WO2011071150A1 - Carbon dioxide absorbent for use under high pressure, and method for absorption and collection of carbon dioxide under high pressure - Google Patents

Carbon dioxide absorbent for use under high pressure, and method for absorption and collection of carbon dioxide under high pressure Download PDF

Info

Publication number
WO2011071150A1
WO2011071150A1 PCT/JP2010/072242 JP2010072242W WO2011071150A1 WO 2011071150 A1 WO2011071150 A1 WO 2011071150A1 JP 2010072242 W JP2010072242 W JP 2010072242W WO 2011071150 A1 WO2011071150 A1 WO 2011071150A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
absorption
bar
partial pressure
liquid absorbent
Prior art date
Application number
PCT/JP2010/072242
Other languages
French (fr)
Japanese (ja)
Inventor
洋 町田
信 山本
弘道 岡部
祐一 藤岡
Original Assignee
財団法人地球環境産業技術研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人地球環境産業技術研究機構 filed Critical 財団法人地球環境産業技術研究機構
Priority to JP2011545266A priority Critical patent/JP5812867B2/en
Priority to AU2010328990A priority patent/AU2010328990B2/en
Publication of WO2011071150A1 publication Critical patent/WO2011071150A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/202Alcohols or their derivatives
    • B01D2252/2023Glycols, diols or their derivatives
    • B01D2252/2025Ethers or esters of alkylene glycols, e.g. ethylene or propylene carbonate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20431Tertiary amines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention is directed to removing carbon dioxide from a gas stream having a high carbon dioxide partial pressure (indicating above 2 bar), in particular to remove carbon dioxide from exhaust gas from a coal gasification process, and absorption and absorption It relates to a collection method.
  • CO2 contained in mixed gas is targeted for mixed gas discharged from thermal power plants, boilers in steelworks, kilns in cement factories, etc. that use coal, heavy oil, natural gas, etc., which are the sources of carbon dioxide as fuel.
  • a series of carbon dioxide capture and storage (CCS) technologies, including carbon capture, compression, transportation, and injection, are attracting attention as bridging technologies to develop alternative energy alternatives to fossil fuels.
  • Patent Document 1 discloses a method for removing carbon dioxide from a gas stream in which the partial pressure of carbon dioxide in the gas stream is less than 0.2 bar, and this gas stream is (A) at least 2 in the molecule.
  • a method for removing carbon dioxide from a gas stream in contact with a liquid absorbent comprising an aqueous solution of an amine compound having three tertiary amino groups and an active agent selected from (B) a primary amine and a secondary amine is described. Has been.
  • carbon dioxide separation and recovery technology using chemical absorption from high-pressure gas such as coal gasification product gas and mined natural gas has relatively few research examples compared to separation and recovery technology from atmospheric pressure exhaust gas.
  • the pressure energy of the gas itself can be utilized for carbon dioxide separation recovery and compression, the cost during the carbon dioxide storage process, particularly in the separation recovery + compression process, may be significantly reduced. Therefore, the focus is on the development of chemical absorbents applicable to carbon dioxide separation from high pressure gas.
  • the physical absorption method has attracted attention as a method for removing acidic gas containing carbon dioxide from gas having pressure.
  • the higher the partial pressure of the target gas component the greater the amount of acid gas absorbed per unit absorption liquid compared to the chemical absorption method.
  • Typical absorbents include cyclotetramethylene sulfone (sulfolane) and derivatives thereof, and absorbents composed of aliphatic amides, methanol, and polyethylene glycol dialkyl ethers (SELEXOL, Union Carbide).
  • SELEXOL Polyethylene glycol dialkyl ethers
  • Patent Document 2 relates to an acid gas regeneration method performed under a pressure exceeding 3.5 bar absolute pressure and not exceeding 20 bar absolute pressure, and the separated gas stream generated from the regenerator is compressed and underground. It is described that it is press-fitted during storage. Moreover, triethanolamine etc. are mentioned as an acidic gas absorptive chemical agent.
  • the absorbent illustrated in the examples consists of 43% by weight N-methyldiethanolamine and 57% by weight water.
  • an aqueous solution of N-methyldiethanolamine (MDEA) and an aqueous solution of triethanolamine are generally used.
  • MDEA N-methyldiethanolamine
  • triethanolamine aqueous solution of triethanolamine.
  • concentrations up to 50% by weight in the region where the partial pressure of carbon dioxide assumed by IGCC (Coal Gasification Combined Cycle) is high, the dispersibility is poor, and the efficiency of carbon dioxide recovery and amine regeneration becomes poor, and carbon dioxide recovery. Increased energy and cost.
  • MDEA is used in an amount of 60% by weight or more, it is difficult to put it to practical use because the handling property deteriorates due to the increase in viscosity and the absorption rate decreases.
  • Patent Document 3 describes a method for removing acid gas from a gas supply stream including a regeneration method in which an absorbing liquid containing acid gas at a high concentration is heated at a pressure higher than atmospheric pressure.
  • the absorbing liquid is a tertiary alkylamine selected from diamines, triamines and tetramines. It is described that it can be regenerated at a high pressure by using an aqueous amine solution at a high concentration (60 to 90% by weight).
  • the present invention provides a high-efficiency carbon dioxide absorbent and absorption and recovery method capable of achieving separation of carbon dioxide in a gas at a higher carbon dioxide absorption rate and emission rate than in the past in a region where the carbon dioxide partial pressure is high.
  • the purpose is to do.
  • Patent Document 3 describes that in a region where the partial pressure of carbon dioxide is high, the amount of carbon dioxide recovered is improved by using an aqueous amine solution at a high concentration of 60% by weight or more.
  • the absorption rate and the emission rate may be improved as well as the carbon dioxide recovery amount. I understood.
  • the present inventors use a tertiary aliphatic amine aqueous solution that does not have a hydrogen bond group and has an ether group at a high concentration, thereby enabling a high absorption rate and high in a region where the partial pressure of carbon dioxide is high. It was possible to obtain an amine solution having a diffusion rate and a high carbon dioxide recovery amount, and obtained the knowledge that the above object could be achieved.
  • the present invention has been completed based on these findings, and has been completed.
  • the present invention provides the following carbon dioxide absorbent and absorption and recovery method.
  • R 1 , R 2 , R 3 and R 4 are the same or different and represent an alkyl group
  • R 5 and R 6 are the same or different and represent an alkylene group
  • n 1 to 5 is there.
  • Item 2 The water-containing liquid absorbent according to Item 1, wherein the tertiary aliphatic amine is bis (2-dimethylaminoethyl) ether.
  • Item 3 A step of absorbing the carbon dioxide from the gas flow by contacting the water-containing liquid absorbent according to Item 1 or 2 with a gas flow having a carbon dioxide partial pressure of 2 bar or more, and (2) the above step ( Heating the water-containing liquid absorbent that has absorbed carbon dioxide obtained in 1) to desorb and recover carbon dioxide; Carbon dioxide absorption and recovery method comprising:
  • Item 4. Item 4.
  • the step (1) is performed at a carbon dioxide partial pressure of 2 to 40 bar, and the step (2) is performed at a carbon dioxide partial pressure of 2 bar or more. Carbon dioxide absorption and recovery method.
  • Item 5 The method for absorbing and recovering carbon dioxide according to Item 3 or 4, wherein the step (1) is performed at a temperature of 25 to 60 ° C, and the step (2) is performed at a temperature of 70 to 120 ° C. .
  • the absorbent of the present invention since the absorption rate and the emission rate of carbon dioxide are high in an environment where the partial pressure of carbon dioxide is high, a more compact separation device can be designed and an economical device can be obtained. Moreover, since the amount of carbon dioxide recovered increases in an environment where the carbon dioxide partial pressure is high, separation with low energy becomes possible.
  • 6 is a graph showing the results of carbon dioxide absorption in Test Example 2.
  • 7 is a graph showing the results of carbon dioxide absorption rate, emission rate, and CO 2 recovery amount in Test Example 3.
  • Water-containing liquid absorbent for absorbing and recovering carbon dioxide The water-containing liquid absorbent of the present invention absorbs and recovers carbon dioxide from a gas stream in which the partial pressure of carbon dioxide in the gas stream is 2 bar or more, and in general 60 to 90% by weight of a tertiary aliphatic amine represented by the formula [1] is contained.
  • R 1 , R 2 , R 3 and R 4 in the general formula [1] are the same or different and are an alkyl group, preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms. It is a group.
  • alkyl group having 1 to 6 carbon atoms examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, and hexyl.
  • alkyl group having 1 to 3 carbon atoms examples include methyl, ethyl, n-propyl, and isopropyl.
  • R 5 and R 6 in the general formula [1] are the same or different and are an alkylene group, preferably an alkylene group having 1 to 6 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms.
  • alkylene group having 1 to 6 carbon atoms examples include methylene, ethylene, n-propylene, isopropylene, n-butylene, isobutylene, tert-butylene, n-pentylene, isopentylene, and hexylene.
  • alkylene group having 1 to 3 carbon atoms examples include methylene, ethylene, n-propylene, and isopropylene.
  • n is an integer selected from 1 to 5, preferably 1 to 4, more preferably 1 to 2.
  • Examples of the tertiary aliphatic amine represented by the general formula [1] include bis (2-dimethylaminoethyl) ether.
  • the above-mentioned tertiary aliphatic amine can be produced as a known method according to the description in References 1 to 4 below, or is commercially available because it is commercially available.
  • the tertiary aliphatic amine can be synthesized based on the following formula using diethylene glycol or polyethylene glycol as a raw material as described in the following documents 1 to 4.
  • Document 1 International Publication No. 2005/110969
  • Document 2 Japanese Patent Laid-Open No. 9-20735
  • Document 3 European Patent Application Publication No. 300323
  • Document 4 West German Patent Application Publication No. 3422610
  • the heat of reaction of the tertiary aliphatic amine is desirably 40 to 70 kJ / mol-CO 2, particularly 45 to 60 kJ / mol-CO 2 .
  • the reaction heat is used to mean the amount of heat generated when 1 mol of CO 2 is absorbed at 40 ° C. and atmospheric pressure.
  • the tertiary aliphatic amine has an absorption rate of 2 to 5 times, an emission rate of 2 to 5 times, and a carbon dioxide recovery amount of 2 to 3 times that of MDEA.
  • the water-containing liquid absorbent according to the present invention contains 60 to 90% by weight of the tertiary aliphatic amine. If it is this range, it will be excellent in the absorption rate and emission rate of a carbon dioxide. Preferably 60 to 80% by weight, more preferably 60 to 70% by weight.
  • the water-containing liquid absorbent of the present invention may also contain an antioxidant, a corrosion inhibitor, a physical absorbent and the like as components other than the tertiary aliphatic amine.
