JPH05237341A - Method for removing carbon dioxide in waste combustion gas - Google Patents

Method for removing carbon dioxide in waste combustion gas

Info

Publication number
JPH05237341A
JPH05237341A JP4040809A JP4080992A JPH05237341A JP H05237341 A JPH05237341 A JP H05237341A JP 4040809 A JP4040809 A JP 4040809A JP 4080992 A JP4080992 A JP 4080992A JP H05237341 A JPH05237341 A JP H05237341A
Authority
JP
Japan
Prior art keywords
combustion gas
exhaust gas
waste combustion
absorbent
combustion exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4040809A
Other languages
Japanese (ja)
Inventor
Kunihiko Yoshida
邦彦 吉田
Tomio Mimura
富雄 三村
Shigeru Shimojo
繁 下條
Mutsunori Karasaki
睦範 唐崎
Masaki Iijima
正樹 飯島
Toru Seto
徹 瀬戸
Shigeaki Mitsuoka
薫明 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP4040809A priority Critical patent/JPH05237341A/en
Publication of JPH05237341A publication Critical patent/JPH05237341A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To remove CO2 included in waste combustion gas by bringing water solution of ethylene diamine and/or diethylene triamine into contact with waste combustion gas under atmospheric pressure. CONSTITUTION:As an absorbent, ethylene diamine and/or diethylene triamine are used. And after humidifying and cooling waste combustion gas, it is introduced into a CO2 removing tower 1, where the waste combustion gas comes into contact with a liq. absorbent of constant concentration fed from a nozzle 7 countercurrently in the lower packed part 2, causing CO2 in waste gas to be absorbed and removed, permitting CO2-free waste combustion gas to go towards an upper packed part 3. Since reaction heat is generated in this absorption, after the liq. absorbent which has absorbed CO2 is given heat exchange, it is introduced into an adsorbent regenerating tower 15. Here the liq. absorbent is heated and regenerated and CO2 is separated and recovered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼排ガス中に含まれる
CO2 (二酸化炭素)を除去する方法に関する。さらに
詳しくは、特定のアミンの水溶液を用いて、大気圧下の
燃焼排ガス中のCO2 を除去する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing CO 2 (carbon dioxide) contained in combustion exhaust gas. More specifically, it relates to a method for removing CO 2 in combustion exhaust gas under atmospheric pressure using an aqueous solution of a specific amine.

【0002】[0002]

【従来の技術】近年、地球の温暖化現象の原因の一つと
して、CO2 による温室効果が指摘され、地球環境を守
る上で国際的にもその対策が急務となってきた。CO2
の発生源としては化石燃料を燃焼させるあらゆる人間の
活動分野に及び、その排出抑制への要求が一層強まる傾
向にある。これに伴い大量の化石燃料を使用する火力発
電所などの動力発生設備を対象に、ボイラーの燃焼排ガ
スをアルカノールアミン水溶液等と接触させて燃焼排ガ
ス中のCO2 を除去し回収する方法および回収されたC
2 を大気へ放出することなく貯蔵する方法が精力的に
研究されている。
2. Description of the Related Art In recent years, the greenhouse effect of CO 2 has been pointed out as one of the causes of the global warming phenomenon, and there is an urgent need to take countermeasures internationally in order to protect the global environment. CO 2
As the source of the emission of carbon dioxide, it extends to all human activity fields that burn fossil fuels, and there is a tendency for the demand for emission control to increase. Along with this, for a power generation facility such as a thermal power plant that uses a large amount of fossil fuel, a method of recovering CO 2 in the combustion exhaust gas by contacting the combustion exhaust gas of the boiler with an alkanolamine aqueous solution and the like C
Methods for storing O 2 without releasing it to the atmosphere have been vigorously studied.

