JPH11217757A - Staple fiber nonwoven fabric and its production - Google Patents

Staple fiber nonwoven fabric and its production

Info

Publication number
JPH11217757A
JPH11217757A JP1761098A JP1761098A JPH11217757A JP H11217757 A JPH11217757 A JP H11217757A JP 1761098 A JP1761098 A JP 1761098A JP 1761098 A JP1761098 A JP 1761098A JP H11217757 A JPH11217757 A JP H11217757A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
fiber
staple
polymers
fibrillating
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1761098A
Other languages
Japanese (ja)
Inventor
Atsushi Matsunaga
Koichi Nagaoka
Norihisa Yoshida
典古 吉田
篤 松永
孝一 長岡
Original Assignee
Unitika Ltd
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR ARTIFICIAL THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR ARTIFICIAL THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR ARTIFICIAL THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • D04H1/4258Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24826Spot bonds connect components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3707Woven fabric including a nonwoven fabric layer other than paper
    • Y10T442/378Coated, impregnated, or autogenously bonded
    • Y10T442/3829Four or more layers
    • Y10T442/3837Including particulate material other than fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • Y10T442/615Strand or fiber material is blended with another chemically different microfiber in the same layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • Y10T442/619Including other strand or fiber material in the same layer not specified as having microdimensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • Y10T442/622Microfiber is a composite fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/689Hydroentangled nonwoven fabric

Abstract

PROBLEM TO BE SOLVED: To provide nonwoven fabric that shows not only good cooling properties, when the fibers are melt-spun, but also has good water absorption and thermal stability, high fibrillation degree, excellent mechanical properties and flexibility and is useful over a wide range of applications such as in the fields of wipers and filters. SOLUTION: This staple fiber nonwoven fabric is constituted with the first and the second fibrillating staple fibers made of the first and the second fiber- forming polymers and water-absorbing staple fiber. The first and the second fibrillating staple fibers have both a filament fineness of <=0.5 denier. The first fiber-forming polymer and the second fiber-forming polymer are constituted with any of mutually incompatible amide polymers, ester polymers and ethylenic polymers. The fibrillation rate of the first fibrillating staple fiber and the second fibrillating staple fiber is >=85%. These constituting fibers are mutually interlaced in three dimensions.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は短繊維不織布およびその製造方法に関する。 The present invention relates to relates to the short fiber nonwoven fabric and a method of manufacturing the same.

【0002】 [0002]

【従来の技術】高圧液体流の作用により構成繊維どうしが三次元的に交絡したいわゆるスパンレース不織布は、 So-called spunlace nonwoven fabric constituent fiber each other are entangled three-dimensionally by the action of the Prior Art High pressure liquid stream,
柔軟性に優れているため各種の用途に用いられており、 Because of its excellent flexibility it has been used in various applications,
その素材としては、各種用途に応じて天然繊維や合成繊維などが用いられている。 As the material, such as natural and synthetic fibers in accordance with various applications is used.

【0003】たとえば、特開昭62−268861号公報には、延伸工程において捲縮を付与するときに部分的に複合繊維に分割フィブリル化を発現させ、液体流によりさらに割繊を促進しながら構成繊維どうしを交絡させた不織布が開示されている。 For example, configuration JP-A-62-268861, partially express split fibrillated composite fibers when crimped in the stretching process, while promoting further split fiber by the liquid stream nonwoven fabric obtained by entangling fibers with each other is disclosed. しかし、得られた不織布は、きわめて繊度の低い細い繊維によって形成されているために柔軟性にはすぐれるが、繊維を構成する重合体が吸水性に乏しいために、湿潤状態で用いるには適当でない。 However, the resulting nonwoven fabric is excellent in flexibility because they are formed by very fineness lower thin fibers, but for the polymer constituting the fibers has poor water absorption, suitable for use in the wet state not.

【0004】また、上記問題を解決すべく、特開平6− [0004] In addition, in order to solve the above problem, JP-A-6-
101148号公報には、0.5デニール以下の極細の割繊短繊維と親水成分である綿またはレーヨンとからなる清掃用のスパンレース不織布が開示されている。 The 101,148 discloses a spun lace nonwoven fabric for cleaning comprising a cotton or rayon are disclosed a split 繊短 fibers and hydrophilic components of 0.5 denier or less of ultrafine. この不織布は、柔軟性に富んだドレープ性を有するものであるため、精密機械などを傷つけることなく清掃するには適しており、ワイパー性能と吸水性とを兼備したものである。 This nonwoven fabric, since those having a drapability highly flexible, and suitable for cleaning without damaging and precision machinery, those having both the wiper performance and water resistance.

【0005】 [0005]

【発明が解決しようとする課題】しかし、この特開平6 The object of the invention is to be Solved However, the JP-A-6
−101148号公報に開示される不織布は、構成繊維がポリプロピレンにて形成されているため、溶融紡糸の際の冷却性が劣るために未延伸糸に密着が発生しやすく、その結果、延伸性が悪化し、目的とする割繊短繊維を得るのか困難である。 Nonwoven fabric disclosed in -101148 Patent Publication, since the constituent fibers is formed by polypropylene, easy adhesion to the undrawn yarn to poor cooling performance during melt spinning occurs, resulting in drawability worse, it is difficult or get a split 繊短 fiber for the purpose. また、吸水性が良好でなく、しかも、もう一つの構成繊維であるポリエステル繊維との相溶係数が比較的高いために、上記極細繊維を得るために割繊処理をほどこしたときの割繊度合いがあまり高くならないなどの問題点がある。 Also, water absorption is not good, moreover, fits split fineness when phases 溶係 number of polyester fibers is another constituent fibers are in relatively high Hodokoshita Wari繊 it processed to obtain the microfine fibers but there is a problem, such as not too high.

【0006】そこで本発明は、このような問題点を解決して、吸水性が良好で、しかも割繊度合いが高く、さらに機械的特性や柔軟性や低通気度性にすぐれて、ワイパー分野やフィルター分野などに広範囲に利用できる不織布を提供することを目的とする。 [0006] The present invention is such to solve the problems, has good water absorption, yet high fit split fineness, further excellent mechanical properties, flexibility and low air permeability property, Ya wiper field and to provide a nonwoven fabric which can be widely utilized, such as a filter field.

【0007】 [0007]

【課題を解決するための手段】この目的を達成するため本発明は、第1および第2の繊維形成性重合体からなる分割型二成分系複合短繊維の分割により発現した、前記第1および第2の繊維形成性重合体からなる第1および第2の割繊短繊維と、吸水性を有する短繊維とによって構成された短繊維不織布であって、前記第1および第2 Means for Solving the Problems The present invention for achieving this object is expressed by the splitting of the split-type two-component composite short fiber comprising first and second fiber-forming polymer, the first and first and second split 繊短 fibers made of the second fiber-forming polymer, a short fiber nonwoven fabric constituted by a short fiber having a water absorption, the first and second
の割繊短繊維は、いずれも単糸繊度が0.5デニール以下であり、前記第1の繊維形成性重合体と第2の繊維形成性重合体とは、互いに非相溶性を呈するアミド系重合体とエステル系重合体とエチレン系重合体とのいずれかどうしによって構成されており、前記第1の割繊短繊維と第2の割繊短繊維との割繊率は85%以上であり、前記構成繊維どうしが三次元的に交絡していることを特徴とする短繊維不織布を要旨とするものである。 The split 繊短 fibers, both have a single yarn fineness of 0.5 denier or less, the first and the fiber-forming polymer and the second fiber-forming polymer, amide exhibiting mutually incompatible It is constituted by one each other between the polymer and the ester-based polymer and ethylene-based polymer, wherein the first split 繊短 fibers and split 繊率 the second split 繊短 fibers is 85% or more the constituent fibers to each other is one which summarized as short-fiber nonwoven fabric characterized by being entangled three-dimensionally.

【0008】このような構成であると、第1および第2 [0008] With such a structure, first and second
の割繊短繊維はアミド系重合体とエステル系重合体とエチレン系重合体とのいずれかどうしによって構成されているため、溶融紡糸時の冷却性が良好であるとともに、 With the split 繊短 fibers because it is composed by one each other in an amide-based polymer and an ester-based polymer and ethylene polymer, a good cooling properties during melt spinning,
熱安定性にもすぐれる。 Excellent in thermal stability. また第1および第2の割繊短繊維が、いずれも単糸繊度が0.5デニール以下であるため、不織布の柔軟性や吸水性にすぐれる。 The first and second split 繊短 fibers, for both the single yarn fineness is less than 0.5 denier, excellent flexibility and water absorption of the non-woven fabric. また単糸繊度が0.5デニール以下であることから、不織布を構成する繊維どうしの三次元的な交絡が緻密に行われ、したがって柔軟でありながら機械的特性にすぐれた不織布を得ることができる。 Also since the single yarn fineness is less than 0.5 denier, three-dimensional entanglement of the fibers with each other to constitute the nonwoven fabric is made dense, therefore it is possible to obtain a nonwoven fabric excellent in mechanical properties, yet flexible .

【0009】また本発明は、アミド系重合体とエステル系重合体とエチレン系重合体とのいずれかからなる第1 [0009] The present invention is first made of one of the amide-based polymer and an ester-based polymer and ethylene polymer
の繊維形成性重合体と、アミド系重合体とエステル系重合体とエチレン系重合体とのいずれかからなるとともに前記第1の繊維形成性重合体に対し非相溶性を呈する第2の繊維形成性重合体とによって分割型二成分系複合短繊維を紡糸し、この分割型二成分系複合短繊維と吸水性を有する短繊維とを混綿して不織ウエブを形成し、この不織ウエブに高圧液体流処理を施すことで、前記複合短繊維を割繊率85%以上で分割させて、前記第1の繊維形成性重合体からなる単糸繊度が0.5デニール以下の第1の割繊短繊維と、前記第2の繊維形成性重合体からなる単糸繊度が0.5デニール以下の第2の割繊短繊維とを発現させるとともに、前記第1の割繊短繊維と第2 Second fiber forming exhibiting incompatibility with respect to the first fiber-forming polymer with consisting of either a fiber-forming polymer, an amide-based polymer and an ester-based polymer and ethylene polymer spinning splittable bicomponent composite short fibers by the gender polymer, and a short fiber having the division type two-component composite short fibers and absorbent nonwoven webs formed by cotton mixing, this nonwoven web by performing high pressure liquid jet treatment, the composite staple fibers by splitting at a rate 繊率 85%, the first fiber-forming monofilament fineness is first split of 0.5 deniers consisting of polymer and 繊短 fibers, the fineness of a second fiber-forming polymer together with the expression of a second split 繊短 fibers below 0.5 denier, the first split 繊短 fibers and second
の割繊短繊維と吸水性を有する短繊維とを相互に三次元的に交絡させることを特徴とする短繊維不織布の製造方法を要旨とするものである。 Method for producing a short-fiber nonwoven fabric and the short fibers having a split 繊短 fibers and absorbent wherein the mutually three-dimensionally be entangled is for summarized as.