  • antioxidants examples include BHT (dibutylhydroxytoluene), BHA (butylhydroxyanisole), sodium erythorbate, sodium sulfite, sulfur dioxide and the like.
  • Examples of the physical absorbent include cyclotetramethylene sulfone (sulfolane) and derivatives thereof, aliphatic acid amide (acetylmorpholine, N-formylmorpholine), N-alkylated pyrrolidone and a corresponding piperidone such as N-methylpyrrolidone (NMP), And dialkyl ethers such as propylene carbonate, methanol, and polyethylene glycol.
  • cyclotetramethylene sulfone sulfolane
  • aliphatic acid amide acetylmorpholine, N-formylmorpholine
  • N-alkylated pyrrolidone and a corresponding piperidone such as N-methylpyrrolidone (NMP)
  • dialkyl ethers such as propylene carbonate, methanol, and polyethylene glycol.
  • the partial pressure of carbon dioxide in the gas stream in which the water-containing liquid absorbent of the present invention absorbs and recovers carbon dioxide is 2 bar or more. If it is this range, it will be excellent in the absorption rate and emission rate of a carbon dioxide. It is preferably 10 bar or more, more preferably 10 to 40 bar.
  • gas flow examples include exhaust gas from a coal gasification process, mined natural gas, and the like, and the concentration of carbon dioxide in the gas is usually about 20 to 50% by volume, particularly about 30 to 40% by volume. That's fine. In such a carbon dioxide concentration range, the effects of the present invention are suitably exhibited.
  • the gas stream may contain gas such as water vapor, CO, H 2 S, COS, and H 2 in addition to carbon dioxide.
  • Carbon dioxide absorption and recovery method comprises: (1) contacting the above-mentioned hydrated liquid absorbent with a gas stream having a partial pressure of carbon dioxide of 2 bar or more, thereby And (2) heating the hydrated liquid absorbent that has absorbed carbon dioxide obtained in the above step (1) to desorb and recover the carbon dioxide.
  • step (1) carbon dioxide is absorbed from the gas stream by contacting the hydrated liquid absorbent with a gas stream having a carbon dioxide partial pressure of 2 bar or more.
  • the method for bringing the gas flow into contact with the above-mentioned water-containing liquid absorbent there is no particular limitation on the method for bringing the gas flow into contact with the above-mentioned water-containing liquid absorbent.
  • a method of bubbling a gas flow into the absorbent and absorbing it a method of dropping the absorbent into a gas stream (a spray or spray method), or a magnetic or metal mesh filler This is performed by a method in which the gas flow and the absorbent are brought into countercurrent contact in the absorption tower.
  • Step (1) is preferably performed at a partial pressure of carbon dioxide of 2 to 40 bar, particularly 2 to 20 bar. Step (1) is preferably performed at a temperature of 25 to 60 ° C., particularly 40 to 60 ° C.
  • Step (2) the water-containing liquid absorbent that has absorbed the carbon dioxide obtained in the step (1) is heated to desorb and recover the carbon dioxide.
  • a method of desorbing carbon dioxide from a water-containing liquid absorbent that has absorbed carbon dioxide and recovering pure or high-concentration carbon dioxide a method of heating the absorbent and bubbling it in a kettle as in distillation, a shelf Examples thereof include a method in which a liquid interface is expanded and heated in a plate tower, a spray tower, a desorption tower containing a magnetic or metal mesh filler. Thereby, carbon dioxide is released from the absorbent and released.
  • Step (2) is preferably performed at a carbon dioxide partial pressure of 2 to 8 bar or more, particularly 2 to 80 bar.
  • Step (2) is preferably performed at a temperature of 70 to 120 ° C., particularly 90 to 120 ° C.
  • the upper temperature limit is not limited to 120 ° C., and it can be used even at a temperature higher than 120 ° C.
  • step (2) The absorbent after desorbing carbon dioxide is sent again to step (1) and recycled. During this time, the heat applied in the step (2) is effectively used for raising the temperature of the absorbent by heat exchange with the absorbent in the circulation process, and the energy of the entire recovery process is reduced.
  • the purity of carbon dioxide recovered in this way is usually extremely high, about 95 to 99.9% by volume.
  • This pure carbon dioxide or high-concentration carbon dioxide is used as a chemical, a raw material for synthesizing a high-molecular substance, or a cooling agent for freezing food.
  • Reagents and gas types used in the reagent examples and comparative examples are as follows.
  • the pressure adjustment valve was adjusted so that the pressure in the high-pressure vessel reached the specified pressure (0.2 to 40 bar), and the nitrogen gas flow rate controller was set to 3 minL / min and pressure increase was started.
  • a 40 ° C. oil bath was circulated around the high pressure vessel to maintain the temperature of the high pressure vessel at 40 ° C.
  • the temperature of the condenser is kept at 5 ° C, and it plays the role of returning the volatilized water-containing liquid absorbent into the high-pressure vessel.
  • carbon dioxide was absorbed by setting the carbon dioxide flow rate controller to 0.3 to 2.7 L / min and the nitrogen gas flow rate controller to 0.3 to 2.7 L / min.
  • the amount of carbon dioxide absorbed by the water-containing liquid absorbent was calculated from the difference between the flow rate at the inlet, the gas composition and the flow meter at the outlet, and the CO 2 concentration meter.
  • the temperature of the high-pressure vessel is raised to 120 ° C by switching the oil bath at 40 ° C circulating around the high-pressure vessel to an oil bath at 120 ° C. went.
  • the amount of carbon dioxide released from the water-containing liquid absorbent was calculated from the difference between the inlet flow rate, gas composition, outlet flow meter, and CO 2 concentration meter.
  • the absorption rate of carbon dioxide with respect to the water-containing liquid absorbent was defined as the amount of absorption per unit time at the start of carbon dioxide absorption.
  • the emission rate of carbon dioxide with respect to the water-containing liquid absorbent was defined as the amount of absorption per unit time at the start of carbon dioxide emission.
  • the amount of carbon dioxide recovered with respect to the water-containing liquid absorbent was defined as a value obtained by subtracting the amount of carbon dioxide absorbed at 120 ° C. from the amount of carbon dioxide absorbed at 40 ° C.
  • Test example 1 An absorption / dissipation test of carbon dioxide was performed using an absorption device (not shown).
  • the composition of the water-containing liquid absorbent used in this test example was 30% by weight and 60% by weight of Bis (2DMAE) ER, and 35% by weight of MDEA.
  • Absorption conditions and emission conditions in this test example are absorption conditions of 40 ° C., 16 bar (CO 2 partial pressure), emission conditions of 120 ° C., 16 bar (CO 2 partial pressure), and absorption conditions of 40 ° C., 0.2 bar (CO 2 Partial pressure) and emission conditions were 120 ° C. and 0.2 bar (CO 2 partial pressure).
  • Table 3 shows the results of carbon dioxide absorption rate, emission rate, and CO 2 recovery in this test example.
  • Bis (2DMAE) ER had a low absorption rate and a high release rate at 0.2 bar, and the amount of carbon dioxide recovered was small. However, the absorption rate and the emission rate improved at 16 bar, and the absorption rate and the emission rate were large when the amine concentration was 60% by weight, and the CO 2 recovery was also large. For MDEA, the higher the partial pressure of CO 2 , the higher the absorption rate, the emission rate and the CO 2 recovery, but no significant increase was observed as much as 60% by weight of Bis (2DMAE) ER.
  • Test example 2 An absorption / dissipation test of carbon dioxide was performed using an absorption device (not shown).
  • the composition of the water-containing liquid absorbent used in this test example was 30% and 60% by weight of Bis (2DMAE) ER, 35% and 60% by weight of MDEA, and 30% and 60% by weight of PMDETA.
  • Absorption conditions and emission conditions in this test example were absorption conditions of 40 ° C. and 16 bar (CO 2 partial pressure), and emission conditions of 120 ° C. and 16 bar (CO 2 partial pressure).
  • MDEA corresponds to the absorbent of the invention of Patent Document 2 (International Publication No. 2005/009692)
  • PMDETA corresponds to the absorbent of the invention of Patent Document 3 (International Publication No. 2004/082809).
  • the value obtained by subtracting the carbon dioxide concentration in liquid at 120 ° C. from the carbon dioxide concentration in liquid at 40 ° C. indicates the amount of carbon dioxide recovered.
  • MDEA showed no significant change in carbon dioxide recovery at 35 wt% and 60 wt%, while Bis (2DMAE) ER recovered carbon dioxide at 60 wt% compared to 30 wt%. The amount increased.
  • Bis (2DMAE) ER has a higher absorption rate and emission rate at 60% by weight than that of PMDETA and MDEA, and also shows a large value for carbon dioxide recovery. From this, it can be seen that the absorbent of the present invention has particularly high absorption rate and emission rate as compared with the absorbents of Patent Documents 2 and 3.
  • Test example 3 An absorption / dissipation test of carbon dioxide was performed using an absorption device (not shown).
  • the composition of the water-containing liquid absorbent used in this test example was Bis (2DMAE) ER 30, 50, 60, 70, 80 and 90% by weight.
  • Absorption conditions and emission conditions in this test example were absorption conditions of 40 ° C. and 16 bar (CO 2 partial pressure), and emission conditions of 120 ° C. and 16 bar (CO 2 partial pressure).
  • Table 5 and FIG. 2 show the results of carbon dioxide absorption rate, emission rate, and CO 2 recovery amount according to this test example.
  • the absorption rate increased greatly from 60 to 90% by weight compared to 30 to 50% by weight. Further, the emission rate and the carbon dioxide recovery amount reached the maximum at 60% by weight. From the above results, it was found that the Bis (2DMAE) ER concentration showed high performance at 60 to 90% by weight.
  • Test example 4 An absorption / dissipation test of carbon dioxide was performed using an absorption device (not shown).
  • the composition of the water-containing liquid absorbent used in this test example was Bis (2DMAE) ER 60% by weight.
  • Absorption conditions and emission conditions in this test example were absorption conditions of 40 ° C., emission conditions of 120 ° C., and pressures during absorption and emission were 0.2, 2, 16, and 40 bar (CO 2 partial pressure).
  • Table 6 shows the results of the carbon dioxide absorption rate, the emission rate, and the CO 2 recovery amount according to this test example.
  • the absorption rate and the release rate were 100 g / L hr or more at 2 bar or more, and showed larger values as the CO 2 partial pressure increased.
  • the amount of carbon dioxide recovered was 100 g / L or more at 2 bar or more. From the above results, it was found that the CO 2 partial pressure was 2 bar or more and high performance was exhibited. Further, it was confirmed that the carbon dioxide recovery amount was 100 g / L or more under the absorption conditions of 40 ° C., the CO 2 partial pressure of 40 bar, the emission conditions of 120 ° C., the CO 2 partial pressure of 80 bar.
  • the water-containing liquid absorbent having two or more ether groups has the same absorption rate, emission rate, and recovery amount as bis (2-dimethylaminoethyl) ether, but the vapor pressure is reduced, so that the volatilization amount can be reduced.

