JPH08257353A - Process for removing carbon dioxide in combustion exhaust gas - Google Patents

Process for removing carbon dioxide in combustion exhaust gas

Info

Publication number
JPH08257353A
JPH08257353A JP7064029A JP6402995A JPH08257353A JP H08257353 A JPH08257353 A JP H08257353A JP 7064029 A JP7064029 A JP 7064029A JP 6402995 A JP6402995 A JP 6402995A JP H08257353 A JPH08257353 A JP H08257353A
Authority
JP
Japan
Prior art keywords
exhaust gas
combustion exhaust
absorption
aqueous solution
diamine compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7064029A
Other languages
Japanese (ja)
Inventor
Tomio Mimura
富雄 三村
Toshiyuki Shimayoshi
淑進 嶋吉
Masaki Iijima
正樹 飯島
Shigeaki Mitsuoka
薫明 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP7064029A priority Critical patent/JPH08257353A/en
Publication of JPH08257353A publication Critical patent/JPH08257353A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/2041Diamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20431Tertiary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/50Combinations of absorbents
    • B01D2252/502Combinations of absorbents having two or more functionalities in the same molecule other than alkanolamine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/50Combinations of absorbents
    • B01D2252/504Mixtures of two or more absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE: To remove efficiently CO2 in combustion exhaust gas by bringing aqueous solution containing a diamine compound represented by specified formula into contact with combustion exhaust gas under atmospheric pressure. CONSTITUTION: In the case of removing CO2 in combustion exhaust gas in a boiler of a power generator in a terminal power station using a large amount of fossil fuel, water solution containing a diamine compound represented by formula (wherein, R<1> -R<4> represent respective lower 1-3C alkyl) is brought into contact with combustion gas under atmospheric pressure. As the diamine compound, bis(2-dimethylaminoethyl) ether may be mentioned, and the concentration of its water solution is set in the range of 15-65wt.%. Also for the purpose of increasing the CO2 absorption capability of absorbing solution, some other amine compound can be mixed in, and as the another compound to be used, 2-methylaminoethanol, 2-ethylaminoethanol or the like can be mentioned.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼排ガス中に含まれる
CO2 (二酸化炭素)を除去する方法に関し、さらに詳
しくは、特定のジアミン化合物を含有する水溶液を用い
て、大気圧下の燃焼排ガス中のCO2 を効率よく除去す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing CO 2 (carbon dioxide) contained in a combustion exhaust gas, and more specifically, a combustion exhaust gas under atmospheric pressure using an aqueous solution containing a specific diamine compound. The present invention relates to a method for efficiently removing CO 2 from the inside.

【0002】[0002]

【従来の技術】近年、地球の温暖化現象の原因の一つと
して、CO2 による温室効果が指摘され、地球環境を守
る上で国際的にもその対策が急務となってきた。CO2
の発生源としては、化石燃料を燃焼させるあらゆる人間
の活動分野に及び、その排出抑制への要求が一層強まる
傾向にある。これに伴い大量の化石燃料を使用する火力
発電所などの動力発生設備を対象に、ボイラの燃焼排ガ
スをアルカノールアミン水溶液等と接触させ、燃焼排ガ
ス中のCO2 を除去し、回収する方法、及び回収された
CO2 を大気へ放出することなく貯蔵する方法が精力的
に研究されている。
2. Description of the Related Art In recent years, the greenhouse effect of CO 2 has been pointed out as one of the causes of the global warming phenomenon, and countermeasures against it have become urgent internationally in order to protect the global environment. CO 2
As the source of the emission of carbon dioxide, it extends to all human activity fields that burn fossil fuels, and there is a tendency that the demand for emission control thereof becomes even stronger. Along with this, for a power generation facility such as a thermal power plant that uses a large amount of fossil fuel, a method of contacting the combustion exhaust gas of a boiler with an alkanolamine aqueous solution or the like to remove CO 2 from the combustion exhaust gas, and collecting A method of storing recovered CO 2 without releasing it to the atmosphere has been vigorously studied.

【0003】アルカノールアミンとしては、モノエタノ
ールアミン、トリエタノールアミン、N−メチルジエタ
ノールアミン(MDEA)、ジイソプロパノールアミ
ン、ジグリコールアミンなどを挙げることができるが、
通常モノエタノールアミン(MEA)が好んで用いられ
る。しかし、MEAに代表される上記のようなアルカノ
ールアミン水溶液を燃焼排ガス中のCO2 を吸収・除去
する吸収剤として用いても、所定濃度のアミン水溶液の
所定量当たりのCO2 の吸収量、所定濃度のアミン水溶
液の単位アミンモル当たりのCO2 吸収量、所定濃度に
おけるCO2 の吸収速度、さらには吸収後のアルカノー
ルアミン水溶液の再生に要する熱エネルギなどに照らし
て、必ずしも満足のできるものではない。
Examples of the alkanolamine include monoethanolamine, triethanolamine, N-methyldiethanolamine (MDEA), diisopropanolamine and diglycolamine.
Usually monoethanolamine (MEA) is preferably used. However, even with the aqueous alkanolamine solution, such as described above typified by MEA as an absorbent for absorbing and removing CO 2 in the combustion exhaust gas, the absorption of CO 2 per predetermined amount of the aqueous amine solution having a predetermined concentration, predetermined CO 2 absorption quantity per unit amine molar concentration of the amine aqueous solution, the absorption rate of CO 2 at a given concentration, more in light like the heat energy required for the regeneration of the alkanolamine solution after the absorption, not always be satisfactory.