【0010】 [0010]

【発明の実施の形態】本発明の分割型二成分系複合短繊維は、互いに非相溶性である第1および第2の繊維形成性重合体からなる。 Split two-component composite short fibers of the embodiments of the present invention comprises first and second fiber-forming polymer which is incompatible with one another. 両者が互いに非相溶性であるのは、 Both of are incompatible with each other,
高圧液体流処理によって複合短繊維に衝撃を与えたときに分割しやすいようにするためである。 By high pressure liquid jet treatment is in order to make it easier divided when shocked composite short fibers. すなわち、ここにいう分割型二成分系複合短繊維は、たとえば図1に示すような横断面構造を有し、それぞれ複数の第1の繊維形成性重合体10と第2の繊維形成性重合体20とが周方向に沿って交互に配置されたものなどにより形成される。 That is, split two-component composite short fibers referred here includes, for example, a cross-sectional structure as shown in FIG. 1, respectively a first fiber-forming polymer 10 a plurality of second fiber-forming polymer 20 and along the circumferential direction is formed by such as those arranged alternately. このような構成の分割型二成分系複合短繊維であると、紡糸後の分割割繊処理によって衝撃が与えられた際に、両重合体10、20の境界でそれぞれ分割され、これらの重合体10、20からなるそれぞれ単糸繊度0. If it is split two-component composite short fibers having such a structure, when an impact is given by dividing the split fiber treatment after spinning, are each divided at the boundary of the two polymers 10, 20, these polymers each consisting of 10, 20, single yarn fineness 0.
5デニール以下の割繊短繊維を発現する。 5 denier to express the following split 繊短 fiber.

【0011】この0.5デニール以下の単糸繊度を実現するためには、図1に示す横断面構造の複合短繊維の単糸繊度が2〜12デニールであるという条件のもとで、 In order to realize the single yarn fineness of less than or equal to this 0.5 denier, under the condition that the single yarn fineness of the composite staple fibers of the cross-sectional structure shown in FIG. 1 is a 2-12 denier,
その周方向の分割数を4〜24とするのが好適である。 The division number of the circumferential direction to a 4 to 24 are preferred.
周方向の分割数をさらに多くすると割繊短繊維の単糸繊度をいっそう小さくすることが可能であるが、紡糸口金などの制約上、実際は分割数の上限は36程度である。 While it is possible to further reduce the fineness of the split 繊短 fiber when further number of divisions in the circumferential direction, on constraints such as the spinneret, the actual upper limit of the number of divisions is about 36.

【0012】複合短繊維の単糸繊度が2デニール未満になると、生産量が低下する傾向にあり、また生産量を向上させるために紡糸口金の数を増加させた場合に、紡糸工程が不安定になる。 [0012] fineness of the composite staple fiber is less than 2 denier, there is a tendency that the amount of production is reduced, and the case of increasing the number of spinneret in order to improve the production, unstable spinning process become. 一方、単糸繊度が12デニールを超えると、溶融紡糸された糸条の冷却不足により引き取りが困難になる傾向にあり、また糸条の冷却を促進させるために紡糸口金の数を減らした場合に、生産量が低下する。 On the other hand, when the fineness exceeds 12 denier, tend to pick up is difficult due to insufficient cooling of the yarn is melt spun, also in the case of reducing the number of spinneret in order to accelerate the cooling of the yarn , the amount of production is reduced.

【0013】割繊短繊維の単糸繊度が0.5デニールを超えると、不織布化の際の構成繊維どうしの三次元的な交絡を緻密に行うことが困難になって、本発明の目的とする不織布が得られない。 [0013] fineness of the split 繊短 fiber exceeds 0.5 denier, it becomes difficult to perform dense three-dimensional entanglement of the constituent fibers to each other at the time of nonwoven fabric, and an object of the present invention non-woven fabric that can not be obtained. したがって、この単糸繊度は、0.3デニール以下であることが特に好ましい。 Therefore, the single yarn fineness, and particularly preferably 0.3 denier or less.

【0014】分割型二成分系複合短繊維を構成する第1 A first constituting the splittable bicomponent composite short fibers
および第2の繊維形成性重合体は、互いに非相溶性を呈するアミド系重合体とエステル系重合体とエチレン系重合体とのいずれかどうしによって構成される。 And a second fiber-forming polymer is comprised of one each other in an amide-based polymer and an ester-based polymer and ethylene polymer exhibiting mutually incompatible. すなわち、第1の繊維形成性重合体と第2の繊維形成性重合体との組み合わせは、アミド系重合体とエステル系重合体、アミド系重合体とエチレン系重合体、エステル系重合体とエチレン系重合体の三種類がある。 That is, the combination of the first fiber-forming polymer and a second fiber-forming polymer, amide-based polymer and an ester-based polymer, amide-based polymer and ethylene polymer, ester-based polymer and ethylene there are three types of system polymer.

【0015】アミド系重合体としては、ポリイミノ−1 [0015] Examples of the amide-based polymer, polyimino -1
−オキソテトラメチレン(ナイロン4)、ポリテトラメチレンアジパミド(ナイロン46)、ポリカプラミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリウンデカナミド(ナイロン11)、ポリラウロラクタミド(ナイロン12)、ポリメタキシレンアジパミド、ポリパラキシリレンデカナミド、ポリビスシクロヘキシルメタンデカナミド、またはこれらのモノマーを構成単位とするポリアミド系共重合体が挙げられる。 - oxo tetramethylene (nylon 4), polytetramethylene adipamide (nylon 46), polycapramide (nylon 6), polyhexamethylene adipamide (nylon 66), poly undecalactone cyanamide (nylon 11), poly lauroyl lactamide (nylon 12), poly adipamide, poly-para-xylylene deca cyanamide, poly biscyclohexylmethane dec cyanamide or polyamide copolymer containing constituting units of these monomers, and the like. 特に、ポリテトラメチレンアジパミド(ナイロン46)の場合は、ポリテトラメチレンアジパミド(ナイロン46)にポリカプラミドやポリヘキサメチレンアジパミド、ポリウンデカメチレンテレフタラミド等のポリアミド成分が30モル%以下共重合されたポリテトラメチレンアジパミド共重合体であっても良い。 In particular, if polytetramethylene adipamide of (nylon 46), polytetramethylene adipamide polycapramide in (nylon 46) and polyhexamethylene adipamide, polyamide component, such as a poly undecamethylene terephthalamide 30 mol % or less may be copolymerized polytetramethylene adipamide copolymer.

【0016】エステル系重合体としては、テレフタル酸、イソフタル酸、フタル酸、ナフタリン−2,6−ジカルボン酸などの芳香族ジカルボン酸、アジピン酸、セバチン酸等の脂肪族ジカルボン酸、またはこれらのエステル類を酸成分とし、エチレングリコール、ジエチレングリコール、1,4−ブタジオール、ネオペンチルグリコール、シクロヘキサン−1,4−ジメタノールなどのジオール化合物をアルコール成分とするホモポリエステル重合体あるいは共重合体が挙げられる。 [0016] The ester-based polymer, terephthalic acid, isophthalic acid, phthalic acid, aromatic dicarboxylic acids such as naphthalene-2,6-dicarboxylic acid, adipic acid, aliphatic dicarboxylic acids such as sebacic acid or an ester thereof, class was the acid component, ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, homopolymers polyester polymer or copolymer of a diol compound such as cyclohexane-1,4-dimethanol and alcohol components. なお、これらのポリエステル系重合体には、パラオキシ安息香酸、5 Incidentally, these polyester-based polymer, p-hydroxybenzoic acid, 5
−ソジウムスルホイソフタール酸、ポリアリキレングリコール、ペンタエリスリトール、ビスフェノールA等が添加あるいは共重合されていても良い。 - sodium sulfo isophthalate tar acids, poly Ariki glycol, pentaerythritol, bisphenol A, etc. may be added or copolymerized.

【0017】エチレン系重合体としては、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン等があり、これらのポリエチレンは、ASTM−D−1 [0017] As the ethylene polymer, linear low density polyethylene, medium density polyethylene, has a density polyethylene, these polyethylene, ASTM-D-1
238Eの方法で測定したメルトインデックス値が10 The melt index values ​​were measured at 238E methods 10
〜80g/10分であることが好ましい。 Is preferably to 80 g / 10 min. メルトインデックス値が10g/10分未満であると、溶融粘度が高過ぎて製糸性が劣るからであり、またメルトインデックス値が80g/10分を超えると、溶融粘度が低過ぎて、ヌメリ感が発生したり、紡出繊維の冷却に劣り密着を生じ易いためである。 When the melt index value is less than 10 g / 10 min, is too high melt viscosity is because spinnability is poor, also when the melt index value exceeds 80 g / 10 min, too low melt viscosity, slime feeling or generated is liable to occur the adhesion poor cooling of the spun fibers. また、多くのエチレン系不飽和モノマー、例えばブタジエン、イソプレン、1,3−ペンタジエン、スチレン、α−メチルスチレンのような類似のエチレン系不飽和モノマーが10重量%以下共重合されたものであっても良いし、さらに、エチレンに対してプロピレン、1−ブテン、1−オクテン、1−ヘキセン、または類似の高級α−オレフィンが10重量%以下共重合されたものであっても良い。 Also, many of ethylenically unsaturated monomers, such as butadiene, isoprene, 1,3-pentadiene, styrene, similar ethylenically unsaturated monomers such as α- methyl styrene be one that is copolymerized 10 wt% or less it also may further propylene of the ethylene, 1-butene, 1-octene, 1-hexene or similar higher α- olefins may be one copolymerized 10 wt% or less.

【0018】これらの重合体には、必要に応じて、例えば艶消し剤、顔料、防炎剤、消臭剤、帯電防止剤、光安定剤、熱安定剤、酸化防止剤、抗菌剤等の各種添加剤を、本発明の効果を損なわない範囲内で添加することができる。 [0018] These polymers, if necessary, for example, matting agents, pigments, flameproofing agents, deodorants, anti-static agents, light stabilizers, heat stabilizers, antioxidants, such as antimicrobial agents various additives may be added within a range that does not impair the effects of the present invention.

【0019】第1の割繊短繊維と第2の割繊短繊維との割繊率は、85%以上であることが必要である。 The split 繊率 the first split 繊短 fiber and second split 繊短 fibers is required to be 85% or more. 割繊率が85%未満であると、割繊されずに太繊度のまま残った分割型二成分系複合短繊維の存在割合が高くなって、 When the split 繊率 is less than 85%, the existing ratio of remains remaining split two-component composite short fibers of thick fineness without being Wari繊 becomes higher,
得られた製品をワイパー分野やフィルター分野に適用したときに、そのワイパー性能やフィルター性能に劣ることになる。 The resulting product when applied to the wiper field or filter field, will be inferior to the wiper performance and filter performance. この理由により、さらに好ましい割繊率の範囲は90%以上である。 For this reason, the range of more preferably split 繊率 is 90% or more.