Abstract

A water-containing liquid absorbent for absorbing and collecting carbon dioxide from a gas flow having a carbon dioxide partial pressure of 2 bar or more, the absorbent being characterized by containing 60 to 90 wt% of a tertiary aliphatic amine represented by general formula [1]; and a method for absorbing and collecting carbon dioxide using the water-containing liquid absorbent.

Description

高圧用二酸化炭素吸収剤並びに高圧二酸化炭素吸収及び回収方法High pressure carbon dioxide absorbent and high pressure carbon dioxide absorption and recovery method
 本発明は、高い二酸化炭素分圧(2 bar以上を示す)を有するガス流から二酸化炭素を除去するため、殊に石炭ガス化プロセスからの排ガスから二酸化炭素を除去するための吸収剤並びに吸収及び回収方法に関する。 The present invention is directed to removing carbon dioxide from a gas stream having a high carbon dioxide partial pressure (indicating above 2 bar), in particular to remove carbon dioxide from exhaust gas from a coal gasification process, and absorption and absorption It relates to a collection method.
 近年、人類の社会活動に付随する二酸化炭素やメタンといった温室効果ガス排出量の急激な増加が地球温暖化の原因の一つに挙げられている。特に、二酸化炭素は温室効果ガスの中でも最も主要なものであり、2005年に発行された京都議定書に従い、二酸化炭素排出量削減へ向けての対策が急務となっている。 In recent years, a rapid increase in greenhouse gas emissions such as carbon dioxide and methane accompanying human social activities has been cited as one of the causes of global warming. In particular, carbon dioxide is the most important greenhouse gas, and in accordance with the Kyoto Protocol issued in 2005, measures to reduce carbon dioxide emissions are urgently needed.
 今日、二酸化炭素の発生源である石炭、重油、天然ガス等を燃料とする火力発電所、製鉄所のボイラー、セメント工場のキルン等から排出される混合ガスを対象に、混合ガスに含まれる二酸化炭素分離回収、圧縮、輸送、圧入という一連の二酸化炭素貯留 (carbon dioxide capture & storage, CCS) 技術が、化石燃料に代わる代替エネルギー開発までの繋ぎ(ブリッジング)技術として注目されている。 Today, CO2 contained in mixed gas is targeted for mixed gas discharged from thermal power plants, boilers in steelworks, kilns in cement factories, etc. that use coal, heavy oil, natural gas, etc., which are the sources of carbon dioxide as fuel. A series of carbon dioxide capture and storage (CCS) technologies, including carbon capture, compression, transportation, and injection, are attracting attention as bridging technologies to develop alternative energy alternatives to fossil fuels.
 この貯留技術の実用化のためには、可能な限りの低コスト化が要求される。二酸化炭素分離回収、圧縮、輸送、圧入の一連の工程の中では、前段の分離回収と圧縮に要するコストが総貯留コストの70%以上を占めていることから、これらのコストを低減するための技術開発が重要である。そのために、発電所や製鉄所からの常圧排出ガスを対象として、アルカノールアミン水溶液を主成分とする化学吸収法による二酸化炭素分離回収技術開発が精力的に推進されている。 ¡In order to put this storage technology into practical use, the lowest possible cost reduction is required. In the series of processes of carbon dioxide separation and recovery, compression, transportation, and press-fitting, the cost required for the previous stage separation and recovery and compression accounts for more than 70% of the total storage cost. Technology development is important. For this reason, the development of carbon dioxide separation and recovery technology by chemical absorption method mainly composed of alkanolamine aqueous solution has been energetically promoted for atmospheric pressure exhaust gas from power plants and steelworks.
 特許文献1には、ガス流中の二酸化炭素分圧が0.2 bar未満であるようなガス流から二酸化炭素を除去するための方法であって、このガス流を、(A)分子中に少なくとも2個の3級アミノ基を有するアミン化合物及び(B)1級アミン及び2級アミンから選択される活性剤の水溶液を含む液状吸収剤と接触させるガス流から二酸化炭素を除去するための方法が記載されている。 Patent Document 1 discloses a method for removing carbon dioxide from a gas stream in which the partial pressure of carbon dioxide in the gas stream is less than 0.2 bar, and this gas stream is (A) at least 2 in the molecule. A method for removing carbon dioxide from a gas stream in contact with a liquid absorbent comprising an aqueous solution of an amine compound having three tertiary amino groups and an active agent selected from (B) a primary amine and a secondary amine is described. Has been.
 これに対し、石炭ガス化生成ガスや採掘天然ガス等の高圧ガスからの化学吸収法による二酸化炭素分離回収技術は、常圧排出ガスからの分離回収技術と比較して、研究例が比較的少ない。しかし、ガス自体の圧力エネルギーを二酸化炭素分離回収及び圧縮に活用できるため、二酸化炭素貯留工程中の、特に分離回収+圧縮工程におけるコストを大幅に低減できる可能性がある。従って、高圧ガスからの二酸化炭素分離に適用可能な化学吸収液の開発が焦点となる。 In contrast, carbon dioxide separation and recovery technology using chemical absorption from high-pressure gas such as coal gasification product gas and mined natural gas has relatively few research examples compared to separation and recovery technology from atmospheric pressure exhaust gas. . However, since the pressure energy of the gas itself can be utilized for carbon dioxide separation recovery and compression, the cost during the carbon dioxide storage process, particularly in the separation recovery + compression process, may be significantly reduced. Therefore, the focus is on the development of chemical absorbents applicable to carbon dioxide separation from high pressure gas.
 これまで、圧力を有するガスから二酸化炭素を含む酸性ガスを除去する方法としては物理吸収法が注目されていた。物理吸収法は対象とするガス成分の分圧が高ければ高いほど化学吸収法に比べて、単位吸収液量当たりの酸性ガス吸収量が大きくなることが知られている。代表的な吸収剤としてはシクロテトラメチレンスルホン(スルホラン)及びこれらの誘導体、並びに脂肪族アミド、メタノール、及びポリエチレングリコールジアルキルエーテル類から成る吸収剤(SELEXOL、ユニオン・カーバイド社)がある。しかし、いずれの吸収液も吸収した二酸化炭素を脱離し吸収液を再生する工程で減圧を必要とするので、後の圧縮工程における圧縮費低減効果は極めて低い。 So far, the physical absorption method has attracted attention as a method for removing acidic gas containing carbon dioxide from gas having pressure. In the physical absorption method, it is known that the higher the partial pressure of the target gas component, the greater the amount of acid gas absorbed per unit absorption liquid compared to the chemical absorption method. Typical absorbents include cyclotetramethylene sulfone (sulfolane) and derivatives thereof, and absorbents composed of aliphatic amides, methanol, and polyethylene glycol dialkyl ethers (SELEXOL, Union Carbide). However, since any of the absorption liquids requires a reduced pressure in the process of desorbing the absorbed carbon dioxide and regenerating the absorption liquid, the effect of reducing the compression cost in the subsequent compression process is extremely low.
 一方、特許文献2は、3.5 bar絶対圧を超え、且つ20 bar絶対圧を超えない圧力下で行われる酸性ガス再生方法に関し、再生器から発生する分離されたガス流は、圧縮され、かつ地下貯留中に圧入されることが記載されている。また、酸性ガス吸収性化学薬剤としては、トリエタノールアミン等が挙げられている。実施例において例証される吸収液は、N-メチルジエタノールアミン43重量%及び水57重量%からなる。 On the other hand, Patent Document 2 relates to an acid gas regeneration method performed under a pressure exceeding 3.5 bar absolute pressure and not exceeding 20 bar absolute pressure, and the separated gas stream generated from the regenerator is compressed and underground. It is described that it is press-fitted during storage. Moreover, triethanolamine etc. are mentioned as an acidic gas absorptive chemical agent. The absorbent illustrated in the examples consists of 43% by weight N-methyldiethanolamine and 57% by weight water.
 上記特許文献1及び2に提案されている分子中に少なくとも2個の3級アミノ基を有するアミン化合物、N-メチルジエタノールアミン(MDEA)の水溶液及びトリエタノールアミンの水溶液は、一般的に用いられる30~50重量%の濃度では、IGCC(石炭ガス化複合発電)で想定される二酸化炭素分圧が高い領域においては放散性が悪く、二酸化炭素の回収及びアミンの再生の効率が悪くなり二酸化炭素回収エネルギー及びコストが高くなる。更に、MDEAを60重量%以上で用いた場合は、粘度の増加によるハンドリング性の悪化や吸収速度の低下などが生じるため実用化が難しい。 The amine compounds having at least two tertiary amino groups in the molecule proposed in Patent Documents 1 and 2 above, an aqueous solution of N-methyldiethanolamine (MDEA) and an aqueous solution of triethanolamine are generally used. At concentrations up to 50% by weight, in the region where the partial pressure of carbon dioxide assumed by IGCC (Coal Gasification Combined Cycle) is high, the dispersibility is poor, and the efficiency of carbon dioxide recovery and amine regeneration becomes poor, and carbon dioxide recovery. Increased energy and cost. Furthermore, when MDEA is used in an amount of 60% by weight or more, it is difficult to put it to practical use because the handling property deteriorates due to the increase in viscosity and the absorption rate decreases.
