士および短繊維ウエブの構成繊維同士を三次元的に
交絡一体化させた複合不織布である。ここで長繊維ウエ
ブの構成繊維とは、分割型二成分系複合連続単糸および
それから発現した極細割繊フイラメント群をいう。
The present invention relates to an ultrafine splitting method comprising splitting the above-mentioned long fiber web (partially thermocompressed long fiber web made of a split type two-component composite continuous single yarn or a two-component forming fiber in advance) into an ultrafine splitting fiber. A high-pressure liquid flow treatment is applied to a laminate obtained by laminating a short fiber web on at least one surface of a long fiber web in which at least a part of a filament group is expressed, and the constituent fibers of the long fiber web and the long fiber web and the short fiber web are formed. It is a composite nonwoven fabric in which constituent fibers and short fiber webs are three-dimensionally entangled and integrated. Here, the constituent fibers of the long fiber web refer to a split type two-component composite continuous single yarn and a group of ultrafine split filaments developed from it.

【0040】この積層体は、長繊維ウエブの少なくとも
片面に短繊維ウエブが積層されたものであり、長繊維ウ
エブの両面に短繊維ウエブを積層したものであっても、
短繊維ウエブの両面に長繊維ウエブを積層したものであ
ってもよく、複合不織布を用いる用途、性能に合わせて
適宜選択すればよい。
This laminate is obtained by laminating a short fiber web on at least one surface of a long fiber web. Even when a short fiber web is laminated on both surfaces of a long fiber web,
A long fiber web may be laminated on both sides of a short fiber web, and may be appropriately selected in accordance with the use and performance of the composite nonwoven fabric.

【0041】次に、高圧液体流処理方法を詳述する。高
圧液体流装置としては、例えば、孔径が0.05〜1.
5mm、特に0.1〜0.4mmの噴射孔を孔間隔0.
05〜5mmで一列あるいは複数列に多数配列した装置
を用いる。噴射孔から高圧力で噴射させて得られる水流
すなわち高圧液体流を噴射し、多孔性支持部材上に載置
した前記積層体に衝突させる。未分割の分割型二成分系
複合連続単糸は、高圧液体流による衝撃によって、極細
割繊フイラメントを発現し、分割により発現した極細割
繊フイラメント群は、極細割繊フイラメント群同士又は
極細割繊フイラメント群と短繊維又は短繊維同士が三次
元的に交絡一体化する。
Next, the high-pressure liquid flow processing method will be described in detail. As the high-pressure liquid flow device, for example, a hole diameter of 0.05 to 1.
Injection holes of 5 mm, especially 0.1 to 0.4 mm, having a hole interval of 0.
A large number of devices arranged in a single row or a plurality of rows with a size of 05 to 5 mm are used. A water stream, ie, a high-pressure liquid stream, obtained by jetting at a high pressure from the jet holes is jetted, and collides with the laminate placed on the porous support member. The undivided split-type bicomponent composite continuous yarn develops an ultrafine split filament by the impact of the high-pressure liquid flow, and the ultrafine split filaments group generated by the splitting is an ultrafine split filament group or ultrafine split filaments. The filament group and the short fibers or short fibers are three-dimensionally entangled and integrated.

【0042】噴射孔の配列は、前記積層体の進行方向と
直行する方向に列状に配列する。高圧液体流としては、
常温あるいは温水を用いることができる。噴射孔と前記
積層体との間の距離は、10〜150mmとするのが良
い。この距離が10mm未満であると、この処理により
得られる複合不織布の地合が乱れ、一方、この距離が1
50mmを超えると液体流が前記積層体に衝突したとき
の衝撃力が低下して分割割繊及び交絡一体化が十分に施
されない傾向にある。
The arrangement of the injection holes is arranged in a row in a direction perpendicular to the traveling direction of the laminate. As a high pressure liquid flow,
Room temperature or hot water can be used. The distance between the injection hole and the laminate is preferably 10 to 150 mm. If this distance is less than 10 mm, the formation of the composite nonwoven fabric obtained by this treatment is disturbed, while the distance is 1 mm.
If it exceeds 50 mm, the impact force when the liquid stream collides with the laminate tends to be low, so that split splitting and entanglement integration tend not to be sufficiently performed.

【0043】この高圧液体流の処理圧力は、製造方法及
び不織布の要求性能によって制御されるが、一般的に
は、20〜200kg/cm2 Gの高圧液体流を噴出す
るのが良い。なお、処理するウエブの目付等にも左右さ
れるが、前記処理圧力の範囲内において、処理圧力が低
いと嵩高で柔軟性に優れた複合不織布を得ることがで
き、処理圧力が高いと構成繊維同士の交絡が緻密で層間
剥離のないフイルター性能に優れた複合不織布を得るこ
とができる。高圧液体流の圧力が20kg/cmG未
満であると、分割割繊及び交絡一体化が十分に施され
ず、得られる複合不織布は層間剥離強力に劣るものとな
り、目的の複合不織布を得ることができない。逆に、高
圧液体流の圧力が200kg/cmGを超えると水
圧による打撃により、ひどい場合には、構成繊維が切断
されて得られる不織布は表面に毛羽を有するものとなる
傾向にあり好ましくない。
The processing pressure of the high-pressure liquid flow is controlled by the production method and the required performance of the nonwoven fabric, but generally, a high-pressure liquid flow of 20 to 200 kg / cm 2 G is preferably ejected. In addition, depending on the basis weight of the web to be processed, etc., within the range of the above-mentioned processing pressure, if the processing pressure is low, a composite nonwoven fabric which is bulky and excellent in flexibility can be obtained. It is possible to obtain a composite nonwoven fabric which is densely entangled and has excellent filter performance without delamination. When the pressure of the high-pressure liquid flow is less than 20 kg / cm 2 G, split splitting and entanglement unification are not sufficiently performed, and the obtained composite nonwoven fabric has poor delamination strength, and an intended composite nonwoven fabric is obtained. Can not. On the other hand, if the pressure of the high-pressure liquid flow exceeds 200 kg / cm 2 G, the nonwoven fabric obtained by cutting the constituent fibers tends to have fluff on the surface, which is unfavorable in severe cases due to the impact by water pressure. .

【0044】高圧液体流処理を施すに際して用いる前記
積層体を担持する多孔性支持部材としては、例えば、2
0〜200メツシユの金網製あるいは合成樹脂製等のメ
ツシユスクリーンや有孔板など、高圧液体流が前記積層
体を貫通するものであれば特に限定されない。
The porous support member for supporting the laminate used for performing the high-pressure liquid flow treatment includes, for example, 2
There is no particular limitation as long as the high-pressure liquid flow penetrates the laminate, such as a mesh screen or a perforated plate made of a wire mesh or synthetic resin of 0 to 200 mesh.

【0045】なお、積層体の片面より高圧液体流処理を
施した後、引き続き交絡の施された積層体を反転して高
圧液体流処理を施すことにより、表裏共に緻密に交絡一
体化した複合不織布を得ることができるので、複合不織
布の用途に応じて、また、積層数の多いもの及び積層体
の目付の大きいもの等に適用すればよい。
After the high-pressure liquid flow treatment is performed from one side of the laminate, the entangled laminate is reversed and subjected to the high-pressure liquid flow treatment, so that the front and back surfaces of the composite nonwoven fabric are densely entangled and integrated. Can be obtained depending on the use of the composite nonwoven fabric, and may be applied to those having a large number of laminations and those having a large basis weight of the laminate.