【0003】アルカノールアミンとしてはモノエタノー
ルアミン、ジエタノールアミン、トリエタノールアミ
ン、メチルジエタノールアミン、ジイソプロパノールア
ミン、ジグリコールアミン等を挙げることができるが、
通常モノエタノールアミン(MEA)が好んで用いられ
る。
Examples of the alkanolamine include monoethanolamine, diethanolamine, triethanolamine, methyldiethanolamine, diisopropanolamine and diglycolamine.
Usually monoethanolamine (MEA) is preferably used.

【0004】しかし、MEAに代表される上記のような
アルカノールアミン水溶液を燃焼排ガス中のCO2 を吸
収・除去する吸収剤として用いても、所定濃度のアミン
水溶液の所定量当たりのCO2 の吸収量や吸収速度、さ
らには吸収後のアルカノールアミン水溶液の再生に要す
る熱エネルギ等に照らして、必ずしも満足のできるもの
ではない。
However, even if the above-mentioned alkanolamine aqueous solution represented by MEA is used as an absorbent for absorbing and removing CO 2 in combustion exhaust gas, the absorption of CO 2 per a predetermined amount of amine aqueous solution having a predetermined concentration is absorbed. It is not always satisfactory in view of the amount and absorption rate, and further the thermal energy required for the regeneration of the alkanolamine aqueous solution after absorption.

【0005】ところで、各種混合ガスから前記アルカノ
ールアミン以外のアミン化合物を用いて、CO2 のよう
な酸性ガスを分離する技術は数多く知られている。それ
ら技術の多くはヒンダードアミン類を用いるものであ
る。
By the way, there are many known techniques for separating an acidic gas such as CO 2 from various mixed gases using an amine compound other than the alkanolamine. Most of these techniques use hindered amines.

【0006】[0006]

【発明が解決しようとする課題】前述のように燃焼排ガ
スからCO2 を効率よく、吸収・除去する方法が望まれ
ている。特に、一定濃度のCO2 吸収剤を含む水溶液で
燃焼排ガスを処理する場合、吸収剤単位モル当たりのC
2 吸収量、水溶液の単位体積当たりのCO2 の吸収量
および吸収速度の大きい吸収剤を選択することが当面の
大きな課題である。さらにはCO2 の吸収後、CO2
分離し、吸収液を再生させる際に必要な熱エネルギの少
ない吸収剤が望まれる。
As described above, there is a demand for a method of efficiently absorbing and removing CO 2 from combustion exhaust gas. Especially when treating combustion exhaust gas with an aqueous solution containing a constant concentration of CO 2 absorbent, C
A major problem for the time being is to select an absorbent having a large O 2 absorption amount, a CO 2 absorption amount per unit volume of the aqueous solution, and a large absorption rate. Furthermore, after absorbing CO 2, an absorbent that separates CO 2 and regenerates the absorbing liquid requires less heat energy is desired.

【0007】[0007]

【課題を解決するための手段】本発明者らは前記課題に
鑑み、燃焼排ガス中のCO2 を除去する際に用いられる
吸収剤について鋭意検討した結果、特定のアミンを用い
ることが有効であるとの知見を得て、本発明を完成させ
ることができた。
In view of the above-mentioned problems, the inventors of the present invention have diligently studied an absorbent used for removing CO 2 in combustion exhaust gas, and as a result, it is effective to use a specific amine. It was possible to complete the present invention by obtaining the knowledge that

【0008】すなわち本発明はエチレンジアミン及び/
又はジエチレントリアミンの水溶液と大気圧下の燃焼排
ガスとを接触させて、前記燃焼排ガス中のCO2 を除去
する方法である。
That is, the present invention relates to ethylenediamine and / or
Alternatively, it is a method of contacting an aqueous solution of diethylenetriamine with combustion exhaust gas under atmospheric pressure to remove CO 2 from the combustion exhaust gas.

