JPH05184866A - Equipment for removing carbon dioxide in combustion exhaust gas and method therefor - Google Patents

Equipment for removing carbon dioxide in combustion exhaust gas and method therefor

Info

Publication number
JPH05184866A
JPH05184866A JP4006469A JP646992A JPH05184866A JP H05184866 A JPH05184866 A JP H05184866A JP 4006469 A JP4006469 A JP 4006469A JP 646992 A JP646992 A JP 646992A JP H05184866 A JPH05184866 A JP H05184866A
Authority
JP
Japan
Prior art keywords
exhaust gas
combustion exhaust
aqueous solution
tower
mea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4006469A
Other languages
Japanese (ja)
Other versions
JP2786560B2 (en
Inventor
Masumi Fujii
眞澄 藤井
Yasuichirou Suda
泰一朗 須田
Zenji Hotta
善次 堀田
Kenji Kobayashi
賢治 小林
Kunihiko Yoshida
邦彦 吉田
Shigeru Shimojo
繁 下條
Mutsunori Karasaki
睦範 唐崎
Masaki Iijima
正樹 飯島
Toru Seto
徹 瀬戸
Shigeaki Mitsuoka
薫明 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP4006469A priority Critical patent/JP2786560B2/en
Priority to DE69206846T priority patent/DE69206846T3/en
Priority to EP92250053A priority patent/EP0502596B2/en
Priority to DK92250053T priority patent/DK0502596T4/en
Priority to KR1019920003814A priority patent/KR950006512B1/en
Priority to US07/847,733 priority patent/US5318758A/en
Publication of JPH05184866A publication Critical patent/JPH05184866A/en
Application granted granted Critical
Publication of JP2786560B2 publication Critical patent/JP2786560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PURPOSE:To maintain water balance in the whole equipment in a system as well as in a CO2 removing tower by regulating the temp. of alkanolamine aqueous solution fed to the CO2 removing tower so that inlet and outlet temp. of combustion exhaust gas of the CO2 removing tower may mutually be the same. CONSTITUTION:In CO2 removing apparatus where combustion exhaust gas and alkanolamine aqueous solution are made to be in contact to remove CO2 incorporated in the combustion exhaust gas, on the combustion exhaust gas downstream side of a contact part 2 where alkanolamine aqueous solution and combustion exhaust gas are in countercurrent contact, is provided a contact part 3 where reflux water of an alkanolamine aqueous solution regenerating tower 18 and combustion exhaust gas from which CO2 is removed are in countercurrent contact. The temp. of alkanolamine aqueous solution fed to the CO2 removing tower 1 is regulated so that inlet and outlet temp. of combustion exhaust gas of the CO2 removing tower 1 may be the same.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼排ガス中に含まれる
CO2 (二酸化炭素)を除去する装置および同方法に関
し、さらに詳しくはアルカノールアミン水溶液を吸収剤
として使用する燃焼排ガス中の脱CO2 装置および方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for removing CO 2 (carbon dioxide) contained in flue gas, and more specifically to removing CO 2 from flue gas using an alkanolamine aqueous solution as an absorbent. Apparatus and method.

【0002】[0002]

【従来の技術】近年、地球の温暖化現象の原因の一つと
して、CO2 による温室効果が指摘され、地球環境を守
る上で国際的にもその対策が急務となってきた。CO2
の発生源としては、化石燃料を燃焼させるあらゆる人間
の活動分野に及び、その排出規制が今後一層強化される
傾向にある。これに伴い大量の化石燃料を使用する火力
発電所などの動力発生設備を対象に、ボイラの燃焼排ガ
スをアルカノールアミン水溶液等と接触させ、燃焼排ガ
ス中のCO2 を回収する方法および回収されたCO2
大気へ放出することなく貯蔵する方法が精力的に研究さ
れている。
2. Description of the Related Art In recent years, the greenhouse effect of CO 2 has been pointed out as one of the causes of the global warming phenomenon, and there is an urgent need to take countermeasures internationally in order to protect the global environment. CO 2
The emission sources of carbon dioxide are all human activity fields that burn fossil fuels, and their emission regulations are likely to be tightened in the future. Along with this, for a power generation facility such as a thermal power plant that uses a large amount of fossil fuel, a method of recovering CO 2 in the combustion exhaust gas by bringing the combustion exhaust gas of the boiler into contact with an alkanolamine aqueous solution or the like, and the recovered CO The method of storing 2 without releasing it to the atmosphere is being actively studied.

【0003】ここで、CO2 を吸収するアルカノールア
ミンとしてはモノエタノールアミン、ジエタノールアミ
ン、トリエタノールアミン、メチルジエタノールアミ
ン、ジイソプロパノールアミン、ジグリコールアミン等
の水溶液、あるいはこれらの混合水溶液を挙げることが
できるが、通常モノエタノールアミン(MEA)水溶液
が好んで用いられる。
Examples of the alkanolamine that absorbs CO 2 include aqueous solutions of monoethanolamine, diethanolamine, triethanolamine, methyldiethanolamine, diisopropanolamine, diglycolamine and the like, or mixed aqueous solutions thereof. Usually, an aqueous solution of monoethanolamine (MEA) is preferably used.

【0004】燃焼排ガス中に含まれるCO2 をアルカノ
ールアミン水溶液、特にはMEA水溶液を用いて除去す
るプロセスにつき図2によって説明する。図2では主要
設備のみ示し付属設備は省略した。
The process of removing CO 2 contained in the combustion exhaust gas by using an alkanolamine aqueous solution, particularly an MEA aqueous solution, will be described with reference to FIG. In FIG. 2, only the main equipment is shown and the auxiliary equipment is omitted.

