JP3197173B2 - Method of removing carbon dioxide from flue gas - Google Patents

Method of removing carbon dioxide from flue gas

Info

Publication number
JP3197173B2
JP3197173B2 JP24291594A JP24291594A JP3197173B2 JP 3197173 B2 JP3197173 B2 JP 3197173B2 JP 24291594 A JP24291594 A JP 24291594A JP 24291594 A JP24291594 A JP 24291594A JP 3197173 B2 JP3197173 B2 JP 3197173B2
Authority
JP
Japan
Prior art keywords
absorption
exhaust gas
combustion exhaust
absorbent
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24291594A
Other languages
Japanese (ja)
Other versions
JPH08103630A (en
Inventor
富雄 三村
繁 下條
正樹 飯島
薫明 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP24291594A priority Critical patent/JP3197173B2/en
Priority to US08/511,290 priority patent/US5618506A/en
Priority to NO19953103A priority patent/NO313789B1/en
Priority to DE69526874T priority patent/DE69526874T2/en
Priority to DE69522772T priority patent/DE69522772T2/en
Priority to EP95305722A priority patent/EP0705637B1/en
Priority to EP98202412A priority patent/EP0880990B1/en
Priority to DE69522837T priority patent/DE69522837T2/en
Priority to DE69526525T priority patent/DE69526525T2/en
Priority to EP98202417A priority patent/EP0880991B1/en
Priority to EP98202413A priority patent/EP0879631B1/en
Priority to CN95115093A priority patent/CN1057018C/en
Publication of JPH08103630A publication Critical patent/JPH08103630A/en
Application granted granted Critical
Publication of JP3197173B2 publication Critical patent/JP3197173B2/en
Priority to NO20022033A priority patent/NO334495B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は燃焼排ガス中に含まれる
CO2 (二酸化炭素)を除去する方法に関し、さらに詳
しくは、特定のピペラジン誘導体の水溶液を用いて、大
気圧下の燃焼排ガス中のCO2 を効率よく除去する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing CO 2 (carbon dioxide) contained in flue gas, and more particularly, to a method for removing CO 2 (carbon dioxide) contained in flue gas at atmospheric pressure using an aqueous solution of a specific piperazine derivative. The present invention relates to a method for efficiently removing CO 2 .

【0002】[0002]

【従来の技術】近年、地球の温暖化現象の原因の一つと
して、CO2 による温室効果が指摘され、地球環境を守
る上で国際的にもその対策が急務となってきた。CO2
の発生源としては、化石燃料を燃焼させるあらゆる人間
の活動分野に及び、その排出抑制への要求が一層強まる
傾向にある。これに伴い大量の化石燃料を使用する火力
発電所などの動力発生設備を対象に、ボイラの燃焼排ガ
スをアルカノールアミン水溶液等と接触させ、燃焼排ガ
ス中のCO2 を除去し、回収する方法及び回収されたC
2 を大気へ放出することなく貯蔵する方法が精力的に
研究されている。
2. Description of the Related Art In recent years, the greenhouse effect of CO 2 has been pointed out as one of the causes of the global warming phenomenon, and countermeasures have been urgently required internationally to protect the global environment. CO 2
As a source of the occurrence, all human activity fields burning fossil fuels tend to be increasingly demanded for emission control. Aiming at power generation facilities such as thermal power plants that use a large amount of fossil fuels, the boiler's flue gas is brought into contact with an alkanolamine aqueous solution to remove and recover CO 2 in the flue gas. Done C
Methods for storing O 2 without releasing it to the atmosphere are being vigorously studied.

【0003】アルカノールアミンとしては、モノエタノ
ールアミン、ジエタノールアミン、トリエタノールアミ
ン、メチルジエタノールアミン、ジイソプロパノールア
ミン、ジグリコールアミンなどをあげることができる
が、通常モノエタノールアミン(MEA)が好んで用い
られる。しかし、MEAに代表される上記のようなアル
カノールアミン水溶液を燃焼排ガス中のCO2 を吸収・
除去する吸収剤として用いても、所定濃度のアミン水溶
液の所定量当たりのCO2 の吸収量、所定濃度のアミン
水溶液の単位アミンモル当たりのCO2 の吸収量、所定
濃度におけるCO2 の吸収速度、さらには吸収後のアル
カノールアミン水溶液の再生に要する熱エネルギなどに
照らして、必ずしも満足のできるものではない。
Examples of the alkanolamine include monoethanolamine, diethanolamine, triethanolamine, methyldiethanolamine, diisopropanolamine, and diglycolamine. Monoethanolamine (MEA) is usually preferably used. However, the above alkanolamine aqueous solution represented by MEA absorbs CO 2 in the combustion exhaust gas.
Even when used as an absorbent to be removed, the absorption amount of CO 2 per a predetermined amount of an aqueous amine solution of a predetermined concentration, the absorption amount of CO 2 per unit amine mole of the aqueous amine solution of a predetermined concentration, the absorption rate of CO 2 at a predetermined concentration, Furthermore, it is not always satisfactory in light of heat energy required for regeneration of the aqueous alkanolamine solution after absorption.