【0046】高圧液体流処理を施した後、処理後の前記
積層体から過剰水分を除去する。この過剰水分を除去す
るに際しては、公知の方法を採用することができる。例
えば、マングルロール等の絞り装置を用いて過剰水分を
ある程度機械的に除去し、引き続きサクシヨンバンド方
式の熱風循環式乾燥機等の乾燥装置を用いて残余の水分
を除去して本発明の複合不織布を得ることができる。
After the high-pressure liquid flow treatment, excess moisture is removed from the laminated body after the treatment. When removing the excess moisture, a known method can be adopted. For example, the excess moisture is mechanically removed to some extent using a squeezing device such as a mangle roll, and then the remaining moisture is removed using a drying device such as a suction band type hot-air circulation dryer to obtain the composite of the present invention. A non-woven fabric can be obtained.

【0047】以上、詳述したように本発明の複合不織布
は、二成分系複合連続単糸よりなる長繊維ウエブと天然
繊維及び/又は再生繊維よりなる短繊維ウエブとを積層
し、高圧液体流処理装置を用い両ウエブを緻密に交絡一
体化した複合不織布である。二成分系複合連続単糸は、
分割して分割割繊極細フイラメント群を発現するので、
長繊維ウエブは、くさび状や薄片等の異形断面や繊度の
極めて小さい繊維を有することとなる。この分割割繊極
細フイラメント群の存在により、高圧液体流での交絡性
に優れ、その交絡は解舒しにくく安定した複合不織布と
なり、また短繊維ウエブとの層間剥離強力に優れたもの
となる。
As described in detail above, the composite nonwoven fabric of the present invention is obtained by laminating a long-fiber web composed of a two-component composite continuous single yarn and a short-fiber web composed of natural fibers and / or regenerated fibers. This is a composite nonwoven fabric in which both webs are densely entangled and integrated using a processing apparatus. The two-component composite continuous single yarn is
Since it divides and expresses a split split fine filament group,
The long-fiber web has a fiber having an irregular cross-section, such as a wedge or a flake, or a fiber with an extremely small fineness. Due to the presence of the split fine fiber group, the entanglement in a high-pressure liquid flow is excellent, the entanglement becomes a stable nonwoven fabric that is difficult to unwind, and the delamination strength with the short fiber web is excellent.

【0048】本発明の複合不織布において、前記割繊率
が高いほど、複合不織布の柔軟性および交絡性に優れ、
層間剥離強力に優れる傾向にある。複合不織布における
割繊率は、複合不織布を用いる用途に応じて適宜選択す
ればよい。例えば、工業用ワイパー等として用いるので
あれば割繊率30%程度、家庭用ワイパーとして眼鏡や
鏡拭き用として用いるのであれば割繊率50%程度、濾
過布として用いるのであれば割繊率70%程度以上等が
挙げられる。
In the composite nonwoven fabric of the present invention, the higher the splitting ratio, the more excellent the flexibility and the entanglement of the composite nonwoven fabric,
It tends to have excellent delamination strength. The splitting rate in the composite nonwoven fabric may be appropriately selected according to the use of the composite nonwoven fabric. For example, when used as an industrial wiper or the like, the splitting rate is about 30%. When used as a household wiper for wiping glasses or mirrors, the splitting rate is about 50%. When used as a filter cloth, the splitting rate is about 70%. % Or more.

【0049】本発明の複合不織布は、医療・衛生材用、
衣料用、生活関連資材用、産業資材用等様々な分野にお
いて好適なものである。例えば、その一例として、ワイ
パー等の拭き取り用として使用するのに好適である。す
なわち、複合不織布の長繊維ウエブ面で拭き取り、汚れ
等は分割割繊極細フイラメント群の異形断面におけるシ
ヤープなエツジ部分で拭き取り、水分等は毛細管現象に
より長繊維ウエブの構成繊維間に含有される。そして、
長繊維ウエブの構成繊維間に含水された水は、吸水性を
有する短繊維ウエブ側へ移行させることができ、そこで
水分保持される。
The composite nonwoven fabric of the present invention is used for medical and hygiene materials,
It is suitable for various fields such as clothing, living related materials, industrial materials and the like. For example, as an example, it is suitable to be used for wiping with a wiper or the like. That is, wiping is performed on the surface of the long fiber web of the composite nonwoven fabric, dirt and the like are wiped off at the sharp edge portion in the irregular cross section of the group of split fine filaments, and moisture and the like are contained between the constituent fibers of the long fiber web by capillary action. And
The water impregnated between the constituent fibers of the long fiber web can be transferred to the short fiber web having water absorbency, where the water is retained.

【0050】また、高圧液体流処理において、液体流の
圧力を適宜選択し、構成繊維同士が強固に緻密に絡み合
った本発明の複合不織布は、フイルター性能に優れるた
め、例えば、食品工業における濾過布、ケイ藻土濾過の
フイルター、井戸水等から除粒子、除鉄の際の濾過布等
の用途に好適に用いられる。
In the high-pressure liquid flow treatment, the pressure of the liquid flow is appropriately selected, and the composite nonwoven fabric of the present invention in which the constituent fibers are tightly and tightly entangled has excellent filter performance. It is suitable for use as a filter for diatomaceous earth filtration, for removing particles from well water, and for filtering cloth for iron removal.

【0051】[0051]

【実施例】次に、実施例に基づき本発明をより具体的に
説明するが、本発明は、これらの実施例によって何ら限
定されるものではない。実施例において、各特性値の測
定を次の方法によって実施した。 (1)重合体の融点(℃):パーキンエルマー社製DS
C−2型の示差走査型熱量計を用い、昇温速度20℃/
分で測定した融解吸熱ピークの最大値を与える温度を融
点とした。
Next, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. In the examples, the measurement of each characteristic value was performed by the following method. (1) Melting point (° C.) of polymer: DS manufactured by PerkinElmer
Using a C-2 type differential scanning calorimeter, the heating rate was 20 ° C. /
The temperature giving the maximum value of the melting endothermic peak measured in minutes was defined as the melting point.

【0052】(2)ポリエチレンテレフタレ−トの相対
粘度(イ):フエノールとテトラクロロエタンの等重量
混合液を溶媒とし、この溶媒100ccに試料0.5g
を溶解し、温度20℃の条件で常法により求めた。
(2) Relative viscosity of polyethylene terephthalate (a): A mixture of equal weights of phenol and tetrachloroethane was used as a solvent, and 0.5 g of a sample was added to 100 cc of the solvent.
Was dissolved and determined by a conventional method at a temperature of 20 ° C.

【0053】(3)ナイロン6の相対粘度(ロ):96
%硫酸を溶媒とし、この溶媒100ccに試料1gを溶
解し、温度25℃の条件で常法により求めた。
(3) Relative viscosity of nylon 6 (b): 96
% Sulfuric acid was used as a solvent, and 1 g of a sample was dissolved in 100 cc of the solvent.

【0054】(4)長繊維ウエブ構成繊維の分割割繊後
の繊度(デニール):電子顕微鏡写真の形状寸法から断
面積を算出して、密度補正をして求めた。
(4) Fineness (denier) after splitting the fibers constituting the long fiber web: The cross-sectional area was calculated from the shape and dimensions of the electron micrograph, and the density was corrected.

【0055】(5)不織布の引張強力(kg/5cm
幅):JIS L 1096に記載のストリツプ法に準
じ、幅5cm、長さ10cmの試験片から最大引張強力
を測定した。
(5) Tensile strength of nonwoven fabric (kg / 5cm
Width): The maximum tensile strength was measured from a test piece having a width of 5 cm and a length of 10 cm according to the stripping method described in JIS L 1096.

【0056】(6)不織布の剛軟度(g):幅5cm、
長さ10cmの試験片を横方向の曲げて円筒状物とし、
各々その端部を接合したものを剛軟度測定試料とした。
試料の横方向について、定速伸張型引張試験機を用いて
圧縮速度5cm/分で圧縮し、得られた最大荷重値の平
均値を不織布の剛軟度とした。
(6) Softness (g) of nonwoven fabric: width 5 cm,
A test piece with a length of 10 cm is bent laterally into a cylindrical object,
Each of the joined ends was used as a bending resistance measurement sample.
The sample was compressed in the transverse direction at a compression rate of 5 cm / min using a constant-speed extension-type tensile tester, and the average of the obtained maximum load values was defined as the softness of the nonwoven fabric.