【0009】[0009]

【作用】本発明で用いられる吸収剤はエチレンジアミン
(EDA)またはジエチレントリアミン(DETA)で
あるが、これらは各々単独で用いられるほか、両者を混
合して用いることも可能である。
The absorbent used in the present invention is ethylenediamine (EDA) or diethylenetriamine (DETA). These may be used alone or in combination of both.

【0010】また本発明においては、EDA及び/又は
DETAと共に他のアミンを混合して用いてもよい。こ
のようなアミンとしては前記のアルカノールアミン類の
ほか、トリエチレンテトラミン、テトラエチレンペンタ
ミン、ペンタエチレンヘキサミン等のエチレンアミン
類、更には2−アミノ−2−メチル−1−プロパノー
ル、2−エチルアミノエタノール、2−ピペリジンエタ
ノール、2−アミノ−2−メチル−1,3−プロパンジ
オール、t−ブチルジエタノールアミン、2−アミノ−
2−ヒドロキシメチル−1,3−プロパンジオール、ピ
ペラジン、ピペリジン、モルフォリン、グリシン等を例
示することができる。
In the present invention, other amines may be mixed with EDA and / or DETA. Such amines include, in addition to the above-mentioned alkanolamines, ethyleneamines such as triethylenetetramine, tetraethylenepentamine and pentaethylenehexamine, and further 2-amino-2-methyl-1-propanol and 2-ethylamino. Ethanol, 2-piperidine ethanol, 2-amino-2-methyl-1,3-propanediol, t-butyldiethanolamine, 2-amino-
Examples thereof include 2-hydroxymethyl-1,3-propanediol, piperazine, piperidine, morpholine and glycine.

【0011】本発明ではEDA及び/又はDETAを水
溶液(以下「吸収液」と称すこともある)にして用いる
が、水溶液中のこれらアミンの濃度は、通常25〜65
重量%であり、好ましくは30〜60重量%である。燃
焼排ガスとの接触時の水溶液の温度は、通常30〜70
℃の範囲である。
In the present invention, EDA and / or DETA are used in the form of an aqueous solution (hereinafter sometimes referred to as "absorption liquid"). The concentration of these amines in the aqueous solution is usually 25 to 65.
%, Preferably 30 to 60% by weight. The temperature of the aqueous solution at the time of contact with combustion exhaust gas is usually 30 to 70.
It is in the range of ° C.

【0012】また本発明で用いる水溶液には、必要に応
じて腐蝕防止剤、アミンの劣化防止剤等が加えられる。
If necessary, a corrosion inhibitor, an amine deterioration inhibitor, etc. may be added to the aqueous solution used in the present invention.

【0013】本発明における大気圧下とは、燃焼排ガス
を供給するためブロア等を作用させる程度の大気圧近傍
の圧力範囲は含まれるものである。
The term "atmospheric pressure" in the present invention includes a pressure range in the vicinity of atmospheric pressure at which a blower or the like acts to supply combustion exhaust gas.

【0014】本発明の燃焼排ガス中のCO2 を除去する
方法で採用できるプロセスは、特に限定されないが、そ
の一例について図1によって説明する。図1では主要設
備のみ示し、付属設備は省略した。
The process that can be used in the method of removing CO 2 in the combustion exhaust gas of the present invention is not particularly limited, but an example thereof will be described with reference to FIG. In FIG. 1, only the main equipment is shown and the auxiliary equipment is omitted.