【0004】ところで、各種混合ガスからアミン化合物
を用いて酸性ガスを分離する技術は数多く知られてい
る。特開昭53−100180号公報には、(1)環の
一部分であって、かつ第二炭素原子もしくは第三炭素原
子のどちらかに結合された少なくとも1個の第二アミノ
基、または第三炭素原子に結合された第一アミノ基を含
有する立体障害アミン少なくとも50モル%と第三アミ
ノアルコール少なくとも約10モル%とよりなるアミン
混合物及び(2)酸性ガスに対する物理的吸収剤である
前記アミン混合物用の溶媒からなるアミン−溶媒液体吸
収剤に通常ガス状の混合物を接触させることからなる酸
性ガスの除去法が記載されている。立体障害アミンとし
ては2−ピペリジンエタノール〔2−(2−ヒドロキシ
エチル)−ピペリジン〕及び3−アミノ−3−メチル−
1−ブタノールなどが、また溶媒としては25重量%ま
での水を含んでもよいスルホキシド化合物などが、さら
に処理ガスの例としては同公報11頁左上欄に「高濃度
の二酸化炭素及び硫化水素、例えば35%のCO 2 及び
10〜12%のH2 Sを有する通常ガス状の混合物」が
例示され、また実施例にはCO2 そのものが使用されて
いる。
By the way, amine compounds are prepared from various mixed gases.
There are many known technologies for separating acid gas using
You. JP-A-53-100180 discloses that (1)
A partial carbon atom or a tertiary carbon atom
At least one secondary amino attached to either of the offspring
Group or a primary amino group attached to a tertiary carbon atom.
A tertiary amine having at least 50 mol% of a sterically hindered amine
Amine comprising at least about 10 mol% of alcohol
Physical absorber for mixtures and (2) acidic gases
Amine-solvent liquid absorption comprising a solvent for the amine mixture
Acids, usually consisting of contacting a gaseous mixture with a sorbent
A method for removing volatile gases is described. As a sterically hindered amine
Is 2-piperidineethanol [2- (2-hydroxy
Ethyl) -piperidine] and 3-amino-3-methyl-
1-butanol, etc., and up to 25% by weight as a solvent.
Sulphoxide compounds that may contain water
As an example of the processing gas, "High concentration
Carbon dioxide and hydrogen sulfide, for example 35% CO Twoas well as
10-12% HTwoA normally gaseous mixture containing S "
Illustrated, and in the examples, CO 2TwoUsed itself
I have.

【0005】特開昭61−71819号公報には、立体
障害アミン及びスルホランなどの非水溶媒を含む酸性ガ
ススクラッピング用組成物が記載されている。また本公
報にはCO2 の吸収に対し、立体障害アミンの有利性を
反応式を用いて説明している。
JP-A-61-71819 describes a composition for scraping an acidic gas containing a non-aqueous solvent such as a sterically hindered amine and sulfolane. In addition, this publication describes the advantage of sterically hindered amines with respect to CO 2 absorption using a reaction formula.

【0006】ケミカルエンジニアリングサイエンス( C
hemical Engineering Science ) ,41巻,4号,99
7〜1003頁には、ヒンダードアミンである2−アミ
ノ−2−メチル−1−プロパノール(AMP)水溶液の
炭酸ガス吸収挙動が開示されている。吸収させるガスと
しては大気圧のCO2 及びCO2 と窒素の混合物が用い
られている。
[0006] Chemical Engineering Science (C
chemical Engineering Science), Vol. 41, No. 4, 99
Pages 7 to 1003 disclose the carbon dioxide absorption behavior of an aqueous solution of hindered amine 2-amino-2-methyl-1-propanol (AMP). As a gas to be absorbed, atmospheric pressure CO 2 and a mixture of CO 2 and nitrogen are used.

【0007】ケミカルエンジニアリングサイエンス( C
hemical Engineering Science ) ,41巻,2号,40
5〜408頁には、常温付近において、AMPのような
ヒンダードアミンとMEAのような直鎖アミンの各水溶
液のCO2 やH2 Sに対する吸収速度が報告されてい
る。
Chemical Engineering Science (C)
chemical Engineering Science), Vol. 41, No. 2, 40
On pages 5 to 408, the absorption rates of hindered amines such as AMP and linear amines such as MEA for CO 2 and H 2 S are reported at around normal temperature.

【0008】米国特許3,622,267号明細書には
メチルジエタノールアミン及びモノエチルモノエタノー
ルアミンを含有する水性混合物を用い、原油などの部分
酸化ガスなどの合成ガスに含まれる高分圧のCO2 、例
えば40気圧の30%CO2含有合成ガスを精製する技
術が開示されている。
US Pat. No. 3,622,267 uses an aqueous mixture containing methyldiethanolamine and monoethylmonoethanolamine, and uses a high partial pressure of CO 2 contained in a synthesis gas such as a partially oxidized gas such as crude oil. For example, a technique for purifying a synthesis gas containing 30% CO 2 at 40 atm is disclosed.