 これらに対し、特許文献3には、酸性ガスを高濃度に含む吸収液を大気圧よりも高い圧力で加熱する再生方法を含むガス供給流から酸性ガスの除去のための方法が記載されている。該吸収液は、ジアミン、トリアミン及びテトラミンから選択される第三級アルキルアミンである。アミン水溶液を高濃度(60~90重量%)で用いることにより、高い圧力で再生可能であることが記載されている。 On the other hand, Patent Document 3 describes a method for removing acid gas from a gas supply stream including a regeneration method in which an absorbing liquid containing acid gas at a high concentration is heated at a pressure higher than atmospheric pressure. . The absorbing liquid is a tertiary alkylamine selected from diamines, triamines and tetramines. It is described that it can be regenerated at a high pressure by using an aqueous amine solution at a high concentration (60 to 90% by weight).
 しかしながら、ガス流から二酸化炭素を除去するコンパクトな分離装置の設計をするためには、高い吸収速度及び高い放散速度を有するアミンが重要となる。これまで、大気圧よりも高い圧力での二酸化炭素の吸収の分野では、吸収速度及び放散速度に関する検討はなされていない。 However, in order to design a compact separation device that removes carbon dioxide from a gas stream, an amine having a high absorption rate and a high emission rate is important. Until now, in the field of absorption of carbon dioxide at a pressure higher than atmospheric pressure, no examination has been made on the absorption rate and the emission rate.
特表2007-527790号公報Special table 2007-527790 gazette 国際公開第2005/009592号International Publication No. 2005/009592 国際公開第2004/082809号International Publication No. 2004/082809
 本発明は、二酸化炭素分圧が高い領域においてガス中の二酸化炭素の分離を従来よりも高い二酸化炭素吸収速度及び放散速度で達成できる、高効率な二酸化炭素の吸収剤並びに吸収及び回収方法を提供することを目的とする。 The present invention provides a high-efficiency carbon dioxide absorbent and absorption and recovery method capable of achieving separation of carbon dioxide in a gas at a higher carbon dioxide absorption rate and emission rate than in the past in a region where the carbon dioxide partial pressure is high. The purpose is to do.
 上記のように特許文献3には、二酸化炭素分圧が高い領域においては、アミン水溶液を60重量%以上の高濃度で用いることで、二酸化炭素回収量が向上することが記載されている。 As described above, Patent Document 3 describes that in a region where the partial pressure of carbon dioxide is high, the amount of carbon dioxide recovered is improved by using an aqueous amine solution at a high concentration of 60% by weight or more.
 さらに、本発明者らにより水素結合基を有さず、且つ、エーテル基を有する3級脂肪族アミン水溶液を高濃度で用いると二酸化炭素回収量の向上とともに吸収速度と放散速度が向上することが分かった。 Furthermore, when the present inventors use a tertiary aliphatic amine aqueous solution having no hydrogen bonding group and having an ether group at a high concentration, the absorption rate and the emission rate may be improved as well as the carbon dioxide recovery amount. I understood.
 従って、本発明者らは、水素結合基を有さず、且つ、エーテル基を有する3級脂肪族アミン水溶液を高濃度で用いることにより、二酸化炭素分圧が高い領域において、高い吸収速度、高い放散速度、及び高い二酸化炭素回収量を有するアミン溶液とすることができ、上記目的を達成することができるという知見を得た。本発明は、これら知見に基づき、更に検討を重ねて完成されたものであり、次の二酸化炭素の吸収剤並びに吸収及び回収方法を提供するものである。 Therefore, the present inventors use a tertiary aliphatic amine aqueous solution that does not have a hydrogen bond group and has an ether group at a high concentration, thereby enabling a high absorption rate and high in a region where the partial pressure of carbon dioxide is high. It was possible to obtain an amine solution having a diffusion rate and a high carbon dioxide recovery amount, and obtained the knowledge that the above object could be achieved. The present invention has been completed based on these findings, and has been completed. The present invention provides the following carbon dioxide absorbent and absorption and recovery method.
  項1.ガス流中の二酸化炭素分圧が2 bar以上であるガス流から二酸化炭素を吸収及び回収するための含水液状吸収剤であって、一般式〔1〕で表される3級脂肪族アミンを60~90重量%含むことを特徴とする含水液状吸収剤。
一般式〔1〕:
Item 1. A hydrous liquid absorbent for absorbing and recovering carbon dioxide from a gas stream having a partial pressure of carbon dioxide in the gas stream of 2 bar or more, comprising a tertiary aliphatic amine represented by the general formula [1] A hydrous liquid absorbent comprising -90% by weight.
General formula [1]:
Figure JPOXMLDOC01-appb-C000002
  [式中、R1, R2, R3及びR4は、同一又は異なって、アルキル基を表し、R5及びR6は、同一又は異なって、アルキレン基を表し、n = 1~5である。]
Figure JPOXMLDOC01-appb-C000002
[Wherein R 1 , R 2 , R 3 and R 4 are the same or different and represent an alkyl group, R 5 and R 6 are the same or different and represent an alkylene group, and n = 1 to 5 is there. ]
 項2.前記3級脂肪族アミンがビス(2-ジメチルアミノエチル)エーテルである、項1に記載の含水液状吸収剤。 Item 2. Item 5. The water-containing liquid absorbent according to Item 1, wherein the tertiary aliphatic amine is bis (2-dimethylaminoethyl) ether.
 項3.(1)項1又は2に記載の含水液状吸収剤を二酸化炭素分圧が2 bar以上であるガス流と接触させることで、ガス流から二酸化炭素を吸収させる工程、及び
(2)上記工程(1)で得られた二酸化炭素を吸収した含水液状吸収剤を加熱して、二酸化炭素を脱離して回収する工程、
を含む二酸化炭素の吸収及び回収方法。
Item 3. (1) A step of absorbing the carbon dioxide from the gas flow by contacting the water-containing liquid absorbent according to Item 1 or 2 with a gas flow having a carbon dioxide partial pressure of 2 bar or more, and (2) the above step ( Heating the water-containing liquid absorbent that has absorbed carbon dioxide obtained in 1) to desorb and recover carbon dioxide;
Carbon dioxide absorption and recovery method comprising:
 項4.前記工程(1)が、二酸化炭素分圧が2~40 barの圧力で行われ、且つ、前記工程(2)が、二酸化炭素分圧が2 bar以上の圧力で行われる、項3に記載の二酸化炭素の吸収及び回収方法。 Item 4. Item 4. The step (1) is performed at a carbon dioxide partial pressure of 2 to 40 bar, and the step (2) is performed at a carbon dioxide partial pressure of 2 bar or more. Carbon dioxide absorption and recovery method.
 項5.前記工程(1)が、25~60℃の温度で行われ、且つ、前記工程(2)が、70~120℃の温度で行われる、項3又は4に記載の二酸化炭素の吸収及び回収方法。 Item 5. Item 5. The method for absorbing and recovering carbon dioxide according to Item 3 or 4, wherein the step (1) is performed at a temperature of 25 to 60 ° C, and the step (2) is performed at a temperature of 70 to 120 ° C. .
 本発明の吸収剤によれば、二酸化炭素分圧が高い環境において二酸化炭素の吸収速度及び放散速度が速いことから、よりコンパクトな分離装置の設計が可能で経済的な装置とすることができる。また、二酸化炭素分圧が高い環境下において二酸化炭素回収量が増加するため低エネルギーでの分離が可能となる。 According to the absorbent of the present invention, since the absorption rate and the emission rate of carbon dioxide are high in an environment where the partial pressure of carbon dioxide is high, a more compact separation device can be designed and an economical device can be obtained. Moreover, since the amount of carbon dioxide recovered increases in an environment where the carbon dioxide partial pressure is high, separation with low energy becomes possible.
試験例2における二酸化炭素吸収量の結果を示すグラフである。6 is a graph showing the results of carbon dioxide absorption in Test Example 2. 試験例3における二酸化炭素吸収速度、放散速度、及びCO2回収量の結果を示すグラフである。7 is a graph showing the results of carbon dioxide absorption rate, emission rate, and CO 2 recovery amount in Test Example 3.
 以下、本発明の二酸化炭素を吸収及び回収するための含水液状吸収剤及び二酸化炭素の吸収及び回収方法について詳細に説明する。 Hereinafter, the water-containing liquid absorbent and the carbon dioxide absorption and recovery method for absorbing and recovering carbon dioxide according to the present invention will be described in detail.
 二酸化炭素を吸収及び回収するための含水液状吸収剤
 本発明の含水液状吸収剤は、ガス流中の二酸化炭素分圧が2 bar以上であるガス流から二酸化炭素を吸収及び回収すること、及び一般式〔1〕で表される3級脂肪族アミンを60~90重量%含むことを特徴とする。
一般式〔1〕:
Water-containing liquid absorbent for absorbing and recovering carbon dioxide The water-containing liquid absorbent of the present invention absorbs and recovers carbon dioxide from a gas stream in which the partial pressure of carbon dioxide in the gas stream is 2 bar or more, and in general 60 to 90% by weight of a tertiary aliphatic amine represented by the formula [1] is contained.
General formula [1]:
Figure JPOXMLDOC01-appb-C000003
                 