【0015】図1において、1は脱CO2 塔、2は下部
充填部、3は上部充填部またはトレイ、4は脱CO2
燃焼排ガス供給口、5は脱CO2 燃焼排ガス排出口、6
は吸収液供給口、6′は再生塔還流水供給口、7はノズ
ル、8は必要に応じて設けられる燃焼排ガス冷却器、9
はノズル、10は充填部、11は加湿冷却水循環ポン
プ、12は補給水供給ライン、13はCO2 を吸収した
吸収液排出ポンプ、14は熱交換器、15は吸収液再生
(以下、「再生」とも略称)塔、16はノズル、17は
下部充填部、18は再生加熱器(リボイラー)、19は
上部充填部、20は還流水ポンプ、21はCO2 分離
器、22は回収CO2 排出ライン、23は再生塔還流冷
却器、24はノズル、25は再生塔還流水供給ライン、
26は燃焼排ガス供給ブロア、27は冷却器である。
In FIG. 1, 1 is a CO 2 removal tower, 2 is a lower packing section, 3 is an upper packing section or a tray, 4 is a CO 2 removal tower combustion exhaust gas supply port, 5 is a CO 2 removal combustion exhaust gas discharge port, and 6
Is an absorption liquid supply port, 6'is a regeneration tower reflux water supply port, 7 is a nozzle, 8 is a combustion exhaust gas cooler provided as necessary, 9
Is a nozzle, 10 is a filling part, 11 is a humidification cooling water circulation pump, 12 is a makeup water supply line, 13 is an absorption liquid discharge pump absorbing CO 2 , 14 is a heat exchanger, and 15 is absorption liquid regeneration (hereinafter referred to as “regeneration”). Column), 16 is a nozzle, 17 is a lower filling section, 18 is a regenerative heater (reboiler), 19 is an upper filling section, 20 is a reflux water pump, 21 is a CO 2 separator, 22 is a recovered CO 2 discharge. Line, 23 is a regenerator reflux condenser, 24 is a nozzle, 25 is a regenerator reflux water supply line,
Reference numeral 26 is a combustion exhaust gas supply blower, and 27 is a cooler.

【0016】図1において、燃焼排ガスは燃焼排ガス供
給ブロア26により燃焼排ガス冷却器8に押込められ、
ノズル9からの加湿冷却水と充填部10で接触し、加湿
冷却され、脱CO2 塔燃焼排ガス供給口4を通って脱C
2 塔1へ導かれる。燃焼排ガスと接触した加湿冷却水
は燃焼排ガス冷却器8の下部に溜り、ポンプ11により
ノズル9へ循環使用される。加湿冷却水は燃焼排ガスを
加湿冷却することにより徐々に失われるので、補給水供
給ライン12により補充される。
In FIG. 1, the combustion exhaust gas is pushed into the combustion exhaust gas cooler 8 by the combustion exhaust gas supply blower 26,
The humidified cooling water from the nozzle 9 is brought into contact with the filling portion 10 to be humidified and cooled, and then decarbonized through the CO 2 tower combustion exhaust gas supply port 4.
It is led to the O 2 tower 1. The humidified cooling water that has come into contact with the combustion exhaust gas is collected in the lower part of the combustion exhaust gas cooler 8 and is circulated to the nozzle 9 by the pump 11. Since the humidified cooling water is gradually lost by humidifying and cooling the combustion exhaust gas, it is replenished by the makeup water supply line 12.

【0017】脱CO2 塔1に押込められた燃焼排ガスは
ノズル7から供給される一定濃度の吸収液と下部充填部
2で向流接触させられ、燃焼排ガス中のCO2 は吸収液
により吸収除去され、脱CO2 燃焼排ガスは上部充填部
3へと向う。脱CO2 塔1に供給される吸収液はCO2
を吸収し、その吸収による反応熱のため、通常供給口6
における温度よりも高温となり、CO2 を吸収した吸収
液排出ポンプ13により熱交換器14に送られ、加熱さ
れ、吸収液再生塔5へ導かれる。再生された吸収液の温
度調節は熱交換器14あるいは必要に応じて熱交換器1
4と吸収液供給口6の間に設けられる冷却器27により
行なうことができる。
The combustion exhaust gas pushed into the CO 2 removal tower 1 is brought into countercurrent contact with the absorption liquid having a constant concentration supplied from the nozzle 7 in the lower filling section 2, and CO 2 in the combustion exhaust gas is absorbed by the absorption liquid. The removed and de-CO 2 combustion exhaust gas goes to the upper filling part 3. The absorption liquid supplied to the CO 2 removal tower 1 is CO 2
Of the reaction gas due to the absorption of
The temperature becomes higher than the temperature in the above, and is sent to the heat exchanger 14 by the absorption liquid discharge pump 13 that has absorbed CO 2 , is heated, and is guided to the absorption liquid regeneration tower 5. The temperature of the regenerated absorption liquid is adjusted by the heat exchanger 14 or the heat exchanger 1 as necessary.
4 and the absorption liquid supply port 6 can be performed by the cooler 27.

