JPH08103629A - Method for removing carbon dioxide in combustion exhaust gas - Google Patents

Method for removing carbon dioxide in combustion exhaust gas

Info

Publication number
JPH08103629A
JPH08103629A JP6242914A JP24291494A JPH08103629A JP H08103629 A JPH08103629 A JP H08103629A JP 6242914 A JP6242914 A JP 6242914A JP 24291494 A JP24291494 A JP 24291494A JP H08103629 A JPH08103629 A JP H08103629A
Authority
JP
Japan
Prior art keywords
exhaust gas
combustion exhaust
alkyl group
lower alkyl
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6242914A
Other languages
Japanese (ja)
Other versions
JP3197172B2 (en
Inventor
Tomio Mimura
富雄 三村
Shigeru Shimojo
繁 下條
Masaki Iijima
正樹 飯島
Shigeaki Mitsuoka
薫明 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP24291494A priority Critical patent/JP3197172B2/en
Priority to DE69503937T priority patent/DE69503937T2/en
Priority to EP95103018A priority patent/EP0671200B1/en
Priority to CN95102255A priority patent/CN1050528C/en
Publication of JPH08103629A publication Critical patent/JPH08103629A/en
Priority to US08/701,069 priority patent/US5744110A/en
Application granted granted Critical
Publication of JP3197172B2 publication Critical patent/JP3197172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE: To provide a method for removing CO2 contained in combustion exhaust gas. CONSTITUTION: The method for removing CO2 in combustion exhaust gas is constituted so that the combustion gas under the atmospheric pressure is brought into contact with a mixed aq. solution containing 100 pts.wt. amino acid metallic salt (X) expressed by general formula, CH3 NR<1> CHR<2> COOM (Each of R<1> and R<2> represents hydrogen or a lower alkyl group and when R<1> is hydrogen, R<2> is the lower alkyl group, when R<1> is the lower alkyl group, R<2> is hydrogen and M represents an alkali metal), 1-25 pts.wt. pyperazine (Y) and 10-10000ppm copper compound (the content per the mixed aq. solution) expressed in terms of bivalent Copper ion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼排ガス中に含まれる
CO2 (二酸化炭素)を除去する方法に関し、さらに詳
しくは、特定のアミノ酸金属塩、特定のアミン化合物、
さらには特定の金属化合物を含有させた混合水溶液を用
いて燃焼排ガス中のCO2 を除去する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing CO 2 (carbon dioxide) contained in combustion exhaust gas, more specifically, a specific amino acid metal salt, a specific amine compound,
Further, it relates to a method for removing CO 2 in combustion exhaust gas by using a mixed aqueous solution containing a specific metal compound.

【0002】[0002]

【従来の技術】近年、地球の温暖化現象の原因の一つと
して、CO2 による温室効果が指摘され、地球環境を守
る上で国際的にもその対策が急務となってきた。CO2
の発生源としては、化石燃料を燃焼させるあらゆる人間
の活動分野に及び、その排出抑制への要求が一層強まる
傾向にある。これに伴い大量の化石燃料を使用する火力
発電所などの動力発生設備を対象に、ボイラーの燃焼排
ガスをアルカノールアミン水溶液等と接触させ、燃焼排
ガス中のCO2 を除去し回収する方法及び回収されたC
2 を大気へ放出することなく貯蔵する方法が精力的に
研究されている。
2. Description of the Related Art In recent years, the greenhouse effect of CO 2 has been pointed out as one of the causes of the global warming phenomenon, and countermeasures against it have become urgent internationally in order to protect the global environment. CO 2
As the source of the emission of carbon dioxide, it extends to all human activity fields that burn fossil fuels, and there is a tendency that the demand for emission control thereof becomes even stronger. Along with this, for a power generation facility such as a thermal power plant that uses a large amount of fossil fuel, the combustion exhaust gas of the boiler is brought into contact with an alkanolamine aqueous solution or the like to remove and recover CO 2 in the combustion exhaust gas, and a recovery method. C
Methods for storing O 2 without releasing it to the atmosphere have been vigorously studied.

【0003】アルカノールアミンとしてはモノエタノー
ルアミン(MEA)、ジエタノールアミン、トリエタノ
ールアミン、メチルジエタノールアミン、ジイソプロパ
ノールアミン、ジグリコールアミン(DGA)などをあ
げることができるが、通常MEAが好んで用いられる。
しかし、MEAに代表される上記のようなアルカノール
アミン水溶液を燃焼排ガス中のCO2 を吸収・除去する
吸収剤として用いても、所定濃度のアミン水溶液の所定
量当たりのCO2 の吸収量、所定濃度のアミン水溶液の
単位アミンモル当たりのCO2 吸収量、所定濃度におけ
るCO2 の吸収速度、さらには吸収後のアルカノールア
ミン水溶液の再生に要する熱エネルギーなどに照らし
て、必ずしも満足のできるものとはいえない。
Examples of the alkanolamine include monoethanolamine (MEA), diethanolamine, triethanolamine, methyldiethanolamine, diisopropanolamine and diglycolamine (DGA), but MEA is usually preferred.
However, even with the aqueous alkanolamine solution, such as described above typified by MEA as an absorbent for absorbing and removing CO 2 in the combustion exhaust gas, the absorption of CO 2 per predetermined amount of the aqueous amine solution having a predetermined concentration, predetermined CO 2 absorption quantity per unit amine molar concentration of the amine aqueous solution, the absorption rate of CO 2 at a given concentration, more in light such as thermal energy required for the regeneration of the alkanolamine solution after the absorption, be said to be necessarily be satisfactory Absent.