【0009】ドイツ公開特許1,542,415号公報
にはCO2 、H2 S、COSの吸収速度の向上のためモ
ノアルキルアルカノールアミンなどを物理または化学吸
収剤に添加する技術が開示されている。同様にドイツ公
開特許1,904,428号公報には、モノメチルエタ
ノールアミンがメチルジエタノールアミンの吸収速度を
向上させる目的で添加される技術が開示されている。
[0009] German Patent Publication No. 1,542,415 discloses a technique of adding a monoalkylalkanolamine or the like to a physical or chemical absorbent in order to improve the absorption rate of CO 2 , H 2 S and COS. . Similarly, German Offenlegungsschrift 1,904,428 discloses a technique in which monomethylethanolamine is added for the purpose of improving the absorption rate of methyldiethanolamine.

【0010】米国特許4,336,233号明細書に
は、天然ガス、合成ガス、ガス化石炭ガスの精製にピペ
ラジンの0.81〜1.3モル/リットル水溶液が洗浄
液として、またピペラジンがメチルジエタノールアミ
ン、トリエタノールアミン、ジエタノールアミン、モノ
メチルエタノールアミンなどの溶媒と共に水溶液で洗浄
液として使用される技術が開示されている。
US Pat. No. 4,336,233 discloses that a 0.81-1.3 mol / l aqueous solution of piperazine is used as a washing liquid for purification of natural gas, synthesis gas and gasified coal gas, and that piperazine is methyl. A technique is disclosed which is used as a washing solution in an aqueous solution together with a solvent such as diethanolamine, triethanolamine, diethanolamine, and monomethylethanolamine.

【0011】同様に特開昭52−63171号公報に
は、第三級アルカノールアミン、モノアルキルアルカノ
ールアミンなどにピペラジンまたはヒドロキシエチルピ
ペラジンなどのピペラジン誘導体を促進剤として加えた
CO2 吸収剤が開示されている。
Similarly, Japanese Patent Application Laid-Open No. 52-63171 discloses a CO 2 absorbent in which a piperazine derivative such as piperazine or hydroxyethylpiperazine is added as an accelerator to a tertiary alkanolamine, a monoalkylalkanolamine or the like. ing.

【0012】[0012]

【発明が解決しようとする課題】前述のように燃焼排ガ
スからCO2 を効率よく除去する方法が望まれている。
特に、一定濃度のCO2 吸収剤(アミン化合物)を含む
水溶液で燃焼排ガスを処理する場合、吸収剤単位モル当
たりのCO2 吸収量、水溶液の単位体積当たりのCO2
の吸収量及び吸収速度の大きい吸収剤を選択することが
当面の大きな課題である。さらにはCO2 の吸収後、C
2 を分離し、吸収液を再生させる際に必要な熱エネル
ギの少ない吸収剤が望まれる。
As described above, there is a need for a method for efficiently removing CO 2 from combustion exhaust gas.
In particular, when treating flue gas with an aqueous solution containing a certain concentration of a CO 2 absorbent (amine compound), the amount of CO 2 absorbed per unit mole of the absorbent and the CO 2 per unit volume of the aqueous solution
It is a major problem for the time being to select an absorbent having a large absorption amount and absorption rate. Furthermore, after absorbing CO 2 , C
It is desired to use an absorbent that has a small thermal energy required for separating O 2 and regenerating the absorbent.

【0013】[0013]

【課題を解決するための手段】本発明者らは前記課題に
鑑み、燃焼排ガス中のCO2 を除去する際に用いられる
吸収剤について鋭意検討した結果、特定のピペラジン誘
導体を用いることが特に有効であるとの知見を得て、本
発明を完成させることができた。すなわち本発明は下記
一般式〔1〕で表されるピペラジン誘導体の濃度が15
〜65重量%の水溶液と大気圧下の燃焼排ガスとを接触
させて、前記燃焼排ガス中のCO2 を除去する方法に関
する。
Means for Solving the Problems In view of the above problems, the present inventors have conducted intensive studies on an absorbent used for removing CO 2 in flue gas, and as a result, it is particularly effective to use a specific piperazine derivative. Thus, the present invention was completed. That is, the present invention provides a piperazine derivative represented by the following general formula [1] having a concentration of 15 %.
The present invention relates to a method for removing CO 2 from the flue gas by bringing an aqueous solution of up to 65% by weight into contact with flue gas at atmospheric pressure.

【化2】 (式中、R1 は低級アルキル基であり、R2 は水素原子
または低級アルキル基である。)
Embedded image (In the formula, R 1 is a lower alkyl group, and R 2 is a hydrogen atom or a lower alkyl group.)

【0014】また本発明はピペラジン誘導体が2−メチ
ルピペラジンである前記燃焼排ガス中のCO2 を除去す
る方法に関する。以下、本発明を詳しく説明する。
[0014] The present invention also relates to a method for removing CO 2 in the combustion exhaust gas wherein the piperazine derivative is 2-methylpiperazine . Below, the present invention is described in detail.