Figure JPOXMLDOC01-appb-C000003
                 
 一般式〔1〕のR1, R2, R3及びR4は、同一又は異なって、アルキル基、好ましくは炭素数が1~6のアルキル基、より好ましくは炭素数が1~3のアルキル基である。 R 1 , R 2 , R 3 and R 4 in the general formula [1] are the same or different and are an alkyl group, preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms. It is a group.
 炭素数が1~6のアルキル基の具体例としてはメチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、n-ペンチル、イソペンチル、及びヘキシルが挙げられる。 Specific examples of the alkyl group having 1 to 6 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, and hexyl.
 炭素数が1~3のアルキル基の具体例としてはメチル、エチル、n-プロピル、及びイソプロピルが挙げられる。 Specific examples of the alkyl group having 1 to 3 carbon atoms include methyl, ethyl, n-propyl, and isopropyl.
 一般式〔1〕のR5及びR6は、同一又は異なって、アルキレン基、好ましくは炭素数が1~6のアルキレン基であり、より好ましくは炭素数が1~3のアルキレン基である。 R 5 and R 6 in the general formula [1] are the same or different and are an alkylene group, preferably an alkylene group having 1 to 6 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms.
 炭素数が1~6のアルキレン基の具体例としてはメチレン、エチレン、n-プロピレン、イソプロピレン、n-ブチレン、イソブチレン、tert-ブチレン、n-ペンチレン、イソペンチレン、及びヘキシレンが挙げられる。 Specific examples of the alkylene group having 1 to 6 carbon atoms include methylene, ethylene, n-propylene, isopropylene, n-butylene, isobutylene, tert-butylene, n-pentylene, isopentylene, and hexylene.
 炭素数が1~3のアルキレン基の具体例としてはメチレン、エチレン、n-プロピレン、及びイソプロピレンが挙げられる。 Specific examples of the alkylene group having 1 to 3 carbon atoms include methylene, ethylene, n-propylene, and isopropylene.
 一般式〔1〕のnは1~5、好ましくは1~4、より好ましくは1~2から選ばれる整数である。 In the general formula [1], n is an integer selected from 1 to 5, preferably 1 to 4, more preferably 1 to 2.
 一般式〔1〕で表される3級脂肪族アミンとしては、例えば、ビス(2-ジメチルアミノエチル)エーテル(bis(2-dimethylaminoethyl)ether)が挙げられる。 Examples of the tertiary aliphatic amine represented by the general formula [1] include bis (2-dimethylaminoethyl) ether.
 上記3級脂肪族アミンは、公知の方法として以下の文献1~文献4の記載に従い製造できるか、或いは市販されているので容易に入手できる。 The above-mentioned tertiary aliphatic amine can be produced as a known method according to the description in References 1 to 4 below, or is commercially available because it is commercially available.
 具体的には、上記3級脂肪族アミンは、以下の文献1~文献4に記載の通りジエチレングリコール又はポリエチレングリコールを原料として、下式に基づき合成できる。
Me2NH + HO-CH2-(CH2-O-CH2)n-CH2-OH → Me2N-CH2-(CH2-O-CH2)n-CH2-NMe2
文献1:国際公開第2005/110969号
文献2:特開平9-20735号公報
文献3:欧州特許出願公開300323号明細書
文献4:西独国特許出願公開3422610号明細書
Specifically, the tertiary aliphatic amine can be synthesized based on the following formula using diethylene glycol or polyethylene glycol as a raw material as described in the following documents 1 to 4.
Me 2 NH + HO-CH 2- (CH 2 -O-CH 2 ) n -CH 2 -OH → Me 2 N-CH 2- (CH 2 -O-CH 2 ) n -CH 2 -NMe 2
Document 1: International Publication No. 2005/110969 Document 2: Japanese Patent Laid-Open No. 9-20735 Document 3: European Patent Application Publication No. 300323 Document 4: West German Patent Application Publication No. 3422610
 上記3級脂肪族アミンの反応熱は、40~70 kJ/mol-CO2、特に45~60 kJ/mol-CO2となることが望ましい。ここで、反応熱とは、40℃、大気圧においてCO2が1 mol吸収される際に生じる熱量の意味として用いる。 The heat of reaction of the tertiary aliphatic amine is desirably 40 to 70 kJ / mol-CO 2, particularly 45 to 60 kJ / mol-CO 2 . Here, the reaction heat is used to mean the amount of heat generated when 1 mol of CO 2 is absorbed at 40 ° C. and atmospheric pressure.
 上記3級脂肪族アミンは、MDEAと比較し、吸収速度が2~5倍、放散速度が2~5倍、二酸化炭素回収量が2~3倍であることが望ましい。 It is desirable that the tertiary aliphatic amine has an absorption rate of 2 to 5 times, an emission rate of 2 to 5 times, and a carbon dioxide recovery amount of 2 to 3 times that of MDEA.
 本発明の含水液状吸収剤は、上記3級脂肪族アミンを60~90重量%を含む。この範囲であれば、二酸化炭素の吸収速度及び放散速度に優れる。好ましくは60~80重量%、より好ましくは60~70重量%含む。 The water-containing liquid absorbent according to the present invention contains 60 to 90% by weight of the tertiary aliphatic amine. If it is this range, it will be excellent in the absorption rate and emission rate of a carbon dioxide. Preferably 60 to 80% by weight, more preferably 60 to 70% by weight.
 本発明の含水液状吸収剤はまた、上記3級脂肪族アミン以外の成分として、酸化防止剤、腐食防止剤、物理吸収剤等を含んでいても良い。 The water-containing liquid absorbent of the present invention may also contain an antioxidant, a corrosion inhibitor, a physical absorbent and the like as components other than the tertiary aliphatic amine.
 上記酸化防止剤としてはBHT(ジブチルヒドロキシトルエン)、BHA(ブチルヒドロキシアニソール)、エリソルビン酸ナトリウム、亜硫酸ナトリウム、二酸化硫黄等が挙げられる。 Examples of the antioxidant include BHT (dibutylhydroxytoluene), BHA (butylhydroxyanisole), sodium erythorbate, sodium sulfite, sulfur dioxide and the like.
 上記物理吸収剤としてはシクロテトラメチレンスルホン(スルホラン) 及びその誘導体、脂肪族酸アミド(アセチルモルホリン、N-ホルミルモルホリン) 、N-アルキル化ピロリドン及び相応するピペリドン、例えばN-メチルピロリドン(NMP) 、プロピレンカーボネート、メタノール、ポリエチレングリコール等のジアルキルエーテル等が挙げられる。 Examples of the physical absorbent include cyclotetramethylene sulfone (sulfolane) and derivatives thereof, aliphatic acid amide (acetylmorpholine, N-formylmorpholine), N-alkylated pyrrolidone and a corresponding piperidone such as N-methylpyrrolidone (NMP), And dialkyl ethers such as propylene carbonate, methanol, and polyethylene glycol.
 本発明の含水液状吸収剤が二酸化炭素を吸収及び回収するガス流中の二酸化炭素分圧は、2 bar以上である。この範囲であれば、二酸化炭素の吸収速度及び放散速度に優れる。好ましくは10 bar以上、より好ましくは10~40 barである。 The partial pressure of carbon dioxide in the gas stream in which the water-containing liquid absorbent of the present invention absorbs and recovers carbon dioxide is 2 bar or more. If it is this range, it will be excellent in the absorption rate and emission rate of a carbon dioxide. It is preferably 10 bar or more, more preferably 10 to 40 bar.
 上記ガス流としては、例えば、石炭ガス化プロセスからの排ガス、採掘天然ガス等が挙げられ、該ガス中の二酸化炭素濃度は、通常20~50体積%程度、特に30~40体積%程度であればよい。かかる二酸化炭素濃度範囲では、本発明の作用効果が好適に発揮される。なお、ガス流には、二酸化炭素以外に水蒸気、CO、H2S、COS、H2等のガスが含まれていてもよい。 Examples of the gas flow include exhaust gas from a coal gasification process, mined natural gas, and the like, and the concentration of carbon dioxide in the gas is usually about 20 to 50% by volume, particularly about 30 to 40% by volume. That's fine. In such a carbon dioxide concentration range, the effects of the present invention are suitably exhibited. The gas stream may contain gas such as water vapor, CO, H 2 S, COS, and H 2 in addition to carbon dioxide.
 二酸化炭素の吸収及び回収方法
 本発明の二酸化炭素の吸収及び回収方法は、(1)上記含水液状吸収剤を二酸化炭素分圧が2 bar以上であるガス流と接触させることで、ガス流から二酸化炭素を吸収させる工程、及び(2)上記工程(1)で得られた二酸化炭素を吸収した含水液状吸収剤を加熱して、二酸化炭素を脱離して回収する工程を含むことを特徴とする。
Carbon dioxide absorption and recovery method The carbon dioxide absorption and recovery method of the present invention comprises: (1) contacting the above-mentioned hydrated liquid absorbent with a gas stream having a partial pressure of carbon dioxide of 2 bar or more, thereby And (2) heating the hydrated liquid absorbent that has absorbed carbon dioxide obtained in the above step (1) to desorb and recover the carbon dioxide.
 工程(1)
 工程(1)では、上記含水液状吸収剤を二酸化炭素分圧が2 bar以上であるガス流と接触させることで、ガス流から二酸化炭素を吸収させる。
Process (1)
In step (1), carbon dioxide is absorbed from the gas stream by contacting the hydrated liquid absorbent with a gas stream having a carbon dioxide partial pressure of 2 bar or more.
 ガス流を、上記含水液状吸収剤に接触させる方法は特に限定はない。例えば、該吸収剤中にガス流をバブリングさせて吸収する方法、ガス気流中に該吸収剤を霧状に降らす方法(噴霧又はスプレー方式)、あるいは磁製や金属網製の充填材の入った吸収塔内でガス流と該吸収剤を向流接触させる方法などによって行われる。 There is no particular limitation on the method for bringing the gas flow into contact with the above-mentioned water-containing liquid absorbent. For example, a method of bubbling a gas flow into the absorbent and absorbing it, a method of dropping the absorbent into a gas stream (a spray or spray method), or a magnetic or metal mesh filler This is performed by a method in which the gas flow and the absorbent are brought into countercurrent contact in the absorption tower.