【0005】図2において、01は脱CO2 塔、02は
下部充填部、03は上部充填部、04は脱CO2 塔燃焼
排ガス供給部、05は脱CO2 燃焼排ガス排出部、06
はMEA水溶液供給口、07はノズル、08は液保留
部、09は水循環ポンプ、010は冷却器、011はノ
ズル、012はCO2 吸収MEA水溶液排出口、013
は押し込みブロワである。また014は燃焼排ガス供給
口、015は燃焼排ガス冷却器、016は循環ポンプ、
017は冷却器、018はノズル、019は凝縮水排出
ラインである。
In FIG. 2, 01 is a CO 2 removal tower, 02 is a lower filling section, 03 is an upper filling section, 04 is a CO 2 removal combustion gas supply section, 05 is a CO 2 removal exhaust gas discharge section, 06
Is a MEA aqueous solution supply port, 07 is a nozzle, 08 is a liquid holding unit, 09 is a water circulation pump, 010 is a cooler, 011 is a nozzle, 012 is a CO 2 absorbing MEA aqueous solution discharge port, 013.
Is a push blower. Further, 014 is a combustion exhaust gas supply port, 015 is a combustion exhaust gas cooler, 016 is a circulation pump,
Reference numeral 017 is a cooler, 018 is a nozzle, and 019 is a condensed water discharge line.

【0006】ボイラ等により発生し、煙突より排出され
るべき燃焼排ガスは通常温度100〜150℃であり、
燃焼排ガス冷却塔015で冷却されて一部の凝縮水を凝
縮水排出ライン019より系外に排出した後、脱CO2
塔燃焼排ガス供給口04より脱CO2 塔01に供給され
る。該燃焼排ガスはMEA水溶液供給口06からノズル
07を経て供給された一定濃度、温度のMEA水溶液と
下部充填部02で向流接触させられ、燃焼排ガス中のC
2 はMEA水溶液によって吸収除去される。CO2
吸収したMEA水溶液はCO2 吸収MEA水溶液排出口
012により排出され、図示省略のMEA水溶液再生塔
に送られ、前記のMEA水溶液供給口06に循環され
る。
[0006] The combustion exhaust gas generated by a boiler or the like and to be discharged from the chimney has a normal temperature of 100 to 150 ° C.
After being cooled in the flue gas cooling tower 015 and discharging a part of the condensed water to the outside of the system through a condensed water discharge line 019, CO 2 removal
It is supplied to the CO 2 removal tower 01 from the tower combustion exhaust gas supply port 04. The combustion exhaust gas is brought into countercurrent contact with the MEA aqueous solution having a constant concentration and temperature supplied from the MEA aqueous solution supply port 06 through the nozzle 07 in the lower filling section 02, and C in the combustion exhaust gas is discharged.
O 2 is absorbed and removed by the MEA aqueous solution. MEA aqueous solution that has absorbed CO 2 is discharged by the CO 2 absorbing aqueous MEA solution outlet 012, is sent to the MEA aqueous solution regeneration tower (not shown), it is recycled to the aqueous MEA solution supply port 06 of the.

【0007】一方、下部充填部02で脱CO2 された燃
焼排ガスは液保留部08を通って上部充填部03へと向
う。該排ガスは該排ガス温度(燃焼排ガス中のCO2
MEAの反応により発熱し、気液分離後の脱CO2 燃焼
排ガスの温度は脱CO2 塔燃焼排ガス供給口04より供
給される燃焼排ガス温度より高くなる。)条件に見合う
水蒸気を飽和している。またこの脱CO2 燃焼排ガスは
その温度下でMEA水溶液のMEA蒸気圧分のMEAを
含有しているので、そのまま脱CO2 塔01から脱CO
2 燃焼排ガス排出口05を経て系外に放出するとMEA
の損失と共に、周囲の大気を汚染する恐れがある。また
系内の水バランスも失われる。このため気液分離後の適
当量の凝縮水を水循環ポンプ09により冷却器010に
導き、ここで循環水を冷却して該循環水をノズル011
より分散・放出し、上昇して来る脱CO2 燃焼排ガスと
上部充填部03で向流接触させて、脱CO2 燃焼排ガス
の温度を低下させると共に、水およびMEAの蒸気を凝
縮し、MEAを大気中に放散させないようにしている。
On the other hand, the combustion exhaust gas de-CO 2 in the lower filling section 02 goes to the upper filling section 03 through the liquid retaining section 08. The exhaust gas heats up due to the reaction between the exhaust gas temperature (CO 2 in the combustion exhaust gas and MEA, and the temperature of the de-CO 2 combustion exhaust gas after gas-liquid separation is the combustion exhaust gas temperature supplied from the de-CO 2 tower combustion exhaust gas supply port 04. It becomes higher.) Saturated water vapor that meets the conditions. Further, since this CO 2 -exhausted exhaust gas contains MEA corresponding to the MEA vapor pressure of the MEA aqueous solution at that temperature, the CO 2 -exhaust gas is directly removed from the CO 2 removal column 01.
2 MEA when discharged outside the system through the combustion exhaust gas outlet 05
And the pollution of the surrounding atmosphere. The water balance in the system is also lost. Therefore, an appropriate amount of condensed water after gas-liquid separation is guided to the cooler 010 by the water circulation pump 09, where the circulating water is cooled and the circulating water is supplied to the nozzle 011.
The CO 2 combustion exhaust gas that is more dispersed and released, and is rising is brought into countercurrent contact with the upper filling portion 03 to lower the temperature of the CO 2 combustion exhaust gas and to condense water and the vapor of MEA to remove the MEA. I try not to diffuse it into the atmosphere.

【0008】なお、図2に例示した燃焼排ガスの冷却シ
ステムは限定的ではないが主にLNGのように水素を比
較的多く含む燃料に用いられるものであり、上記のよう
に燃焼排ガス中に含まれる燃料由来の水蒸気が冷却され
ることにより凝縮水となり蓄積される。従って常時余剰
水として凝縮水排出ライン019より排出される。燃焼
排ガスの冷却システムとしては、これとは別に限定的で
はないが石炭や重油のように比較的炭素を多く含む燃料
を焚くボイラに主に適用される加湿冷却による方法があ
る。これには、後記のように通常熱交換器017は設置
する必要がなく、単に循環する水と燃焼排ガスを接触さ
せ、水の蒸発により冷却するものであり、循環水は蒸発
により徐々に失われるので外部から補給することとな
る。
Although the combustion exhaust gas cooling system illustrated in FIG. 2 is not limited, it is mainly used for a fuel containing a relatively large amount of hydrogen such as LNG, and is contained in the combustion exhaust gas as described above. When the steam derived from the fuel is cooled, it becomes condensed water and accumulates. Therefore, it is always discharged from the condensed water discharge line 019 as excess water. The cooling system for the combustion exhaust gas is not limited to this, but there is a humidification cooling method mainly applied to a boiler that burns a fuel containing a relatively large amount of carbon such as coal and heavy oil. For this purpose, it is not necessary to install the heat exchanger 017 as described later, but the circulating water and the combustion exhaust gas are simply brought into contact with each other to cool them by evaporation of water, and the circulating water is gradually lost by evaporation. Therefore, it will be supplied from the outside.