【0004】また、MEA水溶液を用いて、酸素及びC
2 を含む高温の燃焼排ガス中から気液接触によりCO
2 を吸収・除去を続けると、該CO2 や酸素を含む燃焼
排ガスや吸収溶液と接するCO2 の吸収塔、吸収溶液を
加熱してCO2 を遊離させ吸収溶液を再生させる再生
塔、更には途中の配管、熱交換器、ポンプなど金属を使
用している装置の至るところが腐蝕する。そのため、通
常の化学プラントで採用されている素材を用いる装置設
計では耐用年数が著しく短くなり、実験室的には実施可
能であっても、工業的プロセスとしては到底成立し得な
い。
Further, by using an MEA aqueous solution, oxygen and C
CO from the high temperature combustion exhaust gas containing O 2 by gas-liquid contact
When 2 is continuously absorbed and removed, a CO 2 absorption tower in contact with the combustion exhaust gas containing CO 2 and oxygen and an absorption solution, a regeneration tower for heating the absorption solution to release CO 2 and regenerate the absorption solution, and further Corrosion of pipes, heat exchangers, pumps, and other equipment that uses metal. Therefore, the service life of the device design using the materials used in a normal chemical plant becomes extremely short, and even if it can be carried out in a laboratory, it cannot be established as an industrial process.

【0005】このような酸素及びCO2 を含む燃焼排ガ
スから、MEAあるいはその類似化合物の水溶液からな
るCO2 吸収溶液を用いてCO2 を吸収する装置の腐蝕
を改善する方法としては、米国特許4,440,731
号明細書に提案されている。この提案によれば、前記の
ような吸収溶液に少なくとも50ppm以上の二価の銅
イオン、さらにはこれにジヒドロキシエチルグリシン、
アルカリ金属の炭酸塩、アルカリ金属もしくはアンモニ
ウムの過マンガン酸塩、アルカリ金属炭酸塩もしくはア
ンモニウムのチオシアン酸塩、ニッケルもしくはビスマ
スの酸化物などが併せて添加される。この方法によれ
ば、高酸素濃度の燃焼ガスを処理する際にも、吸収剤の
MEAなどの分解が抑えられると記載されている。この
米国特許の実施例では、アミン化合物としてMEAの水
溶液を用いた試験例のみが記載され、より詳しくはリフ
ラックスしている30%MEA水溶液に30ポンドのC
2 及び15ポンドの酸素を供給し、温度130℃で種
々の腐蝕防止剤の存在下で軟鋼試験片(MILD STEEL COU
PONS) に対する腐蝕促進試験を行っている。その結果、
腐蝕防止剤を添加しない場合の腐蝕度約40〜52mi
l/y(mpy)に対し、200ppmの炭酸銅〔Cu
CO3 ・Cu(OH)2 ・H 2 O、CuCO3 量は56
重量%〕を加えることにより0.9〜1.2mpyまで
腐蝕が抑えられると記載されている。またこれらとは別
に、後述する本発明で用いる一般式〔1〕で表されるア
ミノ酸金属塩の内の一種は水溶液として燃焼排ガスのC
2 回収に用いられ、あるいは別の一種は水溶液として
CO2 及びH2 Sを含む合成ガスなどからH2 Sのみを
選択的回収するために用いる技術が既に知られている。
Such oxygen and CO2Combustion exhaust gas containing
From an aqueous solution of MEA or a similar compound.
CO2CO using an absorbing solution2Of equipment that absorbs
US Pat. No. 4,440,731 is a method for improving
No. specification. According to this proposal,
At least 50ppm or more of divalent copper in the absorption solution
Ions, and also dihydroxyethylglycine,
Alkali metal carbonate, alkali metal or ammonium
Um permanganate, alkali metal carbonate or
Ammonium thiocyanate, nickel or bismuth
Oxides and the like are also added. By this method
For example, when processing combustion gas with high oxygen concentration,
It is described that decomposition of MEA and the like can be suppressed. this
In the examples of the US patent, water of MEA is used as the amine compound.
Only test examples using solutions are described.
30 lbs of C in Luxe 30% MEA solution
O2And 15 lbs of oxygen and seeded at a temperature of 130 ° C.
Various mild steel specimens in the presence of various corrosion inhibitors (MILD STEEL COU
PONS) is being tested for accelerated corrosion. as a result,
Corrosion degree of about 40-52 mi when no corrosion inhibitor is added
200ppm of copper carbonate [Cu] for 1 / y (mpy)
CO3・ Cu (OH)2・ H 2O, CuCO3The amount is 56
Wt%] to 0.9 to 1.2 mpy
It is stated that corrosion can be suppressed. Also different from these
In addition, the formula represented by the general formula [1] used in the present invention described later is
One of the metal salts of mino acids is an aqueous solution of C in combustion exhaust gas.
O2Used for recovery, or another as an aqueous solution
CO2And H2H from synthetic gas containing S2Only S
The technique used for selective recovery is already known.