【0004】ところで、各種混合ガスからアミン化合物
を用いて酸性ガスを分離する技術は数多く知られてい
る。特開昭第53−100180号公報には、(1)環
の一部分であって、かつ第二炭素原子もしくは第三炭素
原子のどちらかに結合された少なくとも1個の第二アミ
ノ基,または第三炭素原子に結合された第一アミノ基を
含有する立体障害アミン少なくとも50モル%と、第三
アミノアルコール少なくとも約10モル%とよりなるア
ミン混合物、及び(2)酸性ガスに対する物理的吸収剤
である前記アミン混合物用の溶媒、からなるアミン−溶
媒液体吸収剤に通常ガス状の混合物を接触させることか
らなる酸性ガスの除去方法が記載されている。立体障害
アミンとしては2−ピペリジンエタノール〔2−(2−
ヒドロキシエチル)−ピペリジン〕及び3−アミノ−3
−メチル−1−ブタノールなどが、また溶媒としては2
5重量%までの水を含んでもよいスルホキシド化合物な
どが、さらに処理ガスの例としては、同公報第11頁左
上欄に「高濃度の二酸化炭素及び硫化水素、例えば35
%のCO2 及び10〜12%のH2 Sを有する通常ガス
状の混合物」が例示され、また実施例にはCO2 そのも
のが使用されている。
By the way, there are many known techniques for separating an acidic gas from various mixed gases using an amine compound. JP-A-53-100180 discloses (1) at least one secondary amino group which is part of a ring and is bonded to either a secondary carbon atom or a tertiary carbon atom, or An amine mixture comprising at least 50 mol% of a sterically hindered amine containing a primary amino group bonded to three carbon atoms and at least about 10 mol% of a tertiary amino alcohol, and (2) a physical absorbent for acidic gases. A process for the removal of acid gases is described which comprises contacting an amine-solvent liquid absorbent consisting of a solvent for an amine mixture, usually with a gaseous mixture. As the sterically hindered amine, 2-piperidine ethanol [2- (2-
Hydroxyethyl) -piperidine] and 3-amino-3
-Methyl-1-butanol and the like, and as a solvent, 2
Further examples of process gases such as sulfoxide compounds, which may contain up to 5% by weight of water, are listed in the upper left column of page 11 of the publication, "High concentrations of carbon dioxide and hydrogen sulphide, eg 35
% CO 2 and 10-12% H 2 S in a normally gaseous mixture ”, and CO 2 itself is used in the examples.

【0005】特開昭第61−71819号公報には、立
体障害アミン及びスルホランなどの非水溶媒を含む酸性
ガススクラッピング用組成物が記載されている。また本
公報にはCO2 の吸収に対し、立体障害アミンの有利性
を反応式を用いて説明している。
JP-A-61-71819 describes a composition for acidic gas scraping containing a sterically hindered amine and a non-aqueous solvent such as sulfolane. Further, this publication describes the advantage of sterically hindered amines with respect to CO 2 absorption by using a reaction formula.

【0006】ケミカルエンジニアリングサイエンス(C
hemical Engineering Scien
ce),41巻,4号,997〜1003頁には、ヒン
ダードアミンである2−アミノ−2−メチル−1−プロ
パノール(AMP)水溶液の炭酸ガス吸収挙動が開示さ
れている。吸収させるガスとしては大気圧のCO2 及び
CO2 とN2 の混合物が用いられている。
Chemical Engineering Science (C
chemical engineering science
ce), Vol. 41, No. 4, pp. 997-1003, the carbon dioxide absorption behavior of an aqueous solution of 2-amino-2-methyl-1-propanol (AMP) which is a hindered amine is disclosed. As the gas to be absorbed, CO 2 at atmospheric pressure and a mixture of CO 2 and N 2 are used.

【0007】ケミカルエンジニアリングサイエンス(C
hemical Engineering scien
ce),41巻,2号,405〜408頁には、常温付
近において、AMPのようなヒンダードアミンとMEA
のような直鎖アミンの各水溶液のCO2 やH2 Sに対す
る吸収速度が報告されている。
Chemical Engineering Science (C
chemical engineering sien
ce), Vol. 41, No. 2, p. 405-408, hindered amines such as AMP and MEA at around room temperature.
Absorption rates of CO 2 and H 2 S from various aqueous solutions of such linear amines have been reported.

【0008】米国特許第3,622,267号明細書に
はメチルジエタノールアミン及びモノエチルモノエタノ
ールアミンを含有する水性混合物を用い、原油などの部
分酸化ガスなどの合成ガスに含まれる高分圧のCO2
例えば40気圧の30%CO 2 含有合成ガスを精製する
技術が開示されている。
US Pat. No. 3,622,267
Is methyldiethanolamine and monoethylmonoethano
Of the crude oil etc.
CO with high partial pressure contained in synthesis gas such as partial oxidation gas2,
For example, 30% CO at 40 atmospheres 2Purify contained syngas
The technology is disclosed.

【0009】ドイツ公開特許第1,542,415号公
報にはCO2 、H2 S、COSの吸収速度の向上のため
モノアルキルアルカノールアミンなどを物理又は化学吸
収剤に添加する技術が開示されている。同様にドイツ公
開特許1,904,428号には、モノメチルエタノー
ルアミンがメチルジエタノールアミンの吸収速度を向上
させる目的で添加される技術が開示されている。
German Laid-Open Patent No. 1,542,415 discloses a technique for adding a monoalkylalkanolamine or the like to a physical or chemical absorbent in order to improve the absorption rate of CO 2 , H 2 S and COS. There is. Similarly, German Published Patent 1,904,428 discloses a technique in which monomethylethanolamine is added for the purpose of improving the absorption rate of methyldiethanolamine.