【0015】[0015]

【作用】本発明で用いられる一般式〔1〕で表されるピ
ペラジン誘導体において、R1及びR2 が表す各低級ア
ルキル基としては、好ましくは炭素数1〜3のメチル
基、エチル基、プロピル基などを例示することができ、
特に好ましくはメチル基である。具体的化合物として
は、2−メチルピペラジン、2−エチルピペラジン、2
−プロピルピペラジン、2,5−ジメチルピペラジン、
2−メチル−5−エチルピペラジン、2,5−ジエチル
ピペラジンなどを例示することができる。中でも2−メ
チルピペラジン、2,5−ジメチルピペラジンが好まし
い。一般式〔1〕で表されるピペラジン誘導体は各々単
独で用いられるほか、二種以上を混合して用いることも
可能である。
In the piperazine derivative represented by the general formula [1] used in the present invention, each lower alkyl group represented by R 1 and R 2 is preferably a methyl group having 1 to 3 carbon atoms, an ethyl group, a propyl group. Groups and the like,
Particularly preferred is a methyl group. Specific compounds include 2-methylpiperazine, 2-ethylpiperazine,
-Propylpiperazine, 2,5-dimethylpiperazine,
Examples thereof include 2-methyl-5-ethylpiperazine and 2,5-diethylpiperazine. Among them, 2-methylpiperazine and 2,5-dimethylpiperazine are preferred. The piperazine derivatives represented by the general formula [1] can be used alone or in combination of two or more.

【0016】本発明の燃焼排ガスとの接触に用いる前記
ピペラジン誘導体の水溶液(以下、吸収液とも称す)の
濃度は通常15〜65重量%、好ましくは30〜50重
量%である。燃焼排ガスとの接触時の吸収液の温度は通
常30〜70℃の範囲である。また本発明で用いる吸収
液には、必要に応じて腐蝕防止剤、劣化防止剤などが加
えられる。さらに本発明における大気圧下とは、燃焼排
ガスを供給するためブロワなどを作用させる程度の大気
圧近傍の圧力範囲は含まれるものである。
The concentration of the aqueous solution of the piperazine derivative (hereinafter also referred to as absorption liquid) used for contact with the combustion exhaust gas of the present invention is usually 15 to 65% by weight, preferably 30 to 50% by weight. The temperature of the absorbent at the time of contact with the combustion exhaust gas is usually in the range of 30 to 70 ° C. Further, a corrosion inhibitor, a deterioration inhibitor, and the like are added to the absorbing solution used in the present invention as needed. Further, the term “under atmospheric pressure” in the present invention includes a pressure range near atmospheric pressure at which a blower or the like acts to supply combustion exhaust gas.

【0017】本発明の燃焼排ガス中のCO2 を除去する
方法で採用できるプロセスは、特に限定されないが、そ
の一例について図1によって説明する。図1では主要設
備のみ示し、付属設備は省略した。図1において、1は
脱CO2 塔、2は下部充填部、3は上部充填部またはト
レイ、4は脱CO2 塔燃焼排ガス供給口、5は脱CO2
燃焼排ガス排出口、6は吸収液供給口、7はノズル、8
は必要に応じて設けられる燃焼排ガス冷却器、9はノズ
ル、10は充填部、11は加湿冷却水循環ポンプ、12
は補給水供給ライン、13はCO2 を吸収した吸収液排
出ポンプ、14は熱交換器、15は吸収液再生(以下、
「再生」とも略称)塔、16はノズル、17は下部充填
部、18は再生加熱器(リボイラ)、19は上部充填
部、20は還流水ポンプ、21はCO2分離器、22は
回収CO2 排出ライン、23は再生塔還流冷却器、24
はノズル、25は再生塔還流水供給ライン、26は燃焼
排ガス供給ブロワ、27は冷却器である。
The process that can be employed in the method of the present invention for removing CO 2 from flue gas is not particularly limited, but one example thereof will be described with reference to FIG. In FIG. 1, only the main equipment is shown, and the auxiliary equipment is omitted. In FIG. 1, 1 is a CO 2 removal tower, 2 is a lower filling section, 3 is an upper filling section or tray, 4 is a CO 2 removal tower exhaust gas inlet, and 5 is a CO 2 removal section.
Combustion exhaust gas outlet, 6 is an absorbent supply port, 7 is a nozzle, 8
Is a flue gas cooler provided as required, 9 is a nozzle, 10 is a filling section, 11 is a humidification cooling water circulation pump, 12
Is a make-up water supply line, 13 is an absorption liquid discharge pump that has absorbed CO 2 , 14 is a heat exchanger, 15 is an absorption liquid regeneration (hereinafter, referred to as
Tower, 16 is a nozzle, 17 is a lower filling section, 18 is a regenerative heater (reboiler), 19 is an upper filling section, 20 is a reflux water pump, 21 is a CO 2 separator, and 22 is recovered CO. 2 discharge line, 23 is a regeneration tower reflux condenser, 24
Is a nozzle, 25 is a regeneration tower reflux water supply line, 26 is a combustion exhaust gas supply blower, and 27 is a cooler.