【0020】吸水性を有する短繊維は、特に公定水分率が5%以上であることが好ましい。 [0020] Short fibers having water absorption, it is preferable in particular official moisture regain of 5% or more. 公定水分率が5%以上の繊維としては、天然繊維である木綿、パルプ、麻、 Cotton The fiber moisture regain is 5% or more, a natural fiber, pulp, hemp,
羊毛、短繊維状に裁断されたシルクなどを用いることができる。 Wool, silk, which are cut into short fibers can be used. また再生繊維としての、パルプより得られるビスコースレーヨン、銅アンモニアレーヨン、溶剤紡糸されたレーヨン繊維であるリヨセルなどを用いることもできる。 It can also be used as recycled fiber, viscose rayon obtained from pulps, cuprammonium rayon, and lyocell a solvent-spun rayon fibers. 公定水分が5%以上のビニロン繊維、アクリル繊維などの合成繊維を用いることもできる。 Official moisture regain of 5% or more of vinylon fibers, it can also be used synthetic fibers such as acrylic fibers. また、吸水性を有する短繊維は、前述したものが2種類以上混綿されたものであってもよい。 Also, short fibers having a water absorption may be those as described above is two or more cotton mixing.

【0021】本発明の不織布には、吸水性を有する短繊維が30〜70重量%の割合で混綿されていることが好ましい。 [0021] The nonwoven fabric of the present invention, it is preferable that the short fibers having water absorption is cotton mixing at a ratio of 30 to 70 wt%. 吸水性を有する短繊維を30重量%以上混綿させることで、不織布に十分な吸水性、保水性を付与することができる。 Short fibers having a water-absorbing be to cotton mixing 30 wt% or more, it is possible to impart sufficient water absorption, water retention in the non-woven fabric. このような不織布は、たとえば、吸汗性にすぐれた衣類や、水分の拭き取り性にすぐれたワイパーなどの用途に好適に用いられる。 Such nonwoven fabric, for example, clothes and excellent in sweat, is suitably used for applications such as wipers with excellent wiping properties of water. 一方、吸水性を有する短繊維が70重量%を超えると、吸水性や保水性は十分な不織布が構成されるものの、細繊度の割繊短繊維量が少なくなり、構成繊維どうしの緻密な交絡ができにくくなる。 On the other hand, when the short fibers having a water absorption of more than 70 wt%, although water absorption and water retention enough nonwoven is configured, split 繊短 fibers of small fineness are less dense entanglement each other constituent fibers It is less likely to be. よって、得られる不織布は、通気性が多大となって、保温効果が低下したり、またフィルターやワイパーなどに用いたときに、粉塵やほこりの捕集性がやや劣る傾向となる。 Therefore, the resulting nonwoven fabric is a great air permeability, or thermal effect is reduced and also when used such as a filter or wiper, trapping of dust and dirt is slightly inferior tendency.

【0022】本発明の不織布の目付けは、30〜150 [0022] The non-woven fabric of a basis weight of the present invention, 30 to 150
g/m 2であることが好ましい。 It is preferably g / m 2. 目付けが30g/m 2 A basis weight of 30g / m 2
未満であると、不織布の機械的強度に劣るため、実用性に乏しく、また不織布の形態安定性や寸法安定性が乏しくなる傾向となる。 By weight, have poor mechanical strength of the nonwoven fabric, poor practicality, also tend to form stability and dimensional stability of the nonwoven fabric becomes poor. 一方、目付けが150g/m 2を超えると、構成繊維どうしを三次元的に交絡させるための後述する高圧液体流処理の加工エネルギーが多大となるため、経済的に好ましくない。 On the other hand, when the basis weight exceeds 150 g / m 2, for later processing energy of the high pressure liquid jet treatment for entangling the constituent fibers to each other three-dimensionally it is great, economically unfavorable. また、場合によっては不織布の内部において繊維相互に十分な交絡がなされず、 The invention is not made sufficiently entangled fibers one another in the inside of the nonwoven fabric in some cases,
機械的強度の低い不織布となる傾向にある。 It tends to be less mechanical strength nonwoven fabric. さらに、柔軟性も乏しくなる傾向にある。 In addition, there is the flexibility becomes poor trend.

【0023】次に、本発明の不織布の製造方法について説明する。 Next, a method for manufacturing the nonwoven fabric of the present invention. まず、分割型二成分系複合短繊維の製造方法について説明する。 First, a method for manufacturing a split two-component composite short fibers. すなわち、互いに非相溶性である上述の2種の繊維形成性重合体を個別に溶融させ、たとえば図1に示すような分割型複合横断面形状を形成可能な紡糸口金を用いて溶融紡糸する。 That is, melt spinning using the above-described two kinds of fiber-forming polymer is melted separately, for example capable of forming spinneret splittable composite transverse cross-sectional shape as shown in FIG. 1 are incompatible with each other. 次いで、紡出糸条を、 Then, the spun yarn,
横吹付や環状吹付などの従来公知の冷却装置を用いて冷却風により冷却させた後、油剤を付与し、引き取りローラーを介して、未延伸糸として巻取機に巻き取る。 After cooling by the cooling air by using a conventionally known cooling device such as Yokobuki with or cyclic spray, oil applied, take-off via a roller and wound on the winding machine as undrawn yarn. 引き取りローラー速度は500m/分〜2000m/分とする。 Take-up roller speed is set to 500m / minute ~2000m / min. そして、巻き取られた未延伸糸を複数本引き揃え、 Then, align a plurality of pulling the undrawn yarn was wound up,
公知の延伸機にて周速の異なるローラー群の間で延伸させる。 It is stretched between the different rollers groups peripheral speeds by a known drawing machine. 次いで、その延伸トウに押し込み式の捲縮付与装置にて捲縮を付与し、その後に紡績用の油脂成分を付与し、所定の繊維長に切断して短繊維を得る。 Then, the crimped at push type crimping device to stretch the toe, then the fat component for spinning was applied to obtain the short fibers cut into a predetermined fiber length. なお、要求される用途により延伸トウに素材の融点以下の温度で熱セットを施しても良い。 Note that, by application requiring may be subjected to heat setting at a temperature below the melting point of the material to stretch the tow.

【0024】次に、このようにして得られた分割型二成分系複合短繊維と、吸水性を有する短繊維とを、好ましくは70/30〜30/70重量%の混綿率で混綿し、 Next, the split two-component composite short fiber thus obtained, and a short fiber having a water-absorbing, preferably cotton mixing with cotton mixing ratio of 70 / 30-30 / 70% by weight,
カード法やエアレイ法などを用いて、所定の目付けの不織ウエブを作成する。 By using a card method or air-lay method, to create a nonwoven web of a given weight per unit area. このとき、カード法によると、カード機を用いて、構成繊維の配列度合を不織布の用途などに合わせて種々選択することができる。 In this case, according to the card method, a carding machine, the arrangement degree of the constituent fibers can be variously selected to suit such a nonwoven applications. たとえば、衣料用として用いる場合には、不織布としての強力において、縦/横の強力比がおおむね1:1となる不織ウエブを用いるとよい。 For example, when used as apparel, in strong as the nonwoven fabric, longitudinal / strong ratio of horizontal is approximately 1: preferably used 1 to become nonwoven web. 不織ウエブの構成繊維の配列パターンとしては、構成繊維が一方向に配列されたパラレルウエブ、パラレルウエブがクロスレイドされたウエブ、構成繊維がランダムに配列されたランダムウエブ、あるいは両者の中程度に配列したセミランダムウエブなどが挙げられる。 The arrangement pattern of the nonwoven web of fibers constituting a parallel web constituent fibers are arranged in one direction, parallel web cross-laid by webs, random web constituent fibers are arranged randomly, or moderately both such as semi-random web was arranged, and the like.

【0025】次に、得られた不織ウエブに高圧液体流処理を施して、分割型二成分系複合短繊維を分割させることにより、第1の繊維形成性重合体からなる第1の割繊短繊維と第2の繊維形成性重合体からなる第2の割繊短繊維とを発現させる。 Next, by applying a high pressure liquid stream treatment resulting nonwoven web, by dividing the split two-component composite short fibers, the first Wari繊 made of a first fiber-forming polymer short fibers and expressing the second split 繊短 fibers made of a second fiber-forming polymer. かつ、それとともに、吸水性を有する短繊維をも含むウエブ全体の構成繊維どうしを三次元的に交絡させる。 And with it, also be three-dimensionally entangled component fibers each other of the entire web, including short fibers having water absorption. ここでいう三次元的な交絡とは、不織ウエブを構成している繊維相互間が不織布の縦/横方向のみならずその厚み方向にも交絡し、一体化した構成を有していることをいう。 Here, the three-dimensional entanglement to say, non-woven between the fibers each other constituting the web is also entangled in the thickness direction thereof not only vertical / horizontal direction of the nonwoven fabric, it has a structure obtained by integrating the say.

【0026】高圧液体流処理を施すに際しては、たとえば、孔径が0.05〜1.5mm、特に0.1〜0.4 [0026] In performing high pressure liquid jet treatment, for example, pore size 0.05 to 1.5 mm, especially 0.1 to 0.4
mmの噴射孔を、孔間隔0.05〜5mmとして1列あるいは複数列に多数配列したオリフィス・ヘツドを用い、このオリフィス・ヘツドから噴出される高圧液体流を、多孔性の支持部材上に載置した不織ウエブに衝突させる。 The mm of injection holes, with orifice head was arrayed in one row or multiple rows as hole spacing 0.05 to 5 mm, the high pressure liquid stream ejected from the orifice head, mounting onto a porous support member to collide with the location nonwoven web. すると、分割型二成分系複合短繊維は、高圧液体流の衝突によって、第1の重合体と第2の重合体との境界部で分割され、第1の重合体からなる0.5デニール以下の第1の割繊短繊維と第2の重合体からなる0.5 Then, split two-component composite short fibers by the impact of a high pressure liquid stream is split by the first polymer and the boundary portion between the second polymer, 0.5 denier or less made of a first polymer made of the first split 繊短 fibers and the second polymer 0.5
デニール以下の第2の割繊短繊維とを発現させる。 Denier to express the following second split 繊短 fibers. また、これと同時に、高圧液体流の衝突により繊維を引き込む力が発生し、これによって繊維の周りの他の繊維がねじられ、曲げられ、また回転されることで、構成繊維どうしが三次元的に交絡されて一体化される。 At the same time, the force to pull the fibers occurs by the collision of a high pressure liquid stream, which other fibers around the fiber is twisted by, bent, also by being rotated, the constituent fibers to each other three-dimensionally are entangled are integrated into. このとき、繊維どうしの交絡は、0.5デニール以下の細繊度の割繊短繊維の発現により緻密で強固なものとなる。 At this time, entangled fibers each other becomes dense and made firm by the expression of the following fineness of the split 繊短 fibers 0.5 denier. よって柔軟な不織布が得られる。 Therefore flexible nonwoven is obtained.