【0057】(7)不織布の層間剥離強力(g/5cm
幅):幅5cm、長さ10cmの試験片を複合不織布の
縦方向について定速伸張型引張試験機を用いて、長繊維
ウエブ層と短繊維ウエブ層の端部を同試験機のチヤツク
に各々挟持させ引張速度10cm/分で剥離した時の荷
重値の平均値を不織布の層間剥離強力とした。
(7) Delamination strength of nonwoven fabric (g / 5 cm)
Width): A test piece having a width of 5 cm and a length of 10 cm was applied to the longitudinal direction of the composite nonwoven fabric by using a constant-speed extension-type tensile testing machine, and the ends of the long fiber web layer and the short fiber web layer were applied to the check of the testing machine. The average value of the load values when sandwiched and peeled at a pulling rate of 10 cm / min was defined as the delamination strength of the nonwoven fabric.

【0058】(8)不織布の吸水性(mm/10分):
JIS L 1096に記載のバイレツク法に準じて測
定した。
(8) Water absorption (mm / 10 minutes) of nonwoven fabric:
It was measured according to the birec method described in JIS L 1096.

【0059】実施例1 繊維形成性低融点重合体として、融点が128℃、AS
TM−D−1238(E)の方法で測定して得られるメ
ルトインデツクス値が25g/10分のポリエチレンを
使用し、繊維形成性高融点重合体として、融点が258
℃、相対粘度(イ)が1.38のポリエチレンテレフタ
レートを使用した。そして、糸断面が図1に示す複合形
態でポリエチレンが芯部を形成し全分割数が7個になる
複合紡糸口金を用い、ポリエチレン重合体とポリエチレ
ンテレフタレート重合体の複合比を重量比で1:1と
し、単孔吐出量=1.2g/分で溶融紡出した。紡出糸
条を冷却した後、エアーサツカーにより4500m/分
の速度で引き取り、公知の開繊機にて開繊させ、移動す
る捕集面上に捕集・堆積させて長繊維ウエブとし、該長
繊維ウエブを熱エンボスロ−ラ−にて、ポイント柄、加
工温度120℃、圧接面積率10%の条件下で部分熱圧
着を行ない、目付けが30g/m2 の長繊維ウエブを得
た。該繊維集積体から採取した分割型二成分系複合連続
単糸の繊度は2.4デニールであった。
Example 1 As a fiber-forming low-melting polymer, the melting point was 128 ° C., AS
Using polyethylene having a melt index value of 25 g / 10 min measured by the method of TM-D-1238 (E), and having a melting point of 258 as a fiber-forming high melting polymer.
A polyethylene terephthalate having a relative viscosity (a) of 1.38 ° C. was used. Using a composite spinneret in which the cross section of the yarn is a composite form shown in FIG. 1 and the polyethylene forms a core and the total number of divisions is 7, the composite ratio of the polyethylene polymer and the polyethylene terephthalate polymer is 1: 1: The melt spinning was performed at a discharge rate of single holes of 1.2 g / min. After cooling the spun yarn, the yarn is taken out at a speed of 4500 m / min by an air sacker, spread by a known spreader, collected and deposited on a moving collecting surface to form a long fiber web, The fiber web was subjected to partial thermocompression bonding using a hot emboss roller under the conditions of a point pattern, a processing temperature of 120 ° C., and a pressing area ratio of 10%, to obtain a long fiber web having a basis weight of 30 g / m 2 . The fineness of the split type two-component composite continuous single yarn collected from the fiber assembly was 2.4 denier.

【0060】得られた該長繊維ウエブを座屈加工機(マ
イクレツクス社製、マイクロクレーパー)を用いて、ポ
リエチレン重合体とポリエチレンテレフタレート重合体
との分割割繊処理を施した。割繊加工後の長繊維ウエブ
を顕微鏡にて観察したところポリエチレン重合体からな
る割繊フイラメント及びポリエチレンテレフタレート重
合体からなる割繊フイラメントはそれぞれ非交絡状態で
あり、割繊率は92%であった。又、ポリエチレン重合
体からなる割繊フイラメントの繊度は1.2デニ−ルで
あり、ポリエチレンテレフタレート重合体からなる割繊
フイラメントの繊度は0.2デニールであった。
The obtained long fiber web was subjected to splitting treatment of a polyethylene polymer and a polyethylene terephthalate polymer by using a buckling machine (Microcreper, manufactured by Microtex). Observation of the long fiber web after the splitting processing with a microscope revealed that the splitting filament made of a polyethylene polymer and the splitting filament made of a polyethylene terephthalate polymer were each in an unentangled state, and the splitting rate was 92%. . The fineness of the split filament made of a polyethylene polymer was 1.2 denier, and the fineness of the split filament made of a polyethylene terephthalate polymer was 0.2 denier.

【0061】一方、短繊維ウエブとして、平均単繊維繊
度が1.5デニールで、平均繊維長が25mmのコツト
ン繊維を用い、ランダムカード機にて目付けが20g/
2の短繊維ウエブを得た。
On the other hand, as a short fiber web, cotton fiber having an average single fiber fineness of 1.5 denier and an average fiber length of 25 mm was used, and the basis weight was 20 g / cm by a random card machine.
to obtain a short fiber web m 2.

【0062】次いで、予め分割割繊処理を施した長繊維
ウエブの片面に短繊維ウエブを積層し、50メツシユの
金網上に積載して高圧液体流処理を施した。高圧液体流
処理は、孔径0.12の噴射孔が孔面積0.62mmで
配置された高圧液体流処理装置を用い、前記積層体の上
方50mmの位置から液体流圧力を100kg/cm2
Gの条件下で短繊維ウエブ側より処理を施した。得られ
た複合物より過剰水分の除去と乾燥処理を施して目付け
が50g/m2 の複合不織布を得た。
Next, a short fiber web was laminated on one surface of the long fiber web which had been subjected to the split splitting treatment in advance, and was loaded on a 50-mesh wire net and subjected to a high-pressure liquid flow treatment. The high-pressure liquid flow treatment uses a high-pressure liquid flow treatment device in which injection holes having a hole diameter of 0.12 are arranged with a hole area of 0.62 mm, and a liquid flow pressure of 100 kg / cm 2 from a position 50 mm above the laminate.
Under the condition of G, the treatment was performed from the short fiber web side. The obtained composite was subjected to removal of excess moisture and drying treatment to obtain a composite nonwoven fabric having a basis weight of 50 g / m 2 .

【0063】実施例2 実施例1において、短繊維ウエブとして、溶融紡糸によ
り得られるリヨセル繊維(レンチング社製 商品名:ソ
リユージヨン、1.3dtex×38mm)を用いたこ
と以外は、実施例1と同一条件にて、目付けが50g/
2 の複合不織布を得た。
Example 2 Example 1 was the same as Example 1 except that the lyocell fiber obtained by melt spinning (trade name: Soryu Jyon, 1.3 dtex × 38 mm, manufactured by Lenting Co.) was used as the short fiber web. Under the condition, the basis weight is 50g /
to obtain a composite nonwoven m 2.

【0064】実施例3 実施例1において、短繊維ウエブとして、コツトン繊維
80重量%とポリエチレンテレフタレート短繊維(2デ
ニール×38mm)20重量%とを混綿して目付けが2
0g/m2 の短繊維ウエブを用いた以外は、実施例1と
同一条件にて、目付けが50g/m2 の複合不織布を得
た。
Example 3 In Example 1, 80% by weight of cotton fiber and 20% by weight of polyethylene terephthalate short fiber (2 denier × 38 mm) were used as the short fiber web to obtain a basis weight of 2%.
A composite nonwoven fabric having a basis weight of 50 g / m 2 was obtained under the same conditions as in Example 1 except that a short fiber web of 0 g / m 2 was used.