 工程(1)は、二酸化炭素分圧が2~40 bar、特に2~20 barで行われることが好ましい。また、工程(1)は、25~60℃、特に40~60℃の温度で行われることが好ましい。 Step (1) is preferably performed at a partial pressure of carbon dioxide of 2 to 40 bar, particularly 2 to 20 bar. Step (1) is preferably performed at a temperature of 25 to 60 ° C., particularly 40 to 60 ° C.
 工程(2)
 工程(2)では、上記工程(1)で得られた二酸化炭素を吸収した含水液状吸収剤を加熱して、二酸化炭素を脱離して回収する。
Step (2)
In the step (2), the water-containing liquid absorbent that has absorbed the carbon dioxide obtained in the step (1) is heated to desorb and recover the carbon dioxide.
 二酸化炭素を吸収した含水液状吸収剤から二酸化炭素を脱離し、純粋なあるいは高濃度の二酸化炭素を回収する方法としては、蒸留と同じく吸収剤を加熱して釜で泡立てて脱離する方法、棚段塔、スプレー塔、磁製や金属網製の充填材の入った脱離塔内で液界面を広げて加熱する方法などが挙げられる。これにより、上記吸収剤から二酸化炭素が遊離して放出される。 As a method of desorbing carbon dioxide from a water-containing liquid absorbent that has absorbed carbon dioxide and recovering pure or high-concentration carbon dioxide, a method of heating the absorbent and bubbling it in a kettle as in distillation, a shelf Examples thereof include a method in which a liquid interface is expanded and heated in a plate tower, a spray tower, a desorption tower containing a magnetic or metal mesh filler. Thereby, carbon dioxide is released from the absorbent and released.
 工程(2)は、二酸化炭素分圧が2 bar以上、特に2~80 barの圧力で行われることが好ましい。また、工程(2)は、70~120℃、特に90~120℃の温度で行われることが好ましい。温度上限は120℃に限定されるものではなく、120℃より高温であっても使用することができる。 Step (2) is preferably performed at a carbon dioxide partial pressure of 2 to 8 bar or more, particularly 2 to 80 bar. Step (2) is preferably performed at a temperature of 70 to 120 ° C., particularly 90 to 120 ° C. The upper temperature limit is not limited to 120 ° C., and it can be used even at a temperature higher than 120 ° C.
 二酸化炭素を脱離した後の吸収剤は、再び工程(1)に送られ循環使用される。この間、工程(2)で加えられた熱は、循環過程において吸収剤との熱交換により吸収剤の昇温に有効に利用されて回収工程全体のエネルギーの低減が計られる。 The absorbent after desorbing carbon dioxide is sent again to step (1) and recycled. During this time, the heat applied in the step (2) is effectively used for raising the temperature of the absorbent by heat exchange with the absorbent in the circulation process, and the energy of the entire recovery process is reduced.
 このようにして回収された二酸化炭素の純度は、通常、95~99.9体積%程度と極めて純度が高いものである。この純粋な二酸化炭素あるいは高濃度の二酸化炭素は、化学品、高分子物質の合成原料、あるいは食品冷凍用の冷剤等として用いられる。その他、回収した二酸化炭素を、現在技術開発されつつある地下等へ隔離貯蔵することも可能である。その際、工程(2)での回収された二酸化炭素の圧力は高いほど、貯留する際に必要となる100~150 barへ圧縮するエネルギーを低減できる。 The purity of carbon dioxide recovered in this way is usually extremely high, about 95 to 99.9% by volume. This pure carbon dioxide or high-concentration carbon dioxide is used as a chemical, a raw material for synthesizing a high-molecular substance, or a cooling agent for freezing food. In addition, it is possible to sequester and store the recovered carbon dioxide in the underground, where technology is currently being developed. At that time, the higher the pressure of the carbon dioxide recovered in the step (2), the lower the energy required for compression to 100 to 150 bar, which is required for storage.
 以下、本発明を更に詳しく説明するため実施例を挙げる。しかし、本発明はこれら実施例等になんら限定されるものではない。 Hereinafter, examples will be given to explain the present invention in more detail. However, the present invention is not limited to these examples.
 試薬
 実施例及び比較例で使用した試薬及びガス種は以下の通りである。
Reagents and gas types used in the reagent examples and comparative examples are as follows.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実験方法
 含水液状吸収剤に対する二酸化炭素の吸収速度、放散速度及び回収量の測定は、炭酸ガスボンベ、窒素ボンベ、炭酸ガス流量コントローラー、窒素ガス流量コントローラー、高圧容器(600 cc)、コンデンサー、圧力調整弁、流量計、CO2濃度計を順次接続した装置を用いて行った。高圧容器の周りには温度が40℃と120℃に制御された2つの油浴が接続された。
Experimental method Measurement of carbon dioxide absorption rate, emission rate and recovery amount for water-containing liquid absorbent is carbon dioxide cylinder, nitrogen cylinder, carbon dioxide flow controller, nitrogen gas flow controller, high pressure vessel (600 cc), condenser, pressure regulating valve This was performed using a device in which a flow meter and a CO 2 concentration meter were sequentially connected. Two oil baths with temperatures controlled at 40 ° C and 120 ° C were connected around the high-pressure vessel.
 高圧容器内に含水液状吸収剤(300 cc)を加えた後、容器内圧力が大気圧のもと、窒素で高圧容器内の空気の置換を行った。 After adding the water-containing liquid absorbent (300 cc) into the high-pressure vessel, the air in the high-pressure vessel was replaced with nitrogen under the atmospheric pressure of the vessel.
 高圧容器内の圧力が所定圧(0.2~40 bar)になるよう圧力調整弁を調整し、窒素ガス流量コントローラーを3 L/minに設定し昇圧を開始した。40℃の油浴を高圧容器の周りに循環させ、高圧容器の温度を40℃に保った。コンデンサーの温度は5℃に保たれており、揮発した含水液状吸収剤を高圧容器内に戻す役割を果たしている。 The pressure adjustment valve was adjusted so that the pressure in the high-pressure vessel reached the specified pressure (0.2 to 40 bar), and the nitrogen gas flow rate controller was set to 3 minL / min and pressure increase was started. A 40 ° C. oil bath was circulated around the high pressure vessel to maintain the temperature of the high pressure vessel at 40 ° C. The temperature of the condenser is kept at 5 ° C, and it plays the role of returning the volatilized water-containing liquid absorbent into the high-pressure vessel.
 温度及び圧力が安定した後、炭酸ガス流量コントローラーを0.3~2.7 L/minに、窒素ガス流量コントローラーを0.3~2.7 L/minに設定し二酸化炭素の吸収を行った。含水液状吸収剤に吸収された二酸化炭素の量は入り口の流量、ガス組成と出口の流量計、CO2濃度計の差から算出された。 After the temperature and pressure were stabilized, carbon dioxide was absorbed by setting the carbon dioxide flow rate controller to 0.3 to 2.7 L / min and the nitrogen gas flow rate controller to 0.3 to 2.7 L / min. The amount of carbon dioxide absorbed by the water-containing liquid absorbent was calculated from the difference between the flow rate at the inlet, the gas composition and the flow meter at the outlet, and the CO 2 concentration meter.
 二酸化炭素吸収過程が終了後、高圧容器の周りに循環していた40℃の油浴を120℃の油浴に切り替えることによって、高圧容器の温度を120℃に昇温させ、二酸化炭素の放散を行った。含水液状吸収剤から放散された二酸化炭素の量は入り口の流量、ガス組成と出口の流量計、CO2濃度計の差から算出された。 After the carbon dioxide absorption process is completed, the temperature of the high-pressure vessel is raised to 120 ° C by switching the oil bath at 40 ° C circulating around the high-pressure vessel to an oil bath at 120 ° C. went. The amount of carbon dioxide released from the water-containing liquid absorbent was calculated from the difference between the inlet flow rate, gas composition, outlet flow meter, and CO 2 concentration meter.
 含水液状吸収剤に対する二酸化炭素の吸収速度は二酸化炭素吸収開始時の単位時間当たりの吸収量として定義した。 The absorption rate of carbon dioxide with respect to the water-containing liquid absorbent was defined as the amount of absorption per unit time at the start of carbon dioxide absorption.
 含水液状吸収剤に対する二酸化炭素の放散速度は二酸化炭素放散開始時の単位時間当たりの吸収量として定義した。 The emission rate of carbon dioxide with respect to the water-containing liquid absorbent was defined as the amount of absorption per unit time at the start of carbon dioxide emission.
 含水液状吸収剤に対する二酸化炭素の回収量は40℃における二酸化炭素吸収量から、120℃における二酸化炭素吸収量を引いた値として定義した。 The amount of carbon dioxide recovered with respect to the water-containing liquid absorbent was defined as a value obtained by subtracting the amount of carbon dioxide absorbed at 120 ° C. from the amount of carbon dioxide absorbed at 40 ° C.
 試験例1
 図示しない吸収装置を用いて、二酸化炭素の吸収放散試験を行った。本試験例で用いた含水液状吸収剤の組成はBis(2DMAE)ER 30重量%及び60重量%、MDEA 35重量%であった。本試験例における吸収条件及び放散条件は、吸収条件40℃、16 bar(CO2分圧)、放散条件120℃、16 bar(CO2分圧)、及び吸収条件40℃、0.2 bar(CO2分圧)、放散条件120℃、0.2 bar(CO2分圧)であった。
Test example 1
An absorption / dissipation test of carbon dioxide was performed using an absorption device (not shown). The composition of the water-containing liquid absorbent used in this test example was 30% by weight and 60% by weight of Bis (2DMAE) ER, and 35% by weight of MDEA. Absorption conditions and emission conditions in this test example are absorption conditions of 40 ° C., 16 bar (CO 2 partial pressure), emission conditions of 120 ° C., 16 bar (CO 2 partial pressure), and absorption conditions of 40 ° C., 0.2 bar (CO 2 Partial pressure) and emission conditions were 120 ° C. and 0.2 bar (CO 2 partial pressure).