【0018】再生塔15では、再生加熱器18による加
熱により下部充填部17で吸収液が再生され、熱交換器
14により冷却され脱CO2 塔1へ戻される。吸収液再
生塔15の上部において、吸収液から分離されたCO2
はノズル24より供給される還流水と上部充填部19で
接触し、再生塔還流冷却器23により冷却され、CO 2
分離器21にてCO2 に同伴した水蒸気が凝縮した還流
水と分離され、回収CO2 排出ライン22よりCO2
収工程へ導かれる。還流水の一部は還流水ポンプ20
で、再生塔15へ還流され、一部は再生塔還流水供給ラ
イン25を経て脱CO2 塔1の再生塔還流水供給口6′
に供給される。この再生還流水には微量の吸収液が含ま
れているので、脱CO2 塔1の上部充填部3で排ガスと
接触し、排ガスに含まれる微量のCO2 の除去に貢献す
る。
In the regeneration tower 15, heating by the regeneration heater 18 is performed.
The absorption liquid is regenerated in the lower filling part 17 by heat,
CO is cooled by 142Returned to Tower 1. Absorption liquid re
CO separated from the absorption liquid in the upper part of the raw tower 152
Is the reflux water supplied from the nozzle 24 and the upper filling section 19.
Contacted, cooled by the regeneration tower reflux condenser 23, CO 2
CO in the separator 212Reflux with condensed water vapor
CO separated from water and recovered CO2CO from the discharge line 222Times
Guided to the collection process. Part of the reflux water is the reflux water pump 20
And is recycled to the regeneration tower 15, and part of it is recycled to the regeneration tower.
CO removal via in 252Regeneration tower reflux water supply port 6'of tower 1
Is supplied to. This regenerated reflux water contains a small amount of absorption liquid.
CO is removed2With the exhaust gas in the upper packing part 3 of the tower 1.
Trace of CO contained in exhaust gas2Contribute to the removal of
It

【0019】[0019]

【実施例】以下、実施例により本発明を具体的に説明す
る。 (実施例1、比較例1)EDAの水溶液(吸収液)20
0mリットルを張り込んだフラスコにLNG焚き燃焼排
ガス相当の混合ガスを供給し、大気圧下、液中でバブリ
ングさせ、液中のCO2 濃度を測定することにより、そ
の条件下でのCO2 吸収量(CO2 モル/EDAモル、
Nm3 CO2 /m3 吸収液)を求めた。また比較のため
MEAの30重量%水溶液を用い、同様に吸収量を求め
た。
EXAMPLES The present invention will be specifically described below with reference to examples. (Example 1, Comparative Example 1) EDA aqueous solution (absorption liquid) 20
CO 2 absorption under the conditions was measured by supplying a mixed gas equivalent to LNG-burning combustion exhaust gas to a flask containing 0 ml and bubbling in liquid under atmospheric pressure and measuring the CO 2 concentration in the liquid. Amount (CO 2 mol / EDA mol,
Nm 3 CO 2 / m 3 absorbing solution) was determined. For comparison, a 30% by weight aqueous solution of MEA was used and the amount of absorption was similarly determined.