【0018】図1において、燃焼排ガスは燃焼排ガス供
給ブロワ26により燃焼排ガス冷却器8に押込められ、
ノズル9からの加湿冷却水と充填部10で接触し、加湿
冷却され、脱CO2 塔燃焼排ガス供給口4を通って脱C
2 塔1へ導かれる。燃焼排ガスと接触した加湿冷却水
は燃焼排ガス冷却器8の下部に溜り、ポンプ11により
ノズル9へ循環使用される。加湿冷却水は燃焼排ガスを
加湿冷却することにより徐々に失われるので、補給水供
給ライン12により補充される。
In FIG. 1, the flue gas is pushed into the flue gas cooler 8 by the flue gas supply blower 26,
Contact with humidifying cooling water and the filling section 10 from the nozzle 9, is fogging, de-C through the de-CO 2 tower combustion exhaust gas feed port 4
It is led to the O 2 tower 1. The humidified cooling water in contact with the combustion exhaust gas accumulates in the lower part of the combustion exhaust gas cooler 8 and is circulated to the nozzle 9 by the pump 11. Since the humidified cooling water is gradually lost by humidifying and cooling the combustion exhaust gas, it is replenished through the makeup water supply line 12.

【0019】脱CO2 塔1に押込められた燃焼排ガスは
ノズル7から供給される一定濃度の吸収液と下部充填部
2で向流接触させられ、燃焼排ガス中のCO2 は吸収液
供給口6からの吸収液により吸収除去され、脱CO2
焼排ガスは上部充填部3へと向う。脱CO2 塔1に供給
される吸収液はCO2 を吸収し、その吸収による反応熱
のため、通常吸収液供給口6における温度よりも高温と
なり、CO2 を吸収した吸収液は吸収液排出ポンプ13
により熱交換器14に送られ、加熱され、吸収液再生塔
15へ導かれる。
The combustion exhaust gas trapped in the CO 2 removal tower 1 is brought into countercurrent contact with the absorbent having a constant concentration supplied from the nozzle 7 in the lower filling section 2, and CO 2 in the combustion exhaust gas is supplied to the absorbent supply port. The CO 2 -exhaust gas is absorbed and removed by the absorbing solution from 6, and goes to the upper filling section 3. Absorbing liquid supplied to de-CO 2 tower 1 absorbs CO 2, because of the heat of reaction due to the absorption becomes a temperature higher than the temperature in conventional absorbent liquid supply port 6, absorbent that has absorbed CO 2 absorption liquid discharge Pump 13
Is sent to the heat exchanger 14, heated, and guided to the absorbent regeneration tower 15.

【0020】吸収液再生塔15では、再生加熱器8によ
る加熱で吸収液が再生され、熱交換器14及び必要に応
じて設けられた冷却器27により冷却され、脱CO2
1の吸収液供給口6へ戻される。吸収液再生塔15の上
部において、吸収液から分離されたCO2 はノズル24
より供給される還流水と接触し、再生塔還流冷却器23
により冷却され、CO2 分離器21にてCO2 に同伴し
た水蒸気が凝縮して還流水として分離され、回収CO2
排出ライン22よりCO2 回収工程へ導かれる。還流水
の一部は還流水ポンプ20で吸収液再生塔15へノズル
24を介して還流され、他の一部は再生塔還流水供給ラ
イン25より脱CO2 塔1の上部に供給される。
In the absorbent regeneration tower 15, the absorbent is regenerated by heating by the regeneration heater 8, cooled by the heat exchanger 14 and a cooler 27 provided as necessary, and absorbed by the CO 2 removal tower 1. It is returned to the supply port 6. In the upper part of the absorption liquid regeneration tower 15, CO 2 separated from the absorption liquid
Contact with the reflux water supplied from the
And the steam accompanying the CO 2 is condensed in the CO 2 separator 21 and separated as reflux water, and the recovered CO 2
It is led to the CO 2 recovery step from the discharge line 22. A part of the reflux water is refluxed by the reflux water pump 20 to the absorbent regeneration tower 15 via the nozzle 24, and another part is supplied to the upper part of the CO 2 removal tower 1 from the regeneration tower reflux water supply line 25.

【0021】[0021]

【実施例】以下、実施例により本発明を具体的に説明す
る。
The present invention will be described below in detail with reference to examples.