【0010】米国特許第4,336,233号明細書に
は、天然ガス、合成ガス、ガス化石炭ガスの精製にピペ
ラジンの0.81〜1.3モル/リットル水溶液が洗浄
液として、またピペラジンがメチルジエタノールアミ
ン、トリエタノールアミン、ジエタノールアミン、モノ
メチルエタノールアミンなどの溶媒と共に水溶液で洗浄
液として使用される技術が開示されている。
In US Pat. No. 4,336,233, 0.81 to 1.3 mol / liter aqueous solution of piperazine is used as a cleaning liquid for the purification of natural gas, synthetic gas and gasified coal gas, and piperazine is used. A technique is disclosed in which an aqueous solution is used as a cleaning liquid together with a solvent such as methyldiethanolamine, triethanolamine, diethanolamine, and monomethylethanolamine.

【0011】同様に特開昭第52−63171号公報に
は、第3級アルカノールアミン、モノアルキルアルカノ
ールアミンなどにピペラジンまたはヒドロキシエチルピ
ペラジンなどのピペラジン誘導体を促進剤として加えた
CO2 吸収剤が開示されている。
Similarly, JP-A-52-63171 discloses a CO 2 absorbent obtained by adding a piperazine derivative such as a tertiary alkanolamine or a monoalkylalkanolamine to a piperazine or a hydroxyethylpiperazine derivative as a promoter. Has been done.

【0012】[0012]

【発明が解決しようとする課題】前述のように、燃焼排
ガスからCO2 を効率よく除去する方法が望まれてい
る。特に一定濃度のCO2 吸収剤(アミン化合物)を含
む水溶液で燃焼排ガスを処理する場合、吸収剤単位モル
当たりのCO2 吸収量、及び吸収速度の大きい吸収剤を
選択することが解決すべき大きな課題である。さらには
CO2 の吸収後にCO2 を分離し、吸収液を再生させる
際に必要な熱エネルギのより少ない吸収剤が望まれる。
一種類のアミン化合物の使用では、これらの全ての望ま
しい要件を満たすことは困難であるとしても、幾つかの
要件を満足する化合物が見い出されれば、他のアミン化
合物との混合塔によりさらに好ましい要件に近づける可
能性もあり得る。
As described above, there is a demand for a method of efficiently removing CO 2 from combustion exhaust gas. In particular, when treating combustion exhaust gas with an aqueous solution containing a constant concentration of CO 2 absorbent (amine compound), selecting an absorbent having a large CO 2 absorption amount per unit mol of the absorbent and a large absorption rate should be solved. It is an issue. Further separating the CO 2 after absorption of CO 2, less absorbent of the heat energy required in regenerating the absorption liquid is desired.
Although it is difficult to meet all of these desirable requirements with the use of one kind of amine compound, if a compound satisfying some requirements is found, a more preferable requirement by a mixing column with another amine compound is found. There is a possibility of approaching to.

【0013】[0013]

【課題を解決するための手段】本発明者らは前記課題に
鑑み、燃焼排ガス中のCO2 を除去する際に用いられる
吸収液について鋭意検討した結果、特定のジアミン化合
物を用いることが特に有効であるとの知見を得て、本発
明を完成させることができた。すなわち本発明によれ
ば、下記一般式〔1〕で示されるジアミン化合物を含有
する水溶液と大気圧下の燃焼排ガスとを接触させること
を特徴とする燃焼排ガス中のCO2 を除去する方法が提
供される。
In view of the above problems, the inventors of the present invention have diligently studied an absorbing solution used for removing CO 2 in combustion exhaust gas, and as a result, it is particularly effective to use a specific diamine compound. It was possible to complete the present invention by obtaining the knowledge that That is, according to the present invention, there is provided a method for removing CO 2 in combustion exhaust gas, which comprises contacting an aqueous solution containing a diamine compound represented by the following general formula [1] with combustion exhaust gas under atmospheric pressure. To be done.

【化2】 R1 2 NCH2 CH2 OCH2 CH2 NR3 4 〔1〕 (式中、R1 ,R2 ,R3 及びR4 はそれぞれ炭素数1
〜3の低級アルキル基を表す。) また本発明によれば、ジアミン化合物がビス(2−ジメ
チルアミノエチル)エーテルである前記燃焼排ガス中の
CO2 を除去する方法が提供される。さらに本発明によ
れば、水溶液の濃度が15〜65重量%の範囲である前
記燃焼排ガス中のCO2 を除去する方法が提供される。
Embedded image R 1 R 2 NCH 2 CH 2 OCH 2 CH 2 NR 3 R 4 [1] (wherein R 1 , R 2 , R 3 and R 4 each have 1 carbon atom)
~ 3 represents a lower alkyl group. Further, according to the present invention, there is provided a method for removing CO 2 in the combustion exhaust gas, wherein the diamine compound is bis (2-dimethylaminoethyl) ether. Further, according to the present invention, there is provided a method for removing CO 2 in the combustion exhaust gas in which the concentration of the aqueous solution is in the range of 15 to 65% by weight.

