WO2019163867A1 - Absorbent for carbon dioxide, and method for separating/collecting carbon dioxide - Google Patents

Absorbent for carbon dioxide, and method for separating/collecting carbon dioxide Download PDF

Info

Publication number
WO2019163867A1
WO2019163867A1 PCT/JP2019/006457 JP2019006457W WO2019163867A1 WO 2019163867 A1 WO2019163867 A1 WO 2019163867A1 JP 2019006457 W JP2019006457 W JP 2019006457W WO 2019163867 A1 WO2019163867 A1 WO 2019163867A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
absorbent
group
amine compound
mass concentration
Prior art date
Application number
PCT/JP2019/006457
Other languages
French (fr)
Japanese (ja)
Inventor
山本 信
後藤 和也
フィロツ アラム チョウドリ
洋市 松崎
正巳 小野田
Original Assignee
公益財団法人地球環境産業技術研究機構
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人地球環境産業技術研究機構, 日本製鉄株式会社 filed Critical 公益財団法人地球環境産業技術研究機構
Priority to JP2020501020A priority Critical patent/JP7146891B2/en
Publication of WO2019163867A1 publication Critical patent/WO2019163867A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to an absorbent for separating and collecting carbon dioxide from a gas containing carbon dioxide with high efficiency, and a method for separating and collecting carbon dioxide using the absorbent.
  • amine compounds examples include monoethanolamine (MEA), which is a primary alkanolamine, diglycolamine (DGA), 2-amino-2-methyl-1-propanol (AMP), and 2- (methyl) which is a secondary alkanolamine.
  • MEA monoethanolamine
  • DGA diglycolamine
  • AMP 2-amino-2-methyl-1-propanol
  • 2- (methyl) which is a secondary alkanolamine.
  • the absorbed carbon dioxide is released by heating the temperature of the liquid absorbent to about 120 ° C.
  • the aqueous solution of the primary alkanolamine is used as the liquid absorbent.
  • the amount of carbon dioxide emitted during the regeneration of the liquid absorbent is not sufficient, and the heat of absorption reaction of primary alkanolamine with carbon dioxide is relatively high, resulting in a large per unit mass of carbon dioxide recovered as a result. Requires energy.
  • Patent Document 1 discloses an aqueous solution of a secondary alkanolamine having steric hindrance such as an alkyl group around an amino group and combustion exhaust gas under atmospheric pressure. The method of removing carbon dioxide in the combustion exhaust gas by the method of contacting the carbon dioxide and absorbing carbon dioxide is described.
  • examples of MAE and EAE are described as secondary alkanolamines, and it is described that a 30% by mass aqueous solution of MAE and EAE is preferable for absorption of carbon dioxide.
  • examples of secondary alkanolamines although no examples are described, four types of amines such as 2-isopropylaminoethanol (IPAE) are described.
  • Patent Document 2 describes a liquid absorbent containing only IPAE, which is also a secondary alkanolamine, and is characterized by high absorbability and dispersibility, but as shown in Comparative Example 2.
  • IPAE IPAE
  • Comparative Example 2 In order to make carbon dioxide recovery more efficient, if the concentration is increased to 60% by mass or more, the absorption rate will decrease and the amount of emission will decrease greatly. The results to be described are described.
  • Patent Document 3 an aqueous solution of a tertiary alkanolamine is used as a liquid absorbent, and an acid gas regeneration method is performed under a pressure exceeding 3.5 bar absolute pressure (about 0.35 MPa) and not exceeding 20 bar absolute pressure (about 2 MPa).
  • a pressure exceeding 3.5 bar absolute pressure about 0.35 MPa
  • 20 bar absolute pressure about 2 MPa.
  • tertiary alkanolamines are generally known to have a relatively low heat of absorption reaction with carbon dioxide compared to primary or secondary alkanolamines, and are expected to significantly reduce the energy required for the separation and recovery of carbon dioxide. Is done.
  • Patent Document 3 is an invention intended to use an aqueous solution of MDEA or TEA as a liquid absorbent of carbon dioxide in a region where the partial pressure of carbon dioxide assumed in coal gasification product gas, mined natural gas, or the like is high. It is. These tertiary alkanolamines are effective in recovering carbon dioxide and regenerating liquid absorbents against relatively low partial pressure carbon dioxide (generally around 0.02 MPa) generated from thermal power plants and steelworks blast furnaces. Low, and thus the energy per unit mass of carbon dioxide recovered is high.
  • an aqueous solution of BDER is described as the tertiary aliphatic diamine.
  • the partial pressure of carbon dioxide is 10 bar ( It is described that in a high region of about 1 MPa or more, a high carbon dioxide recovery rate and a high carbon dioxide absorption rate and a high carbon dioxide emission rate can be obtained.
  • BDER used in the patent document is also known to have a relatively low heat of absorption reaction with carbon dioxide, similar to MDEA or TEA. And the efficiency of regeneration of the liquid absorbent is low.
  • Patent Document 5 describes an aqueous solution containing a secondary alkanolamine having steric hindrance and a tertiary alkylamine consisting only of a saturated hydrocarbon chain, and a method for recovering carbon dioxide using the aqueous solution.
  • examples of TMDAH and TMDAB are shown as tertiary alkylamines contained in an aqueous solution, and a relatively high carbon dioxide absorption and desorption are obtained when IPAE is used as a secondary alkanolamine. The amount is shown.
  • Examples of secondary alkanolamines include IPAP and EAE in addition to IPAE.
  • Patent Document 5 shows relatively high performance when the total amine concentration in the aqueous solution is in the range of 50 to 60% by mass.
  • tertiary alkylamines consisting only of saturated hydrocarbons are generally relatively viscous, and in Comparative Example 6 of this specification, a significant decrease in performance is shown by increasing the total amine concentration to 60% by mass or more. ing.
  • Patent Document 6 describes a secondary alkanolamine having steric hindrance, a liquid composed only of a polyamine containing two or more amino groups and water, and a method for recovering carbon dioxide using the liquid.
  • examples of primary, secondary and / or tertiary alkyl polyamines composed only of saturated hydrocarbon chains and primary alkyl polyamines containing ether groups are shown as polyamines contained in the liquid.
  • Examples of secondary alkanolamines for IPAE and EAE are shown.
  • Patent Document 6 shows that high performance can be obtained by containing the polyamine in the liquid at a low mass concentration of about 0.2 to 1%.
  • primary alkyl polyamines generally have a high carbon dioxide absorption reaction heat and are poor in carbon dioxide desorption.
  • alkylpolyamines consisting only of saturated hydrocarbon chains are generally highly viscous. Therefore, as shown in Comparative Examples 7 to 10 in the present specification, when the polyamine is contained at a higher mass concentration, high performance cannot be obtained.
  • An object of the present invention is to provide an absorbent for efficiently separating and recovering carbon dioxide in a gas containing carbon dioxide with less energy and a method for separating and recovering carbon dioxide using the same.
  • the alkanolamine represented by the general formula [1] The aqueous solution containing the compound and the tertiary aliphatic amine compound having an ether group represented by the general formula [2] has a high carbon dioxide recovery amount, a low specific heat and a low carbon dioxide absorption heat. It was found that the required energy consumption can be kept low.
  • the present invention has been completed based on the above findings, and has been completed. Further, the present invention provides an absorbent for separating and recovering the following carbon dioxide and a method for separating and recovering carbon dioxide using the same. To do.
  • Item 1 An absorbent for separating and recovering carbon dioxide from a gas containing carbon dioxide, which is represented by at least one alkanolamine compound represented by general formula [1] and at least one general formula [2]
  • An absorbent comprising a tertiary aliphatic amine compound having an ether group and water, wherein the total mass concentration of the amine compound contained in the absorbent is 61 to 84%.
  • R 4 and R 5 each independently represents a tertiary alkylamino group having 2 to 4 carbon atoms, and m represents 1, 2 or 3).
  • Item 2. The mass concentration of the alkanolamine compound is 37 to 83%, the mass concentration of the tertiary aliphatic amine compound having an ether group is 1 to 24%, and the mass concentration of water is 16 to 39%.
  • Item 10. The absorbent according to Item 1, which is characterized. Item 3.
  • the total mass concentration of the amine compound contained in the absorbent is 65 to 80%, the mass concentration of the alkanolamine compound is 45 to 75%, and the mass concentration of the tertiary aliphatic amine compound having an ether group Item 5.
  • the absorbent according to Item 1 wherein the absorbent is 5 to 20% and the mass concentration of water is 20 to 35%.
  • the alkanolamine compound is monoethanolamine, 2-amino-2-methyl-1-propanol, 2- (methylamino) ethanol, 2- (ethylamino) ethanol, 2- (isopropylamino) ethanol and 3- (isopropyl Item 4.