【0009】[0009]

【発明が解決しようとする課題】上記図2によって説明
した従来の脱CO2 方法および装置はそれなりに有用な
ものであるが、なお脱CO2 塔より系外にもち出される
吸収剤であるアルカノールアミンの量が多く、従って貴
重な吸収剤の損失が大きく、かつそれに伴う大気汚染を
発生するという不具合があった。
Although the conventional method and apparatus for removing CO 2 described with reference to FIG. 2 is useful as such, alkanol which is an absorbent that is taken out of the CO 2 column outside the system is still used. There is a problem that the amount of amine is large and therefore the loss of the valuable absorbent is large, and the accompanying air pollution occurs.

【0010】また上記脱CO2 方法および装置におい
て、脱CO2 燃焼排ガス排出口05により排出される脱
CO2 燃焼排ガス中には微量ではあるがアンモニアが検
出される。このアンモニアの由来としてはアルカノール
アミンの一部がプロセス系内で分解するためであると推
測される。アンモニアが検出される他の原因としては燃
焼排ガス中のNOxを低減する目的で燃料にアンモニア
を添加している場合には、そのアンモニアの残留も考え
られる。いずれにしても、微量とはいえ、アンモニアが
そのまま脱CO2 燃焼排ガスと共に大気へ放出されると
悪臭として新たな環境問題となりうるので、これを除去
しなければならない。しかし、処理排ガス中に含まれる
アンモニアは微量であり、これをいかに効率よく除去す
るかが課題であった。
In the above CO 2 removal method and apparatus, ammonia is detected in the CO 2 removal exhaust gas exhausted from the CO 2 removal exhaust gas outlet 05 though it is a trace amount. It is speculated that the origin of this ammonia is that part of the alkanolamine decomposes in the process system. When ammonia is added to the fuel for the purpose of reducing NOx in the combustion exhaust gas, another cause of the detection of ammonia may be residual ammonia. In any case, even if the amount of ammonia is small, if ammonia is directly discharged to the atmosphere together with the CO 2 -exhausted exhaust gas, it can cause a new environmental problem as a bad odor and must be removed. However, the amount of ammonia contained in the treated exhaust gas is very small, and how to remove this efficiently has been a problem.

【0011】[0011]

【課題を解決するための手段】本発明者らは図2で例示
する燃焼排ガス中のCO2 をアルカノールアミンを用い
て除去するプロセスの上記課題について鋭意検討した結
果、アルカノールアミン水溶液の再生塔の還流水を脱C
2 塔で脱CO2 燃焼排ガスと接触させることが有効で
あることを見出だし、本発明を完成させるに到った。
Means for Solving the Problems The inventors of the present invention have earnestly studied the above-mentioned problems of the process for removing CO 2 in the combustion exhaust gas by using alkanolamine as shown in FIG. Remove the reflux water from C
It has been found that it is effective to contact the exhaust gas without CO 2 in the O 2 column, and the present invention has been completed.

【0012】すなわち、本発明の第一は、燃焼排ガスと
アルカノールアミン水溶液を接触させ、燃焼排ガス中に
含まれるCO2 を除去する脱CO2 装置において、アル
カノールアミン水溶液と燃焼排ガスが向流接触する接触
部の燃焼排ガスの後流側に、アルカノールアミン水溶液
の再生塔の還流水とCO2 が除去された脱CO2 燃焼排
ガスが向流接触する接触部を設けてなることを特徴とす
る燃焼排ガスの脱CO2 装置である。
Namely, first the of the present invention, by contacting the flue gas with an aqueous alkanolamine solution, in the de CO 2 device for removing CO 2 contained in the combustion exhaust gas, the combustion exhaust gas with an alkanolamine solution to countercurrent contact Combustion exhaust gas, characterized in that it is provided on the downstream side of the combustion exhaust gas of the contact portion, in which the reflux water of the alkanolamine aqueous solution regeneration tower and the CO 2 -depleted CO 2 -exhausted exhaust gas come into countercurrent contact. This is a CO 2 removal device.

【0013】また、本発明の第二は、上記の燃焼排ガス
の脱CO2 装置において、脱CO2 装置の燃焼排ガスの
入口および出口の燃焼排ガス温度を同一にするように脱
CO2 装置に供給するアルカノールアミン水溶液の温度
を調節することを特徴とする燃焼排ガスの脱CO2 方法
である。以下、本発明を詳細に説明する。
[0013] The second invention is provided in the de CO 2 device of the flue gas, the removal CO 2 device to a flue gas temperature of the inlet and outlet of the flue gas removing CO 2 device in the same The method for removing CO 2 from combustion exhaust gas is characterized by controlling the temperature of the alkanolamine aqueous solution. Hereinafter, the present invention will be described in detail.

【0014】[0014]

【作用】本発明の燃焼排ガスの脱CO2 装置および方法
の一態様を図1によって説明する。図1では主要設備の
み示し付属設備は省略した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the apparatus and method for removing CO 2 from combustion exhaust gas according to the present invention will be described with reference to FIG. In FIG. 1, only the main equipment is shown and the auxiliary equipment is omitted.