【0006】[0006]

【発明が解決しようとする課題】前述のように燃焼排ガ
スからCO2 を効率よく、除去する方法が望まれてい
る。特に、一定濃度のCO2 吸収剤を含む水溶液で燃焼
排ガスを処理する場合、吸収剤単位モル当たりのCO2
吸収量、水溶液の単位体積当たりのCO2 の吸収量、及
び吸収速度の大きい吸収剤を選択することが重要な課題
である。さらにはCO2 の吸収後、CO2 を分離し、吸
収液を再生させる際に必要な熱エネルギ−の少ない吸収
剤が望まれる。とりわけCO2 の吸収能力は大きいにも
拘らず、吸収速度が小さい吸収剤の吸収速度を改善する
ことが望まれる。加えて燃焼排ガスからCO2 を除去す
る際に使用する除去装置は通常金属製、中でもステンレ
ス鋼に比べ安価な炭素鋼製である場合がほとんどであ
り、炭素鋼に対し腐蝕性が抑えられた吸収液であること
が非常に重要となる。
As described above, a method for efficiently removing CO 2 from combustion exhaust gas is desired. In particular, when treating a combustion exhaust gas with an aqueous solution containing a constant concentration of CO 2 absorbent, CO 2 per unit mole of the absorbent is
It is an important task to select an absorbent having a large absorption amount, a CO 2 absorption amount per unit volume of the aqueous solution, and a large absorption rate. Furthermore, after absorbing CO 2, an absorbent that separates CO 2 and regenerates the absorbing liquid requires less heat energy is desired. Above all, it is desired to improve the absorption rate of an absorbent having a small absorption rate, despite its large CO 2 absorption capacity. In addition, the removal device used to remove CO 2 from the combustion exhaust gas is usually made of metal, especially carbon steel, which is cheaper than stainless steel in most cases. Being a liquid is very important.

【0007】[0007]

【課題を解決するための手段】本発明者らは前記課題に
鑑み、燃焼排ガス中のCO2 を除去する際に用いられる
吸収剤について鋭意検討した結果、特定のアミン酸金属
塩に比較的少量の特定のアミン化合物を混合した混合水
溶液がアミノ酸金属塩の吸収速度を改善する上で特に有
効であり、さらに前記混合水溶液に二価の銅化合物を所
定量含有させることにより炭素鋼に対して著しく腐蝕性
が抑えられるとの知見を得て、本発明を完成させるに至
った。
In view of the above-mentioned problems, the inventors of the present invention have made earnest studies on an absorbent used for removing CO 2 in combustion exhaust gas, and as a result, have found that a relatively small amount of a specific amine acid metal salt is contained. Is particularly effective in improving the absorption rate of the amino acid metal salt, and further containing a predetermined amount of a divalent copper compound in the mixed aqueous solution markedly improves the carbon steel. Based on the finding that the corrosiveness can be suppressed, the present invention has been completed.

【0008】すなわち本発明は、下記一般式〔1〕で表
されるアミノ酸金属塩(X)100重量部、ピペラジン
(Y)1〜25重量部の範囲、さらに二価の銅イオンに
換算して10〜1000ppmの範囲(混合水溶液に対
する含量)の銅化合物を含有する混合水溶液と大気圧下
の燃焼排ガスとを接触させて、前記燃焼排ガス中のCO
2 を除去する方法である。
That is, according to the present invention, 100 parts by weight of the amino acid metal salt (X) represented by the following general formula [1], 1 to 25 parts by weight of piperazine (Y), and further converted into divalent copper ions. A mixed aqueous solution containing a copper compound in the range of 10 to 1000 ppm (content with respect to the mixed aqueous solution) is brought into contact with combustion exhaust gas under atmospheric pressure to produce CO in the combustion exhaust gas.
It is a method of removing 2 .

【化2】 CH3 NR1 CHR2 COOM 〔1〕 (R1 及びR2 は水素または低級アルキル基を表し、か
つR1 が水素であるときはR2 は低級アルキル基であ
り、R1 が低級アルキル基であるときはR2 は水素であ
り、Mはアルカリ金属を表す。)
Embedded image CH 3 NR 1 CHR 2 COOM [1] (R 1 and R 2 represent hydrogen or a lower alkyl group, and when R 1 is hydrogen, R 2 is a lower alkyl group and R 1 is When it is a lower alkyl group, R 2 is hydrogen and M is an alkali metal.)

【0009】[0009]

【作用】本発明で用いられる一般式〔1〕で表されるア
ミノ酸金属塩(X)のR1 及びR2 で表される低級アル
キル基としては、メチル基、エチル基、プロピル基など
を例示できるが、特に好ましくはメチル基である。また
Mで表されるアルカリ金属としてはナトリウム、カリウ
ムなどが例示されるが、カリウムであることが好まし
い。一般式〔1〕で表されるアミノ酸金属塩(X)とし
ては、ジメチルアミノ酢酸カリウム、α−メチルアミノ
プロピオン酸カリウムが例示され、なかでもジメチルア
ミノ酢酸カリウムが好ましい。
The lower alkyl group represented by R 1 and R 2 of the amino acid metal salt (X) represented by the general formula [1] used in the present invention is exemplified by methyl group, ethyl group, propyl group and the like. However, a methyl group is particularly preferable. Examples of the alkali metal represented by M include sodium and potassium, but potassium is preferable. Examples of the amino acid metal salt (X) represented by the general formula [1] include potassium dimethylaminoacetate and potassium α-methylaminopropionate, among which potassium dimethylaminoacetate is preferable.