  • the alkanolamine compound is at least one selected from the group consisting of 2-amino-2-methyl-1-propanol, 2- (ethylamino) ethanol, 2- (isopropylamino) ethanol and 3- (isopropylamino) propanol.
  • Item 4. The absorbent according to any one of Items 1 to 3, which is a seed.
  • Item 6. Item 3.
  • the tertiary aliphatic amine compound having an ether group is at least one selected from the group consisting of tertiary aliphatic amines having an ether group, molecular symmetry, and no hydroxy group. To 5. The absorbent according to any one of 5 to 5.
  • a method for separating and recovering carbon dioxide from a gas containing carbon dioxide including the following steps A and B: The process A which makes the absorber as described in any one of claim
  • Item 9. Item 9. The method for separating and recovering carbon dioxide from the carbon dioxide-containing gas according to Item 8, wherein the step A is performed at a temperature of 25 to 60 ° C, and the step B is performed at a temperature of 70 to 150 ° C.
  • Item 10 The process A is performed under a pressure of 1.0 bar or higher, and the process B is performed under a pressure of 3.5 bar or lower.
  • the absorbent since the absorbent has a high carbon dioxide recovery amount, a low specific heat, and a low carbon dioxide absorption heat, the energy consumption required for the carbon dioxide recovery amount can be kept low. Carbon dioxide can be separated and recovered. Furthermore, a more compact carbon dioxide separation and recovery facility can be designed, and the initial cost is reduced.
  • the absorbent for separating and recovering carbon dioxide from a gas containing carbon dioxide of the present invention at low energy is an alkanolamine compound represented by at least one general formula [1] And at least one tertiary aliphatic amine compound having an ether group represented by the general formula [2] and water.
  • R 1 represents an alkyl group having 1 to 5 carbon atoms or a hydrogen group
  • R 2 and R 3 each independently represents an alkyl group having 1 or 2 carbon atoms or a hydrogen group
  • n is 2 or 3
  • R 4 and R 5 each independently represents a tertiary alkylamino group having 2 to 4 carbon atoms, and m represents 1, 2 or 3).
  • R 1 represents an alkyl group having 1 to 5 carbon atoms or a hydrogen group.
  • the alkyl group having 1 to 5 carbon atoms may be linear or branched, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, Examples include n-pentyl, isopentyl, sec-pentyl, tert-pentyl, 3-pentyl and the like.
  • R 1 is a hydrogen atom, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, tert-pentyl or 3-pentyl, more preferably a hydrogen atom, methyl, ethyl or isopropyl. is there.
  • R 2 and R 3 each independently represents an alkyl group having 1 or 2 carbon atoms or a hydrogen group.
  • alkyl group having 1 or 2 carbon atoms examples include methyl and ethyl.
  • R 2 is a hydrogen atom or methyl. The same applies to R 3 .
  • n 2 or 3, preferably 2.
  • alkanolamine compound represented by the general formula [1] examples include monoethanolamine, 2-amino-2-methyl-1-propanol, 2- (methylamino) ethanol, 2- (ethylamino) ethanol, Examples include 2- (isopropylamino) ethanol and 3- (isopropylamino) propanol.
  • the absorbent of the present invention may contain one alkanolamine compound represented by the general formula [1] alone, or two or more kinds at the same time.
  • R 4 and R 5 each independently represents a tertiary alkylamino group having 2 to 4 carbon atoms.
  • tertiary alkylamino group having 2 to 4 carbon atoms two identical or different alkyl groups which may have a substituent are bonded to the nitrogen atom constituting the amino group, and the number of carbon atoms of the alkyl group is An amino group whose sum is 2 to 4.
  • the alkyl group may have a substituent, and a hetero atom may be interposed between the alkyl chains or between the nitrogen atom and the alkyl group.
  • each alkyl group may be independently linear, branched or cyclic, and two alkyl groups bonded to a nitrogen atom are bonded to each other to form a cyclic structure with the nitrogen atom. May be.
  • Examples of the linear or branched alkyl group include methyl, ethyl, n-propyl, and isopropyl.
  • Examples of the cyclic alkyl group include cyclopropyl.
  • Examples of the alkyl group in which two alkyl groups bonded to a nitrogen atom are bonded to each other to form a cyclic structure with the nitrogen atom include ethyleneimino and pyrrolidino.
  • the alkyl group in which two alkyl groups bonded to a linear, branched, cyclic, or nitrogen atom are bonded to each other to form a cyclic structure with the nitrogen atom has at most three substituents.
  • at most one heteroatom may be interposed between each alkyl chain or between each nitrogen atom and each alkyl group.
  • the substituent include a hydroxy group, a thiol group, a fluoro group, a chloro group, a bromo group, and an iodo group.
  • the hetero atom include an oxygen atom, a sulfur atom, and a phosphorus atom, and an oxygen atom is preferable.
  • Examples of the tertiary alkylamino group having 2 to 4 carbon atoms include, for example, dimethylamino, ethyl (methyl) amino, diethylamino, isopropyl (methyl) amino, methoxy (methyl) amino, methoxy (optionally substituted).
  • R 4 is dimethylamino, diethylamino, dimethoxymethylamino or morpholino.
  • R 5 is the same.
  • m represents 1, 2 or 3, preferably 1 or 2, and more preferably 1.
  • a tertiary aliphatic amine compound having an ether group represented by the general formula [3] is also preferred as the tertiary aliphatic amine compound having an ether group represented by the general formula [2].
  • R 6 and R 7 are a total of 2 to 4 carbon atoms in both groups, and each independently represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a carbon atom.
  • R 8 and R 9 each represent a cyclic structure, and the total number of carbon atoms of both groups is 2 to 4, and each independently represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or 6-membered ring with an alkoxyalkyl group having 2 to 3 carbon atoms, or a nitrogen atom that forms an amino group bonded to each other through one oxygen atom, both of which are the same alkyl group having 2 carbon atoms
  • L represents 1, 2 or 3.
  • the alkyl group having 1 to 3 carbon atoms may be linear or branched, and examples thereof include methyl, ethyl, propyl, isopropyl and the like.
  • the alkoxy group having 1 to 3 carbon atoms may be linear or branched, and examples thereof include methoxy, ethoxy, propoxy, isopropoxy and the like.
  • alkoxyalkyl group having 2 to 3 carbon atoms examples include methoxymethyl, methoxyethyl, ethoxymethyl and the like.
  • the 6-membered ring structure represented by the nitrogen atoms constituting the amino group in which both groups are the same alkyl group having 2 carbon atoms and bonded to each other through one oxygen atom is morpholino.
  • L represents 1, 2 or 3, preferably 1 or 2, and more preferably 1.
  • R 6 and R 7 are all methyl, both ethyl, both methoxymethyl, and morpholino. The same applies to R 8 and R 9 .
  • Preferred —NR 6 R 7 is dimethylamino, diethylamino, dimethoxymethylamino or morpholino. The same applies to -NR 8 R 9 .
  • tertiary aliphatic amine compound having an ether group represented by the general formulas [2] and [3] include bis (2-dimethylaminoethyl) ether, bis (2-diethylaminoethyl) ether, 1, Examples include 8-bis (dimethylamino) -3,6-dioxaoctane, 1,11-bis (dimethylamino) -3,6,9-trioxaundecane, and bis (2-morpholinoethyl) ether.
  • the absorbent of the present invention may contain one kind of tertiary aliphatic amine compound having an ether group represented by the general formula [2], or two or more kinds at the same time.
  • alkanolamine compound represented by the general formula [1] and the tertiary aliphatic amine compound having an ether group represented by the general formula [2] are commercially available or can be produced by a known method.
  • the total mass concentration of the amine compound contained in the absorbent of the present invention is preferably higher than 60% and lower than 85%, and the mass concentration of water contained in the absorbent of the present invention is lower than 40% and 15%. Higher is preferred.
  • the dielectric constant of the absorbent can be significantly reduced, and carbon dioxide The solvation energy in the reaction with is reduced. As a result, the carbon dioxide absorption heat can be significantly reduced. Furthermore, the effect of reducing the specific heat of the absorbent is also obtained.
  • the tertiary aliphatic amine compound having an ether group generally has a low viscosity. Therefore, the absorbent of the present invention has a tertiary aliphatic amine compound having an ether group represented by the general formula [2].
  • the total mass concentration of the amine compound contained in the absorbent of the present invention is higher than 60% and lower than 85%, and the mass concentration of water is lower than 40% and higher than 15%, as described above, carbon dioxide
  • the effect of reducing the heat of absorption of carbon dioxide and lowering the specific heat can be obtained.