【0065】実施例4 実施例1と同一のポリエチレン重合体とポリエチレンテ
レフタレート重合体を用い、糸断面が図2に示す如き複
合形態で全分割数が12個になる複合紡糸口金を用い、
ポリエチレン重合体とポリエチレンテレフタレート重合
体の複合比を重量比で1:1とし、単孔吐出量=1.1
2g/分で溶融紡出した。紡出糸条を冷却した後、エア
ーサツカーにより4200m/分の速度で引き取り、公
知の開繊器にて開繊させ、移動する捕集面上に捕集・堆
積させて長繊維ウエブとし、該長繊維ウエブを熱エンボ
スローラーにてポイント柄、加工温度120℃、圧接面
積率10%の条件下で部分熱圧着を行ない、目付けが3
0g/m2 の長繊維ウエブを得た。該繊維集積体から採
取した分割型二成分系複合連続単糸の繊度は約2.4デ
ニ−ルであった。
Example 4 The same polyethylene polymer and polyethylene terephthalate polymer as in Example 1 were used, and a composite spinneret having a yarn cross section as shown in FIG. 2 and a total division number of 12 was used.
The composite ratio of the polyethylene polymer and the polyethylene terephthalate polymer was set to 1: 1 by weight, and the single hole discharge amount was 1.1.
It was melt spun at 2 g / min. After cooling the spun yarn, the yarn is taken out at a speed of 4200 m / min by an air sacker, opened by a known opening device, collected and deposited on a moving collecting surface to form a long fiber web, Partial thermocompression bonding was performed on the long fiber web using a hot embossing roller under the conditions of a point pattern, a processing temperature of 120 ° C., and a press contact area ratio of 10%.
A long fiber web of 0 g / m 2 was obtained. The fineness of the split type bicomponent composite continuous single yarn collected from the fiber assembly was about 2.4 denier.

【0066】得られた長繊維ウエブを座屈加工機(マイ
クレツクス社製、マイクロクレーパー)にてポリエチレ
ン重合体とポリエチレンテレフタレート重合体との分割
割繊処理を施した。分割割繊処理後の長繊維ウエブを顕
微鏡にて観察したところポリエチレン重合体からなる割
繊フイラメント及びポリエチレンテレフタレート重合体
からなる割繊フイラメントはそれぞれ非交絡状態であ
り、割繊率は85%であった。又、ポリエチレン重合体
からなる割繊フイラメント及びポリエチレンテレフタレ
ート重合体からなる割繊フイラメントの繊度は各々0.
2デニールであった。短繊維ウエブ及び積層交絡一体化
処理における高圧液体流処理条件は実施例1と同一条件
下で目付けが50g/m2 の複合不織布を得た。
The obtained long fiber web was subjected to splitting treatment of a polyethylene polymer and a polyethylene terephthalate polymer using a buckling machine (Microcreper, manufactured by Microtex Co., Ltd.). When the long fiber web after the split splitting treatment was observed with a microscope, the split filament made of a polyethylene polymer and the split filament made of a polyethylene terephthalate polymer were each in an unentangled state, and the split rate was 85%. Was. The fineness of the splitting filament made of a polyethylene polymer and that of the splitting filament made of a polyethylene terephthalate polymer are each 0.1.
It was 2 denier. A composite nonwoven fabric with a basis weight of 50 g / m 2 was obtained under the same high-pressure liquid flow treatment conditions as in Example 1 for the short fiber web and the lamination and entanglement integration treatment.

【0067】実施例5 実施例1で得られた長繊維ウエブを予め高圧液体流処理
を施してポリエチレン重合体とポリエチレンテレフタレ
ート重合体との分割割繊処理を行った。すなわち、10
0メツシユの金網上に長繊維ウエブを積載して、孔径
0.12の噴射孔が孔面積0.62mmで配置された高
圧液体流処理装置を用い、前記積層体の上方50mmの
位置から液体流圧力を50kg/cm2 Gの条件下で処
理を施した。割繊処理後の長繊維ウエブを顕微鏡にて観
察したところポリエチレン重合体からなる割繊フイラメ
ント同士及びポリエチレン重合体からなる割繊フイラメ
ントとポリエチレンテレフタレート重合体からなる割繊
フイラメント及びポリエチレンテレフタレート重合体か
らなる割繊フイラメント同士は交絡状態であり、割繊率
は85%であった。短繊維ウエブ及び積層交絡一体化処
理における高圧液体流処理条件は実施例1と同一条件下
で目付けが50g/m2 の複合不織布を得た。
Example 5 The long fiber web obtained in Example 1 was subjected to a high-pressure liquid flow treatment in advance to perform a splitting treatment of a polyethylene polymer and a polyethylene terephthalate polymer. That is, 10
A long-fiber web is loaded on a 0-mesh wire mesh, and a high-pressure liquid flow treatment device in which injection holes having a hole diameter of 0.12 are arranged with a hole area of 0.62 mm is used. The treatment was performed under a pressure of 50 kg / cm 2 G. When the long fiber web after the splitting treatment was observed with a microscope, splitting filaments made of a polyethylene polymer and splitting filaments made of a polyethylene polymer and a splitting filament made of a polyethylene terephthalate polymer and made of a polyethylene terephthalate polymer The split filaments were in an entangled state, and the split rate was 85%. A composite nonwoven fabric with a basis weight of 50 g / m 2 was obtained under the same high-pressure liquid flow treatment conditions as in Example 1 for the short fiber web and the lamination and entanglement integration treatment.

【0068】実施例6 実施例1で得られた部分的熱圧着処理が施され割繊処理
を施していない長繊維ウエブの片面に、実施例1と同様
の短繊維ウエブを積層し、高圧液体流処理装置を用い、
割繊交絡処理を実施例1と同一条件下で行い、目付けが
50g/m2 の複合不織布を得た。割繊加工後の複合不
織布を顕微鏡にて観察したところ、割繊率は72%であ
った。
Example 6 A short fiber web similar to that of Example 1 was laminated on one side of the long fiber web obtained in Example 1 and subjected to the partial thermocompression treatment but not splitting, and a high-pressure liquid Using a flow treatment device,
The splitting and entanglement treatment was performed under the same conditions as in Example 1 to obtain a composite nonwoven fabric having a basis weight of 50 g / m 2 . When the composite nonwoven fabric after splitting was observed with a microscope, the splitting rate was 72%.

【0069】実施例7 繊維形成性低融点重合体として、融点が210℃、相対
粘度が2.6のナイロン6を使用し、繊維形成性高融点
重合体として、実施例1と同一のポリエチレンテレフタ
レートを使用した。糸断面は図1に示す如き複合形態
で、ナイロン6が芯部を形成し全分割数が7個になる複
合紡糸口金を用い、ナイロン6重合体とポリエチレンテ
レフタレート重合体の複合比を重量比で1:1とし、単
孔吐出量=1.28g/分で溶融紡出した。紡出糸条を
冷却した後、エアーサツカーにより4800m/分の速
度で引き取り、公知の開繊器にて開繊させ、移動する捕
集面上に捕集・堆積させて長繊維ウエブとした。該長繊
維ウエブを熱エンボスローラーにてポイント柄、加工温
度205℃、圧接面積率10%の条件下で部分熱圧着を
行ない、目付けが30g/m2 の長繊維ウエブを得た。
該繊維集積体から採取した分割型二成分系複合連続単糸
の繊度は約2.4デニールであった。
Example 7 Nylon 6 having a melting point of 210 ° C. and a relative viscosity of 2.6 was used as the fiber-forming low-melting polymer, and the same polyethylene terephthalate as in Example 1 was used as the fiber-forming high-melting polymer. It was used. The cross section of the yarn is a composite form as shown in FIG. 1. Using a composite spinneret in which nylon 6 forms a core and the total number of divisions is 7, the composite ratio of nylon 6 polymer and polyethylene terephthalate polymer is expressed by weight. The ratio was 1: 1 and the melt was spun at a single hole discharge rate of 1.28 g / min. After cooling the spun yarn, it was taken out at a speed of 4800 m / min by an air sacker, opened by a known opening device, and collected and deposited on a moving collecting surface to obtain a long fiber web. The long fiber web was subjected to partial thermocompression bonding under the conditions of a point pattern, a processing temperature of 205 ° C., and a press contact area ratio of 10% using a hot emboss roller to obtain a long fiber web with a basis weight of 30 g / m 2 .
The fineness of the split type two-component composite continuous single yarn collected from the fiber assembly was about 2.4 denier.