【0010】本発明でアミノ酸金属塩(X)と共に用い
られるのはピペラジン(Y)である。アミノ酸金属塩
(X)とピペラジン(Y)の混合割合はアミノ酸金属塩
(X)100重量部に対し、ピペラジン(Y)が1〜2
5重量部の範囲、さらに好ましくは1〜10重量部の範
囲である。
It is piperazine (Y) that is used with the amino acid metal salt (X) in the present invention. The mixing ratio of the amino acid metal salt (X) and the piperazine (Y) is 1 to 2 piperazine (Y) based on 100 parts by weight of the amino acid metal salt (X).
The range is 5 parts by weight, more preferably 1 to 10 parts by weight.

【0011】燃焼排ガス中のCO2 の吸収液として使用
するアミノ酸金属塩(X)とピペラジン(Y)、さらに
後記する二価の銅化合物を加えた混合水溶液(以下「吸
収液」とも称す)中のアミノ酸金属塩(X)の濃度は通
常15〜65重量%である。
In a mixed aqueous solution (hereinafter also referred to as "absorption liquid") containing an amino acid metal salt (X) and piperazine (Y) used as an absorption liquid for CO 2 in combustion exhaust gas, and a divalent copper compound described below. The concentration of the amino acid metal salt (X) is usually 15 to 65% by weight.

【0012】また本発明で用いる混合水溶液には、二価
の銅化合物が加えられる。このような銅化合物としては
限定的ではないが、好ましくは、例えば炭酸銅〔CuC
3・Cu(OH)2 ・H2 O〕があげられる。炭酸銅
は別名塩基性炭酸銅とも呼ばれるものであり、その添加
量は二価の銅イオンに換算して10〜1000ppm、
好ましくは100〜800ppm、さらに好ましくは2
00〜600ppmの範囲である。
A divalent copper compound is added to the mixed aqueous solution used in the present invention. The copper compound is not limited, but preferably, for example, copper carbonate [CuC
O 3 · Cu (OH) 2 · H 2 O]. Copper carbonate is also called as basic copper carbonate, and its addition amount is 10 to 1000 ppm in terms of divalent copper ion,
Preferably 100 to 800 ppm, more preferably 2
The range is from 00 to 600 ppm.

【0013】さらに本発明における大気圧下とは、燃焼
排ガスを供給するためブロワなどを作用させる程度の大
気圧近傍の圧力範囲は含まれるものである。また燃焼排
ガスとの接触時の混合水溶液の温度は通常30〜70℃
の範囲である。
Furthermore, the term "atmospheric pressure" in the present invention includes a pressure range in the vicinity of atmospheric pressure to the extent that a blower or the like acts to supply combustion exhaust gas. The temperature of the mixed aqueous solution at the time of contact with combustion exhaust gas is usually 30 to 70 ° C.
Range.

【0014】本発明の燃焼排ガス中のCO2 を除去する
方法で採用できるプロセスは、特に限定されないが、そ
の一例について図1によって説明する。図1では主要設
備のみ示し、付属設備は省略した。図1において、1は
脱CO2 塔、2は下部充填部、3は上部充填部またはト
レイ、4は脱CO2 塔燃焼排ガス供給口、5は脱CO2
燃焼排ガス排出口、6は吸収液供給口、7はノズル、8
は必要に応じて設けられる燃焼排ガス冷却器、9はノズ
ル、10は充填部、11は加湿冷却水循環ポンプ、12
は補給水供給ライン、13はCO2 を吸収した吸収液排
出ポンプ、14は熱交換器、15は吸収液再生(以下、
「再生」とも略称)塔、16はノズル、17は下部充填
部、18は再生加熱器(リボイラ)、19は上部充填
部、20は還流水ポンプ、21はCO2分離器、22は
回収CO2 排出ライン、23は再生塔還流冷却器、24
はノズル、25は再生塔還流水供給ライン、26は燃焼
排ガス供給ブロワ、27は冷却器、28は再生塔還流水
供給口である。
The process that can be employed in the method for removing CO 2 in the combustion exhaust gas of the present invention is not particularly limited, but an example thereof will be described with reference to FIG. In FIG. 1, only the main equipment is shown and the auxiliary equipment is omitted. In FIG. 1, 1 is a CO 2 removal tower, 2 is a lower packing part, 3 is an upper packing part or tray, 4 is a CO 2 removal tower combustion exhaust gas supply port, 5 is CO 2 removal
Combustion exhaust gas discharge port, 6 absorption liquid supply port, 7 nozzle, 8
Is a combustion exhaust gas cooler provided as necessary, 9 is a nozzle, 10 is a filling part, 11 is a humidification cooling water circulation pump, 12
Is a makeup water supply line, 13 is an absorption liquid discharge pump that has absorbed CO 2 , 14 is a heat exchanger, and 15 is absorption liquid regeneration (hereinafter,
"Regeneration" is also abbreviated) tower, 16 is a nozzle, 17 is a lower filling section, 18 is a regenerative heater (reboiler), 19 is an upper filling section, 20 is a reflux water pump, 21 is a CO 2 separator, 22 is CO recovery. 2 discharge lines, 23 is a regenerator reflux condenser, 24
Is a nozzle, 25 is a regeneration tower recirculation water supply line, 26 is a combustion exhaust gas supply blower, 27 is a cooler, and 28 is a regeneration tower recirculation water supply port.