【0022】(実施例1、比較例1)恒温槽内に設置し
たガラス製反応容器に2−メチルピペラジンの30重量
%水溶液50mlを入れた。温度40℃で攪拌下しなが
ら、試験ガスを大気圧下1リットル/分の流速で、バブ
ルを発生しやすいようにフィルタを通して吸収液に通し
た。試験ガスとしてはCO2 :10モル%、O2 :3モ
ル%、N2 :87モル%の組成を有する40℃のモデル
燃焼排ガスを用いた。試験ガスを通し続け、出入りガス
のCO2 濃度が等しくなった時点で、吸収液に含まれる
CO2 をCO2 分析計(全有機炭素計)を用いて測定
し、吸収液のCO2 飽和吸収量(Nm3 CO2 /m3
液、モルCO2 /モル吸収液)を測定するとともに、飽
和に至るまでの平均吸収速度目安として90%飽和吸収
所要時間とその間の平均吸収速度を求めた。また吸収試
験の初期における反応容器出口のガス中のCO2 濃度
(初期出口ガスCO2 濃度)を求めた。この出口CO2
初期濃度が小さいほど、吸収液のCO 2 吸収速度が大き
いと言える。さらに初期における出口CO2 濃度を追跡
して得られる初期吸収速度を求め、後記MEA水溶液の
場合と比較した(初期吸収速度比)。比較例1として、
MEA水溶液による吸収試験を行った。その結果を表−
1に示した。なお、吸収を終えた混合溶液を加熱するこ
とにより、吸収液は支障なく再生できることを確認し
た。
(Example 1, Comparative Example 1) Installed in a thermostat
30 weight of 2-methylpiperazine in a glass reaction vessel
50 ml of a 1% aqueous solution was charged. While stirring at a temperature of 40 ° C
Bubble the test gas at 1 liter / min.
Through the filter to make it easier to generate
Was. The test gas is COTwo: 10 mol%, OTwo: 3 mo
%, NTwo: Model at 40 ° C. having a composition of 87 mol%
Combustion exhaust gas was used. Continue to pass test gas,
COTwoWhen the concentration becomes equal, it is contained in the absorbing solution
COTwoTo COTwoMeasured using an analyzer (total organic carbon meter)
And the absorption liquid COTwoSaturated absorption (NmThreeCOTwo/ MThreeDissolution
Liquid, molar COTwo/ Molar absorption solution)
90% saturated absorption as a measure of average absorption speed up to sum
The required time and the average absorption rate during that time were determined. Also the absorption test
In the gas at the outlet of the reaction vessel at the beginning of the experimentTwoconcentration
(Initial outlet gas COTwoConcentration). This exit COTwo
The smaller the initial concentration, the more CO TwoHigh absorption speed
I can say that. Further early exit COTwoTrack concentration
The initial absorption rate obtained by the
Comparison with the case (initial absorption rate ratio). As Comparative Example 1,
An absorption test using an MEA aqueous solution was performed. Table-
1 is shown. Heat the mixed solution after absorption.
And confirm that the absorbent can be regenerated without any problems.
Was.

【0023】[0023]

【表1】 [Table 1]

【0024】表−1の結果から明らかなように、本発明
によりピペラジン誘導体の水溶液を燃焼排ガスの吸収液
として用いることにより、MEA水溶液を用いる場合よ
りもモル当たりの飽和吸収量に優れていることが分か
る。
As is evident from the results in Table 1, the use of an aqueous solution of a piperazine derivative according to the present invention as an absorbent for combustion exhaust gas results in superior saturation absorption per mole as compared with the case of using an aqueous MEA solution. I understand.

【0025】(実施例2、比較例2)吸収液を再生させ
る際に必要な熱エネルギを調べるため、実施例1及び比
較例1に用いた吸収液(濃度30重量%)とCO2 との
反応熱(吸収発熱量)を測定した。吸収液200gを断
熱試験器に入れ、マグネチックスターラで攪拌し、吸収
液の温度が安定するまで放置した。次に純CO2 を約2
00cc/分の速度で試験器内に吹込み、試験器の入口
及び出口のCO2 流量、吸収液の温度を連続的に記録し
た。試験器出口のCO2 流量が急激に増加した時点で試
験を終了した。吸収液に吸収されたCO2 のモル数(モ
ル負荷)、CO2 の吹込み開始からの上昇温度から吸収
液がCO2 を1モル吸収するときの反応熱量(Kcal
/モル)を吸収CO2 のモル区間別に求めた。なお、試
験器の熱容量は水200gを試験器に入れ、30V、
0.3Aで所定時間ヒータに通電し上昇温度から求め
た。また、試験の温度範囲は20〜80℃、測定時の室
温は20〜25℃であった。結果を表−2に示す。
Example 2 and Comparative Example 2 In order to examine the heat energy required for regenerating the absorbing solution, the absorption solution (concentration 30% by weight) used in Example 1 and Comparative Example 1 was mixed with CO 2 . The heat of reaction (absorption calorific value) was measured. 200 g of the absorbing solution was placed in an adiabatic tester, stirred with a magnetic stirrer, and allowed to stand until the temperature of the absorbing solution was stabilized. Then the net CO 2 about 2
00CC / min in blown within the tester, CO 2 flow rate of the inlet and outlet of the tester and the temperature of the absorbing solution continuously recorded. The test was terminated when the CO 2 flow rate at the outlet of the tester sharply increased. Absorbing liquid moles of absorbed CO 2 to (moles load), reaction heat when absorbing liquid from a raised temperature from blowing initiation of CO 2 is 1 mol absorb CO 2 (Kcal
/ Mol) was determined for each molar interval of absorbed CO 2 . The heat capacity of the tester was as follows.
The heater was energized at 0.3 A for a predetermined time, and the temperature was determined from the temperature rise. The temperature range of the test was 20 to 80 ° C, and the room temperature at the time of measurement was 20 to 25 ° C. Table 2 shows the results.

【0026】[0026]

【表2】 [Table 2]

【0027】表−2から分かるように、本発明による2
−メチルピペラジン吸収液とCO2との反応熱はMEA
吸収液の場合よりも吸収CO2 モル数が大きい区間は小
さく、これからも再生に必要なエネルギがMEAの場合
より小さく有利であることが分かる。
As can be seen from Table 2, 2 according to the present invention
- heat of reaction with methylpiperazine absorbing solution and CO 2 is MEA
The section where the number of moles of absorbed CO 2 is larger than that in the case of the absorbing solution is small, and it can be seen that the energy required for regeneration is smaller than that in the case of the MEA and is advantageous.