【0015】図1に関して、1は脱CO2 塔、2は下部
充填部、3は上部充填部またはトレイ、4は脱CO2
燃焼排ガス供給口、5は脱CO2 燃焼排ガス排出口、6
はMEA水溶液供給口、7はノズル、8は再生液還流液
供給口、9はノズル、10は燃焼排ガス冷却器、11は
ノズル、12は充填部、13は加湿冷却水循環ポンプ、
14は補給水供給ライン、15はCO2 吸収MEA水溶
液排出ポンプ、16は熱交換器、17は冷却器、18は
MEA水溶液再生(以下、「再生」とも略称)塔、19
はノズル、20は下部充填部、21は再生加熱器(リボ
イラー)、22は上部充填部、23は還流水ポンプ、2
4はCO2 分離器、25は回収CO2 排出ライン、26
は再生塔還流冷却器、27はノズル、28は再生塔還流
水供給ライン、29は燃焼ガス供給ブロワである。
With reference to FIG. 1, 1 is a CO 2 removal tower, 2 is a lower packing part, 3 is an upper packing part or tray, 4 is a CO 2 removal tower combustion exhaust gas supply port, 5 is a CO 2 removal combustion exhaust gas discharge port, and 6
Is an MEA aqueous solution supply port, 7 is a nozzle, 8 is a regeneration liquid recirculation liquid supply port, 9 is a nozzle, 10 is a combustion exhaust gas cooler, 11 is a nozzle, 12 is a filling section, 13 is a humidification cooling water circulation pump,
Reference numeral 14 is a makeup water supply line, 15 is a CO 2 absorption MEA aqueous solution discharge pump, 16 is a heat exchanger, 17 is a cooler, 18 is an MEA aqueous solution regeneration (hereinafter also referred to as “regeneration”) tower, 19
Is a nozzle, 20 is a lower filling part, 21 is a regenerative heater (reboiler), 22 is an upper filling part, 23 is a reflux water pump, 2
4 is a CO 2 separator, 25 is a recovered CO 2 discharge line, 26
Is a regeneration tower reflux condenser, 27 is a nozzle, 28 is a regeneration tower reflux water supply line, and 29 is a combustion gas supply blower.

【0016】図1において、燃焼排ガスは燃焼排ガス供
給ブロワ29により燃焼排ガス冷却器10に押込めら
れ、ノズル11からの加湿冷却水と充填部12で接触
し、加湿冷却され、脱CO2 塔燃焼排ガス供給口4を通
って脱CO2 塔1へ導かれる。燃料の種類や冷却条件に
もあるが、これにより脱CO2 塔1への入口燃焼排ガス
温度は通常50〜80℃になるが、本発明の装置および
方法においては必ずしもこれ以上冷却する必要がないの
で、図2で示した冷却器017は不要となる。燃焼排ガ
スと接触した加湿冷却水は燃焼排ガス冷却器10の下部
に溜り、ポンプ13によりノズル11へ循環使用され
る。加湿冷却水は燃焼排ガスを加湿冷却することにより
徐々に失われるので補給水供給ライン14により補充さ
れる。
In FIG. 1, the combustion exhaust gas is pushed into the combustion exhaust gas cooler 10 by the combustion exhaust gas supply blower 29, and is brought into contact with the humidified cooling water from the nozzle 11 at the filling section 12 to be humidified and cooled to remove CO 2 tower combustion. It is led to the CO 2 removal tower 1 through the exhaust gas supply port 4. Depending on the type of fuel and cooling conditions, the temperature of the flue gas at the inlet to the CO 2 removal column 1 is usually 50 to 80 ° C., but the apparatus and method of the present invention do not necessarily require further cooling. Therefore, the cooler 017 shown in FIG. 2 is unnecessary. The humidified cooling water that has come into contact with the combustion exhaust gas collects in the lower portion of the combustion exhaust gas cooler 10 and is circulated to the nozzle 11 by the pump 13. Since the humidified cooling water is gradually lost by humidifying and cooling the combustion exhaust gas, it is replenished by the makeup water supply line 14.

【0017】脱CO2 塔1に押し込められた燃焼排ガス
は図2で説明したようにノズル7から供給される一定濃
度のMEA水溶液と充填部2で向流接触させられ、燃焼
排ガス中のCO2 はMEA水溶液により吸収除去され、
脱CO2 燃焼排ガスは上部充填部3へと向う。脱CO2
塔1に供給されるMEA水溶液はCO2 を吸収し、その
吸収による反応熱のため、供給口6における温度よりも
高温となり、CO2 吸収MEA水溶液排出ポンプ15に
より熱交換器16に送られ、加熱されて再生塔18へ導
かれる。本発明の方法においては、脱CO2 塔1に供給
されるMEA水溶液の温度を調節することによって、C
2 の吸収による反応熱のほとんどを再生塔18に戻る
MEA水溶液によって脱CO2 塔1の外に運び去るよう
にする。MEA水溶液の温度調節は熱交換器16あるい
は必要に応じて該熱交換器16とMEA水溶液供給口6
の間に設けられる冷却器17により行うことができる。
系内が定常状態になった後は、通常脱CO2 塔1に供給
されるMEA水溶液の温度も一定となる。これにより燃
焼排ガスの温度は反応熱によっても殆ど上昇せず、燃焼
排ガス供給口4の供給温度とほぼ同一温度で脱CO2
1を上昇して排出されることとなる。なお、ここで同一
とは厳密な意味ではなく、多少の温度差が生じても後述
の脱CO2 塔1の水バランスが保たれる状態においては
同一の範囲に含まれる。
The combustion exhaust gas forced into de CO 2 column 1 is countercurrent contacted with a filler portion 2 and the MEA aqueous solution of a predetermined concentration is supplied from the nozzle 7 as described in Figure 2, the flue gas CO 2 Is absorbed and removed by the MEA aqueous solution,
The de-CO 2 combustion exhaust gas goes to the upper filling part 3. CO 2 removal
The MEA aqueous solution supplied to the tower 1 absorbs CO 2, and due to the reaction heat due to the absorption, the temperature becomes higher than the temperature at the supply port 6 and is sent to the heat exchanger 16 by the CO 2 absorbing MEA aqueous solution discharge pump 15. It is heated and guided to the regeneration tower 18. In the method of the present invention, by adjusting the temperature of the MEA aqueous solution supplied to the CO 2 removal column 1, C
Most of the heat of reaction due to the absorption of O 2 is carried away to the outside of the CO 2 removal column 1 by the MEA aqueous solution returning to the regeneration tower 18. The temperature of the MEA aqueous solution is controlled by the heat exchanger 16 or, if necessary, the heat exchanger 16 and the MEA aqueous solution supply port 6.
It can be performed by the cooler 17 provided between the two.
After the inside of the system reaches a steady state, the temperature of the MEA aqueous solution normally supplied to the CO 2 removal column 1 also becomes constant. As a result, the temperature of the combustion exhaust gas hardly rises due to the reaction heat, and the CO 2 removal tower 1 is raised and discharged at a temperature substantially the same as the supply temperature of the combustion exhaust gas supply port 4. It should be noted that the term “identical” here does not mean a strict meaning and is included in the same range in a state where the water balance of the CO 2 removal column 1 described later is maintained even if a slight temperature difference occurs.