【0027】オリフィス・ヘッドにおける噴射孔は、不織ウエブの進行方向と直交する方向に列状に配列する。 [0027] injection holes in the orifice head, arranged in rows in a direction perpendicular to the traveling direction of the nonwoven web.
高圧液体流としては、水あるいは温水を用いることができる。 The high pressure liquid stream, may be water or hot water. 噴射孔と不織ウエブとの距離は、10〜150m The distance between the injection hole and the non-woven web, 10~150m
mとするのがよい。 It is preferable to the m. この距離が10mm未満であると、 If this distance is less than 10 mm,
この処理により得られる不織布の地合いが乱れ、一方、 Disturbed texture of the resulting nonwoven fabric by this treatment, whereas,
この距離が150mmを超えると、液体流が不織ウエブに衝突したときの衝撃力が低下して、分割割繊および三次元的な交絡が十分に施されにくくなる。 If this distance is more than 150 mm, and decreases the impact force when the liquid flow collides with the nonwoven web, dividing the split fiber and three-dimensional entanglement is unlikely to sufficiently performed.

【0028】高圧液体流の噴射圧力は、不織布の要求性能などによって制御されるが、20〜200kg/cm The injection pressure of the high pressure liquid flow is controlled by such required performance of the nonwoven fabric, 20 to 200 kg / cm
2 G、好ましくは80〜150kg/cm 2 Gとするのがよい。 2 G, and it is preferably a 80~150kg / cm 2 G. なお、処理する不織ウエブの目付けなどにも左右されるが、処理圧力が低めであると嵩高で柔軟性にすぐれた不織布を得ることができる。 Incidentally, it is possible that also depends on such nonwoven webs of basis weight to be processed to obtain a process pressure has excellent bulkiness and flexible When it is lower nonwoven. また処理圧力が高めであると、構成繊維どうしの交絡が緻密になって、フィルター性能にすぐれしかも高強力の不織布を得ることができる。 Further, when the processing pressure is at elevated, entanglement each other configurations fibers become dense, it is possible to obtain a good and with high strength of a nonwoven fabric filter performance. 噴射圧力が20kg/cm 2 G未満であると、 If injection pressure is less than 20kg / cm 2 G,
分割割繊および交絡一体化が十分に施されず、機械的強力に劣る不織布となりやすい。 Split split fiber and confounding integration is not sufficiently applied, it tends to be non-woven fabric is inferior in mechanical strength. ただし上述のように割繊率は85%以上であれば足り、分割型二成分系複合短繊維が完全に分割されずに一部残存していても実用上は差し支えない。 However the split 繊率 as described above sufficient if 85% or more, split two-component composite short fibers practically be left partially without being completely divided no problem. 逆に、噴射圧力が200kg/cm 2 Gを超えると、水圧による打撃により、極端な場合は構成繊維が切断されて、得られる不織布は表面に毛羽を有する傾向となって好ましくない。 Conversely, when the injection pressure exceeds 200 kg / cm 2 G, the impact by the water pressure, the extreme case is constructed fiber cut, the resulting nonwoven fabric is unfavorably tends to have a fluff on the surface.

【0029】高圧液体流を施す際に不織ウエブを担持する多孔性の支持部材は、たとえば20〜200メツシユの金網などのメツシユスクリーンや有孔板など、高圧液体流が不織ウエブと支持材とを貫通し得るものであれば特に限定されない。 The porous support member which carries the nonwoven web when subjected to high pressure liquid stream, such as Metsu Shiyu screen or perforated plate, such as 20 to 200 mesh screen of wire mesh, the support pressure liquid stream and nonwoven web It not particularly limited as long as it can penetrate the wood. 不織布に網目跡を残さないためには、50メッシュ以上、好ましくは70メッシュ以上のメッシュスクリーンを用いるのがよい。 To leave no mesh marks on the non-woven fabric, 50 mesh or more, and it is preferably used more mesh screens 70 mesh. また、メッシュスクリーンの編組織や目開きなどを適宜選択して不織布に模様を付与することも可能である。 In addition, it is also possible to impart a pattern to the non-woven fabric by appropriately selecting and knitting structure and the eye opening of the mesh screen.

【0030】なお、不織ウエブの片面より高圧液体流処理を施した後、引き続きこの不織ウエブの表裏を反転させて高圧液体流処理を施すことで、表裏ともに緻密に交絡した不織布を得ることができる。 [0030] Incidentally, after performing high pressure liquid jet treatment from one side of the nonwoven web, subsequently by applying a high pressure liquid stream treatment by reversing the front and back surfaces of the nonwoven web, to obtain the front and back both densely entangled nonwoven can. このため、不織布の用途に応じて、また特に目付けの大きな不織ウエブに対して、適宜に適用すればよい。 Therefore, depending on the nonwoven applications and particularly for large nonwoven webs of basis weight may be applied as appropriate.

【0031】高圧液体流処理を施した後に、不織ウエブから過剰水分を除去する。 [0031] After having been subjected to high-pressure liquid jet treatment to remove excess moisture from the nonwoven web. この過剰水分の除去には、公知の方法を採用することができる。 The removal of this excess moisture, it is possible to employ a known method. たとえばマングルロールなどの絞り装置を用いて過剰水分をある程度機械的に除去し、引き続きサクションバンド方式の熱風循環式乾燥機などの乾燥装置を用いて残余の水分を除去する。 For example some extent mechanically remove excess moisture with a throttling device such as a mangle roll, subsequently removing the residual moisture with a drying apparatus such as a circulating hot air dryer suction band system.

【0032】 [0032]

【実施例】次に、実施例に基づき本発明を具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。 EXAMPLES Next, the present invention is specifically described based on Examples, but the present invention is not limited only to these examples.

【0033】以下の実施例における各種特性値の測定は、次の方法により実施した。 [0033] Measurements of various characteristic values ​​in the following examples were conducted by the following method.

【0034】(1)重合体の融点(℃):パーキンエルマ社製示差走査型熱量計DSC−2型を用い、昇温速度20℃/分の条件で測定し、得られた融解吸熱曲線において極値を与える温度を融点とした。 [0034] (1) Melting point of polymer (° C.): Perkin Elmer Co. differential scanning calorimeter DSC-2 type, measured at a Atsushi Nobori rate of 20 ° C. / min conditions, the melting endothermic curve obtained the temperature giving an extreme value was taken as the melting point.

【0035】(2)メルトインデックス(g/10 [0035] (2) a melt index (g / 10
分):ASTM−D−1238(E)に記載の方法に準じて測定した。 Min): Measured according to the method described in ASTM-D-1238 (E).

【0036】(3)ポリエステルの相対粘度:フエノールと四塩化エタンの等重量混合液を溶媒とし、この溶媒100ccに試料0.5gを溶解し、温度20℃の条件で常法により測定した。 [0036] (3) The relative viscosity of the polyester: The equal weight mixture of phenol and tetrachloroethane as a solvent, a sample was dissolved in 0.5g of the solvent 100 cc, it was measured by a conventional method at a temperature of 20 ° C..

【0037】(4)ポリアミドの相対粘度:96%硫酸100ccに試料1gを溶解し、温度25℃の条件で常法により測定した。 [0037] (4) The relative viscosity of the polyamide: The sample was dissolved 1g of 96% sulfuric acid 100 cc, it was measured by a conventional method at a temperature of 25 ° C..

【0038】(5)不織布の目付け(g/m 2 ):標準状態の試料から縦10cm×横10cmの試験片5点を作成し、平衡水分に到らしめた後、各試験片の重量(g)を秤量し、得られた値の平均値を単位面積(m 2 )当たりに換算して目付け(g/m [0038] (5) non-woven fabric having a basis weight (g / m 2): After creating a test piece of 5 vertical 10cm × horizontal 10cm from the standard state samples, which made lead to equilibrium moisture, the weight of each specimen ( g) was weighed, unit area average value of the obtained values (m 2) basis weight in terms of per (g / m 2 )とした。 2) and the.

【0039】(6)不織布のKSGM強力(kg/5c [0039] (6) of the non-woven fabric KSGM powerful (kg / 5c
m幅):JIS−L−1096に記載のストリップ法に準じ、最大引張強力を測定した。 m width): according to the strip method described in JIS-L-1096, was to measure the maximum tensile strength. すなわち、幅が5c In other words, the width 5c
m、長さが15cmの試験片を不織布の機械方向(M m, length machine direction of the nonwoven fabric specimen 15cm (M
D)およびそれに直交する方向(CD)についてそれぞれ10点作成し、各試験片ごとに、定速伸長型引張試験機(東洋ボールドウイン社製テンシロンUTM−4−1 D) and create, respectively 10 for direction (CD) orthogonal thereto, for each specimen, a constant extension rate type tensile tester (manufactured by Toyo Baldwin Co., Tensilon UTM-4-1
−100)を用いて、試験片の掴み間隔を10cmとし、引張速度10cm/分の条件で最大引張強力を測定し、試験片10点の平均値を目付け100g/m 2に換算した値を不織布のKSGM強力(kg/5cm幅)とした。 -100) with the gripping distance of the test piece and 10 cm, pulling rate of 10 cm / min to measure the maximum tensile strength at conditions, nonwoven fabric-converted value the average value of the test piece 10 in a basis weight 100 g / m 2 KSGM was a strong (kg / 5cm width) of.

【0040】(7)嵩密度(g/cc):幅10cm、 [0040] (7) Bulk density (g / cc): width 10cm,
長さ10cmの試験片を5点作成し、大栄化学精機製作所社製の厚み測定器により4.5g/cm 2の荷重の印加による個々の試験片の厚みを測定してその平均値を「厚み」とし、下式により嵩密度を求めた。 A test piece of length 10cm creating five points, "thickness and the average value by measuring the thickness of individual specimens by application of a load of 4.5 g / cm 2 by Daiei Chemical SEIKI Co. thickness gauge and "to determine the bulk density by the following equation.

【0041】嵩密度(g/cc)=目付け(g/m 2 The bulk density (g / cc) = basis weight (g / m 2)
/[厚み(mm)×1000] / [Thickness (mm) × 1000]

【0042】(8)圧縮剛軟度(g):幅5cm、長さ10cmの試料片を5点用意し、各試料片ごとにその長手方向に曲げて円筒状物とし、各々その端部を接合したものを圧縮剛軟度の測定試料とした。 [0042] (8) Compression stiffness (g): a width 5 cm, the sample piece of length 10cm was prepared 5 points, a cylindrical product by bending in the longitudinal direction of each test piece, each the end those bonded to a measurement sample compression stiffness. 次いで、各測定試料ごとに、定速伸長型引張試験機(東洋ボールドウイン社製テンシロンUTM−4−1−100)を用いて圧縮速度5cm/分で圧縮し、得られた最大荷重値(g)の平均値を圧縮剛軟度(g)とした。 Then, for each sample was compressed at a compression speed 5 cm / min using a constant extension rate type tensile tester (Toyo Baldwin Co., Ltd. Tensilon UTM-4-1-100), resulting maximum load value (g the average value of) the compression stiffness (g). (9)通気度(cc/cm 2 /sec):JIS−L− (9) Air Permeability (cc / cm 2 / sec) : JIS-L-
1096に記載のフラジール法に準じて測定した。 It was measured according to Frazier method described in 1096.

【0043】(10)吸水性(mm/10分):JIS [0043] (10) the water-absorbent (mm / 10 minutes): JIS
−L−1096に記載のバイレック法に準じて測定した。 It was measured according to Bairekku method described in -L-1096.