  • the total mass concentration of the amine compound contained in the absorbent of the present invention is more preferably 61 to 84%, still more preferably 65 to 80%. Further, the mass concentration of water contained in the absorbent of the present invention is more preferably 16 to 39%, and still more preferably 20 to 35%.
  • the water contained in the absorbent of the present invention is not particularly limited, and distilled water, ion-exchanged water, tap water, ground water, etc. can be used as appropriate.
  • the mass concentration of the alkanolamine compound contained in the absorbent of the present invention is preferably 37 to 83%. Within this range, due to the high carbon dioxide absorptivity of the alkanolamine compound, the absorbent has a high carbon dioxide recovery amount, and the concentration of the amine compound contained in the absorbent can be increased. More preferably, it is 45 to 75%.
  • the mass concentration of the tertiary aliphatic amine compound having an ether group contained in the absorbent of the present invention is preferably 1 to 24%. Within this range, the increase in viscosity due to the increase in concentration of the amine compound contained in the absorbent is suppressed, and while maintaining good reactivity with carbon dioxide and water, the carbon dioxide absorption heat is reduced and the specific heat is reduced. An effect is obtained. Moreover, the tertiary aliphatic amine compound having an ether group represented by the general formula [2] has the ability to absorb and dissipate carbon dioxide as an aqueous solution, thereby increasing the amount of carbon dioxide recovered by the absorbent. An effect is also obtained. More preferably, it is 5 to 20%.
  • the tertiary aliphatic amine compound having an ether group contained in the absorbent of the present invention preferably has molecular symmetry.
  • Tertiary aliphatic amine compounds having an ether group and high molecular symmetry have a very low dielectric constant, so that the solvation energy of the absorbent obtained by increasing the concentration of the amine compound contained in the absorbent is reduced. As a result, the effect of reducing the heat absorbed by carbon dioxide is high.
  • a compound having molecular symmetry is a compound in which R 4 and R 5 have the same chemical structure in the general formula [2].
  • NR 6 R 7 and NR 8 R 9 are compounds having the same chemical structure.
  • bis (2-dimethylaminoethyl) ether bis (2-diethylaminoethyl) ether, 1,8-bis (dimethylamino) -3,6-dioxaoctane, 1,11-bis (dimethylamino) -3 , 6,9-trioxaundecane, bis (2-morpholinoethyl) ether.
  • the tertiary aliphatic amine compound having an ether group contained in the absorbent of the present invention preferably has no hydroxy group.
  • a tertiary aliphatic amine compound having an ether group generally has a low viscosity, but a hydroxy group has a high hydration property and thus increases the viscosity of an absorbent containing water.
  • the absorbent can be further reduced in viscosity and excellent in carbon dioxide absorption performance and emission performance. Even if the concentration of the amine compound contained in is increased, a high carbon dioxide recovery amount can be obtained.
  • the absorbent of the present invention contains components other than the alkanolamine compound represented by the general formula [1], the tertiary aliphatic amine compound having an ether group represented by the general formula [2], and water as necessary. In addition, it may be included within a range that does not impair the effects of the present invention.
  • Other components include stabilizers (side reaction inhibitors such as antioxidants) for securing the chemical or physical stability of the absorbent of the present invention, and materials for devices and equipment using the absorbent of the present invention. Examples include an inhibitor (such as a corrosion inhibitor) for preventing deterioration of carbon dioxide, a physical absorbent of carbon dioxide for supplementing absorption and emission of carbon dioxide by the absorbent of the present invention, and the like.
  • the content of these other components in the absorbent of the present invention is not particularly limited as long as it does not inhibit the effects of the present invention, but is preferably 5% or less by mass concentration.
  • antioxidants examples include dibutylhydroxytoluene, butylhydroxyanisole, sodium erythorbate, sodium sulfite, and sulfur dioxide.
  • corrosion inhibitor examples include 1-hydroxyethane-1,1-diphosphonic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, 1-phosphonopropane-2,3-dicarboxylic acid, phosphonosuccinic acid, 2-hydroxyphosphonoacetic acid, maleic acid-based polymer (for example, a copolymer of maleic acid and amylene, or a terpolymer of maleic acid, acrylic acid, and styrene).
  • maleic acid-based polymer for example, a copolymer of maleic acid and amylene, or a terpolymer of maleic acid, acrylic acid, and styrene.
  • Examples of the physical absorbent include, for example, cyclotetramethylene sulfone and derivatives thereof, aliphatic acid amides (for example, acetylmorpholine or N-formylmorpholine), N-alkylated pyrrolidones and corresponding piperidones (for example, N-methylpyrrolidone, or N-methylpiperidone), propylene carbonate, methanol, dialkyl ethers of polyethylene glycol and the like.
  • Gases containing carbon dioxide include, for example, thermal power plants fueled with coal, heavy oil, natural gas, boilers at factories, kilns at cement plants, ironmaking blast furnaces that reduce iron oxide with coke, carbon in pig iron Exhaust gas from coal-fired combined power generation facilities, etc., natural gas at the time of mining, reformed gas, etc., and the carbon dioxide concentration in the gas is usually 5-50 by volume. %, Especially about 10-40%. In such a carbon dioxide concentration range, the effects of the present invention are suitably exhibited.
  • the gas containing carbon dioxide may contain gases such as N 2 , water vapor, CO, H 2 S, COS, SO 2 , NO 2 , CH 4 , and hydrogen in addition to carbon dioxide.
  • a method for separating and recovering carbon dioxide using an absorbent according to the present invention is a method for separating and recovering carbon dioxide in a gas containing carbon dioxide.
  • step A the absorbent is brought into contact with a gas containing carbon dioxide, so that the carbon dioxide in the gas containing carbon dioxide is absorbed by the absorbent and separated.
  • the method for bringing the absorbent into contact with the gas containing carbon dioxide in step A is not particularly limited.
  • a method of bubbling a gas containing carbon dioxide in the absorbent a method of dropping the absorbent into a gas containing carbon dioxide (a spray or spray method), and a magnetic or metal mesh filler
  • a method of bubbling a gas containing carbon dioxide in the absorbent a method of dropping the absorbent into a gas containing carbon dioxide (a spray or spray method), and a magnetic or metal mesh filler
  • a method in which a gas containing high-pressure carbon dioxide and an absorbent are brought into countercurrent contact in an absorption tower a method in which a gas containing high-pressure carbon dioxide and an absorbent are brought into countercurrent contact in an absorption tower.
  • the temperature in step A can be 25-60 ° C. If it is this range, an absorber will be excellent in a carbon dioxide recovery amount and a carbon dioxide absorption rate.
  • the temperature in step A is preferably 25 to 50 ° C, more preferably 25 to 40 ° C.
  • the pressure in step A is usually 1.0 bar or higher, preferably 1.0 to 3.5 bar. Further, higher carbon dioxide absorption performance can be obtained by carrying out at a higher pressure.
  • Process B In the process B, the absorbent that has absorbed the carbon dioxide obtained in the process A is heated to desorb and dissipate carbon dioxide from the absorbent, and the diffused carbon dioxide is recovered.
  • the temperature in the step B of desorbing and releasing carbon dioxide can be 70 to 150 ° C. Within this range, the absorbent is excellent in the carbon dioxide emission rate.
  • the temperature in step B is preferably 70 to 120 ° C, more preferably 70 to 100 ° C.
  • the pressure in the step B of desorbing and releasing carbon dioxide in step B is usually 3.5 bar or less, preferably 1.0 to 3.5 bar. Further, higher carbon dioxide emission performance can be obtained by carrying out at a lower pressure.
  • the method for heating and absorbing the carbon dioxide-absorbing agent to desorb and dissipate the carbon dioxide and recovering it is not particularly limited.
  • the absorbent is heated and bubbled in a kettle, and the liquid interface is expanded in a diffusion tower containing packing materials such as plate towers, spray towers, magnetic, metal mesh, etc.
  • the method of heating etc. are mentioned. By these methods, pure or very high concentration carbon dioxide can be recovered.
  • the absorbent after releasing carbon dioxide in the process B can be returned to the process A and recycled.
  • the heat applied in the step B is utilized for increasing the temperature of the absorbent by heat exchange with the absorbent that has absorbed carbon dioxide.
  • the heat exchange can reduce the energy of the entire carbon dioxide separation and recovery process.
  • the carbon dioxide separated and recovered by the method for separating and recovering carbon dioxide with the absorbent of the present invention usually has a volume concentration of 95 to 100%, and may be pure or very high.
  • the separated and recovered carbon dioxide can be subjected to sequestration and storage (CCS) and enhanced oil recovery (EOR), which are currently under development of the technology.
