JP3233809B2 - Method for removing carbon dioxide in flue gas - Google Patents

Method for removing carbon dioxide in flue gas

Info

Publication number
JP3233809B2
JP3233809B2 JP06403095A JP6403095A JP3233809B2 JP 3233809 B2 JP3233809 B2 JP 3233809B2 JP 06403095 A JP06403095 A JP 06403095A JP 6403095 A JP6403095 A JP 6403095A JP 3233809 B2 JP3233809 B2 JP 3233809B2
Authority
JP
Japan
Prior art keywords
absorption
compound
flue gas
piperazine
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06403095A
Other languages
Japanese (ja)
Other versions
JPH08257354A (en
Inventor
富雄 三村
淑進 嶋吉
正樹 飯島
薫明 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP06403095A priority Critical patent/JP3233809B2/en
Priority to US08/511,290 priority patent/US5618506A/en
Priority to NO19953103A priority patent/NO313789B1/en
Priority to EP98202417A priority patent/EP0880991B1/en
Priority to DE69522837T priority patent/DE69522837T2/en
Priority to EP98202412A priority patent/EP0880990B1/en
Priority to DE69526874T priority patent/DE69526874T2/en
Priority to EP98202413A priority patent/EP0879631B1/en
Priority to DE69526525T priority patent/DE69526525T2/en
Priority to EP95305722A priority patent/EP0705637B1/en
Priority to DE69522772T priority patent/DE69522772T2/en
Priority to CN95115093A priority patent/CN1057018C/en
Publication of JPH08257354A publication Critical patent/JPH08257354A/en
Application granted granted Critical
Publication of JP3233809B2 publication Critical patent/JP3233809B2/en
Priority to NO20022033A priority patent/NO334495B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は燃焼排ガス中に含まれる
CO2 (二酸化炭素)を除去する方法に関し、さらに詳
しくは、第2級アミンと第3級アミンの混合水溶液を用
いて、大気圧下の燃焼排ガス中のCO2 を効率よく除去
する方法に関する。
The present invention relates to a relates to a method of removing CO 2 (carbon dioxide) contained in combustion exhaust gas, more particularly, by using a mixed aqueous solution of secondary amine and tertiary amine, atmospheric pressure The present invention relates to a method for efficiently removing CO 2 in the lower combustion exhaust gas.

【0002】[0002]

【従来の技術】近年、地球の温暖化現象の原因の一つと
して、CO2 による温室効果が指摘され、地球環境を守
る上で国際的にもその対策が急務となってきた。CO2
の発生源としては、化石燃料を燃焼させるあらゆる人間
の活動分野に及び、その排出抑制への要求が一層強まる
傾向にある。これに伴い大量の化石燃料を使用する火力
発電所などの動力発生設備を対象に、ボイラの燃焼排ガ
スをアルカノールアミン水溶液等と接触させ、燃焼排ガ
ス中のCO2 を除去し、回収する方法、及び回収された
CO2 を大気へ放出することなく貯蔵する方法が精力的
に研究されている。
2. Description of the Related Art In recent years, the greenhouse effect of CO 2 has been pointed out as one of the causes of the global warming phenomenon, and countermeasures have been urgently required internationally to protect the global environment. CO 2
As a source of the occurrence, all human activity fields burning fossil fuels tend to be increasingly demanded for emission control. To the target power generation facilities such as thermal power plants using large amounts of fossil fuels with this, a method of flue gas of a boiler into contact with an aqueous alkanolamine solution or the like to remove the CO 2 in the combustion exhaust gas is recovered and, Methods for storing the recovered CO 2 without releasing it to the atmosphere are being vigorously studied.

【0003】アルカノールアミンとしては、モノエタノ
ールアミン、トリエタノールアミン、N−メチルジエタ
ノールアミン(MDEA)、ジイソプロパノールアミ
ン、ジグリコールアミンなどを挙げることができるが、
通常モノエタノールアミン(MEA)が好んで用いられ
る。またこれ以外の第2級及び第3級ヒンダードアミン
水溶液の使用も検討されている。
Examples of the alkanolamine include monoethanolamine, triethanolamine, N-methyldiethanolamine (MDEA), diisopropanolamine, and diglycolamine.
Usually, monoethanolamine (MEA) is preferably used. The use of other secondary and tertiary hindered amine aqueous solutions is also being studied.

【0004】しかし、MEAに代表される上記のような
アルカノールアミン水溶液を燃焼排ガス中のCO2 を吸
収・貯蔵する吸収剤として用いても、所定濃度のアミン
水溶液の所定量当たりのCO2 の吸収量、所定濃度のア
ミン水溶液の単位アミンモル当たりのCO2 吸収量、所
定濃度におけるCO2 の吸収速度、さらには吸収後のア
ルカノールアミン水溶液の再生に要する熱エネルギなど
に照らして、必ずしも満足のできるものではない。
However, even if the alkanolamine aqueous solution represented by MEA as described above is used as an absorbent for absorbing and storing CO 2 in combustion exhaust gas, the absorption of CO 2 per a predetermined amount of the amine aqueous solution having a predetermined concentration can be achieved. The amount of CO 2 absorbed per unit amine mole of the aqueous amine solution of the predetermined concentration, the absorption rate of CO 2 at the predetermined concentration, and the heat energy required for the regeneration of the aqueous alkanolamine solution after absorption. is not.