【0044】(実施例1)第1の繊維形成性重合体としてポリエチレンテレフタレート(融点256℃、相対粘度1.38)を用い、第2の繊維形成性重合体としてポリエチレン(融点130℃、メルトインデックス20g [0044] (Example 1) Polyethylene terephthalate (melting point 256 ° C., relative viscosity 1.38) as the first fiber-forming polymer used, polyethylene (melting point 130 ° C. as the second fiber-forming polymer, a melt index 20g
/10分)を用い、それによって繊維断面は図1と類似であるが両重合体が交互に10個放射状に配された分割型二成分系複合短繊維を用意した。 / With 10 minutes), whereby the fiber cross section is a similar to FIG. 1 was prepared split two-component composite short fiber both polymers was arranged into 10 radially alternately.

【0045】すなわち、前記両重合体を個別に溶融し(ポリエチレンの溶融温度を230℃、ポリエチレンテレフタレートの溶融温度を285℃とした)、図1と類似の断面形状の複合繊維が得られるような分割型二成分系複合型紡糸口金を用い、複合比を重量比で1:1とし、単孔吐出量を0.59g/分として紡糸した。 [0045] That is, the (and 230 ° C. The melting temperature of polyethylene, the melting temperature of the polyethylene terephthalate and 285 ° C.) both polymers were melted separately, such as composite fibers similar cross-sectional shape as in FIG. 1 is obtained using a split-type two-component composite spinneret 1 composite ratio by weight: 1, it was spun single-hole discharge rate as 0.59 g / min. 次に、紡出糸条を公知の冷却器にて冷却した後に仕上げ油剤を付与し、引き取り速度が1000m/分の引き取りロールを介して、未延伸糸として捲き取った。 Then, oil applied finish after cooling the spun yarn in a known cooler take-off speed through the roll take-off of 1000 m / min, was taken Maki as undrawn yarn. 次いで、 Then,
得られた未延伸糸を複数本引き揃えてトウとなし、周速の異なる公知の延伸機を用いて延伸倍率を2.8倍として延伸を行った後、押し込み式捲縮付与装置にて捲縮を付与し、38mmの繊維長に切断して、2デニールの複合短繊維を得た。 The resulting undrawn yarn plurality of pull aligned with tow and pears, after stretching the draw ratio as 2.8 times by using a different known stretching machine peripheral speeds, wound in push-crimping device grant contraction, and cut into a fiber length of 38mm, to obtain a 2 denier composite short fibers.

【0046】吸水性を有する短繊維として、平均繊度1.5デニール、平均繊維長24mmの木綿の晒綿を用意した。 [0046] As short fibers having a water-absorbing, average fineness 1.5 denier was prepared bleached cotton cotton having an average fiber length of 24 mm. そして、上述の分割型二成分系複合短繊維30 Then, the above-described split-type two-component composite short fibers 30
重量%と吸水性を有する短繊維70重量%とを混綿し、 And cotton mixing the short fibers 70 wt% with a weight percent water absorption,
ランダムカード機にて目付50g/m 2の不織ウエブを準備した。 To prepare a nonwoven web having a basis weight 50g / m 2 by a random card machine.

【0047】次いで、移動する100メッシュの金属製メッシュスクリーン上にこの不織ウエブを積載して、高圧液体流処理を施した。 [0047] Then, this nonwoven web was stacked on a metal mesh screen of 100 mesh to be moved, subjected to high pressure liquid stream treatment. この高圧液体流処理は、孔径0.12mmの噴射孔が孔間隔0.62mmとして3群配列で配置された高圧液体流処理装置を用い、不織ウエブの上方50mmの位置から液体流圧力が70kg/c The high-pressure liquid jet treatment, using high pressure liquid stream treatment apparatus ejecting holes are arranged in three groups arranged as hole spacing 0.62mm in hole diameter 0.12 mm, liquid flow pressure from the position of the nonwoven web of the upper 50mm is 70kg / c
2 Gとなる条件で行った。 was carried out under the conditions that the m 2 G. そして得られた不織布より余剰水分をマングルにより除去し、100℃の乾燥機により乾燥処理を行って本発明の不織布を得た。 And the resulting excess moisture from the nonwoven fabric was removed by mangle to give a 100 ° C. dryer by drying treatment carried out by the nonwoven fabric of the present invention.

【0048】得られた不織布を顕微鏡で観察した結果、 The resulting nonwoven fabric the results of observation with a microscope,
分割型二成分系複合短繊維は高圧液体流処理により分割割繊され、ポリエチレンからなる割繊短繊維の単糸繊度及びポリエチレンテレフタレートからなる極細割繊短繊維の単糸繊度は各々0.2デニールであった。 Split two-component composite short fibers is split split fiber by high-pressure liquid jet treatment, the single yarn fineness of the ultrafine split 繊短 fibers of fineness and polyethylene terephthalate split 繊短 fibers made of polyethylene each 0.2 denier Met. 割繊率は89%であった。 Split 繊率 was 89%. また、構成繊維どうしは相互に三次元的に交絡していた。 Further, the constituent fibers to each other had three-dimensionally entangled with each other.

【0049】得られた不織布の物性を表1に示す。 The physical properties of the obtained nonwoven fabric are shown in Table 1.

【0050】 [0050]

【表1】 [Table 1]

【0051】(実施例2)分割型二成分系複合短繊維と吸水性を有する短繊維との混綿比率を50/50(重量%)とした。 [0051] The cotton mixing ratio of the short fibers having a (Example 2) split a two-component composite short fibers and absorbent was 50/50 (wt%). そして、それ以外は実施例1と同様にして本発明の不織布を得た。 And, otherwise to obtain a nonwoven fabric of the present invention in the same manner as in Example 1. 得られた不織布の物性を表1に示す。 The properties of the obtained nonwoven fabric are shown in Table 1.

【0052】(実施例3)分割型二成分系複合短繊維と吸水性を有する短繊維との混綿比率を70/30(重量%)とした。 [0052] The cotton mixing ratio of the short fibers having a (Example 3) split a two-component composite short fibers and absorbent was 70/30 (wt%). そして、それ以外は実施例1と同様にして本発明の不織布を得た。 And, otherwise to obtain a nonwoven fabric of the present invention in the same manner as in Example 1. 得られた不織布の物性を表1に示す。 The properties of the obtained nonwoven fabric are shown in Table 1.

【0053】(実施例4)第1の繊維形成性重合体として実施例1で用いたポリエチレンテレフタレートを用いるととに、第2の繊維形成性重合体としてナイロン6 [0053] (Example 4) Nylon 6 in preparative When using polyethylene terephthalate used in Example 1 as the first fiber-forming polymer, a second fiber-forming polymer
(融点225℃、相対粘度2.55)を用い、実施例1 Used (melting point 225 ° C., relative viscosity 2.55), Example 1
と同様な分割型二成分系複合短繊維を準備した。 It was prepared in the same manner as split two-component composite short fibers and.

【0054】すなわち、前記重合体を個別に溶融し(ナイロン6の溶融温度を265℃、ポリエチレンテレフタレートの溶融温度を285℃とした)、図1と類似の断面形状であって合計分割数が10個である複合繊維が得られるような分割型二成分系複合型紡糸口金より、複合比を重量比で1:1とし、単孔吐出量を0.65g/分として紡糸した。 [0054] That is, the polymer was melted separately (265 ° C. The melt temperature of the nylon 6 was melt temperature of the polyethylene terephthalate and 285 ° C.), the total number of divisions a similar cross-sectional shape as in FIG. 1 10 the dividing type two-component composite spinneret as composite fibers are obtained a number, 1 composite ratio by weight: 1, were spun single-hole discharge rate as 0.65 g / min. そして、紡出糸条を公知の冷却器にて冷却した後に仕上げ油剤を付与し、引き取り速度が10 Then, oil applied finish after cooling the spun yarn in a known cooler take-off speed is 10
00m/分の引き取りロールを介して、未延伸糸として巻き取った。 Through 00m / min take-off roll was wound as undrawn yarn. 次いで、得られた未延伸糸を複数本引き揃えてトウとなし、周速の異なる公知の延伸機を用いて延伸倍率を3.1倍として延伸を行い、その後に押し込み式捲縮付与装置にて捲縮を付与し、38mmの繊維長に切断して、2デニールの複合短繊維を得た。 Then, the resultant undrawn yarn plurality of pull aligned with tow and without performs drawing as 3.1 times the draw ratio using different known stretching machine peripheral speeds, to subsequently push-crimping device crimped Te, and cut into a fiber length of 38mm, to obtain a 2 denier composite short fibers.

【0055】吸水性を有する短繊維として、実施例1と同様の木綿の晒綿を用意した。 [0055] As short fibers having water absorption was prepared bleached cotton same cotton as in Example 1. そして、分割型二成分系複合短繊維50重量%と吸水性を有する短繊維50重量%とを混綿し、ランダムカード機にて目付50g/m 2 The split two-component and cotton mixing the short fibers 50% by weight having a composite short fibers 50% by weight and water absorption, basis weight 50 g / m 2 at random carding machine
の不織ウエブを準備した。 We were prepared of the nonwoven web. そのうえで、実施例1と同一条件で高圧液体流処理及び乾燥処理を施し、本発明の不織布を得た。 Sonouede, subjected to high pressure liquid stream treatment, and drying treatment under the same conditions as in Example 1, to obtain a nonwoven fabric of the present invention.

【0056】得られた不織布を顕微鏡で観察した結果、 [0056] The obtained nonwoven fabric the results of observation with a microscope,
分割型二成分系複合短繊維は高圧液体流処理により分割割繊され、ナイロン6とポリエチレンテレフタレートとからなる割繊短繊維の単糸繊度は各々0.2デニールであった。 Split two-component composite short fibers is split split fiber by high-pressure liquid jet treatment, the single yarn fineness of the split 繊短 fibers consisting of nylon 6 and polyethylene terephthalate were respectively 0.2 denier. 割繊率は92%であった。 Split 繊率 was 92%. また、構成繊維どうしは相互に三次元的に交絡していた。 Further, the constituent fibers to each other had three-dimensionally entangled with each other.

【0057】得られた不織布の物性を表1に示す。 [0057] Properties of the nonwoven fabric are shown in Table 1.

【0058】(実施例5)第1の繊維形成性重合体として実施例4で用いたナイロン6を利用し、第2の繊維形成性重合体として実施例1で用いたポリエチレンを利用して、実施例1と同様な分割型二成分系複合短繊維を準備した。 [0058] (Example 5) using the nylon 6 used in Example 4 as the first fiber-forming polymer, by using a polyethylene used in Example 1 as the second fiber-forming polymer, It was prepared in the same manner as split two-component composite short fibers as in example 1.