【0070】得られた長繊維ウエブを座屈加工機(マイ
クレツクス社製、マイクロクレーパー)にてナイロン6
重合体とポリエチレンテレフタレート重合体の分割割繊
処理を施した。割繊処理後の長繊維ウエブを顕微鏡にて
観察したところ、ナイロン6重合体からなる割繊フイラ
メント及びポリエチレンテレフタレ−ト重合体からなる
割繊フイラメントはそれぞれ非交絡状態であり、割繊率
は95%であった。又、ナイロン6重合体からなる割繊
フイラメントの繊度は1.2デニールでありポリエチレ
ンテレフタレ−ト重合体からなる割繊フイラメントの繊
度は0.2デニールであった。一方、短繊維ウエブとし
て、平均単繊維繊度が1.5デニールで、平均繊維長が
25mmのコツトン繊維を用い、ランダムカード機にて
目付けが20g/mの短繊維ウエブを得た。次いで、
実施例1と同一条件下で積層交絡処理を行い、目付けが
50g/m2の複合不織布を得た。
The obtained long fiber web was treated with nylon 6 using a buckling machine (Microcreper, manufactured by Microtex).
The splitting treatment of the polymer and the polyethylene terephthalate polymer was performed. When the long fiber web after the splitting treatment was observed with a microscope, the splitting filament made of a nylon 6 polymer and the splitting filament made of a polyethylene terephthalate polymer were each in an unentangled state, and the splitting rate was 95%. The fineness of the split filament made of nylon 6 polymer was 1.2 denier, and the fineness of the split filament made of polyethylene terephthalate polymer was 0.2 denier. On the other hand, a cotton fiber having an average single fiber fineness of 1.5 denier and an average fiber length of 25 mm was used as a short fiber web, and a short fiber web having a basis weight of 20 g / m 2 was obtained using a random card machine. Then
The laminate was entangled under the same conditions as in Example 1 to obtain a composite nonwoven fabric having a basis weight of 50 g / m 2 .

【0071】実施例8 実施例1と同一のポリエチレン重合体とポリエチレンテ
レフタレート重合体を用い、糸断面が図2に示す如き複
合形態で全分割数が24個になる複合紡糸口金を用い、
ポリエチレン重合体とポリエチレンテレフタレート重合
体の複合比を重量比で3:1とし、単孔吐出量=0.9
6g/分で溶融紡出した。紡出糸条を冷却した後、エア
ーサッカーにより3600m/分の速度で引き取り、公
知の開繊器にて開繊させ、移動する捕集面上に捕集・堆
積させて長繊維ウエブとし、該長繊維ウエブを熱エンボ
スローラーにてポイント柄、加工温度120℃、圧接面
積率10%の条件下で部分熱圧着を行ない、目付けが3
0g/m2 の長繊維ウエブを得た。該繊維集積体から採
取した分割型二成分系複合連続単糸の繊度は約2.4デ
ニールであった。
Example 8 Using the same polyethylene polymer and polyethylene terephthalate polymer as in Example 1, a composite spinneret having a yarn cross-section as shown in FIG. 2 and a total division number of 24 was used.
The composite ratio of the polyethylene polymer and the polyethylene terephthalate polymer was set to 3: 1 by weight ratio, and the single hole discharge amount was 0.9.
It was melt spun at 6 g / min. After cooling the spun yarn, the yarn is taken up by air soccer at a speed of 3600 m / min, spread by a known spreader, collected and deposited on a moving collecting surface to form a long fiber web, Partial thermocompression bonding was performed on the long fiber web using a hot embossing roller under the conditions of a point pattern, a processing temperature of 120 ° C., and a press contact area ratio of 10%.
A long fiber web of 0 g / m 2 was obtained. The fineness of the split type two-component composite continuous single yarn collected from the fiber assembly was about 2.4 denier.

【0072】得られた長繊維ウエブを座屈加工機(マイ
クレックス社製、マイクロクレーパー)にてポリエチレ
ン重合体とポリエチレンテレフタレート重合体との分割
割繊処理を施した。分割割繊処理後の長繊維ウエブを顕
微鏡にて観察したところポリエチレン重合体からなる割
繊フイラメント及びポリエチレンテレフタレート重合体
からなる割繊フイラメントはそれぞれ非交絡状態であ
り、割繊率は82%であった。又、ポリエチレン重合体
からなる割繊フイラメントの繊度は0.15デニール、
ポリエチレンテレフタレート重合体からなる割繊フイラ
メントの繊度は0.05デニールであった。短繊維ウエ
ブ及び積層交絡一体化処理における高圧液体流処理条件
は実施例1と同一条件下で目付けが50g/m2 の複合
不織布を得た。
The obtained long fiber web was subjected to a splitting treatment of a polyethylene polymer and a polyethylene terephthalate polymer by a buckling machine (Microcreper, manufactured by Microx Corporation). When the long fiber web after the split splitting treatment was observed with a microscope, the split filament made of a polyethylene polymer and the split filament made of a polyethylene terephthalate polymer were each in an unentangled state, and the split rate was 82%. Was. The fineness of the split filament made of polyethylene polymer is 0.15 denier,
The fineness of the split filament made of the polyethylene terephthalate polymer was 0.05 denier. A composite nonwoven fabric with a basis weight of 50 g / m 2 was obtained under the same high-pressure liquid flow treatment conditions as in Example 1 for the short fiber web and the lamination and entanglement integration treatment.

【0073】実施例9 実施例1において、長繊維ウエブの目付を20g/
2 、短繊維ウエブの目付を15g/m2 とし、積層交
絡一体化処理の際に、長繊維ウエブの両面に短繊維ウエ
ブを積層した以外は実施例1と同様にして、目付50g
/m2 の複合不織布を得た。
Example 9 In Example 1, the basis weight of the long fiber web was 20 g /
m 2 , the basis weight of the short fiber web was 15 g / m 2, and the basis weight was 50 g in the same manner as in Example 1 except that the short fiber web was laminated on both sides of the long fiber web during the lamination and entanglement integration treatment.
/ M 2 was obtained.

【0074】比較例1 実施例1と同一のポリエチレンテレフタレートを使用
し、糸断面が丸になる単相紡糸口金を用い、単孔吐出量
=1.33g/分で溶融紡出した。紡出糸条を冷却した
後、エアーサツカーにより5000m/分の速度で引き
取り、公知の開繊器にて開繊させ、移動する捕集面上に
捕集・堆積させて長繊維ウエブとし、該長繊維ウエブを
熱エンボスローラーにてポイント柄、加工温度240
℃、圧接面積率10%の条件下で部分熱圧着を行ない、
目付けが30g/m2 の長繊維ウエブを得た。該繊維集
積体から採取した単相連続単糸の繊度は約2.4デニー
ルであった。
Comparative Example 1 The same polyethylene terephthalate as in Example 1 was melt-spun at a single hole discharge rate of 1.33 g / min using a single-phase spinneret having a round yarn cross section. After cooling the spun yarn, it is taken out at a speed of 5000 m / min by an air sacker, opened by a known opening device, collected and deposited on a moving collecting surface to form a long fiber web, Long fiber web with hot emboss roller, point pattern, processing temperature 240
Perform partial thermocompression bonding under the condition of ℃, pressure contact area ratio 10%,
A long fiber web having a basis weight of 30 g / m 2 was obtained. The fineness of the single-phase continuous single yarn collected from the fiber assembly was about 2.4 denier.