【0005】ところで、各種混合ガスからアミン化合物
を用いて酸性ガスを分離する技術は数多く知られてい
る。特開昭53−100180号公報には、(1)環の
一部分であって且つ第二炭素原子もしくは第三炭素原子
のどちらかに結合された少なくとも一個の第二アミノ基
または第三炭素原子に結合された第一アミノ基を含有す
る立体障害アミンが少なくとも50モル%と第三アミノ
アルコールが少なくとも約10モル%とよりなるアミン
混合物、及び(2)酸性ガスに対する物理的吸収剤であ
る前記アミン混合物用の溶媒、からなるアミン−溶媒液
体吸収剤に通常ガス状の混合物を接触させることからな
る酸性ガスの除去方法が記載されている。立体障害アミ
ンとしては2−ピペリジンエタノール〔2−(2−ヒド
ロキシエチル)−ピペリジン〕及び3−アミノ−3−メ
チル−1−ブタノールなどが、また溶媒としては25重
量%までの水を含んでもよいスルホキシド化合物など
が、さらに処理ガスの例としては、同公報11頁左上欄
に「高濃度の二酸化炭素及び硫化水素、例えば35%の
CO2 及び10〜12%のH2 Sを有する通常ガス状の
混合物」が例示され、また実施例にはCO2 そのものが
使用されている。
There are many known techniques for separating an acidic gas from various mixed gases using an amine compound. Japanese Patent Application Laid-Open No. 53-100180 discloses that (1) at least one secondary amino group or tertiary carbon atom which is a part of a ring and bonded to either a secondary carbon atom or a tertiary carbon atom; An amine mixture consisting of at least 50 mol% of sterically hindered amines containing bound primary amino groups and at least about 10 mol% of tertiary amino alcohols, and (2) said amines being physical absorbers for acidic gases A method for removing acidic gases comprising contacting a gaseous mixture with an amine-solvent liquid absorbent comprising a solvent for the mixture is described. Sterically hindered amines include 2-piperidineethanol [2- (2-hydroxyethyl) -piperidine] and 3-amino-3-methyl-1-butanol, and the solvent may contain up to 25% by weight of water. Examples of the processing gas include a sulfoxide compound and the like, as described in the upper left column of page 11 of the same publication, as “normal gaseous state having a high concentration of carbon dioxide and hydrogen sulfide, for example, 35% CO 2 and 10 to 12% H 2 S. mixture "is illustrated, also in the embodiment CO 2 itself is used for.

【0006】特開昭61−71819号公報には、立体
障害アミン及びスルホランなどの非水溶媒を含む酸性ガ
ススクラッピング用組成物が記載されている。また本公
報にはCO2 の吸収に対し、立体障害アミンの有利性を
反応式を用いて説明している。
JP-A-61-71819 describes a composition for acid gas scraping containing a non-aqueous solvent such as a sterically hindered amine and sulfolane. In addition, this publication describes the advantage of sterically hindered amines with respect to CO 2 absorption using a reaction formula.

【0007】ケミカルエンジニアリングサイエンス(C
hemical Engineering Scien
ce),41巻,4号,997〜1003頁には、ヒン
ダードアミンである2−アミノ−2−メチル−1−プロ
パノール(AMP)水溶液の炭酸ガス吸収挙動が開示さ
れている。吸収させるガスとしては大気圧のCO2 及び
CO2 とN2 の混合物が用いられている。
[0007] Chemical Engineering Science (C
chemical Engineering Science
ce), Vol. 41, No. 4, pp. 997 to 1003 discloses carbon dioxide absorption behavior of an aqueous solution of a hindered amine, 2-amino-2-methyl-1-propanol (AMP). As the gas to be absorbed, CO 2 at atmospheric pressure and a mixture of CO 2 and N 2 are used.

【0008】ケミカルエンジニアリングサイエンス(C
hemical Engineering scien
ce),41巻,2号,405〜408頁には、常温付
近において、AMPのようなヒンダードアミンとMEA
のような直鎖アミンの各水溶液のCO2 やH2 Sに対す
る吸収速度が報告されている。
[0008] Chemical Engineering Science (C
chemical Engineering science
ce), Vol. 41, No. 2, pp. 405-408, shows that hindered amines such as AMP and MEA
The absorption rates of aqueous solutions of such linear amines for CO 2 and H 2 S have been reported.

【0009】米国特許3,622,267号明細書には
メチルジエタノールアミン及びモノエチルモノエタノー
ルアミンを含有する水性混合物を用い、原油などの部分
酸化ガスなどの合成ガスに含まれる高分圧のCO2 、例
えば40気圧の30%CO2含有合成ガスを精製する技
術が開示されている。
US Pat. No. 3,622,267 uses an aqueous mixture containing methyldiethanolamine and monoethylmonoethanolamine, and uses a high partial pressure of CO 2 contained in a synthesis gas such as a partially oxidized gas such as crude oil. For example, a technique for purifying a synthesis gas containing 30% CO 2 at 40 atm is disclosed.

【0010】ドイツ公開特許1,542,415号公報
にはCO2 、H2 S、COSの吸収速度の向上のためモ
ノアルキルアルカノールアミンなどを物理又は化学吸収
剤に添加する技術が開示されている。同様にドイツ公開
特許1,904,428号には、モノメチルエタノール
アミンがメチルジエタノールアミンの吸収速度を向上さ
せる目的で添加される技術が開示されている。
[0010] German Offenlegungsschrift 1,542,415 discloses a technique of adding a monoalkylalkanolamine or the like to a physical or chemical absorbent in order to improve the absorption rate of CO 2 , H 2 S and COS. . Similarly, German Offenlegungsschrift 1,904,428 discloses a technique in which monomethylethanolamine is added for the purpose of improving the absorption rate of methyldiethanolamine.

【0011】米国特許4,336,233号明細書に
は、天然ガス、合成ガス、ガス化石炭ガスの精製にピペ
ラジンの0.81〜1.3モル/リットル水溶液が洗浄
液として、またピペラジンがメチルジエタノールアミ
ン、トリエタノールアミン、ジエタノールアミン、モノ
メチルエタノールアミンなどの溶媒と共に水溶液で洗浄
液として使用される技術が開示されている。
US Pat. No. 4,336,233 discloses that a 0.81-1.3 mol / l aqueous solution of piperazine is used as a cleaning liquid for the purification of natural gas, synthesis gas and gasified coal gas, and that piperazine is methyl. A technique is disclosed which is used as a washing solution in an aqueous solution together with a solvent such as diethanolamine, triethanolamine, diethanolamine, and monomethylethanolamine.