【0059】すなわち、前記重合体を個別に溶融し(ポリエチレンの溶融温度を230℃、ナイロン6の溶融温度を265℃とした)、図1と類似の断面形状であって合計分割数が10個である複合繊維が得られるような分割型二成分系複合型紡糸口金より、複合比を重量比で1:1とし、単孔吐出量を0.55g/分として紡糸した。 [0059] That is, the polymer was melted separately (230 ° C. The melting temperature of polyethylene, the melting temperature of nylon 6 was 265 ° C.), are 10 total number of divisions a similar cross-sectional shape as in FIG. 1 the dividing type two-component composite spinneret as composite fibers are obtained is, 1 composite ratio by weight: 1, a single-hole discharge rate was spun as 0.55 g / min. そして紡出糸条を公知の冷却器にて冷却した後に仕上げ油剤を付与し、引き取り速度が1000m/分の引き取りロールを介して、未延伸糸として巻き取った。 Then the spun yarn oil applied finish after cooling by a known cooler take-off speed through the roll take-off of 1000 m / min and wound as undrawn yarn. ついで得られた未延伸糸を複数本引き揃えてトウとなし、 Then the obtained undrawn yarn plurality of pull aligned with tow and none,
周速の異なる公知の延伸機を用いて延伸倍率を2.6倍として延伸を行った後、押し込み式捲縮付与装置にて捲縮を付与し、38mmの繊維長に切断して、2デニールの複合短繊維を得た。 After stretching the draw ratio as 2.6 times by using a different known stretching machine peripheral speeds, crimped by a stuffing crimping device, and cut into a fiber length of 38mm, 2 denier It was obtained of composite short fibers.

【0060】吸水性を有する短繊維として、実施例1と同様の木綿の晒綿を用意した。 [0060] As short fibers having water absorption was prepared bleached cotton same cotton as in Example 1. そして、分割型二成分系複合短繊維50重量%と吸水性を有する短繊維50重量%とを混綿し、ランダムカード機にて目付50g/m 2 The split two-component and cotton mixing the short fibers 50% by weight having a composite short fibers 50% by weight and water absorption, basis weight 50 g / m 2 at random carding machine
の不織ウエブを準備した。 We were prepared of the nonwoven web. また高圧液体流処理及び乾燥処理の条件を実施例1と同一として、本発明の不織布を得た。 Also as the same as in Example 1. The conditions of the high pressure liquid stream treatment, and drying treatment to obtain a nonwoven fabric of the present invention.

【0061】得られた不織布を顕微鏡で観察した結果、 [0061] The obtained nonwoven fabric the results of observation with a microscope,
分割型二成分系複合短繊維は高圧液体流処理により分割割繊され、ポリエチレンとびナイロン6とからなる割繊短繊維の単糸繊度は各々0.2デニール,割繊率は85 Split two-component composite short fibers is split split fiber by high-pressure liquid jet treatment, fineness each 0.2 denier split 繊短 fibers consisting of polyethylene jump nylon 6 which, split 繊率 85
%であった。 %Met. また、構成繊維どうしは相互に三次元的に交絡していた。 Further, the constituent fibers to each other had three-dimensionally entangled with each other.

【0062】得られた不織布の物性を表1に示す。 [0062] Properties of the nonwoven fabric are shown in Table 1.

【0063】実施例1〜5の不織布は、吸水性を有する短繊維と、分割型二成分系複合短繊維の分割により発現した繊度が各々0.5デニール以下の割繊短繊維とが混綿された不織布であり、構成繊維どうしが緻密に三次元的交絡して一体化していた。 [0063] Examples 1-5 nonwoven fabric, a short fiber having a water absorbency and split 繊短 fiber fineness expressed following each 0.5 denier by the splitting of the split-type two-component composite short fibers are cotton mixing and a nonwoven fabric, the constituent fibers to each other were integrated by densely three-dimensionally entangled. このため、優れた機械的特性と柔軟性と吸水性とを併せ持っものであった。 Therefore, it was those combines the excellent mechanical properties, flexibility and water absorption. また、 Also,
0.5デニール以下の細い割繊短繊維を含む構成繊維どうしが緻密に三次元的に交絡して一体化していたため、 Since the constituent fibers to each other, including a 0.5 denier or less fine split 繊短 fibers had integrated densely three-dimensionally entangled with,
通気度が低く、このため衣料用途に適用したときに保温効果が高く、またフィルター性能を有する不織布であるので、日用品、衣料品、医療材料、衛生材料、産業資材用途等の分野で効果的に用いることができるものであった。 Air permeability is low, and therefore thermal effect in high when applied to clothing use, also because it is non-woven fabric with filter performance, daily necessities, clothing, medical materials, sanitary materials, effectively in fields such as industrial materials It was those that can be used. (比較例1)実施例2と同一の目付50g/m 2の不織ウエブを、移動する100メッシュの金属製メッシュスクリーン上に積載して、高圧液体流処理を施した。 (Comparative Example 1) of the nonwoven webs Example 2 and the same basis weight 50 g / m 2, and stacked on the metal mesh screen of 100 mesh to be moved, subjected to high pressure liquid stream treatment. この高圧液体流処理は、水圧を20kg/cm 2 Gの条件に変更して行った。 The high-pressure liquid jet treatment was performed by changing the water pressure condition of 20kg / cm 2 G. そして、それ以外は実施例2すなわち実施例1と同一条件として、不織布を得た。 And otherwise as the same conditions as in Example 2 i.e. Example 1, to obtain a nonwoven fabric.

【0064】得られた不織布表面を顕微鏡で観察した結果、割繊率は64%であった。 [0064] The results of the obtained nonwoven fabric surface was observed by a microscope, the split 繊率 was 64%. 得られた不織布の物性を表1に示す。 The properties of the obtained nonwoven fabric are shown in Table 1.

【0065】(比較例2)分割型二成分系複合短繊維に代えて、ポリエチレンテレフタレートのみからなる単相型短繊維を用いた。 [0065] (Comparative Example 2) instead of the split-type two-component composite short fibers, using a single-phase type short fibers consisting of only polyethylene terephthalate. そして、それ以外は実施例2と同様にして不織布を得た。 Then, otherwise in the same manner as in Example 2 to obtain a nonwoven fabric.

【0066】ポリエチレンテレフタレートのみからなる単相型短繊維は、以下の方法により得た。 [0066] Single-phase type short fibers consisting of only polyethylene terephthalate, were obtained by the following method. すなわち、実施例2と同様のポリエチレンテレフタレートを材料として、エクストルーダー型溶融押出し機を用い、糸断面が単相丸断面となる紡糸口金を通して、溶融温度285 That is, the same polyethylene terephthalate as in Example 2 as the material, using an extruder type melt extruder, through a spinneret in which the yarn cross-section is a single-phase round cross-section, the melting temperature of 285
℃、単孔吐出量0.68g/分の条件下にて溶融紡糸した。 ° C., was melt-spun at a single hole discharge rate 0.68 g / min conditions. この紡出糸条を公知の冷却器にて冷却した後、実施例2と同一条件で未延伸糸として巻き取った。 After cooling the spun yarn in a known condenser was wound as undrawn yarn under the same conditions as in Example 2. 次いで、 Then,
延伸倍率3.2倍で延伸した。 Was stretched at a draw ratio 3.2 times. また、その後は実施例1 Further, thereafter Example 1
と同様にして、繊度が2.0デニールのポリエチレンテレフタレートよりなる単相型短繊維を得た。 In the same manner as to obtain a single-phase type short fibers fineness is made of polyethylene terephthalate 2.0 denier.

【0067】得られた不織布の物性を表1に示す。 [0067] Properties of the nonwoven fabric are shown in Table 1.

【0068】(比較例3)実施例1で用いた木綿の晒綿のみを用い、ランダムカード機にて目付50g/m 2の木綿製の不織ウエブを準備した。 [0068] (Comparative Example 3) using only the Sarashiwata cotton used in Example 1 was prepared basis weight 50 g / m 2 of a cotton nonwoven web at random carding machine. そして、それ以外は実施例1と同様にして不織布を得た。 Then, otherwise in the same manner as in Example 1 to obtain a non-woven fabric.

【0069】得られた不織布の物性を表1に示す。 [0069] Properties of the nonwoven fabric are shown in Table 1.

【0070】(比較例4)実施例1で用いた分割型二成分系複合短繊維のみを用い、ランダムカード機にて、吸水性を有する短繊維を含まない目付50g/m 2の不織ウエブを準備した。 [0070] (Comparative Example 4) Example split two-component using only the composite short fibers used in 1 at random carding machine, basis weight 50 g / m 2 nonwoven web that does not contain short fibers having a water-absorbing It was prepared. そして、それ以外は実施例1と同様にして不織布を得た。 Then, otherwise in the same manner as in Example 1 to obtain a non-woven fabric.

【0071】得られた不織布の物性を表1に示す。 [0071] Properties of the nonwoven fabric are shown in Table 1.

【0072】(比較例5)実施例1と同一のポリエチレンとポリエチレンテレフタレートを用い、分割型二成分系複合短繊維を準備した。 [0072] Using (Comparative Example 5) same polyethylene and polyethylene terephthalate as in Example 1, were prepared split two-component composite short fibers.

【0073】すなわち、前記重合体を個別に溶融し(ポリエチレンの溶融温度を230℃、ポリエチレンテレフタレートの溶融温度を285℃とした)、図1と類似の断面形状であって合計分割数が6個である複合繊維が得られるような分割型二成分系複合型紡糸口金より、複合比を重量比で1:1とし、単孔吐出量を1.95g/分として紡糸した。 [0073] That is, the polymer was melted separately (230 ° C. The melting temperature of polyethylene, and the melting temperature of the polyethylene terephthalate and 285 ° C.), 6 total of the number of divisions is a similar cross-sectional shape as in FIG. 1 the dividing type two-component composite spinneret as composite fibers are obtained is, 1 composite ratio by weight: 1, were spun single-hole discharge rate as 1.95 g / min. そして、紡出糸条を公知の冷却器にて冷却した後に仕上げ油剤を付与し、引き取り速度が10 Then, oil applied finish after cooling the spun yarn in a known cooler take-off speed is 10
00m/分の引き取りロールを介して、未延伸糸として巻き取った。 Through 00m / min take-off roll was wound as undrawn yarn. ついで得られた未延伸糸を複数本引き揃えてトウとなし、周速の異なる公知の延伸機を用いて、延伸倍率を3.7倍として延伸を行った。 Then the obtained undrawn yarn plurality of pull aligned with tow and without using different known stretching machine peripheral speeds were stretching draw ratio as 3.7 times. その後、押し込み式捲縮付与装置にて捲縮を付与し、51mmの繊維長に切断して、5デニールの複合短繊維を得た。 Thereafter, crimped by a stuffing crimping device, and cut into a fiber length of 51 mm, to give a 5 denier composite short fibers.

【0074】吸水性を有する短繊維として、実施例1と同様の木綿の晒綿を用意した。 [0074] As short fibers having water absorption was prepared bleached cotton same cotton as in Example 1. そして、分割型二成分系複合短繊維50重量%と吸水性を有する短繊維50重量%とを混綿し、ランダムカード機にて目付50g/m 2 The split two-component and cotton mixing the short fibers 50% by weight having a composite short fibers 50% by weight and water absorption, basis weight 50 g / m 2 at random carding machine
の不織ウエブを準備した。 We were prepared of the nonwoven web. 次に実施例1と同一条件で高圧液体流処理及び乾燥処理を施し、不織布を得た。 Subjected to high pressure liquid stream treatment, and drying treatment in the next Example 1 under the same conditions, to obtain a nonwoven fabric.