【0015】図1において、燃焼排ガスは燃焼排ガス供
給ブロワ26により燃焼排ガス冷却器8に押込められ、
ノズル9からの加湿冷却水と充填部10で接触し、加湿
冷却され、脱CO2 塔燃焼排ガス供給口4を通って脱C
2 塔1へ導かれる。燃焼排ガスと接触した加湿冷却水
は燃焼排ガス冷却器8の下部に溜り、ポンプ11により
ノズル9へ循環使用される。加湿冷却水は燃焼排ガスを
加湿冷却することにより徐々に失われるので、補給水供
給ライン12により補充される。燃焼排ガスを加湿冷却
の状態より、さらに冷却する場合は、加湿冷却循環ポン
プ11とノズル9との間に熱交換器を置き、加湿冷却水
を冷却して燃焼排ガス冷却器8に供給することにより可
能となる。
In FIG. 1, the combustion exhaust gas is pushed into the combustion exhaust gas cooler 8 by the combustion exhaust gas supply blower 26,
The humidified cooling water from the nozzle 9 comes into contact with the filling section 10, is humidified and cooled, and is decarbonized through the CO 2 tower combustion exhaust gas supply port 4.
It is led to the O 2 tower 1. The humidified cooling water that has come into contact with the combustion exhaust gas collects in the lower part of the combustion exhaust gas cooler 8 and is circulated to the nozzle 9 by the pump 11. Since the humidified cooling water is gradually lost by humidifying and cooling the combustion exhaust gas, it is replenished by the makeup water supply line 12. When the combustion exhaust gas is further cooled from the humidified cooling state, a heat exchanger is placed between the humidification cooling circulation pump 11 and the nozzle 9 to cool the humidified cooling water and supply it to the combustion exhaust gas cooler 8. It will be possible.

【0016】脱CO2 塔1に押し込められた燃焼排ガス
はノズル7から供給される一定濃度の吸収液と下部充填
部2で向流接触させられ、燃焼排ガス中のCO2 は吸収
液により吸収除去され、脱CO2 燃焼排ガスは上部充填
部3へと向う。脱CO2 塔1に供給される吸収液はCO
2 を吸収し、その吸収による反応熱のため、通常吸収液
供給口6における温度よりも高温となり、CO2 を吸収
した吸収液排出ポンプ13により熱交換器14に送られ
て加熱され、吸収液再生塔5へ導かれる。再生された吸
収液の温度調節は熱交換器14あるいは必要に応じて熱
交換器14と吸収液供給口6の間に設けられる冷却器2
7により行うことができる。
The combustion exhaust gas pushed into the CO 2 removal tower 1 is brought into countercurrent contact with the absorption liquid having a constant concentration supplied from the nozzle 7 in the lower filling section 2, and CO 2 in the combustion exhaust gas is absorbed and removed by the absorption liquid. Then, the de-CO 2 combustion exhaust gas goes to the upper filling section 3. The absorption liquid supplied to the CO 2 removal tower 1 is CO
2 is absorbed, and due to the heat of reaction due to the absorption, the temperature is usually higher than the temperature at the absorption liquid supply port 6, and is sent to the heat exchanger 14 by the absorption liquid discharge pump 13 that has absorbed CO 2 and is heated. Guided to the regeneration tower 5. The temperature of the regenerated absorption liquid is adjusted by the heat exchanger 14 or, if necessary, the cooler 2 provided between the heat exchanger 14 and the absorption liquid supply port 6.
7 can be performed.

【0017】再生塔15では、再生加熱器18による加
熱により下部充填部17で吸収液が再生され、熱交換器
14及び必要に応じて冷却器27により冷却されて脱C
2塔1へ戻される。吸収液再生塔15の上部におい
て、吸収液から分離されたCO 2 はノズル24より供給
される還流水と接触し、再生塔還流冷却器23により冷
却され、CO2 分離器21にてCO2 に同伴した水蒸気
が凝縮した還流水と分離され、回収CO2 排出ライン2
2よりCO2 回収工程へ導かれる。還流水の一部は還流
水ポンプ20で、再生塔15へ還流され、一部は再生塔
還流水供給ライン25を経て脱CO2 塔1の再生塔還流
水供給口28に供給される。この再生塔還流水には微量
の吸収液が含まれているので、脱CO2 塔1の上部充填
部3で排ガスと接触し、排ガス中に含まれる微量のCO
2 の除去に貢献する。
In the regeneration tower 15, heating by the regeneration heater 18 is performed.
The absorption liquid is regenerated in the lower filling part 17 by heat,
14 and optionally C by being cooled by the cooler 27.
O2Returned to Tower 1. Smell above the absorption liquid regeneration tower 15
CO separated from the absorption liquid 2Is supplied from the nozzle 24
It comes into contact with the reflux water that is generated and is cooled by the regeneration tower reflux condenser 23.
Rejected, CO2CO in the separator 212Water vapor
Is separated from the condensed reflux water, and the recovered CO2Discharge line 2
CO from 22Guided to the recovery process. Part of reflux water is reflux
The water pump 20 recirculates to the regeneration tower 15, part of which is the regeneration tower.
CO removal via the reflux water supply line 252Recycle tower recycle tower 1
It is supplied to the water supply port 28. This regeneration tower reflux water has a trace amount
Since it contains the absorption liquid of2Top filling of tower 1
Trace amount of CO contained in the exhaust gas coming into contact with the exhaust gas in Part 3
2Contribute to the removal of.