  • CCS sequestration and storage
  • EOR enhanced oil recovery
  • the use application of the separated and recovered carbon dioxide is not particularly limited. For example, synthetic raw materials such as chemical products, or a cooling agent for freezing foods can be used.
  • the reagents and gas types used in the reagent examples and comparative examples are shown in Table 1 and Table 2, respectively.
  • Test method carbon dioxide recovery
  • the measurement of the amount of carbon dioxide recovered with respect to the absorbent is carried out using a carbon dioxide gas cylinder and a nitrogen gas cylinder, a carbon dioxide gas flow rate controller and a nitrogen gas flow rate controller, a glass reaction vessel (0.5 L), a temperature regulator, and a gas flow meter.
  • a chiller, and a carbon dioxide concentration meter (IR100, manufactured by Yokogawa Electric Corporation) were used in sequence to perform the carbon dioxide absorption and emission device.
  • the periphery of the glass reaction vessel was covered with an electric heater, and the temperature regulator was used to arbitrarily control the temperature of the absorbent in the glass reaction vessel.
  • a stirring blade was provided in the glass reaction vessel, and the gas-liquid contact was promoted by forcibly stirring the absorbent in the glass reaction vessel.
  • the temperature condition and pressure condition in the carbon dioxide absorption process and carbon dioxide emission process were a temperature of 40 ° C. and a pressure of 1 bar, a temperature of 70 ° C. and a pressure of 1 bar, respectively.
  • the above temperature conditions and pressure conditions do not limit the present invention.
  • the absorbent in the glass reaction vessel was set to the temperature and pressure conditions of the carbon dioxide emission step, and the carbon dioxide emission step was started and continued for 2 hours.
  • the exhaust gas from the glass reaction vessel was analyzed with a carbon dioxide concentration meter.
  • the amount of carbon dioxide dissolved in the absorbent S c [g / L] was determined from the change over time of the carbon dioxide concentration C [volume%] obtained from the carbon dioxide concentration meter using the following equation [4].
  • the amount of carbon dioxide recovered by the absorbent was defined as a value obtained by subtracting the amount of carbon dioxide dissolved 2 hours after the start of the carbon dioxide emission process from the amount of carbon dioxide dissolved 2 hours after the start of the carbon dioxide absorption process.
  • the carbon dioxide absorption heat was measured using a differential calorimeter (DRC Evolution manufactured by SETARAM). Two reactors of the same shape were each filled with a predetermined amount of absorbent, and a predetermined amount of carbon dioxide was blown into only one reactor while stirring at 40 ° C. The calorific value per absorbed amount of carbon dioxide was determined from the difference in calorific value between the two reactors at a given time and the amount of carbon dioxide dissolved in the absorbent, and was defined as the carbon dioxide absorption heat.
  • DRC Evolution differential calorimeter
  • the specific heat of the absorbent was measured using a liquid specific heat meter (SHA-500 manufactured by Kyoto Electronics Industry Co., Ltd.).
  • Table 3 shows IPAE and AMP (Examples 4 to 8) or IPAE and EAE (Example 9) as the alkanolamine compound, BDER as the tertiary aliphatic amine compound having the ether group, and water.
  • BDER as the tertiary aliphatic amine compound having the ether group
  • water For the absorbent contained in concentration, carbon dioxide recovery, carbon dioxide absorption heat and absorbent specific heat were measured according to the test method.
  • Examples 12-13 About the absorbent containing IPAP (Example 12) or EAE (Example 13) as the alkanolamine compound, BDER as the tertiary aliphatic amine compound having the ether group, and the water at concentrations shown in Table 3, respectively. According to the test method, the carbon dioxide recovery, carbon dioxide absorption heat and absorbent specific heat were measured.
  • Comparative Examples 4-6 As the alkanolamine compound, IPAE, TMDAH, which is a tertiary alkylamine consisting only of a saturated hydrocarbon chain, and the water are contained at the concentrations shown in Table 3, respectively, and the tertiary aliphatic amine compound having the ether group is not included.
  • the absorbent was measured for carbon dioxide recovery, carbon dioxide absorption heat, and specific heat of the absorbent according to the test method.
  • Comparative Examples 7-8 Absorption which does not contain the tertiary aliphatic amine compound which has IPAE, DAMPA which is a primary alkyl polyamine which consists only of a saturated hydrocarbon chain, and the water as the alkanolamine compound at the concentrations shown in Table 3, respectively.
  • the agent the amount of carbon dioxide recovered, the carbon dioxide absorption heat, and the specific heat of the absorbent were measured according to the test method.
  • Comparative Examples 9-10 For the absorbent containing IPAE as the alkanolamine compound, BAEOE, which is a primary alkyl polyamine containing an ether group, and water, each at a concentration shown in Table 3, and not containing a tertiary aliphatic amine compound having the ether group, According to the test method, the carbon dioxide recovery, carbon dioxide absorption heat and absorbent specific heat were measured.
  • BAEOE which is a primary alkyl polyamine containing an ether group
  • water each at a concentration shown in Table 3, and not containing a tertiary aliphatic amine compound having the ether group
  • Comparative Examples 13-14 About the absorbent containing IPAP (Comparative Example 13) or EAE (Comparative Example 14) as the alkanolamine compound and the water at the concentrations shown in Table 3 and not containing the tertiary aliphatic amine compound having the ether group. According to the test method, the carbon dioxide recovery, carbon dioxide absorption heat and absorbent specific heat were measured.
  • the C value in the table is a value obtained by dividing the specific heat B of the absorbent by the amount of carbon dioxide recovered A and multiplying by 1000, and is a value that is a measure of the amount of heat consumed when carbon dioxide is separated and recovered by the absorbent. It is. It means that the carbon dioxide can be separated and recovered with lower energy as the absorbent has a lower C value and heat of absorption of carbon dioxide.
  • the mass concentration of the tertiary aliphatic amine compound having an ether group contained in the absorbent is in the range of 1 to 24%, and the absorbent has high performance. It can be confirmed from the value of C value and carbon dioxide absorption heat.

Abstract

Provided are: an absorbent for the efficient separation/collection of carbon dioxide in a carbon dioxide-containing gas with less energy; and a method for separating/collecting carbon dioxide using the absorbent. An absorbent for the separation/collection of carbon dioxide in a carbon dioxide-containing gas, the absorbent containing at least one alkanol amine compound represented by general formula [1], at least one tertiary aliphatic amine compound having an ether group and represented by general formula [2], and water, wherein the sum total of the mass concentrations of the amine compounds contained in the absorbent is 61 to 84%. General formula [1]: (wherein R1 represents an alkyl group having 1 to 5 carbon atoms or a hydrogen group; R2 and R3 independently represent an alkyl group having 1 or 2 carbon atoms or a hydrogen group; and n represents 2 or 3.) General formula [2]: (wherein R4 and R5 independently represent a tertiary alkyl amino group having 2 to 4 carbon atoms; and m represents 1, 2 or 3.)

Description

二酸化炭素の吸収剤および二酸化炭素の分離回収方法Carbon dioxide absorbent and carbon dioxide separation and recovery method
 本発明は、二酸化炭素を含むガスから二酸化炭素を高効率に分離回収するための吸収剤、及び該吸収剤を用いた二酸化炭素を分離回収する方法に関する。 The present invention relates to an absorbent for separating and collecting carbon dioxide from a gas containing carbon dioxide with high efficiency, and a method for separating and collecting carbon dioxide using the absorbent.
 近年、人類の社会活動に付随する二酸化炭素やメタンといった温室効果ガス排出量の急激な増加が地球温暖化の原因の一つに挙げられている。特に、二酸化炭素は温室効果ガスの中でも最も主要なものであり、2016年に発効されたパリ協定に従い、二酸化炭素排出量削減へ向けての対策が急務となっている。 In recent years, a rapid increase in greenhouse gas emissions such as carbon dioxide and methane accompanying human social activities has been cited as one of the causes of global warming. In particular, carbon dioxide is the most important greenhouse gas, and there is an urgent need to reduce carbon dioxide emissions in accordance with the Paris Agreement that came into effect in 2016.
 今日、二酸化炭素の発生源である石炭、重油、天然ガス等を燃料とする火力発電所、製鉄所の高炉、セメント工場のキルン、製造所のボイラー等から排出される混合ガスを対象に、混合ガスに含まれる二酸化炭素を分離回収し、圧縮して、輸送の後、圧入するという一連の二酸化炭素分離回収貯留(Carbon dioxide Capture and Storage、CCS)技術が、化石燃料に代わる代替エネルギー開発までの繋ぎ(ブリッジング)技術として注目されている。 Today, mixed gas discharged from coal, heavy oil, natural gas, etc., which is the source of carbon dioxide, is mixed with gas discharged from thermal power plants, ironworks blast furnaces, cement plant kilns, plant boilers, etc. A series of carbon dioxide capture and storage (CCS) technology that separates and recovers carbon dioxide contained in gas, compresses it, and injects it after transportation, until the development of alternative energy to replace fossil fuels. It is attracting attention as a bridging technology.