【0020】またフラスコ出口のガス中のCO2 濃度と
通気時間との関係グラフから、通気開始時における接線
傾きを求め、吸収液のCO2 初期吸収速度をMEAの3
0重量%水溶液(40℃)の場合との比で求めた。処理
条件は下記の通りである。
Further, the tangent slope at the start of aeration was determined from the graph of the relationship between the CO 2 concentration in the gas at the outlet of the flask and the aeration time, and the CO 2 initial absorption rate of the absorbing liquid was set to 3 of MEA.
It was determined by the ratio with the case of a 0 wt% aqueous solution (40 ° C.). The processing conditions are as follows.

【0021】(1)処理条件 吸収液温度:40,60℃ 吸収液中のEDAまたはMEAの濃度:30重量%,4
5重量% 混合ガス組成:CO2 10%,O2 3%,N2 87% 混合ガス供給速度:1リットル/分 外気温度:20℃
(1) Treatment conditions Absorption liquid temperature: 40, 60 ° C. Concentration of EDA or MEA in the absorption liquid: 30% by weight, 4
5% by weight Mixed gas composition: CO 2 10%, O 2 3%, N 2 87% Mixed gas supply rate: 1 liter / minute Outside air temperature: 20 ° C.

【0022】(2)試験結果 吸収試験の結果を表1に示す。また吸収液濃度30重量
%におけるCO2 吸収量(Nm3 CO2 /m3 吸収液)
と温度の関係を図2に示す。なお表1中、値の無いもの
は吸収液よりEDAの蒸発が大きいため、測定できなか
ったことを示す。
(2) Test results Table 1 shows the results of the absorption test. In addition, the CO 2 absorption amount (Nm 3 CO 2 / m 3 absorption liquid) at an absorption liquid concentration of 30% by weight
The relationship between temperature and temperature is shown in FIG. In Table 1, no value indicates that the measurement could not be performed because the evaporation of EDA was larger than that of the absorbing solution.

【0023】[0023]

【表1】 [Table 1]

【0024】(実施例2)DETAの吸収液を用い、実
施例1と同様に吸収量およびCO2 初期吸収速度を測定
した。結果を表2および図2に示す。
(Example 2) The absorption amount and CO 2 initial absorption rate were measured in the same manner as in Example 1 using the DETA absorbing solution. The results are shown in Table 2 and FIG.

【0025】[0025]

【表2】 [Table 2]

【0026】表1、2から明らかなように、本発明によ
り燃焼排ガス中のCO2 の吸収液としてエチレンジアミ
ンまたはジエチレントリアミンの水溶液を用いることに
より、MEAに比べ吸収量の大幅な向上が達成される。
これにより、MEAを用いる場合に比べて吸収液の使用
量を大幅に削減することができるので、燃焼排ガスから
CO2 の吸収・除去に要するエネルギやコストを大幅に
削減することができる。
As is clear from Tables 1 and 2 , the use of an aqueous solution of ethylenediamine or diethylenetriamine as the CO 2 absorption liquid in the combustion exhaust gas according to the present invention achieves a significant improvement in the absorption amount as compared with the MEA.
As a result, the amount of the absorbing liquid used can be significantly reduced as compared with the case of using MEA, so that the energy and cost required for absorbing and removing CO 2 from the combustion exhaust gas can be significantly reduced.

【0027】また図2から、吸収剤としてEDAやDE
TAを用いると、MEAを用いる場合に比較して、吸収
液の温度の上昇によるCO2 吸収量の減少が大きくなっ
ていることが分かる。これは吸収液の再生において、M
EAを用いる場合よりも熱エネルギを節約できることを
示している。
Further, from FIG. 2, as the absorbent, EDA or DE is used.
It can be seen that when TA is used, the amount of CO 2 absorbed is greatly reduced due to the rise in the temperature of the absorbing solution, as compared with the case where MEA is used. This is due to M
It shows that heat energy can be saved more than when using EA.