【0018】[0018]

【実施例】以下、実施例により本発明を具体的に説明す
る。なお、本発明の混合水溶液のCO2 に対する吸収性
能は二価の銅化合物の有無により殆ど変化がないので、
吸収性能に関しては、二価の銅化合物を添加していない
混合水溶液の結果を参考例及び比較参考例として示し
た。
The present invention will be described below in detail with reference to examples. Since the CO 2 absorption performance of the mixed aqueous solution of the present invention hardly changes depending on the presence or absence of a divalent copper compound,
Regarding the absorption performance, the results of the mixed aqueous solution to which the divalent copper compound is not added are shown as Reference Examples and Comparative Reference Examples.

【0019】(参考例1〜4、比較参考例1〜4)恒温
槽内に設置したガラス製反応容器にアミノ酸金属塩
(X)としてジメチルアミノ酢酸カリウムまたはα−メ
チルアミノプロピオン酸カリウム、及びピペラジンを表
1に示す濃度で混合した水溶液50mlを入れ、温度4
0℃で攪拌下、試験ガスを大気圧下1リットル/分の流
速で通した。試験ガスはCO2 :10モル%、O2 :3
モル%、N2 :87モル%の組成を有する40℃のモデ
ル燃焼排ガス(LNG焚き相当)を用いた。
(Reference Examples 1 to 4 and Comparative Reference Examples 1 to 4) Potassium dimethylaminoacetate or potassium α-methylaminopropionate as the amino acid metal salt (X) and piperazine were placed in a glass reaction container installed in a constant temperature bath. 50 ml of an aqueous solution prepared by mixing at a concentration shown in Table 1 was added, and the temperature was adjusted to 4
The test gas was passed under atmospheric pressure with stirring at 0 ° C. at a flow rate of 1 liter / min. The test gas is CO 2 : 10 mol%, O 2 : 3
A model combustion exhaust gas (corresponding to LNG burning) at 40 ° C. having a composition of mol% and N 2 : 87 mol% was used.

【0020】試験ガスを通し続け、出入りガスのCO2
濃度が等しくなった時点で、吸収液に含まれるCO2
CO2 分析計(全有機炭素計)を用いて測定し、CO2
飽和吸収量(Nm3 CO2 /m3 水溶液、モルCO2
モルアミノ酸金属塩)を求めた。またガラス製反応器か
ら排出されるガスの組成をガス分析器で連続的に測定
し、それに含まれる最初のCO2 濃度(初期出口ガスC
2 濃度)、及びCO2 の吸収率(初期吸収率)を求め
た。
Continuing to pass the test gas, CO 2
When the concentrations became equal, the CO 2 contained in the absorbing solution was measured using a CO 2 analyzer (total organic carbon meter), and CO 2
Saturated absorption (Nm 3 CO 2 / m 3 aqueous solution, mol CO 2 /
Molar amino acid metal salt) was determined. Further, the composition of the gas discharged from the glass reactor was continuously measured by a gas analyzer, and the first CO 2 concentration (initial exit gas C
The O 2 concentration) and the CO 2 absorption rate (initial absorption rate) were determined.

【0021】表1の結果から明らかなように、アミノ酸
金属塩(X)にピペラジン(Y)を比較的少量混合して
用いることにより、アミノ酸金属塩(X)を単独で用い
る場合よりも初期出口ガスCO2 濃度が著しく低くなっ
ており、吸収速度の大幅な向上が達成されていることが
分かる。これは特にジメチルアミノ酢酸カリウムにピペ
ラジンを少量用いた場合に顕著である。同じくジメチル
アミノ酢酸カリウムにピペラジンを少量用いた場合に、
90%飽和に要する時間がかなり短縮されることにも表
れている。なお、表1には比較のため、ピペラジン及び
MEAを単独で用いた場合の結果を示した。
As is clear from the results shown in Table 1, when the amino acid metal salt (X) is mixed with a relatively small amount of piperazine (Y), the initial outlet is more than that when the amino acid metal salt (X) is used alone. It can be seen that the gas CO 2 concentration is remarkably low and that the absorption rate is significantly improved. This is particularly remarkable when a small amount of piperazine is used in potassium dimethylaminoacetate. Similarly, when using a small amount of piperazine in potassium dimethylaminoacetate,
It also shows that the time required for 90% saturation is considerably shortened. For comparison, Table 1 shows the results when piperazine and MEA were used alone.

【0022】[0022]

【表1】 [Table 1]