【0012】同様に特開昭52−63171号公報に
は、第3級アルカノールアミン、モノアルキルアルカノ
ールアミンなどにピペラジンまたはヒドロキシエチルピ
ペラジンなどのピペラジン誘導体を促進剤として加えた
CO2 吸収剤が示唆されているが、実際にはモノアルキ
ルアルカノールアミンとしてはモノメチルアミノエタノ
ールアミンとピペラジンの組合せについては試験されて
おらず、さらにまた合成ガスを対象としたものであり、
大気圧下における燃焼排ガス中のCO2 の除去について
は、何ら記載されていない。
Similarly, Japanese Patent Application Laid-Open No. 52-63171 suggests a CO 2 absorbent obtained by adding a piperazine derivative such as piperazine or hydroxyethylpiperazine as an accelerator to a tertiary alkanolamine, a monoalkylalkanolamine or the like. However, in practice, the combination of monomethylaminoethanolamine and piperazine has not been tested as a monoalkyl alkanolamine, and it is also intended for synthesis gas,
There is no description of the removal of CO 2 from flue gas at atmospheric pressure.

【0013】[0013]

【発明が解決しようとする課題】前述のように燃焼排ガ
スからCO2 を効率よく、除去する方法が望まれてい
る。特に、一定濃度のCO2 吸収剤(アミン系化合物)
を含む水溶液で燃焼排ガスを処理する場合、吸収剤単位
モル当たりのCO2 吸収量、水溶液の単位体積当たりの
CO2 の吸収量、及び吸収速度の大きい吸収剤を選択す
ることが当面の大きな課題である。さらにはCO2 の吸
収後にCO2 を分離し、吸収液を再生させる際に必要な
熱エネルギの少ない吸収剤が望まれる。
As described above, there is a need for a method for efficiently removing CO 2 from flue gas. In particular, a certain concentration of CO 2 absorbent (amine compound)
When processing flue gas with an aqueous solution containing a large problem of CO 2 absorption, absorption of CO 2 per unit volume of the aqueous solution, and to select a larger absorbent absorption rate of the immediate per absorbent unit mole It is. Further separating the CO 2 after absorption of CO 2, heat energy less absorbent necessary for regenerating the absorbing solution is desired.

【0014】[0014]

【課題を解決するための手段】本発明者らは前記課題に
鑑み、燃焼排ガス中のCO2 を除去する際に用いられる
吸収液について鋭意検討した結果、特定のアミン化合物
とピペラジン系化合物とを共に含有する水溶液を用いる
ことが特に有効であるとの知見を得て、本発明を完成さ
せることができた。すなわち本発明によれば、下記一般
式で示されるアミン化合物〔1〕と、ピペラジン、2−
メチルピペラジン、2,3−ジメチルピペラジン、2,
5−ジメチルピペラジンの群から選ばれるピペラジン系
化合物〔2〕とを含有する水溶液であって、アミン化合
物〔1〕の濃度が15〜65重量%の範囲であり、ピペ
ラジン系化合物〔2〕の濃度が1.5〜65重量%でか
つ30℃におけるアミン化合物〔1〕の水溶液に可溶な
範囲内であり、かつ〔1〕と〔2〕の合計濃度が70重
量%以下である水溶液と大気圧下の燃焼排ガスとを接触
させることを特徴とする燃焼排ガス中のCO2 を除去す
る方法が提供される。
Means for Solving the Problems In view of the above problems, the present inventors have conducted intensive studies on an absorbent used for removing CO 2 in flue gas, and as a result, have found that a specific amine compound and a piperazine-based compound can be separated. The inventors have found that it is particularly effective to use an aqueous solution containing both of them, and have completed the present invention. That is, according to the present invention, an amine compound [1] represented by the following general formula and piperazine, 2-amine
Methylpiperazine, 2,3-dimethylpiperazine, 2,
An aqueous solution containing a piperazine compound [2] selected from the group of 5-dimethylpiperazine ,
The concentration of the product [1] is in the range of 15 to 65% by weight,
When the concentration of the azine compound [2] is 1.5 to 65% by weight
Soluble in an aqueous solution of the amine compound [1] at 30 ° C.
Within the range, and the total concentration of [1] and [2] is 70 times
A method is provided for removing CO 2 in flue gas, which comprises contacting an aqueous solution of not more than 5% by volume with flue gas at atmospheric pressure.

【化2】 R1 CHR2 NHCH2 CH2 OH 〔1〕 (式中、R1 は水素原子または炭素数1〜4の低級アル
キル基を表し、R2 は水素原子またはメチル基を表
す。) また本発明によれば、前記ピペラジン系化合物〔2〕が
2−メチルピペラジンであり、アミン化合物〔1〕が2
−(n−ブチルアミノ)エタノールである上記燃焼排ガ
ス中のCO2 を除去する方法が提供される。
Embedded image R 1 CHR 2 NHCH 2 CH 2 OH [1] (In the formula, R 1 represents a hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms, and R 2 represents a hydrogen atom or a methyl group.) According to the present invention, the piperazine compound [2] is 2-methylpiperazine, and the amine compound [1] is 2-methylpiperazine.
- (n-butylamino) method for removing CO 2 in the combustion exhaust gas is ethanol is provided.

【0015】[0015]

【作用】本発明は、特定のアミン化合物〔1〕とピペラ
ジン系化合物〔2〕とを含有する水溶液により燃焼排ガ
ス中のCO2 を除去する方法であり、両化合物を含有し
た水溶液を吸収液として使用することにより、各単独化
合物の使用では得られない優れた吸収性能が発揮され
る。本発明で用いられる前記一般式で示されるアミン化
合物〔1〕において、R1が表す炭素数1〜4の低級ア
ルキル基としては、メチル基、エチル基、n−プロピル
、イソプロピル基、n−ブチル基、イソブチル基、s
ec−ブチル基、tert−ブチル基を例示することが
でき、好ましくはメチル基、エチル基、n−プロピル
基、n−ブチル基であり、特に好ましくはn−プロピル
基である。またR2 は水素またはメチル基であり、好ま
しくは水素である。
The present invention relates to a specific amine compound [1] and pipera
This is a method of removing CO 2 in combustion exhaust gas with an aqueous solution containing a gin-based compound [2]. By using an aqueous solution containing both compounds as an absorbing solution, an excellent solution not obtained by using each single compound can be obtained. Absorption performance is demonstrated. In the amine compound [1] represented by the above general formula used in the present invention, the lower alkyl group having 1 to 4 carbon atoms represented by R 1 may be a methyl group, an ethyl group, an n-propyl group.
Group , isopropyl group, n-butyl group, isobutyl group, s
Examples thereof include an ec-butyl group and a tert-butyl group, preferably a methyl group, an ethyl group, an n-propyl group, and an n-butyl group, and particularly preferably an n-propyl group. R 2 is hydrogen or a methyl group, preferably hydrogen.