【0075】一方、短繊維ウエブとして、平均単繊維繊
度が1.5デニールで、平均繊維長が25mmのコツト
ン繊維を用い、ランダムカード機にて目付けが20g/
2の短繊維ウエブを得た。次いで、実施例1と同一条
件下で積層交絡処理を行い、目付けが50g/m2の複
合不織布を得た。
On the other hand, as a short fiber web, cotton fiber having an average monofilament fineness of 1.5 denier and an average fiber length of 25 mm was used, and a basis weight of 20 g / cm2 was obtained with a random card machine.
to obtain a short fiber web m 2. Next, the laminate was entangled under the same conditions as in Example 1 to obtain a composite nonwoven fabric having a basis weight of 50 g / m 2 .

【0076】比較例2 実施例1と同一のコツトンよりなる目付50g/m2
短繊維ウエブを、液体流処理装置を用いて実施例1と同
一条件にて交絡処理を行い、構成繊維同士が三次元的に
交絡一体化した短繊維不織布を得た。
Comparative Example 2 A short fiber web having a basis weight of 50 g / m 2 made of the same cotton as in Example 1 was subjected to entanglement treatment under the same conditions as in Example 1 using a liquid flow treatment device, and the constituent fibers were A short-fiber nonwoven fabric three-dimensionally entangled and integrated was obtained.

【0077】実施例1〜9及び比較例1〜2で得られた
複合不織布及び不織布の物性等を測定し、表1に示し
た。
The physical properties and the like of the composite nonwoven fabrics and nonwoven fabrics obtained in Examples 1 to 9 and Comparative Examples 1 and 2 were measured and are shown in Table 1.

【0078】[0078]

【表1】 [Table 1]

【0079】表1から明らかのように、実施例1の複合
不織布は、ポリエチレン重合体とポリエチレンテレフタ
レート重合体とよりなる二成分系複合連続単糸を予め座
屈処理により分割割繊した長繊維ウエブとコツトンより
なる短繊維ウエブとを積層し、液体流処理装置を用い交
絡処理を行った複合不織布であり、引張強力、剥離強
力、柔軟性、吸水性のいずれにも優れるものであった。
As is clear from Table 1, the composite nonwoven fabric of Example 1 is a long fiber web obtained by splitting a two-component composite continuous single yarn composed of a polyethylene polymer and a polyethylene terephthalate polymer in advance by buckling treatment. This was a composite nonwoven fabric obtained by laminating and a short fiber web made of Kotton and subjected to entanglement treatment using a liquid flow treatment device, and was excellent in all of tensile strength, peeling strength, flexibility and water absorption.

【0080】実施例2は、ポリエチレン重合体とポリエ
チレンテレフタレート重合体とよりなる二成分系複合連
続単糸を予め座屈により分割割繊した長繊維ウエブとリ
ヨセルよりなる短繊維ウエブとを積層し、液体流処理装
置を用い交絡処理を行った複合不織布であり、実施例1
と同様に、引張り強力、剥離強力、柔軟性、吸水性のい
ずれにも優れるものであった。
In Example 2, a long-fiber web obtained by splitting and splitting a two-component composite continuous single yarn of a polyethylene polymer and a polyethylene terephthalate polymer in advance by buckling and a short fiber web of lyocell were laminated. Example 1 is a composite nonwoven fabric subjected to entanglement treatment using a liquid flow treatment device.
Similarly to the above, it was excellent in all of tensile strength, peeling strength, flexibility and water absorption.

【0081】実施例3は、ポリエチレン重合体とポリエ
チレンテレフタレート重合体とよりなる二成分系複合連
続単糸を予め座屈により分割割繊した長繊維ウエブとコ
ツトンとポリエチレンテレフタレートの混綿よりなる短
繊維ウエブとを積層し、液体流処理装置を用い交絡処理
を行った複合不織布であり、吸水性にはやや劣るもの
の、柔軟性、引張り強力及び剥離強力に優れるものであ
った。
In Example 3, a two-component composite continuous single yarn composed of a polyethylene polymer and a polyethylene terephthalate polymer was split and split by buckling in advance, and a short fiber web composed of cotton mixed with cottone and polyethylene terephthalate. And a composite nonwoven fabric which was subjected to entanglement treatment using a liquid flow treatment device, and was slightly inferior in water absorption, but excellent in flexibility, tensile strength and peel strength.

【0082】実施例4は、実施例1よりポリエチレン重
合体からなる割繊フイラメントの繊度を小さくし長繊維
ウエブを予め座屈処理により分割割繊した長繊維ウエブ
とコツトンよりなる短繊維ウエブとを積層し、液体流処
理装置を用い交絡処理を行った複合不織布であり、引張
強力、剥離強力、柔軟性、吸水性のいずれにも優れるも
のであった。
In Example 4, a long fiber web in which the fineness of a splitting filament made of a polyethylene polymer was made smaller than that in Example 1 and a long fiber web was split in advance by buckling treatment and a short fiber web made of cotton were used. The composite nonwoven fabric was laminated and entangled using a liquid flow treatment device, and was excellent in all of tensile strength, peeling strength, flexibility, and water absorption.

【0083】実施例5は、ポリエチレン重合体とポリエ
チレンテレフタレート重合体とよりなる二成分系複合連
続繊維を予め液体流処理により分割割繊した長繊維ウエ
ブとコツトンよりなる短繊維ウエブとを積層し、高圧液
体流処理装置を用い液体流交絡処理を行った複合不織布
であり、引張強力、剥離強力、柔軟性、吸水性のいずれ
にも優れるものであった。
In Example 5, a long fiber web obtained by splitting a bicomponent continuous fiber composed of a polyethylene polymer and a polyethylene terephthalate polymer in advance by liquid flow treatment and a short fiber web made of Kotton were laminated. The composite nonwoven fabric was subjected to liquid flow entanglement using a high-pressure liquid flow treatment device, and was excellent in all of tensile strength, peel strength, flexibility, and water absorption.

【0084】実施例6は、ポリエチレン重合体とポリエ
チレンテレフタレート重合体とよりなる二成分系複合連
続繊維よりなる長繊維ウエブとコツトンよりなる短繊維
ウエブとを積層し、液体流処理装置を用い割繊処理と交
絡処理を同時に行った複合不織布であるので、剥離強
力、柔軟性にやや優れ、引張強力、吸水性に優れるもの
であった。
In Example 6, a long fiber web made of a bicomponent continuous fiber composed of a polyethylene polymer and a polyethylene terephthalate polymer and a short fiber web made of Kotton were laminated and split using a liquid flow treatment device. Since the composite nonwoven fabric was subjected to the treatment and the entanglement treatment at the same time, it was somewhat excellent in peel strength and flexibility, excellent in tensile strength, and excellent in water absorption.

【0085】実施例7は、ナイロン6重合体とポリエチ
レンテレフタレート重合体とよりなる二成分系複合連続
繊維を予め座屈処理により分割割繊した長繊維ウエブと
コツトンよりなる短繊維ウエブとを積層し、液体流処理
装置を用い割繊交絡処理を行った複合不織布であるの
で、柔軟性にやや優れ、剥離強力、吸水性に優れ、引張
強力には特に優れるものであった。
In Example 7, a long fiber web obtained by splitting a bicomponent continuous fiber composed of a nylon 6 polymer and a polyethylene terephthalate polymer in advance by a buckling treatment and a short fiber web made of Kotton were laminated. Since it was a composite nonwoven fabric subjected to splitting and entanglement treatment using a liquid flow treatment device, it was somewhat excellent in flexibility, excellent in peeling strength and water absorption, and particularly excellent in tensile strength.