【0028】[0028]

【発明の効果】以上詳細に述べたごとく、本発明の方法
により大気圧下の燃焼排ガスにピペラジン誘導体の水溶
液を吸収液として用いることにより、従来使用されてい
たMEA水溶液を用いる場合よりも、総合的にCO2
吸収能力の向上が達成される。
As described in detail above, the method of the present invention uses an aqueous solution of a piperazine derivative as an absorbing solution in flue gas at atmospheric pressure, thereby making it possible to achieve a better result than using a conventional MEA aqueous solution. Thus, the improvement of the CO 2 absorption capacity is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で採用できる燃焼排ガス中のCO2 除去
するプロセスの一例の説明図。
FIG. 1 is a diagram illustrating an example of a process for removing CO 2 in combustion exhaust gas that can be employed in the present invention.

フロントページの続き (72)発明者 飯島 正樹 東京都千代田区丸の内二丁目5番1号 三菱重工業株式会社本社内 (72)発明者 光岡 薫明 広島県広島市西区観音新町四丁目6番22 号 三菱重工業株式会社 広島研究所内 (56)参考文献 特開 平6−198120(JP,A) 特開 昭53−81490(JP,A) 特開 昭52−63171(JP,A) 特開 平3−154611(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/62 Continued on the front page (72) Inventor Masaki Iijima 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Heavy Industries, Ltd. Headquarters (72) Inventor Kaoru Mitsuoka 4-2-2 Kanon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Mitsubishi Heavy Industries, Ltd. Hiroshima Laboratory (56) References JP-A-6-198120 (JP, A) JP-A-53-81490 (JP, A) JP-A-52-63171 (JP, A) JP-A-3-154611 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B01D 53/62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記一般式〔1〕で表されるピペラジン
誘導体の濃度が15〜65重量%の水溶液と大気圧下の
燃焼排ガスとを接触させることを特徴とする燃焼排ガス
中のCO2 の除去方法。 【化1】 (式中、R1 は低級アルキル基であり、R2 は水素原子
または低級アルキル基である。)
1. A following general formula (1) of the piperazine derivative represented by the concentration in the CO 2 of the combustion exhaust gas which comprises bringing into contact with the combustion exhaust gas under atmospheric pressure and an aqueous solution of 15 to 65 wt% Removal method. Embedded image (In the formula, R 1 is a lower alkyl group, and R 2 is a hydrogen atom or a lower alkyl group.)
【請求項2】 ピペラジン誘導体が2−メチルピペラジ
ンであることを特徴とする請求項1記載の燃焼排ガス中
のCO2 の除去方法。
2. The method for removing CO 2 from combustion exhaust gas according to claim 1, wherein the piperazine derivative is 2-methylpiperazine.
JP24291594A 1994-10-06 1994-10-06 Method of removing carbon dioxide from flue gas Expired - Lifetime JP3197173B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP24291594A JP3197173B2 (en) 1994-10-06 1994-10-06 Method of removing carbon dioxide from flue gas
US08/511,290 US5618506A (en) 1994-10-06 1995-08-04 Process for removing carbon dioxide from gases
NO19953103A NO313789B1 (en) 1994-10-06 1995-08-08 Procedure for removing carbon dioxide from gases
EP98202412A EP0880990B1 (en) 1994-10-06 1995-08-16 Process for removing carbon dioxide from gases
DE69522772T DE69522772T2 (en) 1994-10-06 1995-08-16 Process for eliminating carbon dioxide from gases
EP95305722A EP0705637B1 (en) 1994-10-06 1995-08-16 Process for removing carbon dioxide from gases
DE69526874T DE69526874T2 (en) 1994-10-06 1995-08-16 Process for eliminating carbon dioxide from gases
DE69522837T DE69522837T2 (en) 1994-10-06 1995-08-16 Process for eliminating carbon dioxide from gases
DE69526525T DE69526525T2 (en) 1994-10-06 1995-08-16 Process for eliminating carbon dioxide from gases
EP98202417A EP0880991B1 (en) 1994-10-06 1995-08-16 Process for removing carbon dioxide from gases
EP98202413A EP0879631B1 (en) 1994-10-06 1995-08-16 Process for removing carbon dioxide from gases
CN95115093A CN1057018C (en) 1994-10-06 1995-08-17 Method for removing carbon dioxide from gas
NO20022033A NO334495B1 (en) 1994-10-06 2002-04-29 Procedure for removing carbon dioxide from gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24291594A JP3197173B2 (en) 1994-10-06 1994-10-06 Method of removing carbon dioxide from flue gas

Publications (2)

Publication Number Publication Date
JPH08103630A JPH08103630A (en) 1996-04-23
JP3197173B2 true JP3197173B2 (en) 2001-08-13

Family

ID=17096110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24291594A Expired - Lifetime JP3197173B2 (en) 1994-10-06 1994-10-06 Method of removing carbon dioxide from flue gas

Country Status (1)