【0016】従って、前記一般式で示されるアミン化合
物〔1〕としては、2−(メチルアミノエタノール、2
−(エチルアミノ)エタノール〔EAE〕、2−(n−
プロピルアミノ)エタノール、2−(n−ブチルアミ
ノ)エタノール〔n−BAE〕、2−(n−ペンチルア
ミノ)エタノール、2−(イソプロピルアミノ)エタノ
ール、2−(sec−ブチルアミノ)エタノール、2−
(イソブチルアミノ)エタノールなどを例ですることが
でき、特に好ましくは2−(n−ブチルアミノ)エタノ
ール〔n−BAE〕である。なお、これらアミン化合物
〔1〕は、2種以上を混合して用いてもよい。
Accordingly, the amine compound [1] represented by the above general formula includes 2- (methylaminoethanol,
-(Ethylamino) ethanol [EAE], 2- (n-
Propylamino) ethanol, 2- (n-butylamino) ethanol [n-BAE], 2- (n-pentylamino) ethanol, 2- (isopropylamino) ethanol, 2- (sec-butylamino) ethanol, 2- (sec-butylamino) ethanol
An example is (isobutylamino) ethanol, and particularly preferred is 2- (n-butylamino) ethanol [n-BAE]. In addition, you may use these amine compounds [1] in mixture of 2 or more types.

【0017】本発明の燃焼排ガスとの接触に用いる前記
アミン化合物〔1〕とピペラジン化合物〔2〕の水溶液
(以下、吸収液とも称す)の濃度は、通常アミン化合物
〔1〕の濃度が15〜65重量%の範囲、好ましくは3
0〜50重量%の範囲である。
The concentration of the aqueous solution of the amine compound [1] and the piperazine compound [2] (hereinafter also referred to as absorption liquid) used for contact with the combustion exhaust gas of the present invention is usually 15 to 15%. 65% by weight, preferably 3%
It is in the range of 0 to 50% by weight.

【0018】一方、ピペラジン系化合物〔2〕の濃度と
しては、通常1.5〜65重量%の範囲である。ピペラ
ジン系化合物〔2〕の吸収液中の濃度は支障のない限り
高い方が好ましいが、ピペラジン系化合物の種類によっ
ては溶解度が小さく、高濃度にできない化合物、例えば
ピペラジンがある。従って、吸収工程全体における吸収
液のとりうる下限温度を考慮して、前記濃度範囲内で、
かつ30℃におけるアミン化合物〔1〕の水溶液に可溶
な範囲内で使用する。この観点から比較的水に対する溶
解性の小さい前記ピペラジンの場合は、1.5〜15重
量%の範囲が好ましく、その他のピペラジン系化合物で
は10〜40重量%、特に20〜35重量%の範囲で用
いることが好ましい。ただし、アミン化合物〔1〕とピ
ペラジン系化合物〔2〕の両者の合計濃度が高くなると
粘度が上昇するなどの制限から、両者の合計濃度が70
重量%以下で使用することが好ましい。
On the other hand, the concentration of the piperazine compound [2] is usually in the range of 1.5 to 65% by weight. The concentration of the piperazine compound [2] in the absorbing solution is preferably as high as possible, as long as there is no hindrance. However, there is a compound having a low solubility depending on the type of the piperazine compound, such as piperazine. Therefore, in consideration of the lower limit temperature of the absorbing solution in the entire absorption step, within the above concentration range,
And it is used within a range that is soluble in an aqueous solution of the amine compound [1] at 30 ° C. From this viewpoint, the range of 1.5 to 15% by weight is preferable for the piperazine having relatively low solubility in water, and the range of 10 to 40% by weight, particularly 20 to 35% by weight for other piperazine-based compounds. Preferably, it is used. However, when the total concentration of both the amine compound [1] and the piperazine-based compound [2] is increased, the viscosity is increased.
It is preferred to use it in an amount of not more than weight%.

【0019】本発明において、燃焼排ガスとの接触時の
吸収液の温度は、通常30〜70℃の範囲である。また
本発明で用いる吸収液には、必要に応じて腐食防止剤、
劣化防止剤などが加えられる。
In the present invention, the temperature of the absorbent at the time of contact with the combustion exhaust gas is usually in the range of 30 to 70 ° C. In addition, the absorbing solution used in the present invention may optionally include a corrosion inhibitor,
A deterioration inhibitor and the like are added.

【0020】さらに、本発明における大気圧下とは、燃
焼排ガスを供給するためブロワなどを作用させる程度の
大気圧近傍の圧力範囲は含まれるものである。
Further, the term "atmospheric pressure" in the present invention includes a pressure range near atmospheric pressure at which a blower or the like acts to supply combustion exhaust gas.