【0018】燃焼排ガス温度が脱CO2 塔1の入口と出
口で同一となるようにMEA水溶液供給口6より供給さ
れるMEA水溶液の温度を調節することにより、脱CO
2 塔1さらには図1の系全体の水バランスが保たれるこ
ととなる。従って脱CO2 塔1へ供給される燃焼排ガス
の温度が仮に50〜80℃と高くても図2のプロセスで
設置される冷却器010は不要である。また脱CO2
1から排出される燃焼排ガスの温度が高くても、後述の
ように再生塔18からの還流水を脱CO2 塔1に用いる
本発明の装置および方法により、MEAの系外への放散
は有効に防止される。
By adjusting the temperature of the MEA aqueous solution supplied from the MEA aqueous solution supply port 6 so that the combustion exhaust gas temperature is the same at the inlet and the outlet of the CO 2 removal tower 1,
2 The tower 1 and the water balance of the whole system of Fig. 1 will be maintained. Therefore, even if the temperature of the combustion exhaust gas supplied to the CO 2 removal tower 1 is as high as 50 to 80 ° C., the cooler 010 installed in the process of FIG. 2 is unnecessary. Even if the temperature of the combustion exhaust gas discharged from the CO 2 removal column 1 is high, the apparatus and method of the present invention that uses the reflux water from the regeneration tower 18 for the CO 2 removal column 1 as described below is used outside the MEA system. Is effectively prevented.

【0019】再生塔18では、再生加熱器21による加
熱でMEA水溶液が再生され、熱交換器16により冷却
され脱CO2 塔1へ戻される。再生塔18の上部におい
て、MEA水溶液から分離されたCO2 はノズル27よ
り供給される還流水と接触し、再生塔還流冷却器26に
より冷却され、CO2 分離器24にてCO2 に同伴した
水蒸気が凝縮した還流水と分離され、25よりCO2
収工程へ導かれる。還流水の一部は還流水ポンプ23で
再生塔18へ還流される。
In the regeneration tower 18, the MEA aqueous solution is regenerated by heating by the regeneration heater 21, cooled by the heat exchanger 16 and returned to the CO 2 removal tower 1. In the upper part of the regeneration tower 18, the CO 2 separated from the MEA aqueous solution comes into contact with the reflux water supplied from the nozzle 27, is cooled by the regeneration tower reflux condenser 26, and is entrained in CO 2 by the CO 2 separator 24. The steam is separated from the condensed reflux water, and is introduced from 25 to the CO 2 recovery step. A part of the reflux water is recycled to the regeneration tower 18 by the reflux water pump 23.

【0020】本発明の装置および方法の特徴は、この還
流水の一部を再生塔還流水供給ライン28により再生塔
還流液供給口8、ノズル9を介して脱CO2 塔1へ供給
することである。脱CO2 されたMEA蒸気を含む燃焼
排ガスとこの還流水を上記充填部またはトレイ3で構成
された部分で向流接触させることにより、燃焼排ガス中
のMEA蒸気を殆どゼロまで下げることにある。さらに
還流水はCO2 分離器24でCO2 と分離されたもので
あるから、その水にはCO2 がその温度における飽和状
態またはそれに近い濃度で含まれている。例えばCO2
分離器24で分離される還流水の温度が40℃前後であ
る場合、その還流水には約400ppm前後のCO2
含まれている。
The apparatus and method of the present invention are characterized in that a part of this reflux water is supplied to the CO 2 removal column 1 through the regeneration tower reflux water supply line 28 through the regeneration tower reflux liquid supply port 8 and the nozzle 9. Is. By making countercurrent contact between the combustion exhaust gas containing the degassed CO 2 MEA vapor and this reflux water at the filling portion or the portion constituted by the tray 3, the MEA vapor in the combustion exhaust gas is reduced to almost zero. Since more reflux water is one which is separated from the CO 2 in the CO 2 separator 24, CO 2 is contained at a concentration near saturation or to that at the temperature in the water. For example CO 2
When the temperature of the reflux water separated by the separator 24 is around 40 ° C., the reflux water contains approximately 400 ppm of CO 2 .