Country Link
JP (1) JP3197173B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081228A1 (en) 2009-12-28 2011-07-07 한국에너지기술연구원 Alkali-carbonate-based carbon dioxide absorbent containing added sterically hindered cyclic amines, and method for removing carbon dioxide removing using same
KR20170034587A (en) 2015-09-21 2017-03-29 경희대학교 산학협력단 Carbon Dioxide Absorbent
US9802150B2 (en) 2012-12-31 2017-10-31 University-Industry Cooperation Foundation Of Kyung Hee University Carbon dioxide absorbent based on amine having nitrile functional group, and carbon dioxide absorption method and separation method using same
US10099172B2 (en) 2014-10-16 2018-10-16 University-Industry Cooperation Group Of Kyung Hee University Carbon dioxide absorbent comprising triamine
KR20190101052A (en) 2018-02-22 2019-08-30 서강대학교산학협력단 Carbon Dioxide Absorbent And Method for Absorbing Carbon Dioxide Using the Same
EP4035760A1 (en) 2021-01-27 2022-08-03 Korea Institute of Science and Technology Co2 absorbent comprising polyhydroxyamine derivative composition in combination with n-alkylamino-alkane and ethylenediamine or ethylenetriamine
KR102433565B1 (en) 2021-10-20 2022-08-18 주식회사 씨이텍 Low-water type carbon dioxide absorbent and method for absorbing carbon dioxide using the same
KR102445742B1 (en) 2021-11-08 2022-09-21 주식회사 씨이텍 Carbon dioxide absorbent including anti-degradation agent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2168658A4 (en) 2007-06-28 2012-06-20 Res Inst Innovative Tech Earth Method for efficiently recovering carbon dioxide in gas
JP6216150B2 (en) 2013-05-09 2017-10-18 株式会社東芝 Carbon dioxide recovery system and operation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081228A1 (en) 2009-12-28 2011-07-07 한국에너지기술연구원 Alkali-carbonate-based carbon dioxide absorbent containing added sterically hindered cyclic amines, and method for removing carbon dioxide removing using same
US9802150B2 (en) 2012-12-31 2017-10-31 University-Industry Cooperation Foundation Of Kyung Hee University Carbon dioxide absorbent based on amine having nitrile functional group, and carbon dioxide absorption method and separation method using same
US10099172B2 (en) 2014-10-16 2018-10-16 University-Industry Cooperation Group Of Kyung Hee University Carbon dioxide absorbent comprising triamine
KR20170034587A (en) 2015-09-21 2017-03-29 경희대학교 산학협력단 Carbon Dioxide Absorbent
US10543454B2 (en) 2015-09-21 2020-01-28 University-Industry Cooperation Group Of Kyung Hee University Carbon dioxide absorbent
KR20190101052A (en) 2018-02-22 2019-08-30 서강대학교산학협력단 Carbon Dioxide Absorbent And Method for Absorbing Carbon Dioxide Using the Same
EP4035760A1 (en) 2021-01-27 2022-08-03 Korea Institute of Science and Technology Co2 absorbent comprising polyhydroxyamine derivative composition in combination with n-alkylamino-alkane and ethylenediamine or ethylenetriamine
US11666853B2 (en) 2021-01-27 2023-06-06 Korea Institute Of Science And Technology Highly efficient CO2 absorbent composition and method for preparing the same
KR102433565B1 (en) 2021-10-20 2022-08-18 주식회사 씨이텍 Low-water type carbon dioxide absorbent and method for absorbing carbon dioxide using the same
KR102445742B1 (en) 2021-11-08 2022-09-21 주식회사 씨이텍 Carbon dioxide absorbent including anti-degradation agent

Also Published As

Publication number Publication date
JPH08103630A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
JP2871334B2 (en) Method of removing carbon dioxide from flue gas
KR0123107B1 (en) Method for removing carbon dioxide from combustion exhaust gas
EP0880991B1 (en) Process for removing carbon dioxide from gases
JP2882950B2 (en) Method for removing carbon dioxide in flue gas
JP2895325B2 (en) Method for removing carbon dioxide in flue gas
JP3233802B2 (en) Method for removing carbon dioxide and nitrogen oxides from flue gas
EP1062998B1 (en) Method for removing carbon dioxide from combustion exhaust gas
JP3197183B2 (en) Method for removing carbon dioxide in flue gas
EP0558019B2 (en) Method for removing carbon dioxide from combustion exhaust gas
US5603908A (en) Process for removing carbon dioxide from combustion gases
JP3761960B2 (en) Method for removing carbon dioxide in gas
JP2871335B2 (en) Method for removing carbon dioxide in flue gas
JPH0751537A (en) Removal of co2 in co2-containing gas
JP3197173B2 (en) Method of removing carbon dioxide from flue gas
JP2871422B2 (en) Method for removing carbon dioxide in flue gas
JPH05184866A (en) Equipment for removing carbon dioxide in combustion exhaust gas and method therefor
JP3276527B2 (en) How to remove carbon dioxide in gas
JP3233809B2 (en) Method for removing carbon dioxide in flue gas
JP2871447B2 (en) Method for removing carbon dioxide in flue gas
JP3426685B2 (en) Method for removing carbon dioxide in flue gas
JPH08257353A (en) Process for removing carbon dioxide in combustion exhaust gas
JPH07313840A (en) Method for removing carbon dioxide in waste combustion gas
JPH05237341A (en) Method for removing carbon dioxide in waste combustion gas
JP3197172B2 (en) Method for removing carbon dioxide in flue gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 12

EXPY Cancellation because of completion of term