【0075】得られた不織布を顕微鏡で観察した結果、 [0075] The obtained nonwoven fabric the results of observation with a microscope,
分割型二成分系複合短繊維は高圧液体流処理により分割割繊され、ポリエチレン及びポリエチレンテレフタレートからなる割繊短繊維の単糸繊度は各々0.8デニールであった。 Split two-component composite short fibers is split split fiber by high-pressure liquid jet treatment, the single yarn fineness of the split 繊短 fibers consisting of polyethylene and polyethylene terephthalate were respectively 0.8 denier. また割繊率は92%であった。 The split 繊率 was 92%.

【0076】得られた不織布の物性を表1に示す。 [0076] Properties of the nonwoven fabric are shown in Table 1.

【0077】比較例1の不織布は、吸水性を有する短繊維と、分割型二成分系複合短繊維の分割により発現した繊度が各々0.5デニール以下の割繊短繊維とが混綿された不織布であるが、割繊率が低く本発明の範囲外であったので、構成繊維どうしが緻密に三次元的に交絡しておらず、機械的特性と低通気性すなわち衣類に適用したときの保温効果とに劣り、本発明の目的とするものでは無かった。 [0077] The nonwoven fabric of Comparative Example 1, the short fibers and splittable two-component system nonwoven fabric composite and short fibers split 繊短 fiber fineness expressed following each 0.5 denier by resolution of is cotton mixing with water absorption although, since the split 繊率 was outside the scope of the present invention lowered, the constituent fibers with each other is not densely three-dimensionally entangled, heat retention when applied to mechanical characteristics and low permeability i.e. garment inferior and effects, there was no aims of the present invention.

【0078】比較例2の不織布は、繊維形成性重合体からなる単相の通常の繊度の繊維と、吸水性を有する繊維とが混綿された不織布であるので、実施例1〜5のものと比較して構成繊維どうしの緻密な交絡性すなわち不織布強力に劣るものであった。 [0078] Comparative Example 2 nonwoven fabric, the fiber of the usual fineness of single phase composed of the fiber-forming polymer, since the fiber having a water absorbency is cotton mixing nonwoven, those of Examples 1 to 5 and It was poor in strong dense intermingling property i.e. nonwoven fibers constituting each other compared to. また、低通気性すなわち衣料に適用したときの保温効果に劣り、本発明の目的とするものでは無かった。 Moreover, poor thermal effect when applied to the low permeability That garments, did aims of the present invention.

【0079】比較例3の不織布は、構成繊維が木綿のみからなるものであるので、吸水性に優れ、湿潤状態で用いる分野には好適なものであった。 [0079] The nonwoven fabric of Comparative Example 3, since the one in which the constituent fibers are composed only of cotton, excellent water absorption, was preferred to the field to be used in a wet state. しかし、実施例1〜 However, Example 1
5のものと比較して不織布強力や柔軟性に劣り、本発明の目的とするものでは無かった。 Compared to 5 of those inferior to the nonwoven strength and flexibility, it was not intended for the purpose of the present invention. 比較例4の不織布は、 Nonwoven of Comparative Example 4,
構成繊維が分割型二成分系複合短繊維の分割により発現した割繊短繊維のみからなるものであるので、構成繊維どうしが緻密に三次元的に交絡しており、柔軟でドレープ性に富むものであった。 Since the constituent fibers are those composed of only split 繊短 fibers expressed by the splitting of the split-type two-component composite short fibers, the constituent fibers to each other have densely three-dimensionally entangled, those rich in flexibility and drape property Met. しかし、吸水性を有さず、本発明の目的とするものでは無かった。 However, no water-absorbing, it did aims of the present invention.

【0080】比較例5の不織布は、分割型二成分系複合短繊維の分割により発現した割繊短繊維の繊度が両者とも0.5デニールを越えていたので、構成繊維どうしが緻密に三次元的交絡しておらず、機械的特性と低通気性すなわち衣類に適用したたときの保温効果とに劣り、本発明の目的とするものでは無かった。 [0080] The nonwoven fabric of Comparative Example 5, since the fineness of the split 繊短 fibers expressed by the splitting of the split-type two-component composite short fibers was over 0.5 denier Both constituent fibers to each other is densely three-dimensionally confounding to yet not inferior in the thermal insulation effect when applied to mechanical characteristics and low permeability that garment, it was not intended for the purpose of the present invention.

【0081】 [0081]

【発明の効果】以上のように本発明によると、第1および第2の割繊短繊維は、いずれも単糸繊度が0.5デニール以下であり、第1の繊維形成性重合体と第2の繊維形成性重合体とは、互いに非相溶性を呈するアミド系重合体とエステル系重合体とエチレン系重合体とのいずれかどうしによって構成されており、前記第1の割繊短繊維と第2の割繊短繊維との割繊率は85%以上であり、 According to the present invention as described above, according to the present invention, first and second split 繊短 fibers are both a single yarn fineness of 0.5 denier or less, the first fiber-forming polymer the and second fiber-forming polymer is composed by one each other in an amide-based polymer and an ester-based polymer and ethylene polymer exhibiting mutually incompatible, and the first split 繊短 fibers split 繊率 the second split 繊短 fibers are 85% or more,
前記構成繊維どうしが三次元的に交絡しているようにしたため、第1および第2の割繊短繊維がアミド系重合体とエステル系重合体とエチレン系重合体とのいずれかどうしによって構成されていることから、溶融紡糸時の冷却性が良好であるとともに、熱安定性にもすぐれる。 Since the constituent fibers to each other is such that entangled three-dimensionally, the first and second split 繊短 fibers are constituted by one each other in an amide-based polymer and an ester-based polymer and ethylene polymer since that, together with the cooling properties during melt spinning it is good, excellent in thermal stability. また第1および第2の割繊短繊維が、いずれも単糸繊度が0.5デニール以下であるため、不織布の柔軟性や吸水性にすぐれる。 The first and second split 繊短 fibers, for both the single yarn fineness is less than 0.5 denier, excellent flexibility and water absorption of the non-woven fabric. また単糸繊度が0.5デニール以下であることから、不織布を構成する繊維どうしの三次元的な交絡が緻密に行われ、したがって柔軟でありながら機械的特性にすぐれた不織布を得ることができる。 Also since the single yarn fineness is less than 0.5 denier, three-dimensional entanglement of the fibers with each other to constitute the nonwoven fabric is made dense, therefore it is possible to obtain a nonwoven fabric excellent in mechanical properties, yet flexible . このため本発明によれば、ワイパー分野やフィルター分野などに広範囲に利用できる不織布を提供できる。 Therefore, according to the present invention can provide a wide range available nonwoven such as a wiper field or filter field.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明にもとづく分割型二成分系複合短繊維の断面構造の一例を示す図である。 1 is a diagram showing an example of the sectional structure of the split-type two-component composite short fibers according to the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

10 第1の繊維形成性重合体 20 第2の繊維形成性重合体 10 first fiber-forming polymer 20 second fiber-forming polymer

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 第1および第2の繊維形成性重合体からなる分割型二成分系複合短繊維の分割により発現した、 1. A expressed by the splitting of the split-type two-component composite short fiber comprising first and second fiber-forming polymer,
    前記第1および第2の繊維形成性重合体からなる第1および第2の割繊短繊維と、吸水性を有する短繊維とによって構成された短繊維不織布であって、前記第1および第2の割繊短繊維は、いずれも単糸繊度が0.5デニール以下であり、前記第1の繊維形成性重合体と第2の繊維形成性重合体とは、互いに非相溶性を呈するアミド系重合体とエステル系重合体とエチレン系重合体とのいずれかどうしによって構成されており、前記第1の割繊短繊維と第2の割繊短繊維との割繊率は85%以上であり、前記構成繊維どうしが三次元的に交絡していることを特徴とする短繊維不織布。 Wherein the first and and second split 繊短 fibers comprising first and second fiber-forming polymer, a short fiber nonwoven fabric constituted by a short fiber having a water absorption, the first and second the split 繊短 fibers, both have a single yarn fineness of 0.5 denier or less, the first and the fiber-forming polymer and the second fiber-forming polymer, amide exhibiting mutually incompatible It is constituted by one each other between the polymer and the ester-based polymer and ethylene-based polymer, wherein the first split 繊短 fibers and split 繊率 the second split 繊短 fibers is 85% or more , short fiber nonwoven fabric, characterized in that the constituent fibers to each other are entangled three-dimensionally.
  2. 【請求項2】 吸水性を有する短繊維が、天然繊維と再生繊維との少なくともいずれかであることを特徴とする請求項1記載の短繊維不織布。 2. A short fiber having a water absorbency, short fiber nonwoven fabric according to claim 1, wherein at least either of natural fibers and regenerated fibers.
  3. 【請求項3】 吸水性を有する短繊維を30〜70重量%含有することを特徴とする請求項1または2記載の短繊維不織布。 Wherein short fibers having a water-absorbing, characterized in that it contains 30 to 70 wt% claim 1 or 2 short fiber non-woven fabric according.
  4. 【請求項4】 アミド系重合体とエステル系重合体とエチレン系重合体とのいずれかからなる第1の繊維形成性重合体と、アミド系重合体とエステル系重合体とエチレン系重合体とのいずれかからなるとともに前記第1の繊維形成性重合体に対し非相溶性を呈する第2の繊維形成性重合体とによって分割型二成分系複合短繊維を紡糸し、この分割型二成分系複合短繊維と吸水性を有する短繊維とを混綿して不織ウエブを形成し、この不織ウエブに高圧液体流処理を施すことで、前記複合短繊維を割繊率85%以上で分割させて、前記第1の繊維形成性重合体からなる単糸繊度が0.5デニール以下の第1の割繊短繊維と、前記第2の繊維形成性重合体からなる単糸繊度が0.5デニール以下の第2の割繊短繊維とを発現させるとともに、前記第 4. A amide polymer and an ester-based polymer and ethylene polymer and the first fiber-forming polymer consisting of either, and amide-based polymer and an ester-based polymer and ethylene polymer spinning splittable bicomponent composite short fibers by a second fiber-forming polymer exhibiting incompatibility with respect to the first fiber-forming polymer with consisting of either, the split two-component and cotton mixing the short fibers having a composite short fibers and absorbent to form a nonwoven web, by applying a high pressure liquid jet treatment to the nonwoven web, to divide the composite short fibers split 繊率 85% Te, wherein the first single yarn fineness of fiber-forming polymer of the first 0.5 denier and split 繊短 fiber fineness composed of the second fiber-forming polymer is 0.5 denier with the expression of the following second split 繊短 fibers, said first 1の割繊短繊維と第2の割繊短繊維と吸水性を有する短繊維とを相互に三次元的に交絡させることを特徴とする短繊維不織布の製造方法。 Method for producing a short fiber nonwoven fabric, characterized in that to each other three-dimensionally entangling the short fibers with the first split 繊短 fibers and the second split 繊短 fibers and absorbent.
JP1761098A 1998-01-30 1998-01-30 Staple fiber nonwoven fabric and its production Pending JPH11217757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1761098A JPH11217757A (en) 1998-01-30 1998-01-30 Staple fiber nonwoven fabric and its production