【0021】脱CO2 塔1の下部充填部2で脱CO2
れた燃焼排ガスは50〜80℃と高く、その温度におけ
る蒸気分圧相当の比較的多量のMEA蒸気、微量のアン
モニアおよび水蒸気を含んで上方に流れ、再生塔還流水
供給ライン28により再生塔18から供給される上記還
流水と接触する。しかし、アンモニアおよびMEAは弱
塩基であるから、弱酸性のCO2 をほぼ飽和状態で含む
還流水と脱CO2 燃焼排ガスとを上部接触部3で接触さ
せることにより、図2の上部充填部で水を用いる図2に
示す従来技術の場合と比べ、これらははるかに容易に還
流水に取り込まれ、大気中に放出されるのを有効に防止
することができる。脱CO2 塔1へ供給される還流水は
脱CO2 燃焼排ガスと接触してMEAおよびアンモニア
を吸収した後、脱CO2 塔1を下降し、MEA水溶液と
混合し、再生塔18に戻されることになる。脱CO2
1に供給される還流水は全還流水の一部であり、いずれ
再生塔18に戻されるので系内の水バランス上何等問題
はない。
The de-CO 2 combustion exhaust gas lower filling portion 2 of the de-CO 2 column 1 is as high as 50 to 80 ° C., the vapor partial pressure equivalent relatively large amount of MEA vapor at that temperature, the ammonia and water vapor traces It flows upwards, and comes into contact with the above-mentioned reflux water supplied from the regeneration tower 18 through the regeneration tower reflux water supply line 28. However, since ammonia and MEA are weak bases, the reflux water containing weakly acidic CO 2 in a substantially saturated state and the de-CO 2 combustion exhaust gas are brought into contact with each other at the upper contact portion 3, so that the upper filling portion of FIG. Compared with the case of the prior art shown in FIG. 2 which uses water, these can be effectively prevented from being taken into the reflux water and released into the atmosphere. The reflux water supplied to the CO 2 removal tower 1 comes into contact with the CO 2 removed exhaust gas to absorb MEA and ammonia, then descends the CO 2 removal tower 1, mixes with the MEA aqueous solution, and is returned to the regeneration tower 18. It will be. The reflux water supplied to the CO 2 removal tower 1 is a part of the total reflux water, and is eventually returned to the regeneration tower 18, so there is no problem in terms of water balance in the system.

【0022】なお、脱CO2 燃焼排ガス中のMEAは還
流水中のCO2 と反応するが、それは下部充填部2で起
きている反応と同じである。また脱CO2 燃焼排ガス中
のアンモニアは還流水中のCO2 と反応することによ
り、次式で示すいずれかの反応が起こり、炭酸アンモニ
ウム塩類として水に吸収される。 NH3 +CO2 +H2 O → NH4 HCO3 ・・・・ 式(1) 2NH3 +CO2 +H2 O → (NH4 2 CO3 ・・・・ 式(2)
It should be noted that the MEA contained in the CO 2 -exhausted exhaust gas reacts with the CO 2 contained in the reflux water, which is the same as the reaction occurring in the lower filling section 2. Further, ammonia in the CO 2 -exhausted exhaust gas reacts with CO 2 in the reflux water to cause any of the reactions represented by the following formulas, and is absorbed by water as ammonium carbonate salts. NH 3 + CO 2 + H 2 O → NH 4 HCO 3 ... Formula (1) 2 NH 3 + CO 2 + H 2 O → (NH 4 ) 2 CO 3 ... Formula (2)

【0023】上記反応式により生じる炭酸アンモニウム
塩類、とくにはNH4 HCO3 は水溶液中では比較的安
定であり、これら塩類としてアンモニアが脱CO2 燃焼
排ガスから除去されることにより、大気中へのアンモニ
アの放出はある程度抑制される。燃焼排ガス処理をこの
まま続ければ、これらアンモニウム塩が系内に蓄積され
ることになり、再生過程で分解されてアンモニアに戻る
ため、アンモニアの放出を完全に抑制することは困難で
ある。
Ammonium carbonate salts produced by the above reaction formula, particularly NH 4 HCO 3 , are relatively stable in an aqueous solution, and ammonia is removed from the CO 2 -exhausted exhaust gas as ammoniacal salts into the atmosphere. The release of is suppressed to some extent. If the flue gas treatment is continued as it is, these ammonium salts will be accumulated in the system and decomposed in the regeneration process to return to ammonia, so it is difficult to completely suppress the release of ammonia.

【0024】なお、図1においては燃焼排ガスの冷却は
加湿冷却方法によるものであるが、必ずしもこれである
必要はなく、図2に示した冷却器を用いるプロセスでも
構わない。しかし、本発明によれば脱CO2 燃焼排ガス
の温度が高く、その温度に見合った多量のMEA蒸気を
含んでいても、CO2 含有再生塔還流水を使用すること
により、有効にその排出を防止することができる。した
がって前述のように図1のプロセスを採用することによ
り、図2の冷却器017が不要となり、コスト的にも有
利となる。
In FIG. 1, the combustion exhaust gas is cooled by the humidification cooling method, but it is not always necessary and the process using the cooler shown in FIG. 2 may be used. However, according to the present invention, even if the temperature of the CO 2 -exhausted exhaust gas is high and a large amount of MEA vapor corresponding to the temperature is contained, the CO 2 -containing regeneration tower reflux water is used to effectively discharge the exhaust gas. Can be prevented. Therefore, by adopting the process of FIG. 1 as described above, the cooler 017 of FIG. 2 becomes unnecessary, which is advantageous in terms of cost.

【0025】[0025]

【実施例】以下、本発明の図1の実施態様と従来の装置
および方法を示す図2の態様とをそれぞれ表1、表2に
示し、本発明の効果を立証する。
EXAMPLES The embodiments of FIG. 1 of the present invention and the embodiments of FIG. 2 showing the conventional apparatus and method are shown in Table 1 and Table 2, respectively, to prove the effect of the present invention.

【表1】 [Table 1]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】以上詳細に述べたごとく、再生塔の還流
水の一部を脱CO2 塔で用いる本発明により、燃焼排ガ
ス中のCO2 を吸収した残りの脱CO2 燃焼排ガスに伴
って系外にもち出されるアルカノールアミンを、効果的
に抑えることができるようになった。同様に、同燃焼排
ガス中に微量含まれるアンモニアもある程度抑制できる
ようになった。そして従来必要とされた脱CO2 塔々頂
の循環水やその冷却器は不要となった。さらに本発明に
より脱CO2 塔に供給される燃焼排ガス温度と脱CO2
燃焼排ガスの排出温度が同一になるように、同塔に供給
されるMEA水溶液の温度を調節するので、同塔さらに
は系内装置全体の水バランスを保つことができるように
なった。
As described in detail above, according to the present invention in which a part of the reflux water of the regeneration tower is used in the CO 2 removal tower, the remaining CO 2 absorbed CO 2 in the combustion exhaust gas is removed. It has become possible to effectively suppress the alkanolamine that is brought out of the system. Similarly, the amount of ammonia contained in the combustion exhaust gas in a trace amount can be suppressed to some extent. Then, the circulating water at the top of the CO 2 removal towers and the cooling device therefor which were conventionally required are no longer required. Further, according to the present invention, the temperature of the combustion exhaust gas supplied to the CO 2 removal tower and the CO 2 removal
Since the temperature of the MEA aqueous solution supplied to the tower is adjusted so that the exhaust temperature of the combustion exhaust gas becomes the same, the water balance of the tower and the entire internal system can be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の脱CO2 装置および方法で採用するプ
ロセスの一例である。
FIG. 1 is an example of a process employed in the CO 2 removal apparatus and method of the present invention.