【0028】[0028]

【発明の効果】以上詳細に述べたごとく、本発明の方法
により大気圧下の燃焼排ガスにEDAまたはDETAの
水溶液を吸収液として用いることにより、MEAを用い
る場合よりも、CO2 の吸収量の点で大幅な向上が達成
される。また、MEAを用いる場合よりも、再生エネル
ギの観点でもCO2 を熱効率よく除去できることとなっ
た。
As described in detail above, by using the aqueous solution of EDA or DETA as the absorbing liquid in the combustion exhaust gas under atmospheric pressure by the method of the present invention, the absorption amount of CO 2 can be reduced more than that in the case of using MEA. Significant improvement in terms is achieved. Further, CO 2 can be removed more efficiently in terms of regeneration energy than in the case of using MEA.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で採用できる工程の一例の説明図。FIG. 1 is an explanatory diagram of an example of a process that can be adopted in the present invention.

【図2】吸収液濃度30重量%における吸収量(Nm3
CO2 /m3 吸収液、縦軸)と温度(℃、横軸)の関係
を示す図表。
FIG. 2 shows the amount of absorption (Nm 3
A chart showing the relationship between CO 2 / m 3 absorbent, vertical axis) and temperature (° C, horizontal axis).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下條 繁 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 唐崎 睦範 東京都千代田区丸の内2丁目5番1号 三 菱重工業株式会社本社内 (72)発明者 飯島 正樹 東京都千代田区丸の内2丁目5番1号 三 菱重工業株式会社本社内 (72)発明者 瀬戸 徹 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 光岡 薫明 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shigeru Shimojo Inventor Shigeru Shimojo 3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture Kansai Electric Power Co., Inc. (72) Mutsunori Karazaki 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. Head Office (72) Inventor Masaki Iijima 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. Head Office (72) Toru Seto 4-6 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture 22 Mitsubishi Heavy Industries, Ltd. Hiroshima Research Institute (72) Inventor Kaoru Mitsuoka 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City Hiroshima Prefecture Mitsubishi Heavy Industries Ltd. Hiroshima Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エチレンジアミン及び/又はジエチレン
トリアミンの水溶液と大気圧下の燃焼排ガスとを接触さ
せて、前記燃焼排ガス中のCO2 を除去する方法。
1. A method of removing CO 2 in the combustion exhaust gas by bringing an aqueous solution of ethylenediamine and / or diethylenetriamine into contact with the combustion exhaust gas under atmospheric pressure.
JP4040809A 1992-02-27 1992-02-27 Method for removing carbon dioxide in waste combustion gas Withdrawn JPH05237341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4040809A JPH05237341A (en) 1992-02-27 1992-02-27 Method for removing carbon dioxide in waste combustion gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4040809A JPH05237341A (en) 1992-02-27 1992-02-27 Method for removing carbon dioxide in waste combustion gas

Publications (1)

Publication Number Publication Date
JPH05237341A true JPH05237341A (en) 1993-09-17

Family

ID=12590973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4040809A Withdrawn JPH05237341A (en) 1992-02-27 1992-02-27 Method for removing carbon dioxide in waste combustion gas

Country Status (1)

Country Link
JP (1) JPH05237341A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512548A (en) * 2005-10-20 2009-03-26 ビーエーエスエフ ソシエタス・ヨーロピア Removal of carbon dioxide from absorbent and gas streams.
EP2097156A1 (en) * 2006-12-28 2009-09-09 Cansolv Technologies Inc. Process for the recovery of carbon dioxide from a gas stream
JP2011525422A (en) * 2008-06-23 2011-09-22 ビーエーエスエフ ソシエタス・ヨーロピア Method for removal of acid gases from absorbent and fluid streams, in particular exhaust gas
JP2013501608A (en) * 2009-08-11 2013-01-17 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Absorbent composition and method for removing CO2 and / or H2S from gas containing CO2 and / or H2S
JP2013516311A (en) * 2010-01-05 2013-05-13 ティッセンクルップ ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング CO2 removal using 1,2-diaminopropane from gas with low CO2 partial pressure
US10888816B2 (en) 2016-11-01 2021-01-12 Shell Oil Company Process for producing a purified gas stream