【0021】本発明の燃焼排ガス中のCO2 を除去する
方法で採用できるプロセスは、特に限定されないが、そ
の一例について図1によって説明する。図1では主要設
備のみ示し、付属設備は省略した。図1において、1は
脱CO2 塔、2は下部充填部、3は上部充填部またはト
レイ、4は脱CO2 塔燃焼排ガス供給口、5は脱CO2
燃焼排ガス排出口、6は吸収液供給口、7はノズル、8
は必要に応じて設けられる燃焼排ガス冷却器、9はノズ
ル、10は充填部、11は加湿冷却水循環ポンプ、12
は補給水供給ライン、13はCO2 を吸収した吸収液排
出ポンプ、14は熱交換器、15は吸収液再生(以下、
「再生」とも略称)塔、16はノズル、17は下部充填
部、18は再生加熱器(リボイラ)、19は上部充填
部、20は還流水ポンプ、21はCO2分離器、22は
回収CO2 排出ライン、23は再生塔還流冷却器、24
はノズル、25は再生塔還流水供給ライン、26は燃焼
排ガス供給ブロワ、27は冷却器、28は再生塔還流水
供給口である。
The process that can be employed in the method of the present invention for removing CO 2 from flue gas is not particularly limited, but one example thereof will be described with reference to FIG. In FIG. 1, only the main equipment is shown, and the auxiliary equipment is omitted. In FIG. 1, 1 is a CO 2 removal tower, 2 is a lower filling section, 3 is an upper filling section or tray, 4 is a CO 2 removal tower exhaust gas inlet, and 5 is a CO 2 removal section.
Combustion exhaust gas outlet, 6 is an absorbent supply port, 7 is a nozzle, 8
Is a flue gas cooler provided as required, 9 is a nozzle, 10 is a filling section, 11 is a humidification cooling water circulation pump, 12
Is a make-up water supply line, 13 is an absorption liquid discharge pump that has absorbed CO 2 , 14 is a heat exchanger, 15 is an absorption liquid regeneration (hereinafter, referred to as
Tower, 16 is a nozzle, 17 is a lower filling section, 18 is a regenerative heater (reboiler), 19 is an upper filling section, 20 is a reflux water pump, 21 is a CO 2 separator, and 22 is recovered CO. 2 discharge line, 23 is a regeneration tower reflux condenser, 24
Is a nozzle, 25 is a regeneration tower reflux water supply line, 26 is a combustion exhaust gas supply blower, 27 is a cooler, and 28 is a regeneration tower reflux water supply port.

【0022】図1において、燃焼排ガスは燃焼排ガス供
給ブロワ26により燃焼排ガス冷却器8に押込められ、
ノズル9からの加湿冷却水と充填部10で接触し、加湿
冷却され、脱CO2 塔燃焼排ガス供給口4を通って脱C
2 塔1へ導かれる。燃焼排ガスと接触した加湿冷却水
は燃焼排ガス冷却器8の下部に溜り、ポンプ11により
ノズル9へ循環使用される。加湿冷却水は燃焼排ガスを
加湿冷却することにより徐々に失われるので、補給水供
給ライン12により補充される。燃焼排ガスを加湿冷却
の状態より、さらに冷却する場合は、加湿冷却循環ポン
プ11とノズル9との間に熱交換器を置き、加湿冷却水
を冷却して燃焼排ガス冷却器8に供給することにより可
能となる。
In FIG. 1, the flue gas is pushed into the flue gas cooler 8 by the flue gas supply blower 26,
Contact with humidifying cooling water and the filling section 10 from the nozzle 9, is fogging, de-C through the de-CO 2 tower combustion exhaust gas feed port 4
It is led to the O 2 tower 1. The humidified cooling water in contact with the combustion exhaust gas accumulates in the lower part of the combustion exhaust gas cooler 8 and is circulated to the nozzle 9 by the pump 11. Since the humidified cooling water is gradually lost by humidifying and cooling the combustion exhaust gas, it is replenished through the makeup water supply line 12. When the combustion exhaust gas is further cooled from the humidified cooling state, a heat exchanger is placed between the humidification cooling circulation pump 11 and the nozzle 9 to cool the humidification cooling water and supply it to the combustion exhaust gas cooler 8. It becomes possible.

【0023】脱CO2 塔1に押し込められた燃焼排ガス
はノズル7から供給される一定濃度の吸収液と下部充填
部2で向流接触させられ、燃焼排ガス中のCO2 は吸収
液により吸収除去され、脱CO2 燃焼排ガスは上部充填
部3へと向う。脱CO2 塔1に供給される吸収液はCO
2 を吸収し、その吸収による反応熱のため、通常吸収液
供給口6における温度よりも高温となり、CO2 を吸収
した吸収液排出ポンプ13により熱交換器14に送られ
て加熱され、吸収液再生塔5へ導かれる。再生された吸
収液の温度調節は熱交換器14あるいは必要に応じて熱
交換器14と吸収液供給口6の間に設けられる冷却器2
7により行うことができる。
The flue gas pushed into the CO 2 removal tower 1 is brought into countercurrent contact with the absorbent having a constant concentration supplied from the nozzle 7 in the lower filling section 2, and CO 2 in the flue gas is absorbed and removed by the absorbent. Then, the CO 2 -free flue gas is directed to the upper filling section 3. The absorbing solution supplied to the CO 2 removal tower 1 is CO
2 is absorbed, and the temperature of the reaction is normally higher than the temperature at the absorption liquid supply port 6 due to the heat of reaction caused by the absorption. The absorption liquid is sent to the heat exchanger 14 by the absorption liquid discharge pump 13 that has absorbed CO 2 and is heated. It is led to the regeneration tower 5. The temperature of the regenerated absorbent is controlled by the heat exchanger 14 or, if necessary, the cooler 2 provided between the heat exchanger 14 and the absorbent supply port 6.
7 can be performed.

【0024】再生塔15では、再生加熱器18による加
熱により下部充填部17で吸収液が再生され、熱交換器
14及び必要に応じて冷却器27により冷却されて脱C
2塔1へ戻される。吸収液再生塔15の上部におい
て、吸収液から分離されたCO 2 はノズル24より供給
される還流水と接触し、再生塔還流冷却器23により冷
却され、CO2 分離器21にてCO2 に同伴した水蒸気
が凝縮した還流水と分離され、回収CO2 排出ライン2
2よりCO2 回収工程へ導かれる。還流水の一部は還流
水ポンプ20で、再生塔15へ還流され、一部は再生塔
還流水供給ライン25を経て脱CO2 塔1の再生塔還流
水供給口28に供給される。この再生塔還流水には微量
の吸収液が含まれているので、脱CO2 塔1の上部充填
部3で排ガスと接触し、排ガス中に含まれる微量のCO
2 の除去に貢献する。
In the regeneration tower 15, the heating by the regeneration heater 18 is performed.
The absorption liquid is regenerated in the lower filling section 17 by heat, and the heat exchanger
14 and, if necessary, cooled by a cooler 27 to remove C
OTwoReturned to Tower 1. Above the absorption liquid regeneration tower 15
And the CO separated from the absorbing solution TwoIs supplied from nozzle 24
And is cooled by the regenerative tower reflux cooler 23.
Rejected, COTwoCO in the separator 21TwoWater vapor associated with
Is separated from the condensed reflux water, and the recovered COTwoDischarge line 2
CO from 2TwoGuided to the recovery process. Part of the reflux water is refluxed
The water is returned to the regeneration tower 15 by the water pump 20, and a part is regenerated.
CO 2 removal through the reflux water supply line 25TwoRegeneration tower reflux of tower 1
The water is supplied to the water supply port 28. A trace amount of this recycle tower reflux water
Desorbed CO.TwoTop filling of tower 1
Contact with the exhaust gas in the part 3 and trace amount of CO contained in the exhaust gas
TwoContributes to the removal of.