 この貯留技術の実用化のためには、可能な限りの低コスト化が要求される。二酸化炭素の分離回収、圧縮、輸送、圧入の一連の工程の中では、二酸化炭素の分離回収に要するコストが二酸化炭素分離回収貯留に係わる総コストの60%以上を占めていることから、この二酸化炭素分離回収コストを低減するための技術開発が重要となる。 ¡In order to put this storage technology into practical use, the lowest possible cost reduction is required. In the series of processes of carbon dioxide separation and recovery, compression, transportation, and injection, the cost required for carbon dioxide separation and recovery accounts for more than 60% of the total cost of carbon dioxide separation and recovery. Technological development to reduce carbon separation and recovery costs is important.
 そのため近年では、発電所や製鉄所から排出される二酸化炭素含有ガスを対象として、アミン化合物の水溶液を主成分とする化学吸収法による二酸化炭素分離回収の技術開発が精力的に推進されている。 Therefore, in recent years, technology development of carbon dioxide separation and recovery by chemical absorption method mainly using an aqueous solution of an amine compound has been vigorously promoted for carbon dioxide-containing gas discharged from power plants and steelworks.
 上記アミン化合物としては、一級アルカノールアミンであるモノエタノールアミン(MEA)、ジグリコールアミン(DGA)、2-アミノ-2-メチル-1-プロパノール(AMP)、二級アルカノールアミンである2-(メチルアミノ)エタノール(MAE)、2-(エチルアミノ)エタノール(EAE)、2-(イソプロピルアミノ)エタノール(IPAE)、3-(イソプロピルアミノ)プロパノール(IPAP)、ジエタノールアミン(DEA)、ジイソプロパノールアミン(DIPA)、三級アルカノールアミンであるN-メチルジエタノールアミン(MDEA)、2-(ジメチルアミノ)エタノール(DMAE)、トリエタノールアミン(TEA)、三級アルキルアミンであるN,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン(TMDAH)、N,N,N’,N’-テトラメチル-1,4-ジアミノブタン(TMDAB)、ビス(2-ジメチルアミノエチル)エーテル(BDER)等が知られており、特にMEAが広く用いられている。 Examples of the amine compounds include monoethanolamine (MEA), which is a primary alkanolamine, diglycolamine (DGA), 2-amino-2-methyl-1-propanol (AMP), and 2- (methyl) which is a secondary alkanolamine. Amino) ethanol (MAE), 2- (ethylamino) ethanol (EAE), 2- (isopropylamino) ethanol (IPAE), 3- (isopropylamino) propanol (IPAP), diethanolamine (DEA), diisopropanolamine (DIPA) ), Tertiary alkanolamines N-methyldiethanolamine (MDEA), 2- (dimethylamino) ethanol (DMAE), triethanolamine (TEA), tertiary alkylamines N, N, N ', N'- Tetramethyl-1,6-diaminohexane (TMDAH), N, N, N ', N'-tetramethyl-1,4-diaminobutane (TMDAB), bis (2-dimethylaminoethyl) ether (BDER ) And the like are known, and MEA is particularly widely used.
 上記アミン化合物の水溶液を二酸化炭素の液状吸収剤として用いる場合、MEAなどの一級アルカノールアミンは二酸化炭素分離回収のための装置材質に対する腐食性が高いため、装置材質として高価な耐食鋼を用いるか、或いは液状吸収剤中のアミン濃度を下げるなどの対策が必要となる。 When using an aqueous solution of the above amine compound as a liquid absorbent of carbon dioxide, primary alkanolamine such as MEA is highly corrosive to the equipment material for carbon dioxide separation and recovery, so use expensive corrosion resistant steel as the equipment material, Or measures such as lowering the amine concentration in the liquid absorbent are necessary.
 また、一般に液状吸収剤を再生させる際には、液状吸収剤の温度を120℃程度に加熱することで、吸収した二酸化炭素を放散させるが、上記の一級アルカノールアミンの水溶液を液状吸収剤とした場合では、液状吸収剤再生時の二酸化炭素放散量が十分でないため、また、一級アルカノールアミンの二酸化炭素との吸収反応熱が比較的高いため、結果的に回収される二酸化炭素単位質量当たりに大きなエネルギーを必要とする。 In general, when regenerating the liquid absorbent, the absorbed carbon dioxide is released by heating the temperature of the liquid absorbent to about 120 ° C. The aqueous solution of the primary alkanolamine is used as the liquid absorbent. In some cases, the amount of carbon dioxide emitted during the regeneration of the liquid absorbent is not sufficient, and the heat of absorption reaction of primary alkanolamine with carbon dioxide is relatively high, resulting in a large per unit mass of carbon dioxide recovered as a result. Requires energy.
 より少ないエネルギーでの二酸化炭素の分離回収のための従来技術として、例えば、特許文献1には、アミノ基周辺にアルキル基等の立体障害を有する二級アルカノールアミンの水溶液と大気圧下の燃焼排ガスとを接触させ二酸化炭素を吸収させる方法による燃焼排ガス中の二酸化炭素の除去方法が記載されている。 As a conventional technique for separating and recovering carbon dioxide with less energy, for example, Patent Document 1 discloses an aqueous solution of a secondary alkanolamine having steric hindrance such as an alkyl group around an amino group and combustion exhaust gas under atmospheric pressure. The method of removing carbon dioxide in the combustion exhaust gas by the method of contacting the carbon dioxide and absorbing carbon dioxide is described.
 上記特許文献1においては、二級アルカノールアミンとしてMAE及びEAEの実施例が記され、MAE及びEAEの30質量%の水溶液が、二酸化炭素の吸収に好ましいと記載されている。その他の二級アルカノールアミンとしては、実施例の記載はないが、2-イソプロピルアミノエタノール(IPAE)等4種類のアミンが記されている。 In Patent Document 1, examples of MAE and EAE are described as secondary alkanolamines, and it is described that a 30% by mass aqueous solution of MAE and EAE is preferable for absorption of carbon dioxide. As other secondary alkanolamines, although no examples are described, four types of amines such as 2-isopropylaminoethanol (IPAE) are described.
 特許文献2には、同じく二級アルカノールアミンであるIPAEのみを含む液状吸収剤が記載されており、高い吸収性と放散性が特徴として挙げられているが、比較例2に示されているように二酸化炭素の回収をより効率的にするために濃度を60質量%以上に上げると吸収速度の低下、及び放散量の低下が大きく立体障害性アミンの特性が生かされず液状吸収剤の性能が低下する結果が記載されている。 Patent Document 2 describes a liquid absorbent containing only IPAE, which is also a secondary alkanolamine, and is characterized by high absorbability and dispersibility, but as shown in Comparative Example 2. In order to make carbon dioxide recovery more efficient, if the concentration is increased to 60% by mass or more, the absorption rate will decrease and the amount of emission will decrease greatly. The results to be described are described.
 特許文献3には、三級アルカノールアミンの水溶液を液状吸収剤とし、3.5bar絶対圧(約0.35MPa)を超え、且つ20bar絶対圧(約2MPa)を超えない圧力下で行われる酸性ガス再生方法が記載されている。該特許文献においては、三級アルカノールアミンとしてMDEAの43質量%水溶液についての実施例が記されている。その他の三級アルカノールアミンとしては、実施例の記載はないが、TEA等が挙げられている。これら三級アルカノールアミンは、一般に、一級又は二級のアルカノールアミンに比べ、二酸化炭素との比較的低い吸収反応熱を持つことが知られ、二酸化炭素の分離回収に要するエネルギーの大幅な低減が期待される。 In Patent Document 3, an aqueous solution of a tertiary alkanolamine is used as a liquid absorbent, and an acid gas regeneration method is performed under a pressure exceeding 3.5 bar absolute pressure (about 0.35 MPa) and not exceeding 20 bar absolute pressure (about 2 MPa). Is described. In this patent document, an example of a 43% by mass aqueous solution of MDEA as a tertiary alkanolamine is described. Examples of other tertiary alkanolamines include TEA and the like although no examples are described. These tertiary alkanolamines are generally known to have a relatively low heat of absorption reaction with carbon dioxide compared to primary or secondary alkanolamines, and are expected to significantly reduce the energy required for the separation and recovery of carbon dioxide. Is done.