【0014】[0014]

【作用】本発明で用いられる一般式〔1〕で示されるジ
アミン化合物において、R1 ,R2 ,R3 及びR4 がそ
れぞれ表す炭素数1〜3の低級アルキル基としては、メ
チル基、エチル基、プロピル基、イソプロピル基を例示
することができ、特に好ましくはメチル基である。すな
わち、具体的化合物としては、ビス(2−ジメチルアミ
ノエチル)エーテル、ビス(2−ジエチルアミノエチ
ル)エーテル、ビス(2−ジプロピルアミノエチル)エ
ーテルなどを挙げることができ、特に好ましくはビス
(2−ジメチルアミノエチル)エーテルである。一般式
〔1〕で示されるジアミン化合物は、各々単独で用いら
れるほか、二種以上を混合して用いることも可能であ
る。
In the diamine compound represented by the general formula [1] used in the present invention, the lower alkyl group having 1 to 3 carbon atoms represented by R 1 , R 2 , R 3 and R 4 is a methyl group or an ethyl group. Examples thereof include a group, a propyl group, and an isopropyl group, and a methyl group is particularly preferable. That is, as specific compounds, bis (2-dimethylaminoethyl) ether, bis (2-diethylaminoethyl) ether, bis (2-dipropylaminoethyl) ether and the like can be mentioned, with bis (2 being particularly preferred). -Dimethylaminoethyl) ether. The diamine compounds represented by the general formula [1] can be used alone or in a mixture of two or more kinds.

【0015】本発明の燃焼排ガスとの接触に用いる前記
ジアミン化合物の水溶液(以下、吸収液とも称す)の濃
度は、通常15〜65重量%、好ましくは30〜50重
量%である。燃焼排ガスとの接触時の吸収液の温度は、
通常30〜70℃の範囲である。
The concentration of the aqueous solution of the diamine compound (hereinafter, also referred to as absorbing solution) used for contact with the combustion exhaust gas of the present invention is usually 15 to 65% by weight, preferably 30 to 50% by weight. The temperature of the absorbing liquid at the time of contact with combustion exhaust gas is
It is usually in the range of 30 to 70 ° C.

【0016】また、本発明で用いる吸収液には、必要に
応じて腐食防止剤、劣化防止剤などが加えられる。
If necessary, a corrosion inhibitor, a deterioration inhibitor, etc. are added to the absorbent used in the present invention.

【0017】さらに吸収液のCO2 吸収能力を増すため
に、他のアミン化合物の1種または2種以上を混合して
もよい。他のアミン化合物としては、例えば2−メチル
アミノエタノール、2−エチルアミノエタノール、2−
イソプロピルアミノエタノール、2−n−ブチルアミノ
エタノール、ピペラジン、2−メチルピペラジン、2,
5−ジメチルピペラジン、ピペリジン、2−ピペリジノ
エタノールなどを挙げることができる。これらの他のア
ミン化合物を使用するときは、これらが一般式〔1〕の
ジアミン化合物と共に水に可溶である限り、これら他の
アミン化合物の単独の濃度が、通常1.5〜50重量%
の範囲、好ましくは5〜40重量%の範囲である。
Further, in order to increase the CO 2 absorption capacity of the absorbing solution, one or more other amine compounds may be mixed. As other amine compounds, for example, 2-methylaminoethanol, 2-ethylaminoethanol, 2-
Isopropylaminoethanol, 2-n-butylaminoethanol, piperazine, 2-methylpiperazine, 2,
Examples thereof include 5-dimethylpiperazine, piperidine, 2-piperidinoethanol and the like. When these other amine compounds are used, as long as they are soluble in water together with the diamine compound of the general formula [1], the concentration of these other amine compounds alone is usually 1.5 to 50% by weight.
In the range of, preferably 5 to 40% by weight.

【0018】本発明の大気圧下とは、燃焼排ガスを供給
するためブロワなどを作用させる程度の大気圧近傍の圧
力範囲は含まれるものである。
The term "atmospheric pressure" in the present invention includes a pressure range in the vicinity of atmospheric pressure to the extent that a blower or the like acts to supply combustion exhaust gas.

【0019】本発明の燃焼排ガス中のCO2 を除去する
方法で採用できるプロセスは、特に限定されないが、そ
の一例について図1によって説明する。図1では主要設
備のみ示し、付属設備は省略した。図1において、1は
脱CO2 塔、2は下部充填部、3は上部充填部またはト
レイ、4は脱CO2 塔燃焼排ガス供給口、5は脱CO2
燃焼排ガス排出口、6は吸収液供給口、7はノズル、8
は必要に応じて設けられる燃焼排ガス冷却器、9はノズ
ル、10は充填部、11は加湿冷却水循環ポンプ、12
は補給水供給ライン、13はCO2 を吸収した吸収液排
出ポンプ、14は熱交換器、15は吸収液再生(以下、
「再生」とも略称)塔、16はノズル、17は下部充填
部、18は再生加熱器(リボイラ)、19は上部充填
部、20は還流水ポンプ、21はCO2分離器、22は
回収CO2 排出ライン、23は再生塔還流冷却器、24
はノズル、25は再生塔還流水供給ライン、26は燃焼
排ガス供給ブロワ、27は冷却器、28は再生塔還流水
供給口である。
The process that can be used in the method of removing CO 2 in the combustion exhaust gas of the present invention is not particularly limited, but an example thereof will be described with reference to FIG. In FIG. 1, only the main equipment is shown and the auxiliary equipment is omitted. In FIG. 1, 1 is a CO 2 removal tower, 2 is a lower packing part, 3 is an upper packing part or tray, 4 is a CO 2 removal tower combustion exhaust gas supply port, 5 is CO 2 removal
Combustion exhaust gas discharge port, 6 absorption liquid supply port, 7 nozzle, 8
Is a combustion exhaust gas cooler provided as necessary, 9 is a nozzle, 10 is a filling part, 11 is a humidification cooling water circulation pump, 12
Is a makeup water supply line, 13 is an absorption liquid discharge pump that has absorbed CO 2 , 14 is a heat exchanger, and 15 is absorption liquid regeneration (hereinafter,
"Regeneration" is also abbreviated) tower, 16 is a nozzle, 17 is a lower filling section, 18 is a regenerative heater (reboiler), 19 is an upper filling section, 20 is a reflux water pump, 21 is a CO 2 separator, 22 is CO recovery. 2 discharge lines, 23 is a regenerator reflux condenser, 24
Is a nozzle, 25 is a regeneration tower recirculation water supply line, 26 is a combustion exhaust gas supply blower, 27 is a cooler, and 28 is a regeneration tower recirculation water supply port.