【図2】従来の脱CO2 装置の一部を示した例である。FIG. 2 is an example showing a part of a conventional CO 2 removal device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀田 善次 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 小林 賢治 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 吉田 邦彦 兵庫県尼崎市若王寺3丁目11番20号 関西 電力株式会社総合技術研究所内 (72)発明者 下條 繁 兵庫県尼崎市若王寺3丁目11番20号 関西 電力株式会社総合技術研究所内 (72)発明者 唐崎 睦範 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内 (72)発明者 飯島 正樹 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社本社内 (72)発明者 瀬戸 徹 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 光岡 薫明 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Zenji Hotta 3-3-22 Nakanoshima, Kita-ku, Osaka-shi, Osaka Kansai Electric Power Co., Inc. (72) Kenji Kobayashi 3-chome Nakanoshima, Kita-ku, Osaka-shi, Osaka No. 22 in Kansai Electric Power Co., Inc. (72) Inventor Kunihiko Yoshida 3-chome Wakaoji, Amagasaki City, Hyogo Prefecture 11-11 20 Kansai Electric Power Co., Inc. Research Institute of Technology (72) Shigeru Shimojo, 3 Wakaoji Temple, Amagasaki City, Hyogo Prefecture No. 11-20 Kansai Electric Power Co., Inc. Research Institute (72) Inventor Mutsunori Karazaki 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) Inventor Masaki Iijima Two Marunouchi, Chiyoda-ku, Tokyo Chome 5-1 Sanryo Heavy Industries Co., Ltd. (72) Inventor Toru Seto 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Mitsubishi Heavy Industries Ltd. Company Hiroshima the laboratory (72) inventor Mitsuoka KaoruAkira Hiroshima, Hiroshima Prefecture, Nishi-ku, Kan'onshin-cho, chome No. 6 No. 22 Mitsubishi Heavy Industries, Ltd. Hiroshima within the Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃焼排ガスとアルカノールアミン水溶液
を接触させ、燃焼排ガス中に含まれるCO2 を除去する
脱CO2 装置において、アルカノールアミン水溶液と燃
焼排ガスが向流接触する接触部の燃焼排ガスの後流側
に、アルカノールアミン水溶液の再生塔の還流水とCO
2 が除去された脱CO2 燃焼排ガスが向流接触する接触
部を設けてなることを特徴とする燃焼排ガスの脱CO2
装置。
1. A contacting the flue gas with an aqueous alkanolamine solution, in the de CO 2 device for removing CO 2 contained in the combustion exhaust gas, after flue gas with an aqueous alkanolamine solution is of the combustion exhaust gas contact portion for countercurrent contact On the flow side, reflux water of the alkanolamine aqueous solution regeneration tower and CO
De CO 2 of the combustion exhaust gas leaving CO 2 combustion exhaust gas 2 has been removed, characterized by comprising providing a contact portion for countercurrent contact
apparatus.
【請求項2】 請求項1の燃焼排ガスの脱CO2 装置に
おいて、脱CO2 塔の燃焼排ガスの入口および出口の燃
焼排ガス温度を同一にするように脱CO2 塔に供給する
アルカノールアミン水溶液の温度を調節することを特徴
とする燃焼排ガスの脱CO2 方法。
2. A de-CO 2 system of the combustion exhaust gas according to claim 1, the flue gas leaving CO 2 column inlet and aqueous alkanolamine solution to be supplied to the de-CO 2 column to the same flue gas temperature at the outlet A method for removing CO 2 from combustion exhaust gas, which comprises controlling the temperature.
JP4006469A 1991-03-07 1992-01-17 Apparatus and method for removing carbon dioxide from flue gas Expired - Lifetime JP2786560B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4006469A JP2786560B2 (en) 1992-01-17 1992-01-17 Apparatus and method for removing carbon dioxide from flue gas
DE69206846T DE69206846T3 (en) 1991-03-07 1992-03-06 Device and method for removing carbon dioxide from exhaust gases
EP92250053A EP0502596B2 (en) 1991-03-07 1992-03-06 Apparatus and process for removing carbon dioxide from combustion exhaust gas
DK92250053T DK0502596T4 (en) 1991-03-07 1992-03-06 Apparatus and method for removing carbon dioxide from combustion exhaust gas
KR1019920003814A KR950006512B1 (en) 1991-03-07 1992-03-07 Carbon dioxide of exhaust gas removing apparatus and method
US07/847,733 US5318758A (en) 1991-03-07 1992-03-09 Apparatus and process for removing carbon dioxide from combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4006469A JP2786560B2 (en) 1992-01-17 1992-01-17 Apparatus and method for removing carbon dioxide from flue gas

Publications (2)

Publication Number Publication Date
JPH05184866A true JPH05184866A (en) 1993-07-27
JP2786560B2 JP2786560B2 (en) 1998-08-13

Family

ID=11639317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4006469A Expired - Lifetime JP2786560B2 (en) 1991-03-07 1992-01-17 Apparatus and method for removing carbon dioxide from flue gas

Country Status (1)