 上記特許文献3は、石炭ガス化生成ガスや採掘天然ガス等で想定される二酸化炭素分圧が高い領域において、MDEA又はTEAの水溶液を二酸化炭素の液状吸収剤として使用することを目的とした発明である。これらの三級アルカノールアミンは、火力発電所や製鉄所高炉から発生する比較的低い分圧の二酸化炭素(一般に0.02MPa程度)に対しては、二酸化炭素の回収及び液状吸収剤の再生の効率が低く、従って回収される二酸化炭素単位質量当たりのエネルギーが高くなる。 Patent Document 3 is an invention intended to use an aqueous solution of MDEA or TEA as a liquid absorbent of carbon dioxide in a region where the partial pressure of carbon dioxide assumed in coal gasification product gas, mined natural gas, or the like is high. It is. These tertiary alkanolamines are effective in recovering carbon dioxide and regenerating liquid absorbents against relatively low partial pressure carbon dioxide (generally around 0.02 MPa) generated from thermal power plants and steelworks blast furnaces. Low, and thus the energy per unit mass of carbon dioxide recovered is high.
 特許文献4には、2bar(約0.2MPa)以上の高い二酸化炭素分圧を有するガス流から二酸化炭素を除去するため、殊に石炭ガス化プロセスからの排ガスから二酸化炭素を除去するための吸収剤並びに吸収及び回収方法が記載されている。該吸収剤は水素結合基を有さず、且つ、エーテル基を有する三級脂肪族ジアミン水溶液である。 In US Pat. No. 6,057,086, an absorbent for removing carbon dioxide from a gas stream having a high carbon dioxide partial pressure of 2 bar (about 0.2 MPa) or more, in particular for removing carbon dioxide from exhaust gas from a coal gasification process. And absorption and recovery methods are described. The absorbent is a tertiary aliphatic diamine aqueous solution having no hydrogen bonding group and having an ether group.
 上記特許文献4の実施例では、該三級脂肪族ジアミンとしてBDERの水溶液について記載しており、該BDER水溶液を高濃度(60~90質量%)で用いることにより、二酸化炭素分圧が10bar(約1MPa)以上の高い領域において、高い二酸化炭素回収量と同時に、高い二酸化炭素吸収速度と高い二酸化炭素放散速度が得られることが記載されている。該特許文献において使用されるBDERも、MDEA又はTEAと同様に、二酸化炭素との比較的低い吸収反応熱を持つことが知られるが、低い分圧の二酸化炭素に対しては、二酸化炭素の回収及び液状吸収剤の再生の効率が低い。 In the example of Patent Document 4, an aqueous solution of BDER is described as the tertiary aliphatic diamine. By using the aqueous BDER solution at a high concentration (60 to 90% by mass), the partial pressure of carbon dioxide is 10 bar ( It is described that in a high region of about 1 MPa or more, a high carbon dioxide recovery rate and a high carbon dioxide absorption rate and a high carbon dioxide emission rate can be obtained. BDER used in the patent document is also known to have a relatively low heat of absorption reaction with carbon dioxide, similar to MDEA or TEA. And the efficiency of regeneration of the liquid absorbent is low.
 特許文献5には、立体障害を有する二級アルカノールアミンと飽和炭化水素鎖のみからなる三級アルキルアミンとを含む水溶液、及びそれを用いた二酸化炭素の回収方法が記載されている。該特許文献においては、水溶液に含まれる三級アルキルアミンとしてTMDAH及びTMDABについての実施例が示されており、二級アルカノールアミンとしてIPAEを用いた場合に比較的高い二酸化炭素の吸収量と脱離量が示されている。二級アルカノールアミンとしては、IPAEの他にIPAP及びEAEの実施例が示されている。 Patent Document 5 describes an aqueous solution containing a secondary alkanolamine having steric hindrance and a tertiary alkylamine consisting only of a saturated hydrocarbon chain, and a method for recovering carbon dioxide using the aqueous solution. In the patent document, examples of TMDAH and TMDAB are shown as tertiary alkylamines contained in an aqueous solution, and a relatively high carbon dioxide absorption and desorption are obtained when IPAE is used as a secondary alkanolamine. The amount is shown. Examples of secondary alkanolamines include IPAP and EAE in addition to IPAE.
 上記特許文献5は、水溶液に含まれる総アミン濃度が50~60質量%の範囲で比較的高い性能が示されている。しかし、飽和炭化水素のみからなる三級アルキルアミンは一般に比較的粘性が高く、本明細書の比較例6においても、総アミン濃度を60質量%以上に上げることで性能の顕著な低下が示されている。 Patent Document 5 shows relatively high performance when the total amine concentration in the aqueous solution is in the range of 50 to 60% by mass. However, tertiary alkylamines consisting only of saturated hydrocarbons are generally relatively viscous, and in Comparative Example 6 of this specification, a significant decrease in performance is shown by increasing the total amine concentration to 60% by mass or more. ing.
 特許文献6には、立体障害性を有する二級アルカノールアミンとアミノ基を2つ以上含むポリアミンと水のみからなる液体、及びそれを用いた二酸化炭素の回収方法が記載されている。該特許文献においては、該液体に含まれるポリアミンとして、飽和炭化水素鎖のみからなる一級、二級及び/又は三級のアルキルポリアミン、並びにエーテル基を含む一級アルキルポリアミンについての実施例が示されており、二級アルカノールアミンとしては、IPAE及びEAEについての実施例が示されている。 Patent Document 6 describes a secondary alkanolamine having steric hindrance, a liquid composed only of a polyamine containing two or more amino groups and water, and a method for recovering carbon dioxide using the liquid. In this patent document, examples of primary, secondary and / or tertiary alkyl polyamines composed only of saturated hydrocarbon chains and primary alkyl polyamines containing ether groups are shown as polyamines contained in the liquid. Examples of secondary alkanolamines for IPAE and EAE are shown.
 上記特許文献6は、該液体に上記ポリアミンを0.2~1%程度の低い質量濃度で含むことで高い性能が得られることが示されている。しかし、一級のアルキルポリアミンは一般に二酸化炭素の吸収反応熱が高く二酸化炭素の脱離性に乏しい。また、飽和炭化水素鎖のみからなるアルキルポリアミンは一般に粘性が高い。従って、本明細書の比較例7~10にも示されるとおり、上記ポリアミンをより高い質量濃度で含む場合、高い性能は得られない。 Patent Document 6 shows that high performance can be obtained by containing the polyamine in the liquid at a low mass concentration of about 0.2 to 1%. However, primary alkyl polyamines generally have a high carbon dioxide absorption reaction heat and are poor in carbon dioxide desorption. In addition, alkylpolyamines consisting only of saturated hydrocarbon chains are generally highly viscous. Therefore, as shown in Comparative Examples 7 to 10 in the present specification, when the polyamine is contained at a higher mass concentration, high performance cannot be obtained.
 尚、上記特許文献6には、本発明が提供するところのエーテル基を有することで粘性の低い三級脂肪族アミン化合物をもって吸収剤の総アミン濃度を高濃度化することによる効果については、一切言及されていない。 In addition, in the above-mentioned Patent Document 6, the effect of increasing the total amine concentration of the absorbent with a tertiary aliphatic amine compound having a low viscosity by having an ether group as provided by the present invention is not found at all. Not mentioned.
特開平5-301023号公報Japanese Patent Laid-Open No. 5-301023 特開2009-6275号公報JP 2009-6275 Gazette 国際公開第2005/009592号International Publication No. 2005/009592 国際公開第2011/071150号International Publication No. 2011/071150 国際公開第2013/118819号International Publication No.2013 / 118819 国際公開第2014/129400号International Publication No. 2014/129400
 二酸化炭素の発生量削減、省エネルギー及び省資源が求められる現代において、二酸化炭素分離回収における大量のエネルギー消費は、該技術の実用化を阻む大きな要因となっており、より少ないエネルギーでの二酸化炭素の分離回収技術が求められている。 In today's world where reduction of carbon dioxide generation, energy saving and resource saving are required, the large amount of energy consumption in carbon dioxide separation and recovery has become a major factor that hinders the practical application of this technology. There is a need for separation and recovery technology.
 本発明は、二酸化炭素を含むガス中の二酸化炭素をより少ないエネルギーで効率的に分離回収するための吸収剤及びこれを用いた二酸化炭素の分離回収方法を提供することを目的とする。 An object of the present invention is to provide an absorbent for efficiently separating and recovering carbon dioxide in a gas containing carbon dioxide with less energy and a method for separating and recovering carbon dioxide using the same.