 本試験例における二酸化炭素の吸収速度、放散速度、及びCO2回収量の結果を表3に示す。 Table 3 shows the results of carbon dioxide absorption rate, emission rate, and CO 2 recovery in this test example.
 表3に示すようにBis(2DMAE)ERは0.2 barでは吸収速度及び放散速度が遅く、二酸化炭素回収量も小さかった。しかしながら、16 barでは吸収速度及び放散速度が向上し、さらにアミン濃度が60重量%では吸収速度及び放散速度が大きく、CO2回収量に関しても大きな値を示した。MDEAについてはCO2分圧が高い程、吸収速度、放散速度及びCO2回収量が向上するが、Bis(2DMAE)ER 60重量%ほどの顕著な増加は観測されなかった。 As shown in Table 3, Bis (2DMAE) ER had a low absorption rate and a high release rate at 0.2 bar, and the amount of carbon dioxide recovered was small. However, the absorption rate and the emission rate improved at 16 bar, and the absorption rate and the emission rate were large when the amine concentration was 60% by weight, and the CO 2 recovery was also large. For MDEA, the higher the partial pressure of CO 2 , the higher the absorption rate, the emission rate and the CO 2 recovery, but no significant increase was observed as much as 60% by weight of Bis (2DMAE) ER.
 試験例2
 図示しない吸収装置を用いて、二酸化炭素の吸収放散試験を行った。本試験例で用いた含水液状吸収剤の組成はBis(2DMAE)ER 30重量%及び60重量%、MDEA 35重量%及び60重量%、PMDETA 30重量%及び60重量%であった。本試験例における吸収条件及び放散条件は、吸収条件40℃、16 bar(CO2分圧)、放散条件120℃、16 bar(CO2分圧)であった。
Test example 2
An absorption / dissipation test of carbon dioxide was performed using an absorption device (not shown). The composition of the water-containing liquid absorbent used in this test example was 30% and 60% by weight of Bis (2DMAE) ER, 35% and 60% by weight of MDEA, and 30% and 60% by weight of PMDETA. Absorption conditions and emission conditions in this test example were absorption conditions of 40 ° C. and 16 bar (CO 2 partial pressure), and emission conditions of 120 ° C. and 16 bar (CO 2 partial pressure).
 尚、MDEAは特許文献2(国際公開第2005/009692号)の発明の吸収剤に対応し、PMDETAは特許文献3(国際公開第2004/082809号)の発明の吸収剤に対応する。 MDEA corresponds to the absorbent of the invention of Patent Document 2 (International Publication No. 2005/009692), and PMDETA corresponds to the absorbent of the invention of Patent Document 3 (International Publication No. 2004/082809).
 本試験例における二酸化炭素吸収量の結果を図1に、二酸化炭素の吸収速度、放散速度、及びCO2回収量の結果を表4に示す。 The results of carbon dioxide absorption in this test example are shown in FIG. 1, and the results of carbon dioxide absorption rate, emission rate, and CO 2 recovery are shown in Table 4.
 図1において、40℃における液中二酸化炭素濃度から120℃における液中二酸化炭素濃度を引いた値が、二酸化炭素回収量を示す。 In FIG. 1, the value obtained by subtracting the carbon dioxide concentration in liquid at 120 ° C. from the carbon dioxide concentration in liquid at 40 ° C. indicates the amount of carbon dioxide recovered.
 図1に示すように、MDEAは35重量%と60重量%で二酸化炭素の回収量に大きな変化は示さなかったが、Bis(2DMAE)ERは30重量%と比較すると60重量%で二酸化炭素回収量が増加した。 As shown in Figure 1, MDEA showed no significant change in carbon dioxide recovery at 35 wt% and 60 wt%, while Bis (2DMAE) ER recovered carbon dioxide at 60 wt% compared to 30 wt%. The amount increased.
 また、表4に示すように、Bis(2DMAE)ERはPMDETA及びMDEAと比較すると、60重量%での吸収速度及び放散速度が大きく、二酸化炭素回収量に関しても大きな値を示した。このことから、本発明の吸収剤は、特許文献2及び3の吸収剤と比較して特に吸収速度と放散速度が高いことが分かる。 Also, as shown in Table 4, Bis (2DMAE) ER has a higher absorption rate and emission rate at 60% by weight than that of PMDETA and MDEA, and also shows a large value for carbon dioxide recovery. From this, it can be seen that the absorbent of the present invention has particularly high absorption rate and emission rate as compared with the absorbents of Patent Documents 2 and 3.
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
 試験例3
 図示しない吸収装置を用いて、二酸化炭素の吸収放散試験を行った。本試験例で用いた含水液状吸収剤の組成はBis(2DMAE)ER 30、50、60、70、80及び90重量%であった。本試験例における吸収条件及び放散条件は、吸収条件40℃、16 bar(CO2分圧)、放散条件120℃、16 bar(CO2分圧)であった。
Test example 3
An absorption / dissipation test of carbon dioxide was performed using an absorption device (not shown). The composition of the water-containing liquid absorbent used in this test example was Bis (2DMAE) ER 30, 50, 60, 70, 80 and 90% by weight. Absorption conditions and emission conditions in this test example were absorption conditions of 40 ° C. and 16 bar (CO 2 partial pressure), and emission conditions of 120 ° C. and 16 bar (CO 2 partial pressure).
 本試験例にかかる二酸化炭素吸収速度、放散速度、及びCO2回収量の結果を表5及び図2に示す。 Table 5 and FIG. 2 show the results of carbon dioxide absorption rate, emission rate, and CO 2 recovery amount according to this test example.
 図2に示すように、吸収速度は30~50重量%と比較すると60~90重量%で大きく増加した。また、放散速度及び二酸化炭素回収量は60重量%で最大値をとった。以上の結果よりBis(2DMAE)ERの濃度が60~90重量%で高い性能を示すことが分かった。 As shown in FIG. 2, the absorption rate increased greatly from 60 to 90% by weight compared to 30 to 50% by weight. Further, the emission rate and the carbon dioxide recovery amount reached the maximum at 60% by weight. From the above results, it was found that the Bis (2DMAE) ER concentration showed high performance at 60 to 90% by weight.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 試験例4
 図示しない吸収装置を用いて、二酸化炭素の吸収放散試験を行った。本試験例で用いた含水液状吸収剤の組成はBis(2DMAE)ER 60重量%であった。本試験例における吸収条件及び放散条件は、吸収条件40℃、放散条件120℃、吸収、放散時の圧力は0.2、2、16、40 bar(CO2分圧)であった。
Test example 4
An absorption / dissipation test of carbon dioxide was performed using an absorption device (not shown). The composition of the water-containing liquid absorbent used in this test example was Bis (2DMAE) ER 60% by weight. Absorption conditions and emission conditions in this test example were absorption conditions of 40 ° C., emission conditions of 120 ° C., and pressures during absorption and emission were 0.2, 2, 16, and 40 bar (CO 2 partial pressure).
 本試験例にかかる二酸化炭素吸収速度、放散速度、及びCO2回収量の結果を表6に示す。 Table 6 shows the results of the carbon dioxide absorption rate, the emission rate, and the CO 2 recovery amount according to this test example.
 表6に示すように、吸収速度及び放散速度は2 bar以上で100 g/L hr以上を示し、CO2分圧が高くなるにつれ、大きな値を示した。また、二酸化炭素回収量は2 bar以上で100 g/L以上となった。以上の結果よりCO2分圧が2 bar以上で高い性能を示すことがわかった。また、吸収条件40℃、CO2分圧が40 bar、放散条件120℃、CO2分圧が80 barで二酸化炭素回収量は100 g/L以上を示すことを確認した。 As shown in Table 6, the absorption rate and the release rate were 100 g / L hr or more at 2 bar or more, and showed larger values as the CO 2 partial pressure increased. The amount of carbon dioxide recovered was 100 g / L or more at 2 bar or more. From the above results, it was found that the CO 2 partial pressure was 2 bar or more and high performance was exhibited. Further, it was confirmed that the carbon dioxide recovery amount was 100 g / L or more under the absorption conditions of 40 ° C., the CO 2 partial pressure of 40 bar, the emission conditions of 120 ° C., the CO 2 partial pressure of 80 bar.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 これらの結果より、Bis(2DMAE)ER 60~90重量%の含水液状吸収剤を用いると、ガス流中の二酸化炭素分圧が2 bar以上であるようなガス流から二酸化炭素を除去する際、従来よりもさらに効率的かつ低いエネルギー消費でガス中の二酸化炭素を吸収及び放散させることができることが分かった。 From these results, when using Bis (2DMAE) ER 60-90 wt% hydrous liquid absorbent, when removing carbon dioxide from a gas stream where the partial pressure of carbon dioxide in the gas stream is 2 bar or more, It has been found that carbon dioxide in a gas can be absorbed and released more efficiently and with lower energy consumption than before.
 また、エーテル基を2つ以上有する含水液状吸収剤は吸収速度、放散速度及び回収量はビス(2-ジメチルアミノエチル)エーテルと変わらないが、蒸気圧が下がるため、揮発量を低減できる。 In addition, the water-containing liquid absorbent having two or more ether groups has the same absorption rate, emission rate, and recovery amount as bis (2-dimethylaminoethyl) ether, but the vapor pressure is reduced, so that the volatilization amount can be reduced.