【0086】実施例8は、実施例1よりポリエチレン重
合体からなる割繊フイラメントの繊度を極めて小さく
し、長繊維ウエブを予め座屈処理により分割割繊した長
繊維ウエブとコツトンよりなる短繊維ウエブとを積層
し、液体流処理装置を用い交絡処理を行った複合不織布
であり、引張強力、吸水性に優れ、柔軟性、剥離強力に
は特に優れるものであった。
In Example 8, the fineness of the splitting filament made of a polyethylene polymer was made extremely smaller than that in Example 1, and the long fiber web was split and split in advance by buckling treatment, and the short fiber web made of cotton was used. And a composite nonwoven fabric which was subjected to entanglement treatment using a liquid flow treatment device. The composite nonwoven fabric was excellent in tensile strength, water absorption, flexibility and peeling strength.

【0087】実施例9は、ポリエチレン重合体とポリエ
チレンテレフタレ−ト重合体とよりなる二成分系複合連
続単糸を予め座屈により分割割繊した長繊維ウエブの両
面にコツトンよりなる短繊維ウエブとを積層し、液体流
処理装置を用い交絡処理を行った複合不織布であり、引
張強力、柔軟性にやや優れ、剥離強力に優れ、吸水性に
は特に優れるものであった。
Example 9 is a short fiber web made of cotton on both sides of a long fiber web obtained by splitting a two-component composite continuous single yarn consisting of a polyethylene polymer and a polyethylene terephthalate polymer in advance by buckling. This was a composite non-woven fabric obtained by laminating and a entanglement treatment using a liquid flow treatment device, and was slightly superior in tensile strength, flexibility, superior in peel strength, and particularly excellent in water absorption.

【0088】これに対し、比較例1は、長繊維ウエブと
して単相連続繊維よりなる長繊維ウエブを用いて交絡処
理を行った複合不織布であり、長繊維ウエブには極細繊
維が存在しないので、剥離強力に著しく劣り到底使用に
耐えるものではなかった。
On the other hand, Comparative Example 1 is a composite nonwoven fabric obtained by performing an entanglement treatment using a long-fiber web composed of a single-phase continuous fiber as the long-fiber web. The peeling strength was remarkably inferior to the use at all.

【0089】比較例2は、コツトンよりなる短繊維ウエ
ブに交絡処理を行った単層の不織布であるので、引張り
強力に著しく劣り、用途が限定されるものであった。
Comparative Example 2 was a single-layer nonwoven fabric obtained by performing entanglement treatment on a short fiber web made of cotton, so that the tensile strength was remarkably inferior, and the use was limited.

【0090】実施例10 実施例1において、高圧液体流処理装置により、液体流
圧力を30kg/cm2 Gとしたこと以外は、実施例1
と同一条件にて、目付が50g/m2 の複合不織布を得
た。得られた複合不織布の物性は、引張強力21kg/
5cm幅、圧縮剛軟度26g、剥離強力380g、吸水
性120mm/10分であった。
Example 10 Example 1 was repeated except that the liquid flow pressure was set to 30 kg / cm 2 G by the high-pressure liquid flow treatment device.
Under the same conditions as above, a composite nonwoven fabric having a basis weight of 50 g / m 2 was obtained. The physical properties of the obtained composite nonwoven fabric are as follows: tensile strength: 21 kg /
The width was 5 cm, the compression hardness was 26 g, the peel strength was 380 g, and the water absorption was 120 mm / 10 minutes.

【0091】座屈処理により予め極細割繊フイラメント
群を発現させた長繊維ウエブは、極細割繊フイラメント
群は非交絡状態であるため、フイラメントの自由度が大
きい上、フイラメント間の空隙が大きいため、短繊維ウ
エブの構成繊維が入り込み絡みやすい。したがって、積
層一体化における高圧液体流処理の水圧を低水圧とした
が、得られた実施例10の複合不織布は、剥離強力に優
れ、特に柔軟性に優れたものであった。
The long fiber web in which the group of ultra-fine splitting filaments is developed in advance by the buckling treatment has a high degree of freedom of the filament and a large gap between the filaments because the group of ultra-fine splitting filaments is in an unentangled state. In addition, the constituent fibers of the short fiber web easily enter and become entangled. Therefore, although the water pressure of the high-pressure liquid flow treatment in the lamination integration was set to a low water pressure, the obtained composite nonwoven fabric of Example 10 was excellent in peeling strength and particularly excellent in flexibility.

【0092】[0092]

【発明の効果】本発明の複合不織布は、二成分系複合連
続単糸よりなる長繊維ウエブに天然繊維及び/又は再生
繊維よりなる短繊維ウエブとを積層し、高圧液体流処理
装置を用い両ウエブを緻密に交絡一体化した複合不織布
であるので、機械的特性と剥離強力が高く、柔軟性に優
れ、良好なフイルター性能及び吸水性を有するものであ
り、医療・衛生材用、衣料用、生活関連資材用、産業資
材用等多種の分野において好適に用いられるものであ
る。
The composite nonwoven fabric of the present invention is obtained by laminating a long fiber web composed of a two-component composite continuous single yarn with a short fiber web composed of natural fibers and / or regenerated fibers, and using a high-pressure liquid flow treatment apparatus. Because it is a composite nonwoven fabric in which the web is densely entangled and integrated, it has high mechanical properties and peel strength, excellent flexibility, good filter performance and water absorption, and is used for medical and hygiene materials, clothing, It is suitably used in various fields such as for living related materials and industrial materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられる二成分系複合連続単糸の横
断面の一実施模式図である。
FIG. 1 is a schematic diagram showing one embodiment of a cross section of a two-component composite continuous single yarn used in the present invention.

【図2】本発明に用いられる二成分系複合連続単糸の横
断面の一実施模式図である。
FIG. 2 is a schematic diagram of one embodiment of a cross section of a two-component composite continuous single yarn used in the present invention.

【図3】本発明に用いられる二成分系複合連続単糸の横
断面の一実施模式図である。
FIG. 3 is a schematic diagram showing one embodiment of a cross section of a two-component composite continuous single yarn used in the present invention.

【図4】本発明に用いられる二成分系複合連続単糸の横
断面の一実施模式図である。
FIG. 4 is a schematic diagram of one embodiment of a cross section of a two-component composite continuous single yarn used in the present invention.

フロントページの続き (72)発明者 鈴木 克昇 愛知県岡崎市日名北町4−1 ユニチカ株 式会社岡崎工場内 (72)発明者 米沢 安広 愛知県岡崎市日名北町4−1 ユニチカ株 式会社岡崎工場内 (72)発明者 見正 伸夫 愛知県岡崎市日名北町4−1 ユニチカ株 式会社岡崎工場内Continuing from the front page (72) Inventor Katsunobu Suzuki 4-1 Hina-Kitamachi, Okazaki-shi, Aichi Prefecture Unitika Corporation Inside the Okazaki Plant (72) Inventor Yasuhiro Yonezawa 4-1 Hina-Kitamachi, Okazaki-shi, Aichi Prefecture Unitika Corporation Inside the Okazaki Plant (72) Inventor Nobuo Mimasa 4-1 Unita Kitamachi, Okazaki City, Aichi Prefecture Inside the Unitika Okazaki Plant