 本発明者らは、効率的に二酸化炭素を吸収し、且つ放散して、高純度の二酸化炭素を高効率に回収できる吸収剤について鋭意検討した結果、一般式[1]で表されるアルカノールアミン化合物と一般式[2]で表されるエーテル基を有する三級脂肪族アミン化合物を含む水溶液が、高い二酸化炭素回収量、低い比熱及び低い二酸化炭素吸収熱を有すること、これにより二酸化炭素回収量に対して必要な消費エネルギーを低く抑えられることを見出した。 As a result of intensive studies on an absorbent that can efficiently absorb and dissipate carbon dioxide and recover high-purity carbon dioxide with high efficiency, the present inventors have found that the alkanolamine represented by the general formula [1] The aqueous solution containing the compound and the tertiary aliphatic amine compound having an ether group represented by the general formula [2] has a high carbon dioxide recovery amount, a low specific heat and a low carbon dioxide absorption heat. It was found that the required energy consumption can be kept low.
 本発明は、上記の知見に基づき、更に十分な検討を重ねて完成されたものであり、以下の二酸化炭素を分離回収するための吸収剤及びそれを用いた二酸化炭素を分離回収する方法を提供するものである。
項1.二酸化炭素を含むガスから二酸化炭素を分離回収するための吸収剤であって、少なくとも1種の一般式[1]で表されるアルカノールアミン化合物、少なくとも1種の一般式[2]で表されるエーテル基を有する三級脂肪族アミン化合物、及び水を含み、該吸収剤に含まれるアミン化合物の質量濃度の総和が61~84%である、吸収剤。
一般式[1]:
The present invention has been completed based on the above findings, and has been completed. Further, the present invention provides an absorbent for separating and recovering the following carbon dioxide and a method for separating and recovering carbon dioxide using the same. To do.
Item 1. An absorbent for separating and recovering carbon dioxide from a gas containing carbon dioxide, which is represented by at least one alkanolamine compound represented by general formula [1] and at least one general formula [2] An absorbent comprising a tertiary aliphatic amine compound having an ether group and water, wherein the total mass concentration of the amine compound contained in the absorbent is 61 to 84%.
General formula [1]:
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、R1は炭素数1~5のアルキル基又は水素基を表し、R2及びR3はそれぞれ独立して、炭素数1若しくは2のアルキル基又は水素基を表し、nは2又は3を表す。)
一般式[2]:
(Wherein R 1 represents an alkyl group having 1 to 5 carbon atoms or a hydrogen group, R 2 and R 3 each independently represents an alkyl group having 1 or 2 carbon atoms or a hydrogen group, and n is 2 or 3)
General formula [2]:
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、R4及びR5はそれぞれ独立して、炭素数2~4の三級アルキルアミノ基を表し、mは1、2又は3を表す。)
項2.前記アルカノールアミン化合物の質量濃度が37~83%であり、前記エーテル基を有する三級脂肪族アミン化合物の質量濃度が1~24%であり、水の質量濃度が16~39%であることを特徴とする、項1に記載の吸収剤。
項3.前記吸収剤に含まれるアミン化合物の質量濃度の総和が65~80%であり、前記アルカノールアミン化合物の質量濃度が45~75%であり、前記エーテル基を有する三級脂肪族アミン化合物の質量濃度が5~20%であり、水の質量濃度が20~35%であることを特徴とする、項1に記載の吸収剤。
項4.前記アルカノールアミン化合物が、モノエタノールアミン、2-アミノ-2-メチル-1-プロパノール、2-(メチルアミノ)エタノール、2-(エチルアミノ)エタノール、2-(イソプロピルアミノ)エタノール及び3-(イソプロピルアミノ)プロパノールからなる群より選択される少なくとも1種である、項1から3のいずれか一項に記載の吸収剤。
項5.前記アルカノールアミン化合物が、2-アミノ-2-メチル-1-プロパノール、2-(エチルアミノ)エタノール、2-(イソプロピルアミノ)エタノール及び3-(イソプロピルアミノ)プロパノールからなる群より選択される少なくとも1種である、項1から3のいずれか一項に記載の吸収剤。
項6.前記エーテル基を有する三級脂肪族アミン化合物が、エーテル基を有し分子対称性を有しヒドロキシ基を有さない三級脂肪族アミンからなる群より選択される少なくとも1種である、項1から5のいずれか一項に記載の吸収剤。
項7.前記エーテル基を有する三級脂肪族アミン化合物が、ビス(2-ジメチルアミノエチル)エーテル及びビス(2-モルホリノエチル)エーテルからなる群より選択される少なくとも1種である、項1から5のいずれか一項に記載の吸収剤。
項8.以下の工程A及びBを含む、二酸化炭素を含むガスから二酸化炭素を分離回収する方法:
項1から7のいずれか一項に記載の吸収剤を、二酸化炭素を含むガスと接触させ、二酸化炭素を含むガスから二酸化炭素を吸収した吸収剤を得る工程A、及び、
工程Aで得られた二酸化炭素を吸収した吸収剤を加熱して、吸収剤から二酸化炭素を脱離して放散させ、放散した二酸化炭素を回収する工程B。
項9.前記工程Aが、25~60℃の温度で行われ、且つ、前記工程Bが、70~150℃の温度で行われる項8に記載の二酸化炭素を含むガスから二酸化炭素を分離回収する方法。
項10.前記工程Aが、1.0bar以上の圧力下で行われ、且つ、前記工程Bが、3.5bar以下の圧力下で行われる項8又は9に記載の二酸化炭素を含むガスから二酸化炭素を分離回収する方法。
(Wherein R 4 and R 5 each independently represents a tertiary alkylamino group having 2 to 4 carbon atoms, and m represents 1, 2 or 3).
Item 2. The mass concentration of the alkanolamine compound is 37 to 83%, the mass concentration of the tertiary aliphatic amine compound having an ether group is 1 to 24%, and the mass concentration of water is 16 to 39%. Item 10. The absorbent according to Item 1, which is characterized.
Item 3. The total mass concentration of the amine compound contained in the absorbent is 65 to 80%, the mass concentration of the alkanolamine compound is 45 to 75%, and the mass concentration of the tertiary aliphatic amine compound having an ether group Item 5. The absorbent according to Item 1, wherein the absorbent is 5 to 20% and the mass concentration of water is 20 to 35%.
Item 4. The alkanolamine compound is monoethanolamine, 2-amino-2-methyl-1-propanol, 2- (methylamino) ethanol, 2- (ethylamino) ethanol, 2- (isopropylamino) ethanol and 3- (isopropyl Item 4. The absorbent according to any one of Items 1 to 3, which is at least one selected from the group consisting of amino) propanol.
Item 5. The alkanolamine compound is at least one selected from the group consisting of 2-amino-2-methyl-1-propanol, 2- (ethylamino) ethanol, 2- (isopropylamino) ethanol and 3- (isopropylamino) propanol. Item 4. The absorbent according to any one of Items 1 to 3, which is a seed.
Item 6. Item 3. The tertiary aliphatic amine compound having an ether group is at least one selected from the group consisting of tertiary aliphatic amines having an ether group, molecular symmetry, and no hydroxy group. To 5. The absorbent according to any one of 5 to 5.
Item 7. Any of the items 1 to 5, wherein the tertiary aliphatic amine compound having an ether group is at least one selected from the group consisting of bis (2-dimethylaminoethyl) ether and bis (2-morpholinoethyl) ether. The absorbent according to claim 1.
Item 8. A method for separating and recovering carbon dioxide from a gas containing carbon dioxide, including the following steps A and B:
The process A which makes the absorber as described in any one of claim | item 1 to 7 contact with the gas containing a carbon dioxide, and obtains the absorber which absorbed the carbon dioxide from the gas containing a carbon dioxide, and
A process B in which the absorbent obtained by absorbing the carbon dioxide obtained in the step A is heated to desorb and dissipate the carbon dioxide from the absorbent, and the diffused carbon dioxide is recovered.
Item 9. Item 9. The method for separating and recovering carbon dioxide from the carbon dioxide-containing gas according to Item 8, wherein the step A is performed at a temperature of 25 to 60 ° C, and the step B is performed at a temperature of 70 to 150 ° C.
Item 10. The process A is performed under a pressure of 1.0 bar or higher, and the process B is performed under a pressure of 3.5 bar or lower. Method.
 本発明によれば、該吸収剤が高い二酸化炭素回収量、低い比熱及び低い二酸化炭素吸収熱を有することで、二酸化炭素回収量に対して必要な消費エネルギーを低く抑えることができ、低いエネルギーでの二酸化炭素分離回収が可能となる。さらに、よりコンパクトな二酸化炭素分離回収設備の設計が可能となり、初期コストが低減される。 According to the present invention, since the absorbent has a high carbon dioxide recovery amount, a low specific heat, and a low carbon dioxide absorption heat, the energy consumption required for the carbon dioxide recovery amount can be kept low. Carbon dioxide can be separated and recovered. Furthermore, a more compact carbon dioxide separation and recovery facility can be designed, and the initial cost is reduced.