Claims (5)

  1.  ガス流中の二酸化炭素分圧が2 bar以上であるガス流から二酸化炭素を吸収及び回収するための含水液状吸収剤であって、一般式〔1〕で表される3級脂肪族アミンを60~90重量%含むことを特徴とする含水液状吸収剤。
    一般式〔1〕:
    Figure JPOXMLDOC01-appb-C000001
     
    [式中、R1, R2, R3及びR4は、同一又は異なって、アルキル基を表し、R5及びR6は、同一又は異なって、アルキレン基を表し、n = 1~5である。]
    A hydrous liquid absorbent for absorbing and recovering carbon dioxide from a gas stream having a partial pressure of carbon dioxide in the gas stream of 2 bar or more, comprising a tertiary aliphatic amine represented by the general formula [1] A hydrous liquid absorbent comprising -90% by weight.
    General formula [1]:
    Figure JPOXMLDOC01-appb-C000001

    [Wherein R 1 , R 2 , R 3 and R 4 are the same or different and represent an alkyl group, R 5 and R 6 are the same or different and represent an alkylene group, and n = 1 to 5 is there. ]
  2.  前記3級脂肪族アミンがビス(2-ジメチルアミノエチル)エーテルである、請求項1に記載の含水液状吸収剤。 The water-containing liquid absorbent according to claim 1, wherein the tertiary aliphatic amine is bis (2-dimethylaminoethyl) ether.
  3. (1)請求項1に記載の含水液状吸収剤を二酸化炭素分圧が2 bar以上であるガス流と接触させることで、ガス流から二酸化炭素を吸収させる工程、及び
    (2)上記工程(1)で得られた二酸化炭素を吸収した含水液状吸収剤を加熱して、二酸化炭素を脱離して回収する工程、
    を含む二酸化炭素の吸収及び回収方法。
    (1) A step of absorbing carbon dioxide from a gas flow by contacting the water-containing liquid absorbent according to claim 1 with a gas flow having a carbon dioxide partial pressure of 2 bar or more, and (2) the step (1) Heating the water-containing liquid absorbent that has absorbed carbon dioxide obtained in step 2) to desorb and recover carbon dioxide,
    Carbon dioxide absorption and recovery method comprising:
  4.  前記工程(1)が、二酸化炭素分圧が2~40 barの圧力で行われ、且つ、前記工程(2)が、二酸化炭素分圧が2 bar以上の圧力で行われる、請求項3に記載の二酸化炭素の吸収及び回収方法。 The step (1) is performed at a carbon dioxide partial pressure of 2 to 40 bar, and the step (2) is performed at a carbon dioxide partial pressure of 2 bar or more. Of carbon dioxide absorption and recovery.
  5.  前記工程(1)が、25~60℃の温度で行われ、且つ、前記工程(2)が、70~120℃の温度で行われる、請求項3に記載の二酸化炭素の吸収及び回収方法。 The method for absorbing and recovering carbon dioxide according to claim 3, wherein the step (1) is performed at a temperature of 25 to 60 ° C, and the step (2) is performed at a temperature of 70 to 120 ° C.
PCT/JP2010/072242 2009-12-11 2010-12-10 Carbon dioxide absorbent for use under high pressure, and method for absorption and collection of carbon dioxide under high pressure WO2011071150A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011545266A JP5812867B2 (en) 2009-12-11 2010-12-10 High pressure carbon dioxide absorbent and high pressure carbon dioxide absorption and recovery method
AU2010328990A AU2010328990B2 (en) 2009-12-11 2010-12-10 Carbon dioxide absorbent for use under high pressure, and method for absorption and collection of carbon dioxide under high pressure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009281285 2009-12-11
JP2009-281285 2009-12-11

Publications (1)

Publication Number Publication Date
WO2011071150A1 true WO2011071150A1 (en) 2011-06-16

Family

ID=44145693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072242 WO2011071150A1 (en) 2009-12-11 2010-12-10 Carbon dioxide absorbent for use under high pressure, and method for absorption and collection of carbon dioxide under high pressure

Country Status (3)

Country Link
JP (1) JP5812867B2 (en)
AU (1) AU2010328990B2 (en)
WO (1) WO2011071150A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014036933A (en) * 2012-08-17 2014-02-27 Research Institute Of Innovative Technology For The Earth Liquid absorbent and separation-recovery method for separating-recovering carbon dioxide from gas flow containing high pressure carbon dioxide
WO2015159546A1 (en) * 2014-04-16 2015-10-22 千代田化工建設株式会社 System and method for liquefying natural gas
CN105664672A (en) * 2016-04-05 2016-06-15 江苏大海能源科技有限公司 Compound liquid decarbonizing agent for removing high-concentration CO2 in gas
JP2017189727A (en) * 2016-04-11 2017-10-19 川崎重工業株式会社 Carbon dioxide separation recovery system
JP2017189726A (en) * 2016-04-11 2017-10-19 川崎重工業株式会社 Carbon dioxide separation recovery system
JP2018134604A (en) * 2017-02-23 2018-08-30 川崎重工業株式会社 Carbon dioxide separation recovery system
WO2019163867A1 (en) * 2018-02-23 2019-08-29 公益財団法人地球環境産業技術研究機構 Absorbent for carbon dioxide, and method for separating/collecting carbon dioxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257353A (en) * 1995-03-23 1996-10-08 Kansai Electric Power Co Inc:The Process for removing carbon dioxide in combustion exhaust gas
JP2007527790A (en) * 2004-03-09 2007-10-04 ビーエーエスエフ アクチェンゲゼルシャフト Method for removing carbon dioxide from a gas stream having a low carbon dioxide partial pressure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405582A (en) * 1982-01-18 1983-09-20 Exxon Research And Engineering Co. Process for selective removal of H2 S from mixtures containing H22 using diaminoether solutions
FR2898284B1 (en) * 2006-03-10 2009-06-05 Inst Francais Du Petrole METHOD FOR DEACIDIFYING GAS BY ABSORBENT SOLUTION WITH HEATED FRACTIONAL REGENERATION.
FR2934172B1 (en) * 2008-07-28 2011-10-28 Inst Francais Du Petrole ABSORBENT SOLUTION BASED ON N, N, N'N'-TETRAMETHYLHEXANE -1,6-DIAMINE AND PROCESS FOR REMOVING ACIDIC COMPOUNDS FROM A GASEOUS EFFLUENT

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08257353A (en) * 1995-03-23 1996-10-08 Kansai Electric Power Co Inc:The Process for removing carbon dioxide in combustion exhaust gas
JP2007527790A (en) * 2004-03-09 2007-10-04 ビーエーエスエフ アクチェンゲゼルシャフト Method for removing carbon dioxide from a gas stream having a low carbon dioxide partial pressure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014036933A (en) * 2012-08-17 2014-02-27 Research Institute Of Innovative Technology For The Earth Liquid absorbent and separation-recovery method for separating-recovering carbon dioxide from gas flow containing high pressure carbon dioxide
WO2015159546A1 (en) * 2014-04-16 2015-10-22 千代田化工建設株式会社 System and method for liquefying natural gas
CN105664672A (en) * 2016-04-05 2016-06-15 江苏大海能源科技有限公司 Compound liquid decarbonizing agent for removing high-concentration CO2 in gas
JP2017189727A (en) * 2016-04-11 2017-10-19 川崎重工業株式会社 Carbon dioxide separation recovery system
JP2017189726A (en) * 2016-04-11 2017-10-19 川崎重工業株式会社 Carbon dioxide separation recovery system
JP2018134604A (en) * 2017-02-23 2018-08-30 川崎重工業株式会社 Carbon dioxide separation recovery system
WO2019163867A1 (en) * 2018-02-23 2019-08-29 公益財団法人地球環境産業技術研究機構 Absorbent for carbon dioxide, and method for separating/collecting carbon dioxide
JPWO2019163867A1 (en) * 2018-02-23 2021-03-04 公益財団法人地球環境産業技術研究機構 Carbon dioxide absorber and carbon dioxide separation and recovery method
JP7146891B2 (en) 2018-02-23 2022-10-04 公益財団法人地球環境産業技術研究機構 Carbon dioxide absorbent and carbon dioxide separation and recovery method

Also Published As

Publication number Publication date
JP5812867B2 (en) 2015-11-17
AU2010328990A1 (en) 2012-05-24
JPWO2011071150A1 (en) 2013-04-22
AU2010328990B2 (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP5812867B2 (en) High pressure carbon dioxide absorbent and high pressure carbon dioxide absorption and recovery method
JP5452222B2 (en) Method for efficiently recovering carbon dioxide in gas
JP5659127B2 (en) Acid gas absorbent, acid gas removal method, and acid gas removal apparatus
EP2529824B1 (en) Acid gas absorbent and acid gas removal method
KR101432951B1 (en) Aqueous solution capable of absorbing and collecting carbon dioxide in exhaust gas with high efficiency
JP2012530597A (en) Removal of acid gas using absorbent containing stripping aid
JP2007325996A (en) Absorbent, and apparatus and method for removing co2 and/or h2s
JP2006240966A (en) Method for recovering carbon dioxide in exhaust gas by absorption and releasing
JP6073088B2 (en) Liquid absorbent and separation and recovery method for separating and recovering carbon dioxide from a gas stream containing high-pressure carbon dioxide
JP2011194388A (en) Aqueous solution which effectively absorbs and recovers carbon dioxide contained in gas
JP2018122278A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
JP2017035669A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
JP2017196547A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
EP2830737B1 (en) Carbon capture solvents and methods for using such solvents
JP2019098316A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
AU2016202116A1 (en) Acidic gas absorbing agent, method for removing acidic gas and apparatus for removing acidic gas
JP2009213974A (en) Aqueous solution and method of absorbing and desorption-recovering effectively carbon dioxides in gas
JP2020044489A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
JP2005296897A (en) Absorbent auxiliary substance, absorption liquid, device and method of removing co2 or h2s or both using absorption liquid
JP2008168227A (en) Absorbing liquid of carbon dioxide in exhaust gas
JP2008168184A (en) Composition for absorbing and dissociating carbon dioxide in exhaust gas to recover it and carbon dioxide recovering method using it
JP2006150298A (en) Absorption liquid, and co2 or h2s removal apparatus and method employing it
JP7204391B2 (en) Acid gas absorbent, method for removing acid gas, and apparatus for removing acid gas
JP2006167520A (en) Absorbing liquid and apparatus and method for removing carbon dioxide or hydrogen sulfide in gas by using absorbing liquid
JP2019115888A (en) Carbon dioxide absorbent and recovery method of carbon dioxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10836069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545266

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010328990

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010328990

Country of ref document: AU

Date of ref document: 20101210

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10836069

Country of ref document: EP

Kind code of ref document: A1