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP1761098A JPH11217757A (en) 1998-01-30 1998-01-30 Staple fiber nonwoven fabric and its production
CA 2260283 CA2260283A1 (en) 1998-01-30 1999-01-25 Staple fiber non-woven fabric and process for producing the same
US09236718 US20020006502A1 (en) 1998-01-30 1999-01-25 Staple fiber non-woven fabric and process for producing the same
DE1999604763 DE69904763T3 (en) 1998-01-30 1999-01-27 Nonwoven fabric made of staple fibers and manufacturing method thereof
EP19990101803 EP0933459B2 (en) 1998-01-30 1999-01-27 Staple fiber non-woven fabric and process for producing the same
DE1999604763 DE69904763D1 (en) 1998-01-30 1999-01-27 Nonwoven fabric made of staple fibers and manufacturing method thereof
US10373162 US20030139110A1 (en) 1998-01-30 2003-02-24 Staple fiber non-woven fabric and process for producing the same
US11247434 US20060030230A1 (en) 1998-01-30 2005-10-11 Staple fiber non-woven fabric and process for producing the same

Publications (1)

Publication Number Publication Date
JPH11217757A true true JPH11217757A (en) 1999-08-10

Family

ID=11948666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1761098A Pending JPH11217757A (en) 1998-01-30 1998-01-30 Staple fiber nonwoven fabric and its production

Country Status (5)

Country Link
US (3) US20020006502A1 (en)
EP (1) EP0933459B2 (en)
JP (1) JPH11217757A (en)
CA (1) CA2260283A1 (en)
DE (2) DE69904763D1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19934442C2 (en) 1999-07-26 2001-09-20 Freudenberg Carl Fa A process for producing a nonwoven fabric and nonwoven fabric for the production of clean-room protective clothing
DE19957693C2 (en) * 1999-11-30 2002-06-27 Freudenberg Carl Kg Cleanroom Cleaning Cloth
DE19962359B4 (en) * 1999-12-23 2004-07-08 Carl Freudenberg Kg Thermo nonwoven
US6692541B2 (en) * 2000-05-16 2004-02-17 Polymer Group, Inc. Method of making nonwoven fabric comprising splittable fibers
US6495255B2 (en) * 2000-06-26 2002-12-17 Chisso Corporation Polyolefin splittable conjugate fiber and a fiber structure using the same
US6739023B2 (en) 2002-07-18 2004-05-25 Kimberly Clark Worldwide, Inc. Method of forming a nonwoven composite fabric and fabric produced thereof
US6958103B2 (en) * 2002-12-23 2005-10-25 Kimberly-Clark Worldwide, Inc. Entangled fabrics containing staple fibers
US20070033779A1 (en) * 2003-04-17 2007-02-15 Orlandi S.P.A. Non-woven based on exploded or splittable multicomponent fibers
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US7194788B2 (en) * 2003-12-23 2007-03-27 Kimberly-Clark Worldwide, Inc. Soft and bulky composite fabrics
US7645353B2 (en) 2003-12-23 2010-01-12 Kimberly-Clark Worldwide, Inc. Ultrasonically laminated multi-ply fabrics
US20060057432A1 (en) * 2004-09-16 2006-03-16 San Fang Chemical Industry Co., Ltd. Elastic artificial leather
KR20140139634A (en) * 2004-11-05 2014-12-05 도날드슨 컴파니, 인코포레이티드 Filter medium and structure
US8021457B2 (en) 2004-11-05 2011-09-20 Donaldson Company, Inc. Filter media and structure
US8057567B2 (en) 2004-11-05 2011-11-15 Donaldson Company, Inc. Filter medium and breather filter structure
US20060150331A1 (en) * 2005-01-12 2006-07-13 Child Andrew D Channeled warming blanket
JP5308031B2 (en) 2005-02-04 2013-10-09 ドナルドソン カンパニー,インコーポレイティド Ventilation filter and ventilation filtration assembly
US8404014B2 (en) 2005-02-22 2013-03-26 Donaldson Company, Inc. Aerosol separator
US7438777B2 (en) * 2005-04-01 2008-10-21 North Carolina State University Lightweight high-tensile, high-tear strength bicomponent nonwoven fabrics
US7494697B2 (en) * 2005-05-17 2009-02-24 San Fang Chemical Industry Co., Ltd. Substrate of artificial leather including ultrafine fibers and methods for making the same
KR101280398B1 (en) 2005-06-24 2013-07-02 노쓰 캐롤라이나 스테이트 유니버시티 High strength, durable micro & nano-fiber fabrics produced by fibrillating bicomponent islands in the sea fibers
US7883772B2 (en) * 2005-06-24 2011-02-08 North Carolina State University High strength, durable fabrics produced by fibrillating multilobal fibers
US20100029161A1 (en) * 2005-06-24 2010-02-04 North Carolina State University Microdenier fibers and fabrics incorporating elastomers or particulate additives
DE102005054726A1 (en) * 2005-08-02 2007-02-15 Carl Freudenberg Kg Nonwovens and methods for their preparation
US20070270071A1 (en) * 2006-05-18 2007-11-22 Greer J Travis Nonwoven fabric towel
US7794796B2 (en) 2006-12-13 2010-09-14 San Fang Chemical Industry Co., Ltd. Extensible artificial leather and method for making the same
JP2010529902A (en) 2007-02-22 2010-09-02 ドナルドソン カンパニー インコーポレイテッド Filter elements and methods
WO2008103821A3 (en) 2007-02-23 2008-10-23 Donaldson Co Inc Formed filter element
US8673040B2 (en) 2008-06-13 2014-03-18 Donaldson Company, Inc. Filter construction for use with air in-take for gas turbine and methods
US9885154B2 (en) 2009-01-28 2018-02-06 Donaldson Company, Inc. Fibrous media
WO2010106418A1 (en) * 2009-03-19 2010-09-23 Allergosystem S.R.L. A device for protecting clothing when drying
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
CN102146590B (en) 2010-02-04 2013-08-07 三芳化学工业股份有限公司 Elastomer-containing composite fiber, preparation method thereof, substrate containing composite fiber and preparation method thereof
US20120183861A1 (en) 2010-10-21 2012-07-19 Eastman Chemical Company Sulfopolyester binders
US20120177996A1 (en) * 2010-10-21 2012-07-12 Eastman Chemical Company Nonwoven article with ribbon fibers
US8882963B2 (en) 2012-01-31 2014-11-11 Eastman Chemical Company Processes to produce short cut microfibers
US9080263B2 (en) 2012-02-10 2015-07-14 Novus Scientific Ab Multifilaments with time-dependent characteristics, and medical products made from such multifilaments
WO2014112889A1 (en) * 2013-01-18 2014-07-24 Ecowipes Ews Spółka Z Ograniczoną Odpowiedzialnością Spółka Jawna Fabric roll
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA944520A (en) * 1969-03-26 1974-04-02 Toray Industries, Inc. Spontaneously crimping synthetic composite filament and process of manufacturing the same
JPS4887119A (en) * 1972-02-24 1973-11-16
US4100324A (en) * 1974-03-26 1978-07-11 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
GB1574041A (en) * 1976-01-30 1980-09-03 Asahi Chemical Ind Composite fabric and method for producing the same
JPH031426B2 (en) * 1986-05-19 1991-01-10 Mitsubishi Rayon Co
US5026587A (en) * 1989-10-13 1991-06-25 The James River Corporation Wiping fabric
US5382400A (en) * 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
JPH06101148A (en) * 1992-09-18 1994-04-12 Mitsubishi Rayon Co Ltd Nonwoven fabric for cleaning
FR2705698B1 (en) * 1993-04-22 1995-06-30 Freudenberg Spunweb Sa A method of manufacturing a web of nonwoven made of continuous filaments bonded together and sheet thus obtained.
JP3113124B2 (en) * 1993-07-02 2000-11-27 帝人株式会社 Method for producing ultra-fine fiber web
US5534339A (en) * 1994-02-25 1996-07-09 Kimberly-Clark Corporation Polyolefin-polyamide conjugate fiber web
US5759926A (en) * 1995-06-07 1998-06-02 Kimberly-Clark Worldwide, Inc. Fine denier fibers and fabrics made therefrom
JPH10280262A (en) * 1997-04-03 1998-10-20 Unitika Ltd Nonwoven fabric and its production
JPH10331063A (en) * 1997-05-29 1998-12-15 Unitika Ltd Composite nonwoven fabric and its production

Also Published As

Publication number Publication date Type
CA2260283A1 (en) 1999-07-30 application
DE69904763T2 (en) 2003-08-21 grant
US20060030230A1 (en) 2006-02-09 application
EP0933459B1 (en) 2003-01-08 grant
US20030139110A1 (en) 2003-07-24 application
US20020006502A1 (en) 2002-01-17 application
DE69904763T3 (en) 2006-09-07 grant
DE69904763D1 (en) 2003-02-13 grant
EP0933459B2 (en) 2005-12-07 grant
EP0933459A1 (en) 1999-08-04 application

Similar Documents

Publication Publication Date Title
US6284680B1 (en) Nonwoven fabric containing fine fibers, and a filter material
US4239720A (en) Fiber structures of split multicomponent fibers and process therefor
US6506873B1 (en) Degradable polymer fibers; preparation product; and, methods of use
US5882780A (en) Elastic polyester fibers and stretchable fiber articles containing same
US5626961A (en) Polyester filaments and tows
US20080311815A1 (en) Nonwovens produced from multicomponent fibers
EP1516079B1 (en) Polyester staple fiber and nonwoven fabric comprising same
US20080003912A1 (en) High Strength, Durable Fabrics Produced By Fibrillating Multilobal Fibers
JP2004353161A (en) Polyester conjugated fiber
JP2010070870A (en) Method for producing nonwoven fabric, the nonwoven fabric, nonwoven fabric structure, and textile product
US6274237B1 (en) Potentially crimpable composite fiber and a non-woven fabric using the same
EP2082082A2 (en) Multi-component fibers containing high chain-length polyamides
US20030139110A1 (en) Staple fiber non-woven fabric and process for producing the same
JPH06207320A (en) Biodegradable conjugate short fiber and its nonwoven fabric
JP2001159078A (en) Hydrophilic fiber and nonwoven fabric, nonwoven fabric processed product
JP2009197374A (en) Flexible nonwoven fabric
EP1452633A1 (en) MACHINE CRIMPED SYNTHETIC FIBER HAVING LATENT THREE&amp;minus;DIMENSIONAL CRIMPABILITY AND METHOD FOR PRODUCTION THEREOF
US20120302120A1 (en) Short cut microfibers
CN101040076A (en) Woven/knit fabric including crimped fiber and becoming rugged upon humidification, process for producing the same, and textile product
US20110139386A1 (en) Wet lap composition and related processes
US6495255B2 (en) Polyolefin splittable conjugate fiber and a fiber structure using the same
CN1464080A (en) Microporous super fine fiber base cloth and process for manufacturing the same
JP2003171860A (en) Fiber for air laid nonwoven fabric
JP2007107160A (en) Method for producing short-cut nanofiber and wet nonwoven fabric
US20130193086A1 (en) Processes to produce short cut microfibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408