【0023】(参考例5、比較参考例5)吸収液を再生
させる際に必要な熱エネルギ−を調べるため、参考例1
及び比較参考例4に用いた吸収液とCO2 との反応熱
(吸収発熱量)を測定した。吸収液200gを断熱試験
器に入れ、マグネチックスターラーで攪拌し、水溶液の
温度が安定するまで放置した。次に純CO2 を約200
cc/分の速度で試験器内に吹込み、試験器の入口及び
出口のCO2 流量、吸収液の温度を連続的に記録した。
試験器出口のCO2 流量が急激に増加した時点で試験を
終了した。吸収液に吸収されたCO2 のモル数(モル負
荷)、CO2 の吹込み開始からの上昇温度から吸収液が
CO2 を1モル吸収するときの反応熱量(Kcal/モ
ル)を吸収CO2 のモル区間別に求めた。なお、試験器
の熱容量は水200gを試験器に入れ、30.0V、
0.3Aで所定時間ヒーターに通電し、上昇温度から求
めた。また、試験の温度範囲は20〜80℃、測定時の
室温は20〜25℃であった。結果を表2に示す。
Reference Example 5 and Comparative Reference Example 5 Reference Example 1 was used to examine the thermal energy required to regenerate the absorbing liquid.
Also, the heat of reaction (absorption calorific value) between the absorbing liquid used in Comparative Reference Example 4 and CO 2 was measured. 200 g of the absorbing solution was put into an adiabatic tester, stirred with a magnetic stirrer, and left until the temperature of the aqueous solution became stable. Next, add pure CO 2 to about 200
It was blown into the tester at a rate of cc / min, and the CO 2 flow rate at the tester inlet and outlet and the temperature of the absorbing liquid were continuously recorded.
The test was terminated when the CO 2 flow rate at the outlet of the tester increased rapidly. Absorbing liquid moles of absorbed CO 2 to (moles load), absorbs reaction heat (Kcal / mol) when absorbing liquid from a raised temperature from blowing initiation of CO 2 is 1 mol absorb CO 2 CO 2 Was calculated for each mol section. The heat capacity of the tester is 30.0 V when 200 g of water is put in the tester.
The heater was energized for a predetermined time at 0.3 A, and the temperature was calculated from the temperature rise. The temperature range of the test was 20 to 80 ° C, and the room temperature at the time of measurement was 20 to 25 ° C. Table 2 shows the results.

【0024】[0024]

【表2】 * ピペラジン:3wt%添加 表2から分かるように、アミノ酸金属塩とピペラジンの
混合水溶液とCO2 との反応熱は、MEAの場合よりも
小さく、これからも再生に必要なエネルギ−がMEAの
場合より著しく小さく有利であることが分かる。
[Table 2] * Addition of piperazine: 3 wt% As can be seen from Table 2, the heat of reaction between the mixed aqueous solution of the amino acid metal salt and piperazine and CO 2 is smaller than in the case of MEA, and the energy required for regeneration is still smaller than that in the case of MEA. It can be seen that it is significantly smaller and advantageous.

【0025】(実施例1,2、比較例1,2)炭素鋼
(SS41)の試験片(表面積約1.9inch2 、重
量約8.2g)をJIS R6252に規定するNo.
120、No.240、No.400の研磨紙の順で用
いて磨き、その後アセトンで洗浄し、真空乾燥し、重量
を測定した。次いでこの試験片を予めCO2 を飽和させ
た吸収液700mlを満たしたガラス試験器に移し、こ
れを大気中で2リットルのステンレス製加圧容器内に設
置し、密封した。このステンレス製加圧容器を高温乾燥
器内で、温度130℃、48時間静置後、試験片を取り
出し、洗浄し、真空乾燥後重量測定した。なお、試験は
同じ吸収液について二度繰り返した。その結果を表3に
示す。なお、表中、「銅イオン」とあるのは、吸収溶液
中に二価の銅イオンに換算した表示量の銅イオンを含む
ように炭素銅を添加したことを表す。
(Examples 1 and 2, Comparative Examples 1 and 2) Test pieces of carbon steel (SS41) (surface area of about 1.9 inch 2 and weight of about 8.2 g) were designated as JIS R6252.
120, No. 240, No. Polishing was carried out in order of 400 pieces of abrasive paper, followed by washing with acetone, vacuum drying, and weighing. Then, the test piece was transferred to a glass tester filled with 700 ml of an absorption solution saturated with CO 2 in advance, placed in a 2 liter pressure vessel made of stainless steel in the atmosphere, and sealed. This stainless steel pressure vessel was allowed to stand in a high temperature dryer at a temperature of 130 ° C. for 48 hours, then the test piece was taken out, washed, vacuum dried and weighed. The test was repeated twice for the same absorbent. Table 3 shows the results. In the table, “copper ion” means that carbon copper was added so that the absorbing solution contained the indicated amount of copper ion converted into divalent copper ion.

【0026】[0026]

【表3】 *:( )内はmpyの換算値を示す。[Table 3] *: The value in () indicates the converted value of mpy.

【0027】[0027]

【発明の効果】以上詳細に述べたごとく、本発明の方法
により大気圧下の燃焼排ガスに対し、特定のアミノ酸金
属塩(X)とピペラジン(Y)の混合水溶液にさらに二
価の銅化合物を含有させ、CO2 の吸収液として用いる
ことにより、アミノ酸金属塩(X)を単独で用いる場合
よりも、CO2 の吸収速度の点で向上が達成され、また
腐蝕性、特に炭素鋼に対する腐蝕性が著しく改善される
こととなった。また、MEAを用いる場合よりも、再生
エネルギの観点からも、CO2 を効率よく除去できるこ
ととなった。
As described in detail above, according to the method of the present invention, a divalent copper compound is further added to a mixed aqueous solution of a specific amino acid metal salt (X) and piperazine (Y) with respect to combustion exhaust gas under atmospheric pressure. By containing it and using it as a CO 2 absorbing solution, the CO 2 absorption rate can be improved more than that in the case of using the amino acid metal salt (X) alone, and it is corrosive, particularly to carbon steel. Was significantly improved. In addition, CO 2 can be removed more efficiently from the viewpoint of regeneration energy than when MEA is used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で採用できる工程の一例の説明図。FIG. 1 is an explanatory diagram of an example of a process that can be adopted in the present invention.