【0020】図1において、燃焼排ガスは燃焼排ガス供
給ブロワ26により燃焼排ガス冷却器8に押込められ、
ノズル9からの加湿冷却水と充填部10で接触し、加湿
冷却され、脱CO2 塔燃焼排ガス供給口4を通って脱C
2 塔1へ導かれる。燃焼排ガスと接触した加湿冷却水
は燃焼排ガス冷却器8の下部に溜り、ポンプ11により
ノズル9へ循環使用される。加湿冷却水は燃焼排ガスを
加湿冷却することにより徐々に失われるので、補給水供
給ライン12により補充される。燃焼排ガスを加湿冷却
の状態より、さらに冷却する場合は、加湿冷却循環ポン
プ11とノズル9との間に熱交換器を置き、加湿冷却水
を冷却して燃焼排ガス冷却器8に供給することにより可
能となる。
In FIG. 1, the combustion exhaust gas is pushed into the combustion exhaust gas cooler 8 by the combustion exhaust gas supply blower 26,
The humidified cooling water from the nozzle 9 comes into contact with the filling section 10, is humidified and cooled, and is decarbonized through the CO 2 tower combustion exhaust gas supply port 4.
It is led to the O 2 tower 1. The humidified cooling water that has come into contact with the combustion exhaust gas collects in the lower part of the combustion exhaust gas cooler 8 and is circulated to the nozzle 9 by the pump 11. Since the humidified cooling water is gradually lost by humidifying and cooling the combustion exhaust gas, it is replenished by the makeup water supply line 12. When the combustion exhaust gas is further cooled from the humidified cooling state, a heat exchanger is placed between the humidification cooling circulation pump 11 and the nozzle 9 to cool the humidified cooling water and supply it to the combustion exhaust gas cooler 8. It will be possible.

【0021】脱CO2 塔1に押し込められた燃焼排ガス
はノズル7から供給される一定濃度の吸収液と下部充填
部2で向流接触させられ、燃焼排ガス中のCO2 は吸収
液により吸収除去され、脱CO2 燃焼排ガスは上部充填
部3へと向う。脱CO2 塔1に供給される吸収液はCO
2 を吸収し、その吸収による反応熱のため、通常吸収液
供給口6における温度よりも高温となり、CO2 を吸収
した吸収液排出ポンプ13により熱交換器14に送られ
て加熱され、吸収液再生塔5へ導かれる。再生された吸
収液の温度調節は熱交換器14あるいは必要に応じて熱
交換器14と吸収液供給口6の間に設けられる冷却器2
7により行うことができる。
The combustion exhaust gas pushed into the CO 2 removal tower 1 is brought into countercurrent contact with the absorption liquid having a constant concentration supplied from the nozzle 7 in the lower filling section 2, and CO 2 in the combustion exhaust gas is absorbed and removed by the absorption liquid. Then, the de-CO 2 combustion exhaust gas goes to the upper filling section 3. The absorption liquid supplied to the CO 2 removal tower 1 is CO
2 is absorbed, and due to the heat of reaction due to the absorption, the temperature is usually higher than the temperature at the absorption liquid supply port 6, and is sent to the heat exchanger 14 by the absorption liquid discharge pump 13 that has absorbed CO 2 and is heated. Guided to the regeneration tower 5. The temperature of the regenerated absorption liquid is adjusted by the heat exchanger 14 or, if necessary, the cooler 2 provided between the heat exchanger 14 and the absorption liquid supply port 6.
7 can be performed.

【0022】再生塔15では、再生加熱器18による加
熱により下部充填部17で吸収液が再生され、熱交換器
14及び必要に応じて冷却器27により冷却されて脱C
2塔1へ戻される。吸収液再生塔15の上部におい
て、吸収液から分離されたCO 2 はノズル24より供給
される還流水と接触し、再生塔還流冷却器23により冷
却され、CO2 分離器21にてCO2 に同伴した水蒸気
が凝縮した還流水と分離され、回収CO2 排出ライン2
2よりCO2 回収工程へ導かれる。還流水の一部は還流
水ポンプ20で、再生塔15へ還流され、一部は再生塔
還流水供給ライン25を経て脱CO2 塔1の再生塔還流
水供給口28に供給される。この再生塔還流水には微量
の吸収液が含まれているので、脱CO2 塔1の上部充填
部3で排ガスと接触し、排ガス中に含まれる微量のCO
2 の除去に貢献する。
In the regeneration tower 15, heating by the regeneration heater 18 is applied.
The absorption liquid is regenerated in the lower filling part 17 by heat,
14 and optionally C by being cooled by the cooler 27.
O2Returned to Tower 1. Smell above the absorption liquid regeneration tower 15
CO separated from the absorption liquid 2Is supplied from the nozzle 24
It comes into contact with the reflux water that is generated and is cooled by the regeneration tower reflux condenser 23.
Rejected, CO2CO in the separator 212Water vapor
Is separated from the condensed reflux water, and the recovered CO2Discharge line 2
CO from 22Guided to the recovery process. Part of reflux water is reflux
The water pump 20 recirculates to the regeneration tower 15, part of which is the regeneration tower.
CO removal via the reflux water supply line 252Recycle tower recycle tower 1
It is supplied to the water supply port 28. This regeneration tower reflux water has a trace amount
Since it contains the absorption liquid of2Top filling of tower 1
Trace amount of CO contained in the exhaust gas coming into contact with the exhaust gas in Part 3
2Contribute to the removal of.