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 繊維形成性低融点重合体と前記低融点重
合体に対し非相溶性でかつ前記低融点重合体の融点より
30〜180℃高い融点を有する繊維形成性高融点重合
体とからなる分割型二成分系複合連続単糸の分割により
発現した前記低融点重合体と前記高融点重合体から構成
される極細割繊フイラメント群からなる長繊維ウエブ
と、主として下記短繊維からなる短繊維ウエブとが積層
されてなり、長繊維ウエブの構成繊維同士および長繊維
ウエブと短繊維ウエブとの構成繊維同士および短繊維ウ
エブの構成繊維同士が三次元交絡により一体化してなる
ことを特徴とする複合不織布。 記 短繊維:コツトン、ウール、リネン、シルク等の天然繊
維あるいはレーヨン等の再生繊維の少なくともいずれか
一種。
1. A fiber-forming low-melting polymer and a fiber-forming high-melting polymer incompatible with the low-melting polymer and having a melting point 30 to 180 ° C. higher than the melting point of the low-melting polymer. A long-fiber web composed of a group of ultrafine splitting filaments composed of the low-melting polymer and the high-melting polymer, which is developed by dividing a split type two-component composite continuous single yarn, and short fibers mainly composed of the following short fibers The web is laminated, and the constituent fibers of the long fiber web and the constituent fibers of the long fiber web and the short fiber web and the constituent fibers of the short fiber web are integrated by three-dimensional confounding. Composite nonwoven. Short fiber: at least one of natural fibers such as cotton, wool, linen, and silk and regenerated fibers such as rayon.
【請求項2】 短繊維ウエブに、熱可塑性重合体からな
る短繊維が30重量%未満混綿されてなることを特徴と
する請求項1記載の複合不織布。
2. The composite nonwoven fabric according to claim 1, wherein a short fiber made of a thermoplastic polymer is mixed with the short fiber web in an amount of less than 30% by weight.
【請求項3】 繊維形成性低融点重合体と前記低融点重
合体に対し非相溶性でかつ前記低融点重合体の融点より
30〜180℃高い融点を有する繊維形成性高融点重合
体とからなる分割型二成分系複合連続単糸群を溶融紡糸
し、前記複合連続単糸群をエアーサツカーを用いて引取
り、スクリーンコンベア等の移動式捕集面上に開繊堆積
させてウエブとし、前記ウエブの前記複合連続単糸郡を
部分熱圧着装置を用いて部分的な熱圧着処理を施して、
長繊維ウエブを得、前記長繊維ウエブの少なくとも片面
に主として下記短繊維からなる短繊維ウエブを積層し、
次いで、前記積層体に高圧液体流処理を施し、長繊維ウ
エブの構成繊維同士および長繊維ウエブと短繊維ウエブ
との構成繊維同士および短繊維ウエブの構成繊維同士を
三次元的に交絡一体化させることを特徴とする複合不織
布の製造方法。 記 短繊維:コツトン、ウール、リネン、シルク等の天然繊
維あるいはレーヨン等の再生繊維の少なくともいずれか
一種。
3. A fiber-forming low-melting polymer and a fiber-forming high-melting polymer incompatible with the low-melting polymer and having a melting point 30 to 180 ° C. higher than the melting point of the low-melting polymer. The split continuous two-component composite continuous single yarn group is melt-spun, and the composite continuous single yarn group is taken up using an air sacker, spread and deposited on a movable collecting surface such as a screen conveyor to form a web. The composite continuous single yarn group is subjected to a partial thermocompression treatment using a partial thermocompression device,
Obtain a long fiber web, laminating a short fiber web mainly composed of the following short fibers on at least one surface of the long fiber web,
Subsequently, the laminate is subjected to a high-pressure liquid flow treatment to three-dimensionally entangle and integrate the constituent fibers of the long fiber web, the constituent fibers of the long fiber web and the short fiber web, and the constituent fibers of the short fiber web. A method for producing a composite nonwoven fabric, comprising: Short fiber: at least one of natural fibers such as cotton, wool, linen, and silk and regenerated fibers such as rayon.
【請求項4】 短繊維ウエブを積層する長繊維ウエブと
して、部分的に熱圧着した長繊維ウエブを座屈処理にて
熱圧着されていない部位に存在する前記複合連続単糸を
分割割繊させて、低融点重合体又は高融点重合体から構
成される極細割繊フイラメント群を少なくとも一部発現
させ、かつ極細割繊フイラメント群は非交絡状態とした
長繊維ウエブを用いることを特徴とする請求項3記載の
複合不織布の製造方法。
4. As a long fiber web for laminating short fiber webs, the composite continuous single yarn present in a portion which is not thermocompression-bonded by partially buckling a partially thermocompressed long fiber web is split. The ultrafine splitting filament group composed of a low-melting-point polymer or a high-melting-point polymer is expressed at least in part, and the ultrafine splitting filament group uses a non-entangled long fiber web. Item 4. The method for producing a composite nonwoven fabric according to Item 3.
【請求項5】 短繊維ウエブを積層する長繊維ウエブと
して、部分的に熱圧着した長繊維ウエブに高圧液体流を
作用させることにより熱圧着されていない部位に存在す
る前記複合連続単糸を分割させて、低融点重合体又は高
融点重合体から構成される極細割繊フイラメント群を少
なくとも一部発現させ、かつ極細割繊フイラメント群同
士を三次元的に交絡させた長繊維ウエブを用いることを
特徴とする請求項3記載の複合不織布の製造方法。
5. A continuous fiber which is present in a part which is not thermocompression-bonded by applying a high-pressure liquid flow to a partly thermocompression-bonded long fiber web as a long fiber web for laminating short fiber webs. By causing at least a part of the ultrafine splitting filament group composed of the low melting point polymer or the high melting point polymer, and using a long fiber web in which the ultrafine splitting filament groups are three-dimensionally entangled. The method for producing a composite nonwoven fabric according to claim 3, characterized in that:
JP9235607A 1996-09-03 1997-09-01 Composite nonwoven fabric and its production Pending JPH10131021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9235607A JPH10131021A (en) 1996-09-03 1997-09-01 Composite nonwoven fabric and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-232793 1996-09-03
JP23279396 1996-09-03
JP9235607A JPH10131021A (en) 1996-09-03 1997-09-01 Composite nonwoven fabric and its production

Publications (1)

Publication Number Publication Date
JPH10131021A true JPH10131021A (en) 1998-05-19

Family

ID=26530661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9235607A Pending JPH10131021A (en) 1996-09-03 1997-09-01 Composite nonwoven fabric and its production

Country Status (1)

Country Link
JP (1) JPH10131021A (en)

Similar Documents

Publication Publication Date Title
EP0933459B2 (en) Staple fiber non-woven fabric and process for producing the same
JPH06207320A (en) Biodegradable conjugate short fiber and its nonwoven fabric
JPH10219555A (en) Laminated nonwoven fabric and its production
JPH10331063A (en) Composite nonwoven fabric and its production
JP3948781B2 (en) Short fiber nonwoven fabric and method for producing the same
JP3201671B2 (en) Manufacturing method of composite nonwoven fabric
JPH10280262A (en) Nonwoven fabric and its production
JP3259936B2 (en) Laminated nonwoven fabric and method for producing the same
JP3305453B2 (en) Laminated non-woven structure
JPH10273870A (en) Composite non-woven fabric and its production
JPH06212548A (en) Biodegradable latent-crimping conjugate short fiber and its nonwoven fabric
JPH11158763A (en) Conjugate nonwoven cloth and its production
JPH10131021A (en) Composite nonwoven fabric and its production
JPH10273864A (en) Composite nonwoven fabric and its production
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP2000017558A (en) Ultrafine staple-containing composite nonwoven fabric and its production
JP3262430B2 (en) Method for producing biodegradable laminated nonwoven structure
JPH1121752A (en) Composite nonwoven fabric and its production
JPH10158970A (en) Composite nonwoven fabric and its production
JPH08109567A (en) Laminated nonwoven structure and its production
JPH10273869A (en) Composite non-woven fabric and its production
JPH09195155A (en) Nonwoven fabric for hook-and-loop fastener and its production
JPH10280258A (en) Nonwoven fabric and its production
JP3221200B2 (en) Laminated nonwoven fabric and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060627