【0025】[0025]

【実施例】【Example】

(実施例1〜3、比較例1〜4)本発明による燃焼排ガ
ス中のCO2 を除去する方法の効果を確認するため、図
2に概略を示す小型試験装置を用いた。図2において、
試験ガス201は高さ1500mm、内径50mm、充
填高さ1000mmのステンレス製吸収塔202の下部
に0.98Nm3 /hの流速で導入される。試験ガスの
組成はCO2 10%、N2 87%、O2 3%に調整され
たものである。吸収塔202の上部にはノズル203が
あり、再生され循環された吸収液が噴霧される。吸収塔
中央部に設けられた充填部204には、長さ6mmのデ
ィクソンパッキングが充填され、その周りには温水ジャ
ケット205が設けられ、吸収温度を60℃に保つため
の温水循環ポンプ206、温水タンク207を備えてい
る。また吸収塔202の上部には吸収塔コンデンサ20
8が設置され、吸収処理ガスはここで冷却された後、吸
収処理ガス分析器209で分析されて排出される。吸収
塔下部には吸収液抜出しポンプ210が設けられ、吸収
液は予熱ヒータ211で予熱され温度110℃に制御さ
れた後、再生塔212の上部に導かれる。再生塔212
はステンレス製で高さ1500mm、内径25mm、中
央部の充填高さ160mmであり、吸収塔と同じ充填物
が充填されている。また充填部には吸収塔と同様に温度
を一定に保つための温水ジャケット213を備えてい
る。再生塔212の充填部の上部から流下したCO2
ッチ吸収液は下部のリボイラヒータ(電熱)214で加
熱(リボイラの温度は110℃に制御)されて発生した
スチームによりストリッピングされ、リーン吸収液とな
り、再生吸収液冷却器215、再生吸収液抜出しポンプ
216、再生吸収液タンク217、再生吸収液循環ポン
プ218、再生吸収液予熱器219を経由して吸収塔上
部に2.8リットル/hの流速で循環使用される。な
お、リーン吸収液の一部は再生吸収液循環ポンプ220
で再生塔入口に還流される。再生塔上部には再生塔コン
デンサ221が設けられ、吸収液から遊離したCO2
コンデンサ221で水蒸気を凝縮分離された後、図示し
ない赤外線式CO2 ガス計(堀場製作所製VIA51
0)により分析され、再生塔ガス洗浄器222を経由し
て排出される。
(Examples 1 to 3, Comparative Examples 1 to 4) In order to confirm the effect of the method for removing CO 2 in flue gas according to the present invention, a small test apparatus schematically shown in FIG. 2 was used. In FIG.
The test gas 201 is introduced at a flow rate of 0.98 Nm 3 / h into a lower part of a stainless steel absorption tower 202 having a height of 1500 mm, an inner diameter of 50 mm and a filling height of 1000 mm. The composition of the test gas CO 2 10%, N 2 87 %, in which has been adjusted to O 2 3%. A nozzle 203 is provided above the absorption tower 202, and the regenerated and circulated absorption liquid is sprayed. A filling section 204 provided at the center of the absorption tower is filled with a 6 mm-length Dickson packing, and a hot water jacket 205 is provided therearound. A hot water circulating pump 206 for keeping the absorption temperature at 60 ° C. A tank 207 is provided. Above the absorption tower 202 is an absorption tower condenser 20.
8 is installed, the absorption processing gas is cooled here, and then analyzed by the absorption processing gas analyzer 209 and discharged. An absorption liquid extraction pump 210 is provided below the absorption tower, and the absorption liquid is preheated by a preheater 211 and controlled at a temperature of 110 ° C., and then guided to an upper part of the regeneration tower 212. Regeneration tower 212
Is made of stainless steel, has a height of 1500 mm, an inner diameter of 25 mm, and a filling height of 160 mm at the center, and is filled with the same packing as the absorption tower. The filling section is provided with a warm water jacket 213 for keeping the temperature constant, similarly to the absorption tower. The CO 2 -rich absorbent flowing down from the upper part of the packed portion of the regeneration tower 212 is heated by the lower reboiler heater (electric heating) 214 (the temperature of the reboiler is controlled to 110 ° C.), and stripped by the generated steam to obtain a lean absorbent. 2.8 liters / h at the upper part of the absorption tower via the regeneration absorbent cooler 215, the regeneration absorbent extraction pump 216, the regeneration absorbent tank 217, the regeneration absorbent circulation pump 218, and the regeneration absorbent preheater 219. Circulated at a flow rate. Note that a part of the lean absorbent is supplied to the regeneration absorbent circulation pump 220.
At the inlet of the regeneration tower. A regeneration tower condenser 221 is provided at the upper part of the regeneration tower, and CO 2 released from the absorbing solution is condensed and separated from water vapor by the condenser 221, and then an infrared CO 2 gas meter (not shown, VIA51 manufactured by Horiba, Ltd.)
0) and is discharged via the regeneration tower gas scrubber 222.