【0023】[0023]

【実施例】以下、本発明で採用するジアミン化合物のC
2 吸収能力を小規模吸収試験で調べた実施例により、
本発明を具体的に説明する。 (実施例1,比較例1)恒温槽内に設置したガラス製反
応容器にビス(2−ジメチルアミノエチル)エーテルの
30重量%水溶液50mlを入れた。温度40℃で撹拌
しながら、試験ガスを大気圧下1リットル/分の流速
で、バブルを発生しやすいようにフィルタを通して吸収
液に通した。試験ガスとしてはCO2 10モル%、O2
3モル%、N2 87モル%の組成を有する40℃のモデ
ル燃焼排ガスを用いた。試験ガスを通し続け、出入りガ
スのCO2 濃度が等しくなった時点で、吸収液に含まれ
るCO2 をCO2 分析計(全有機炭素計)を用いて測定
し、CO2 の90%飽和及び飽和吸収量(Nm3 CO2
/m3 吸収液、モルCO2 /モル吸収剤)を求めた。比
較例1として、MEA水溶液による吸収試験を行った。
その結果を表1に示す。なお、吸収を終えた混合溶液を
加熱することにより、吸収液は支障なく再生できること
を確認した。
EXAMPLES C of the diamine compound used in the present invention is described below.
According to the example in which the O 2 absorption capacity was examined by the small-scale absorption test,
The present invention will be specifically described. (Example 1, Comparative Example 1) 50 ml of a 30% by weight aqueous solution of bis (2-dimethylaminoethyl) ether was placed in a glass reaction container placed in a constant temperature bath. While stirring at a temperature of 40 ° C., the test gas was passed under atmospheric pressure at a flow rate of 1 liter / min through the absorbing liquid through a filter so as to easily generate bubbles. As a test gas, CO 2 10 mol%, O 2
A model combustion exhaust gas at 40 ° C. having a composition of 3 mol% and N 2 87 mol% was used. Continued throughout the test gas, at the time when the concentration of CO 2 out gas become equal, the CO 2 contained in the absorbing solution was measured using a CO 2 analyzer (total organic carbon meter), 90% saturated and the CO 2 Saturated absorption (Nm 3 CO 2
/ M 3 absorption liquid, mol CO 2 / mol absorbent) was determined. As Comparative Example 1, an absorption test using an MEA aqueous solution was conducted.
Table 1 shows the results. It was confirmed that the absorbing solution can be regenerated without any trouble by heating the mixed solution after absorption.

【0024】[0024]

【表1】 [Table 1]

【0025】表1の結果から明らかなように、本発明で
使用するジアミン化合物の一つであるビス(2−ジメチ
ルエチルアミノエチル)エーテルの水溶液を燃焼排ガス
の吸収液として用いることにより、MEA水溶液を用い
る場合よりもモル当たりの飽和吸収量に優れていること
がわかる。
As is clear from the results shown in Table 1, by using an aqueous solution of bis (2-dimethylethylaminoethyl) ether, which is one of the diamine compounds used in the present invention, as a combustion exhaust gas absorbing solution, an MEA aqueous solution is obtained. It can be seen that the saturated absorption amount per mol is superior to the case of using.

【0026】(実施例2,比較例1)吸収液を再生させ
る際に必要な熱エネルギを調べるため、実施例1及び比
較例1に用いた吸収液(濃度30重量%)とCO2 との
反応熱(吸収発熱量)を測定した。吸収液200gを断
熱試験器に入れ、マグネチックスターラで攪拌し、吸収
液の温度が安定するまで放置した。次に純CO2 を約2
00cc/分の速度で試験器内に吹込み、試験器の入口
及び出口のCO2 流量、吸収液の温度を連続的に記録し
た。試験器出口のCO2 流量が急激に増加した時点で試
験を終了した。吸収液に吸収されたCO2 のモル数(モ
ル負荷)、CO2 の吹込み開始からの上昇温度から吸収
液がCO2 を1モル吸収するときの反応熱量(kcal
/モル)を求めた。なお、試験器の熱容量は水200g
を試験器に入れ、30.0V、0.3Aで所定時間ヒー
タに通電し、上昇温度から求めた。また、試験の温度範
囲は20〜80℃、測定時の室温は20〜25℃であっ
た。その結果、ビス(2−ジメチルアミノエチル)エー
テルでは15.2kcal/モルCO2 であったのに対
し、MEA水溶液では19.4kcal/モルCO2
あった。このことからわかるように、本発明によるビス
(2−ジメチルアミノエチル)エーテルの吸収液とCO
2 の反応熱は、MEA吸収液の場合よりも平均的に小さ
く、再生に必要なエネルギがMEAの場合より小さく有
利である。
(Example 2, Comparative Example 1) In order to investigate the thermal energy required for regenerating the absorbing liquid, the absorbing liquid (concentration 30% by weight) used in Example 1 and Comparative Example 1 and CO 2 were used. The reaction heat (absorption calorific value) was measured. 200 g of the absorbing solution was put in an adiabatic tester, stirred with a magnetic stirrer, and left until the temperature of the absorbing solution became stable. Next, add pure CO 2 to about 2
Blowing into the tester at a rate of 00 cc / min, the CO 2 flow rate at the inlet and outlet of the tester and the temperature of the absorbing liquid were continuously recorded. The test was terminated when the CO 2 flow rate at the outlet of the tester increased rapidly. Absorbing liquid moles of absorbed CO 2 to (moles load), reaction heat (kcal when absorbing liquid from a raised temperature from blowing initiation of CO 2 is 1 mol absorb CO 2
/ Mol) was determined. The heat capacity of the tester is 200 g of water.
Was put in a tester, and the heater was energized at 30.0 V and 0.3 A for a predetermined time, and the temperature was calculated from the temperature rise. The temperature range of the test was 20 to 80 ° C, and the room temperature at the time of measurement was 20 to 25 ° C. As a result, it was 15.2 kcal / mol CO 2 in the bis (2-dimethylaminoethyl) ether, whereas it was 19.4 kcal / mol CO 2 in the MEA aqueous solution. As can be seen from this, the absorption liquid of bis (2-dimethylaminoethyl) ether according to the present invention and CO
The heat of reaction of 2 is on average smaller than in the case of the MEA absorbing liquid, and the energy required for regeneration is smaller than in the case of MEA, which is advantageous.