Country Link
JP (1) JP2786560B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002034369A1 (en) 2000-10-25 2002-05-02 The Kansai Electric Power Co., Inc. Method and apparatus for recovering amine and system for removing carbon dioxide comprising the apparatus
JP2009529412A (en) * 2006-03-10 2009-08-20 カンソルブ・テクノロジーズ・インコーポレーテツド Regeneration of ion exchangers used for removal of salts from acid gas capture plants.
JP2011000526A (en) * 2009-06-17 2011-01-06 Mitsubishi Heavy Ind Ltd Co2 recovering device and co2 recovering method
WO2012070523A1 (en) 2010-11-22 2012-05-31 バブコック日立株式会社 Device for removing carbon dioxide in combustion exhaust gas
JP2013184080A (en) * 2012-03-06 2013-09-19 Babcock Hitachi Kk Device for recovering carbon dioxide
JP2014505593A (en) * 2011-02-02 2014-03-06 アルストム テクノロジー リミテッド Renewable energy reduction method
WO2014046018A1 (en) 2012-09-20 2014-03-27 三菱重工業株式会社 Carbon dioxide recovery device
WO2014046147A1 (en) 2012-09-20 2014-03-27 三菱重工業株式会社 Steam providing system and co2 recovery facilities provided with same
WO2014045797A1 (en) * 2012-09-24 2014-03-27 三菱重工業株式会社 Carbon dioxide recovery system and method
JP2015502847A (en) * 2011-11-29 2015-01-29 スルザー ケムテック アクチェンゲゼルシャフト Method and apparatus for carbon dioxide absorption
JP2015532617A (en) * 2012-09-05 2015-11-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for separating acid gases from fluid streams containing water
WO2021210271A1 (en) * 2020-04-15 2021-10-21 三菱重工エンジニアリング株式会社 Carbon dioxide capturing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10773206B2 (en) 2018-10-10 2020-09-15 Mitsubishi Heavy Industries Engineering, Ltd. CO2 recovery device and CO2 recovery method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002034369A1 (en) 2000-10-25 2002-05-02 The Kansai Electric Power Co., Inc. Method and apparatus for recovering amine and system for removing carbon dioxide comprising the apparatus
JP2009529412A (en) * 2006-03-10 2009-08-20 カンソルブ・テクノロジーズ・インコーポレーテツド Regeneration of ion exchangers used for removal of salts from acid gas capture plants.
JP2011000526A (en) * 2009-06-17 2011-01-06 Mitsubishi Heavy Ind Ltd Co2 recovering device and co2 recovering method
WO2012070523A1 (en) 2010-11-22 2012-05-31 バブコック日立株式会社 Device for removing carbon dioxide in combustion exhaust gas
US9399188B2 (en) 2010-11-22 2016-07-26 Mitsubishi Hitachi Power Systems, Ltd. Apparatus for removing carbon dioxide in combustion exhaust gas
JP2014505593A (en) * 2011-02-02 2014-03-06 アルストム テクノロジー リミテッド Renewable energy reduction method
JP2015502847A (en) * 2011-11-29 2015-01-29 スルザー ケムテック アクチェンゲゼルシャフト Method and apparatus for carbon dioxide absorption
JP2013184080A (en) * 2012-03-06 2013-09-19 Babcock Hitachi Kk Device for recovering carbon dioxide
JP2015532617A (en) * 2012-09-05 2015-11-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for separating acid gases from fluid streams containing water
WO2014046147A1 (en) 2012-09-20 2014-03-27 三菱重工業株式会社 Steam providing system and co2 recovery facilities provided with same
WO2014046018A1 (en) 2012-09-20 2014-03-27 三菱重工業株式会社 Carbon dioxide recovery device
US8961664B2 (en) 2012-09-20 2015-02-24 Mitsubishi Heavy Industries, Ltd. Carbon dioxide recovery device
US10195561B2 (en) 2012-09-20 2019-02-05 Mitsubishi Heavy Industries Engineering, Ltd. Steam supply system and CO2 recovery unit including the same
WO2014045797A1 (en) * 2012-09-24 2014-03-27 三菱重工業株式会社 Carbon dioxide recovery system and method
WO2021210271A1 (en) * 2020-04-15 2021-10-21 三菱重工エンジニアリング株式会社 Carbon dioxide capturing device

Also Published As

Publication number Publication date
JP2786560B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
KR950006512B1 (en) Carbon dioxide of exhaust gas removing apparatus and method
JP3233802B2 (en) Method for removing carbon dioxide and nitrogen oxides from flue gas
JP2895325B2 (en) Method for removing carbon dioxide in flue gas
JP3197183B2 (en) Method for removing carbon dioxide in flue gas
KR0123107B1 (en) Method for removing carbon dioxide from combustion exhaust gas
US5700437A (en) Method for removing carbon dioxide from combustion exhaust gas
EP0880990B1 (en) Process for removing carbon dioxide from gases
US5378442A (en) Method for treating combustion exhaust gas
US7892509B2 (en) System and method for recovering CO2
EP0558019B2 (en) Method for removing carbon dioxide from combustion exhaust gas
JP5215595B2 (en) Absorbing liquid, CO2 or H2S removing apparatus and method using absorbing liquid
JP2871334B2 (en) Method of removing carbon dioxide from flue gas
JP3504674B2 (en) Method for removing carbon dioxide and sulfur oxides from flue gas
JPH0751537A (en) Removal of co2 in co2-containing gas
JPWO2006107026A1 (en) Absorption liquid, CO2 and / or H2S removal method and apparatus
JP2786560B2 (en) Apparatus and method for removing carbon dioxide from flue gas
JP2871335B2 (en) Method for removing carbon dioxide in flue gas
JP2786559B2 (en) Method for recovering carbon dioxide from flue gas
JP2008307520A (en) Co2 or h2s removal system, co2 or h2s removal method
JP5232361B2 (en) CO2 recovery device and CO2 recovery method
JP2786562B2 (en) Treatment method of combustion exhaust gas
US11413572B2 (en) Methods and systems for emissions control in solvent-based CO2 capture processes using CO2
JP2871422B2 (en) Method for removing carbon dioxide in flue gas
JP3233809B2 (en) Method for removing carbon dioxide in flue gas
JP3305001B2 (en) Method for removing carbon dioxide and sulfur oxides from flue gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 14