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512548A (en) * 2005-10-20 2009-03-26 ビーエーエスエフ ソシエタス・ヨーロピア Removal of carbon dioxide from absorbent and gas streams.
JP4691164B2 (en) * 2005-10-20 2011-06-01 ビーエーエスエフ ソシエタス・ヨーロピア Removal of carbon dioxide from absorbent and gas streams.
EP2097156A1 (en) * 2006-12-28 2009-09-09 Cansolv Technologies Inc. Process for the recovery of carbon dioxide from a gas stream
JP2010514549A (en) * 2006-12-28 2010-05-06 カンソルブ テクノロジーズ インコーポレーテッド How to recover carbon dioxide from a gas stream
EP2097156A4 (en) * 2006-12-28 2011-11-09 Cansolv Technologies Inc Process for the recovery of carbon dioxide from a gas stream
JP2011525422A (en) * 2008-06-23 2011-09-22 ビーエーエスエフ ソシエタス・ヨーロピア Method for removal of acid gases from absorbent and fluid streams, in particular exhaust gas
JP2013501608A (en) * 2009-08-11 2013-01-17 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Absorbent composition and method for removing CO2 and / or H2S from gas containing CO2 and / or H2S
JP2013516311A (en) * 2010-01-05 2013-05-13 ティッセンクルップ ウーデ ゲゼルシャフト ミット ベシュレンクテル ハフツング CO2 removal using 1,2-diaminopropane from gas with low CO2 partial pressure
US10888816B2 (en) 2016-11-01 2021-01-12 Shell Oil Company Process for producing a purified gas stream

Similar Documents

Publication Publication Date Title
KR0123107B1 (en) Method for removing carbon dioxide from combustion exhaust gas
EP0875280B1 (en) Method for removing carbon dioxide from combustion exhaust gas
JP5230080B2 (en) Absorption liquid, CO2 removal apparatus and method
JP4634384B2 (en) Absorption liquid, CO2 and / or H2S removal method and apparatus
JP2895325B2 (en) Method for removing carbon dioxide in flue gas
JP3197183B2 (en) Method for removing carbon dioxide in flue gas
JPH05301023A (en) Method for removing carbon dioxide in waste combustion gas
JP5215595B2 (en) Absorbing liquid, CO2 or H2S removing apparatus and method using absorbing liquid
JP5659128B2 (en) Acid gas absorbent, acid gas removal method, and acid gas removal apparatus
JP2882950B2 (en) Method for removing carbon dioxide in flue gas
JP3761960B2 (en) Method for removing carbon dioxide in gas
JP2871335B2 (en) Method for removing carbon dioxide in flue gas
GB1591417A (en) Process and composition for removing carbon dioxide containing acidic gases from gaseous mixtures
JPH08168638A (en) Method for removing carbonic acid gas and nitrogen oxide in combustion exhaust gas
JPH0751537A (en) Removal of co2 in co2-containing gas
JP3197173B2 (en) Method of removing carbon dioxide from flue gas
JPH05184866A (en) Equipment for removing carbon dioxide in combustion exhaust gas and method therefor
JP2871422B2 (en) Method for removing carbon dioxide in flue gas
JPH05237341A (en) Method for removing carbon dioxide in waste combustion gas
JP3276527B2 (en) How to remove carbon dioxide in gas
JP3233809B2 (en) Method for removing carbon dioxide in flue gas
JP2871447B2 (en) Method for removing carbon dioxide in flue gas
JP2007000702A (en) Liquid absorbent, and device and method for removing co2 or h2s, or both
JPH07313840A (en) Method for removing carbon dioxide in waste combustion gas
JP2871421B2 (en) Method for removing carbon dioxide in flue gas

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518