【0026】上記の小型試験装置及び吸収・再生条件で
表1に記載の化合物を含有する吸収液を用い、吸収・再
生試験を行い、表1に記載の吸収塔の入口ガス(試験ガ
ス)と出口ガス(吸収処理ガス)中のCO2 濃度、リボ
イラの入熱量(kW単位で示す)、リッチ吸収液及びリ
ーン吸収液中のCO2 濃度(島津製作所製「全有機炭素
計」TOC−5000による)、再生熱量を求めた。結
果を表1に示す。また、リボイラ入熱量を変えて試験
し、系内が安定したときのリボイラ入熱両と単位時間当
たりのCO2 の回収量を求めた。結果を併せて表2に示
す。なお、表1の再生熱量が装置の放熱を含むのに対
し、表2では装置の放熱を除いた値である。
An absorption / regeneration test was conducted using the above-mentioned small test apparatus and an absorption solution containing the compound shown in Table 1 under the absorption / regeneration conditions, and the inlet gas (test gas) of the absorption tower shown in Table 1 was used. CO 2 concentration in the outlet gas (absorption processing gas), heat input of the reboiler (expressed in kW), CO 2 concentration in the rich absorbing solution and the lean absorbing solution (according to TOC-5000 “Total Organic Carbon Analyzer” manufactured by Shimadzu Corporation) ) And the heat of regeneration. Table 1 shows the results. In addition, tests were performed by changing the heat input of the reboiler, and both the heat input of the reboiler and the amount of CO 2 recovered per unit time when the inside of the system was stabilized were determined. The results are shown in Table 2. In addition, while the regenerated heat amount in Table 1 includes the heat radiation of the device, in Table 2, the value does not include the heat radiation of the device.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】表1及び表2からわかるように、本発明に
よるアミン化合物〔1〕とピペラジン系化合物〔2〕の
混合吸収液を用いることにより、従来のMEA水溶液を
用いる場合あるいはアミン化合物〔1〕やピペラジン化
合物〔2〕の単独使用の場合に比べ、吸収能力,再生エ
ネルギの点で大幅に改善され極めて有利であることがわ
かる。
As can be seen from Tables 1 and 2, the mixed absorption solution of the amine compound [1] and the piperazine compound [2] according to the present invention can be used to prepare a conventional MEA aqueous solution or the amine compound [1]. As compared with the case where the piperazine compound [2] is used alone, the absorption capacity and the regenerative energy are greatly improved, which is extremely advantageous.

【0030】[0030]

【発明の効果】以上詳細に述べたごとく、本発明の方法
により大気圧下の燃焼排ガスを処理することにより、従
来使用されていたアミン吸収液を用いる場合よりも、総
合的にCO2 の吸収能力の向上が達成される。
As described above in detail, the treatment of the combustion exhaust gas under the atmospheric pressure by the method of the present invention makes it possible to comprehensively absorb CO 2 more than in the case of using the conventional amine absorbing liquid. Improved performance is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で採用できる燃焼排ガス中のCO2 を除
去する工程の一例の説明図。
FIG. 1 is a diagram illustrating an example of a process for removing CO 2 in combustion exhaust gas that can be employed in the present invention.

【図2】本発明の実施例で使用した小型試験装置の概略
説明図。
FIG. 2 is a schematic explanatory view of a small-sized test apparatus used in an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯島 正樹 東京都千代田区丸の内二丁目5番1号 三菱重工業 株式会社本社内 (72)発明者 光岡 薫明 広島県広島市西区観音新町四丁目6番22 号 三菱重工業株式会社広島研究所内 (56)参考文献 特開 昭52−63171(JP,A) 特開 昭54−40284(JP,A) 特開 平6−198120(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/62 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masaki Iijima 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Heavy Industries, Ltd. Headquarters (72) Inventor Kaoru Mitsuoka 4-6-1 Kanon Shinmachi, Nishi-ku, Hiroshima, Hiroshima Prefecture 22 Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd. (56) References JP-A-52-63171 (JP, A) JP-A-54-40284 (JP, A) JP-A-6-198120 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B01D 53/62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記一般式で示されるアミン化合物
〔1〕と、ピペラジン、2−メチルピペラジン、2,3
−ジメチルピペラジン、2,5−ジメチルピペラジンの
群から選ばれるピペラジン系化合物〔2〕とを含有する
水溶液であって、アミン化合物〔1〕の濃度が15〜6
5重量%の範囲であり、ピペラジン系化合物〔2〕の濃
度が1.5〜65重量%でかつ30℃におけるアミン化
合物〔1〕の水溶液に可溶な範囲内であり、かつ〔1〕
と〔2〕の合計濃度が70重量%以下である水溶液と大
気圧下の燃焼排ガスとを接触させることを特徴とする燃
焼排ガス中のCO2 を除去する方法。 【化1】 R1 CHR2 NHCH2 CH2 OH 〔1〕 (式中、R1 は水素原子または炭素数1〜4の低級アル
キル基を表し、R2 は水素原子またはメチル基を表
す。)
1. An amine compound [1] represented by the following general formula, and piperazine, 2-methylpiperazine, 2,3
Aqueous solution containing a piperazine compound [2] selected from the group consisting of -dimethylpiperazine and 2,5-dimethylpiperazine, wherein the concentration of the amine compound [1] is 15 to 6;
5% by weight, and the concentration of the piperazine compound [2]
Amination at 1.5-65% by weight and 30 ° C
Within a range soluble in an aqueous solution of the compound [1], and [1]
A method for removing CO 2 from flue gas, which comprises contacting an aqueous solution having a total concentration of 70% by weight or less with flue gas at atmospheric pressure. Embedded image R 1 CHR 2 NHCH 2 CH 2 OH [1] (In the formula, R 1 represents a hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms, and R 2 represents a hydrogen atom or a methyl group.)
【請求項2】 前記ピペラジン系化合物〔2〕が2−メ
チルピペラジンであり、アミン化合物〔1〕が2−(n
−ブチルアミノ)エタノールである請求項1記載の燃焼
排ガス中のCO2 を除去する方法。
2. The piperazine compound [2] is 2-methylpiperazine, and the amine compound [1] is 2- (n
2. The method for removing CO2 from flue gas according to claim 1, wherein the method is (butylamino) ethanol.
JP06403095A 1994-10-06 1995-03-23 Method for removing carbon dioxide in flue gas Expired - Lifetime JP3233809B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP06403095A JP3233809B2 (en) 1995-03-23 1995-03-23 Method for removing carbon dioxide in flue gas
US08/511,290 US5618506A (en) 1994-10-06 1995-08-04 Process for removing carbon dioxide from gases
NO19953103A NO313789B1 (en) 1994-10-06 1995-08-08 Procedure for removing carbon dioxide from gases
DE69526874T DE69526874T2 (en) 1994-10-06 1995-08-16 Process for eliminating carbon dioxide from gases
DE69522837T DE69522837T2 (en) 1994-10-06 1995-08-16 Process for eliminating carbon dioxide from gases
EP98202412A EP0880990B1 (en) 1994-10-06 1995-08-16 Process for removing carbon dioxide from gases
EP98202417A EP0880991B1 (en) 1994-10-06 1995-08-16 Process for removing carbon dioxide from gases
EP98202413A EP0879631B1 (en) 1994-10-06 1995-08-16 Process for removing carbon dioxide from gases
DE69526525T DE69526525T2 (en) 1994-10-06 1995-08-16 Process for eliminating carbon dioxide from gases
EP95305722A EP0705637B1 (en) 1994-10-06 1995-08-16 Process for removing carbon dioxide from gases
DE69522772T DE69522772T2 (en) 1994-10-06 1995-08-16 Process for eliminating carbon dioxide from gases
CN95115093A CN1057018C (en) 1994-10-06 1995-08-17 Method for removing carbon dioxide from gas
NO20022033A NO334495B1 (en) 1994-10-06 2002-04-29 Procedure for removing carbon dioxide from gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06403095A JP3233809B2 (en) 1995-03-23 1995-03-23 Method for removing carbon dioxide in flue gas