フロントページの続き (72)発明者 飯島 正樹 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内 (72)発明者 光岡 薫明 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内Front page continuation (72) Inventor Masaki Iijima 2-5-1, Marunouchi Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) Inventor Kaoru Mitsuoka 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries Ltd. Hiroshima Research Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式〔1〕で表されるアミノ酸金
属塩(X)100重量部、ピペラジン(Y)1〜25重
量部の範囲、さらに二価の銅イオンに換算して10〜1
000ppmの範囲(混合水溶液に対する含量)の銅化
合物を含有する混合水溶液と大気圧下の燃焼排ガスとを
接触させて、前記燃焼排ガス中のCO 2 を除去する方
法。 【化1】 CH3 NR1 CHR2 COOM 〔1〕 (R1 及びR2 は水素または低級アルキル基を表し、か
つR1 が水素であるときはR2 は低級アルキル基であ
り、R1 が低級アルキル基であるときはR2 は水素であ
り、Mはアルカリ金属を表す。)
1. Amino acid gold represented by the following general formula [1]:
Genus salt (X) 100 parts by weight, piperazine (Y) 1 to 25 parts by weight
The range of parts, further 10 to 1 converted to divalent copper ions
Copperation in the range of 000 ppm (content in mixed aqueous solution)
The mixed aqueous solution containing the compound and the combustion exhaust gas under atmospheric pressure
Contact with CO in the combustion exhaust gas 2Who remove
Law. [Chemical formula 1] CH3NR1CHR2COOM [1] (R1And R2Represents hydrogen or a lower alkyl group, or
Tsu R1R is hydrogen2Is a lower alkyl group
R1When is a lower alkyl group, R2Is hydrogen
And M represents an alkali metal. )
JP24291494A 1994-03-09 1994-10-06 Method for removing carbon dioxide in flue gas Expired - Fee Related JP3197172B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24291494A JP3197172B2 (en) 1994-10-06 1994-10-06 Method for removing carbon dioxide in flue gas
DE69503937T DE69503937T2 (en) 1994-03-09 1995-03-03 Process for removing carbon dioxide from combustion gases
EP95103018A EP0671200B1 (en) 1994-03-09 1995-03-03 Method for the removal of carbon dioxide from combustion exhaust gas
CN95102255A CN1050528C (en) 1994-03-09 1995-03-08 Method for the removal of carbon dioxide from combustion exhaust gas
US08/701,069 US5744110A (en) 1994-03-09 1996-08-21 Method for the removal of carbon dioxide from combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24291494A JP3197172B2 (en) 1994-10-06 1994-10-06 Method for removing carbon dioxide in flue gas

Publications (2)

Publication Number Publication Date
JPH08103629A true JPH08103629A (en) 1996-04-23
JP3197172B2 JP3197172B2 (en) 2001-08-13

Family

ID=17096096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24291494A Expired - Fee Related JP3197172B2 (en) 1994-03-09 1994-10-06 Method for removing carbon dioxide in flue gas

Country Status (1)

Country Link
JP (1) JP3197172B2 (en)

Also Published As

Publication number Publication date
JP3197172B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
JP2895325B2 (en) Method for removing carbon dioxide in flue gas
KR0123107B1 (en) Method for removing carbon dioxide from combustion exhaust gas
EP0671200B1 (en) Method for the removal of carbon dioxide from combustion exhaust gas
US5700437A (en) Method for removing carbon dioxide from combustion exhaust gas
JP5230080B2 (en) Absorption liquid, CO2 removal apparatus and method
US4217236A (en) Process and composition for removing carbon dioxide containing acidic gases from gaseous mixtures
JP3761960B2 (en) Method for removing carbon dioxide in gas
JP2871334B2 (en) Method of removing carbon dioxide from flue gas
US6689332B1 (en) Process for removing carbon dioxide from combustion gases
JP2006240966A (en) Method for recovering carbon dioxide in exhaust gas by absorption and releasing
JP2009006275A (en) Efficient recovering method of carbon dioxide in exhaust gas
JP2871335B2 (en) Method for removing carbon dioxide in flue gas
JPH08252430A (en) Removal of carbon dioxide contained in combustion exhaust gas
JP2008013400A (en) Method for recovering carbon dioxide in waste gas by absorption and releasing
JP6479543B2 (en) Acid gas absorbent, acid gas removal method, and acid gas removal apparatus
JPH05184867A (en) Method for recovering carbon dioxide in combustion exhaust gas
JP2015112574A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
JPH05184866A (en) Equipment for removing carbon dioxide in combustion exhaust gas and method therefor
JP3197173B2 (en) Method of removing carbon dioxide from flue gas
JP2871422B2 (en) Method for removing carbon dioxide in flue gas
JP2008168227A (en) Absorbing liquid of carbon dioxide in exhaust gas
JP3197172B2 (en) Method for removing carbon dioxide in flue gas
JP3426685B2 (en) Method for removing carbon dioxide in flue gas
JPH08257353A (en) Process for removing carbon dioxide in combustion exhaust gas
JP2007000702A (en) Liquid absorbent, and device and method for removing co2 or h2s, or both

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010508

LAPS Cancellation because of no payment of annual fees