【0027】[0027]

【発明の効果】以上詳細に述べたごとく、本発明の方法
により大気圧下の燃焼排ガスに一般式〔1〕で示される
ジアミン化合物の水溶液を吸収液として用いることによ
り、従来使用されていたMEA水溶液を用いる場合より
も、総合的にCO2 の回収エネルギの小さいプロセスが
可能となる。
As described in detail above, according to the method of the present invention, the aqueous solution of the diamine compound represented by the general formula [1] is used as the absorbing solution in the combustion exhaust gas under atmospheric pressure. As compared with the case of using an aqueous solution, a process in which the recovery energy of CO 2 is generally small becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で採用できる燃焼排ガス中のCO2 を除
去する工程の説明図である。
FIG. 1 is an explanatory view of a process of removing CO 2 in combustion exhaust gas that can be adopted in the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯島 正樹 東京都千代田区丸の内二丁目5番1号 三 菱重工業 株式会社本社内 (72)発明者 光岡 薫明 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaki Iijima 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) Inventor Kaoru Mitsuoka 4-6 Kannon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima No.22 inside Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式〔1〕で示されるジアミン化
合物を含有する水溶液と大気圧下の燃焼排ガスとを接触
させることを特徴とする燃焼排ガス中のCO 2 を除去す
る方法。 【化1】 R1 2 NCH2 CH2 OCH2 CH2 NR3 4 〔1〕 (式中、R1 ,R2 ,R3 及びR4 はそれぞれ炭素数1
〜3の低級アルキル基を表す。)
1. A diamine represented by the following general formula [1]:
Contact of aqueous solution containing compound with combustion exhaust gas under atmospheric pressure
CO in combustion exhaust gas characterized by 2Remove
How to do. [Chemical formula 1] R1R2NCH2CH2OCH2CH2NR3RFour [1] (In the formula, R1, R2, R3And RFourEach has 1 carbon
~ 3 represents a lower alkyl group. )
【請求項2】 ジアミン化合物がビス(2−ジメチルア
ミノエチル)エーテルである請求項1記載の燃焼排ガス
中のCO2 を除去する方法。
2. The method for removing CO 2 in combustion exhaust gas according to claim 1, wherein the diamine compound is bis (2-dimethylaminoethyl) ether.
【請求項3】 水溶液の濃度が15〜65重量%の範囲
である請求項1または請求項2記載の燃焼排ガス中のC
2 を除去する方法。
3. The C in the combustion exhaust gas according to claim 1 or 2, wherein the concentration of the aqueous solution is in the range of 15 to 65% by weight.
A method of removing O 2 .
JP7064029A 1995-03-23 1995-03-23 Process for removing carbon dioxide in combustion exhaust gas Pending JPH08257353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7064029A JPH08257353A (en) 1995-03-23 1995-03-23 Process for removing carbon dioxide in combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7064029A JPH08257353A (en) 1995-03-23 1995-03-23 Process for removing carbon dioxide in combustion exhaust gas

Publications (1)

Publication Number Publication Date
JPH08257353A true JPH08257353A (en) 1996-10-08

Family

ID=13246304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7064029A Pending JPH08257353A (en) 1995-03-23 1995-03-23 Process for removing carbon dioxide in combustion exhaust gas

Country Status (1)