Publications (2)

Publication Number Publication Date
JPH08257354A JPH08257354A (en) 1996-10-08
JP3233809B2 true JP3233809B2 (en) 2001-12-04

Family

ID=13246333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06403095A Expired - Lifetime JP3233809B2 (en) 1994-10-06 1995-03-23 Method for removing carbon dioxide in flue gas

Country Status (1)

Country Link
JP (1) JP3233809B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008156085A1 (en) 2007-06-18 2008-12-24 Mitsubishi Heavy Industries, Ltd. Absorbing liquid and apparatus and method for removing co2 or h2s with absorbing liquid
EP2662125A1 (en) * 2007-06-28 2013-11-13 Research Institute Of Innovative Technology For The Earth Method for efficiently recovering carbon dioxide in gas

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2024060T (en) * 2006-05-19 2016-07-25 Basf Se Premixture for preparing an absorbent for removing acidic gases from fluid streams
AU2011254003B2 (en) 2010-12-22 2013-05-16 Kabushiki Kaisha Toshiba Acid gas absorbent, acid gas removal method, and acid gas removal device
JP5659128B2 (en) * 2010-12-22 2015-01-28 株式会社東芝 Acid gas absorbent, acid gas removal method, and acid gas removal apparatus
JP2012139622A (en) * 2010-12-28 2012-07-26 Research Institute Of Innovative Technology For The Earth Solid absorber for separating/recovering carbon dioxide and method for recovering carbon dioxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008156085A1 (en) 2007-06-18 2008-12-24 Mitsubishi Heavy Industries, Ltd. Absorbing liquid and apparatus and method for removing co2 or h2s with absorbing liquid
JP2008307519A (en) * 2007-06-18 2008-12-25 Mitsubishi Heavy Ind Ltd Absorbing solution, and co2 or h2s removal apparatus and method employing the absorbing solution
US8597418B2 (en) 2007-06-18 2013-12-03 Mitsubishi Heavy Industries, Ltd. Absorbent, CO2 or H2S reducing apparatus, and CO2 or H2S reducing method using absorbent
US9211496B2 (en) 2007-06-18 2015-12-15 Mitsubishi Heavy Industries, Ltd. Absorbent, CO2 or H2S reducing apparatus, and CO2 or H2S reducing method using absorbent
EP2662125A1 (en) * 2007-06-28 2013-11-13 Research Institute Of Innovative Technology For The Earth Method for efficiently recovering carbon dioxide in gas

Also Published As

Publication number Publication date
JPH08257354A (en) 1996-10-08

Similar Documents

Publication Publication Date Title
JP2871334B2 (en) Method of removing carbon dioxide from flue gas
JP3197183B2 (en) Method for removing carbon dioxide in flue gas
EP0880990B1 (en) Process for removing carbon dioxide from gases
JP2895325B2 (en) Method for removing carbon dioxide in flue gas
KR0123107B1 (en) Method for removing carbon dioxide from combustion exhaust gas
EP0558019B2 (en) Method for removing carbon dioxide from combustion exhaust gas
JP2882950B2 (en) Method for removing carbon dioxide in flue gas
JP3233802B2 (en) Method for removing carbon dioxide and nitrogen oxides from flue gas
US5700437A (en) Method for removing carbon dioxide from combustion exhaust gas
JP4634384B2 (en) Absorption liquid, CO2 and / or H2S removal method and apparatus
JP5230080B2 (en) Absorption liquid, CO2 removal apparatus and method
JP2871335B2 (en) Method for removing carbon dioxide in flue gas
JP3761960B2 (en) Method for removing carbon dioxide in gas
JPH0751537A (en) Removal of co2 in co2-containing gas
JP3197173B2 (en) Method of removing carbon dioxide from flue gas
JP2786560B2 (en) Apparatus and method for removing carbon dioxide from flue gas
JP2871422B2 (en) Method for removing carbon dioxide in flue gas
JP3233809B2 (en) Method for removing carbon dioxide in flue gas
JP3276527B2 (en) How to remove carbon dioxide in gas
JP2871447B2 (en) Method for removing carbon dioxide in flue gas
JP3426685B2 (en) Method for removing carbon dioxide in flue gas
JP2007000702A (en) Liquid absorbent, and device and method for removing co2 or h2s, or both
JPH08257353A (en) Process for removing carbon dioxide in combustion exhaust gas
JPH05237341A (en) Method for removing carbon dioxide in waste combustion gas
JPH07313840A (en) Method for removing carbon dioxide in waste combustion gas

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

EXPY Cancellation because of completion of term