Country Link
JP (1) JPH08257353A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007101585A1 (en) * 2006-03-06 2007-09-13 Uhde Gmbh Solvent for separating acid gas components from technical gases
JP2007527790A (en) * 2004-03-09 2007-10-04 ビーエーエスエフ アクチェンゲゼルシャフト Method for removing carbon dioxide from a gas stream having a low carbon dioxide partial pressure
WO2011071150A1 (en) * 2009-12-11 2011-06-16 財団法人地球環境産業技術研究機構 Carbon dioxide absorbent for use under high pressure, and method for absorption and collection of carbon dioxide under high pressure
FR2961114A1 (en) * 2010-06-09 2011-12-16 Inst Francais Du Petrole Removing carbon dioxide from flue gases, comprises a absorption step of contacting flue gases with an absorbent solution comprising water and diamine e.g. 1,2-bis(2-dimethylaminoethoxy)ethane and 1,2-bis(2-pyrolidinoethoxy)ethane
FR2983087A1 (en) * 2011-11-30 2013-05-31 IFP Energies Nouvelles PROCESS FOR REMOVING ACIDIC COMPOUNDS FROM A GASEOUS EFFLUENT WITH A ABSORBING SOLUTION BASED ON BIS (AMINO-3-PROPYL) ETHERS OR (AMINO-2-ETHYL) - (AMINO-3-PROPYL) ETHERS
CN106731488A (en) * 2015-11-24 2017-05-31 中国科学院大连化学物理研究所 A kind of method that nano material enhancing gas dissolves in ionic liquid
JP2017189727A (en) * 2016-04-11 2017-10-19 川崎重工業株式会社 Carbon dioxide separation recovery system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527790A (en) * 2004-03-09 2007-10-04 ビーエーエスエフ アクチェンゲゼルシャフト Method for removing carbon dioxide from a gas stream having a low carbon dioxide partial pressure
EP1725320B1 (en) * 2004-03-09 2013-12-11 Basf Se Method for the removal of carbon dioxide from gas flows with low carbon dioxide partial pressures
US8591843B2 (en) 2006-03-06 2013-11-26 Uhde Gmbh Solvent for separating acid gas components from technical gases
WO2007101585A1 (en) * 2006-03-06 2007-09-13 Uhde Gmbh Solvent for separating acid gas components from technical gases
JP5812867B2 (en) * 2009-12-11 2015-11-17 公益財団法人地球環境産業技術研究機構 High pressure carbon dioxide absorbent and high pressure carbon dioxide absorption and recovery method
WO2011071150A1 (en) * 2009-12-11 2011-06-16 財団法人地球環境産業技術研究機構 Carbon dioxide absorbent for use under high pressure, and method for absorption and collection of carbon dioxide under high pressure
FR2961114A1 (en) * 2010-06-09 2011-12-16 Inst Francais Du Petrole Removing carbon dioxide from flue gases, comprises a absorption step of contacting flue gases with an absorbent solution comprising water and diamine e.g. 1,2-bis(2-dimethylaminoethoxy)ethane and 1,2-bis(2-pyrolidinoethoxy)ethane
WO2013079816A1 (en) 2011-11-30 2013-06-06 IFP Energies Nouvelles Method for eliminating acid compounds from a gaseous effluent with an absorbent solution made from bis(amino-3-propyl)ethers or (amino-2-ethyl)-(amino-3-propyl)ethers
FR2983087A1 (en) * 2011-11-30 2013-05-31 IFP Energies Nouvelles PROCESS FOR REMOVING ACIDIC COMPOUNDS FROM A GASEOUS EFFLUENT WITH A ABSORBING SOLUTION BASED ON BIS (AMINO-3-PROPYL) ETHERS OR (AMINO-2-ETHYL) - (AMINO-3-PROPYL) ETHERS
CN104080523A (en) * 2011-11-30 2014-10-01 Ifp新能源公司 Method for eliminating acid compounds from a gaseous effluent with an absorbent solution made from bis(amino-3-propyl)ethers or (amino-2-ethyl)-(amino-3-propyl)ethers
US9421493B2 (en) 2011-11-30 2016-08-23 IFP Energies Nouvelles Method for eliminating acid compounds from a gaseous effluent with an absorbent solution made from bis(amino-3-propyl)ethers
AU2012343705B2 (en) * 2011-11-30 2017-05-25 IFP Energies Nouvelles Method for eliminating acid compounds from a gaseous effluent with an absorbent solution made from bis(amino-3-propyl)ethers or (amino-2-ethyl)-(amino-3-propyl)ethers
CN106731488A (en) * 2015-11-24 2017-05-31 中国科学院大连化学物理研究所 A kind of method that nano material enhancing gas dissolves in ionic liquid
JP2017189727A (en) * 2016-04-11 2017-10-19 川崎重工業株式会社 Carbon dioxide separation recovery system

Similar Documents

Publication Publication Date Title
KR0123107B1 (en) Method for removing carbon dioxide from combustion exhaust gas
EP0880991B1 (en) Process for removing carbon dioxide from gases
JP3761960B2 (en) Method for removing carbon dioxide in gas
JP2871334B2 (en) Method of removing carbon dioxide from flue gas
JP5215595B2 (en) Absorbing liquid, CO2 or H2S removing apparatus and method using absorbing liquid
EP0875280B1 (en) Method for removing carbon dioxide from combustion exhaust gas
JP3197183B2 (en) Method for removing carbon dioxide in flue gas
JP2871335B2 (en) Method for removing carbon dioxide in flue gas
JP3197173B2 (en) Method of removing carbon dioxide from flue gas
JPH08257353A (en) Process for removing carbon dioxide in combustion exhaust gas
JP2871422B2 (en) Method for removing carbon dioxide in flue gas
JP2006150298A (en) Absorption liquid, and co2 or h2s removal apparatus and method employing it
JPH08257355A (en) Process for removing carbon dioxide in gas
JP5039276B2 (en) Absorbing liquid, apparatus and method for removing CO2 or H2S in gas using absorbing liquid
JP2007000702A (en) Liquid absorbent, and device and method for removing co2 or h2s, or both
JP3426685B2 (en) Method for removing carbon dioxide in flue gas
JP3233809B2 (en) Method for removing carbon dioxide in flue gas
JP2871447B2 (en) Method for removing carbon dioxide in flue gas
JP5627534B2 (en) Absorbing liquid, apparatus and method for removing CO2 or H2S in gas using absorbing liquid
JPH07313840A (en) Method for removing carbon dioxide in waste combustion gas
JPH05237341A (en) Method for removing carbon dioxide in waste combustion gas
JP5174216B2 (en) Absorbing liquid, CO2 or H2S removing apparatus and method using absorbing liquid

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010501