実施例1~11と比較例1~12との吸収剤性能を比較したグラフである。(●:実施例1~11、△:比較例1~12)6 is a graph comparing the absorbent performance of Examples 1 to 11 and Comparative Examples 1 to 12. (●: Examples 1 to 11, Δ: Comparative Examples 1 to 12)
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 二酸化炭素を分離回収するための吸収剤
 本発明の二酸化炭素を含むガスから二酸化炭素を低エネルギーで分離回収するための吸収剤は、少なくとも1種の一般式[1]で表されるアルカノールアミン化合物と少なくとも1種の一般式[2]で表されるエーテル基を有する三級脂肪族アミン化合物と水を含むことを特徴とする。
Absorbent for separating and recovering carbon dioxide The absorbent for separating and recovering carbon dioxide from a gas containing carbon dioxide of the present invention at low energy is an alkanolamine compound represented by at least one general formula [1] And at least one tertiary aliphatic amine compound having an ether group represented by the general formula [2] and water.
 一般式[1]で表されるアルカノールアミン化合物 Alkanolamine compound represented by general formula [1]
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、R1は炭素数1~5のアルキル基又は水素基を表し、R2及びR3はそれぞれ独立して、炭素数1若しくは2のアルキル基又は水素基を表し、nは2又は3を表す。)
 一般式[2]で表されるエーテル基を有する三級脂肪族アミン化合物
(Wherein R 1 represents an alkyl group having 1 to 5 carbon atoms or a hydrogen group, R 2 and R 3 each independently represents an alkyl group having 1 or 2 carbon atoms or a hydrogen group, and n is 2 or 3)
A tertiary aliphatic amine compound having an ether group represented by the general formula [2]
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、R4及びR5はそれぞれ独立して、炭素数2~4の三級アルキルアミノ基を表し、mは1、2又は3を表す。) (Wherein R 4 and R 5 each independently represents a tertiary alkylamino group having 2 to 4 carbon atoms, and m represents 1, 2 or 3).
 一般式[1]において、R1は、炭素数1~5のアルキル基又は水素基を表す。 In the general formula [1], R 1 represents an alkyl group having 1 to 5 carbon atoms or a hydrogen group.
 炭素数1~5のアルキル基としては、直鎖状又は分枝鎖状のいずれでもよく、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、sec-ペンチル、tert-ペンチル、3-ペンチルなどが挙げられる。 The alkyl group having 1 to 5 carbon atoms may be linear or branched, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, Examples include n-pentyl, isopentyl, sec-pentyl, tert-pentyl, 3-pentyl and the like.
 好ましいR1は、水素原子、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、tert-ペンチル又は3-ペンチルであり、より好ましくは水素原子、メチル、エチル又はイソプロピルである。 Preferred R 1 is a hydrogen atom, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, tert-pentyl or 3-pentyl, more preferably a hydrogen atom, methyl, ethyl or isopropyl. is there.
 一般式[1]において、R2及びR3はそれぞれ独立して、炭素数1若しくは2のアルキル基又は水素基を表す。 In the general formula [1], R 2 and R 3 each independently represents an alkyl group having 1 or 2 carbon atoms or a hydrogen group.
 炭素数1若しくは2のアルキル基としては、例えば、メチル及びエチルが挙げられる。 Examples of the alkyl group having 1 or 2 carbon atoms include methyl and ethyl.
 好ましいR2は、水素原子又はメチルである。R3も同様である。 Preferred R 2 is a hydrogen atom or methyl. The same applies to R 3 .
 一般式[1]において、nは2又は3を表し、好ましくは2である。 In the general formula [1], n represents 2 or 3, preferably 2.
 一般式[1]で表されるアルカノールアミン化合物の具体例としては、モノエタノールアミン、2-アミノ-2-メチル-1-プロパノール、2-(メチルアミノ)エタノール、2-(エチルアミノ)エタノール、2-(イソプロピルアミノ)エタノール、3-(イソプロピルアミノ)プロパノールなどが挙げられる。 Specific examples of the alkanolamine compound represented by the general formula [1] include monoethanolamine, 2-amino-2-methyl-1-propanol, 2- (methylamino) ethanol, 2- (ethylamino) ethanol, Examples include 2- (isopropylamino) ethanol and 3- (isopropylamino) propanol.
 本発明の吸収剤は、一般式[1]で表されるアルカノールアミン化合物を、1種単独で含んでもよいし、2種以上同時に含んでもよい。 The absorbent of the present invention may contain one alkanolamine compound represented by the general formula [1] alone, or two or more kinds at the same time.
 一般式[2]において、R4及びR5はそれぞれ独立して、炭素数2~4の三級アルキルアミノ基を表す。 In the general formula [2], R 4 and R 5 each independently represents a tertiary alkylamino group having 2 to 4 carbon atoms.
 炭素数2~4の三級アルキルアミノ基は、置換基を有してもよい二つの同一の又は異なったアルキル基が、アミノ基を構成する窒素原子に結合し、該アルキル基の炭素数の総和が2~4となるアミノ基である。 In the tertiary alkylamino group having 2 to 4 carbon atoms, two identical or different alkyl groups which may have a substituent are bonded to the nitrogen atom constituting the amino group, and the number of carbon atoms of the alkyl group is An amino group whose sum is 2 to 4.
 このアルキル基は、置換基を有してもよく、また、アルキル鎖の間又は窒素原子とアルキル基との間にヘテロ原子が介在してもよい。 The alkyl group may have a substituent, and a hetero atom may be interposed between the alkyl chains or between the nitrogen atom and the alkyl group.
 また、このアルキル基はそれぞれ独立して、直鎖状、分枝鎖状又は環状のいずれでもよく、また、窒素原子に結合する二つのアルキル基が相互に結合し該窒素原子とともに環状構造を形成してもよい。 In addition, each alkyl group may be independently linear, branched or cyclic, and two alkyl groups bonded to a nitrogen atom are bonded to each other to form a cyclic structure with the nitrogen atom. May be.
 直鎖状又は分枝鎖状のアルキル基としては、例えば、メチル、エチル、n-プロピル、イソプロピルが挙げられる。環状のアルキル基としては、例えば、シクロプロピルが挙げられる。また、窒素原子に結合する二つのアルキル基が相互に結合し該窒素原子とともに環状構造を形成したアルキル基としては、例えば、エチレンイミノ、ピロリジノなどが挙げられる。 Examples of the linear or branched alkyl group include methyl, ethyl, n-propyl, and isopropyl. Examples of the cyclic alkyl group include cyclopropyl. Examples of the alkyl group in which two alkyl groups bonded to a nitrogen atom are bonded to each other to form a cyclic structure with the nitrogen atom include ethyleneimino and pyrrolidino.
 前記の直鎖状、分枝鎖状、環状又は窒素原子に結合する二つのアルキル基が相互に結合し該窒素原子とともに環状構造を形成したアルキル基は、多くとも3個の置換基を有してもよく、また、アルキル鎖の間又は窒素原子とアルキル基との間の各間に多くとも各1個ずつのヘテロ原子が介在してもよい。該置換基としては、例えば、ヒドロキシ基、チオール基、フルオロ基、クロロ基、ブロモ基、ヨード基などが挙げられる。該ヘテロ原子としては、例えば、酸素原子、硫黄原子、リン原子などが挙げられ、好ましくは酸素原子である。 The alkyl group in which two alkyl groups bonded to a linear, branched, cyclic, or nitrogen atom are bonded to each other to form a cyclic structure with the nitrogen atom has at most three substituents. In addition, at most one heteroatom may be interposed between each alkyl chain or between each nitrogen atom and each alkyl group. Examples of the substituent include a hydroxy group, a thiol group, a fluoro group, a chloro group, a bromo group, and an iodo group. Examples of the hetero atom include an oxygen atom, a sulfur atom, and a phosphorus atom, and an oxygen atom is preferable.
 炭素数2~4の三級アルキルアミノ基としては、例えば、置換基を有してもよい、ジメチルアミノ、エチル(メチル)アミノ、ジエチルアミノ、イソプロピル(メチル)アミノ、メトキシ(メチル)アミノ、メトキシ(エチル)アミノ、ジメトキシアミノ、エトキシ(メチル)アミノ、エトキシ(エチル)アミノ、ジエトキシアミノ、メトキシメチル(メチル)アミノ、メトキシメチル(エチル)アミノ、ジメトキシメチルアミノ、メトキシエチル(メチル)アミノ、エトキシメチル(メチル)アミノ、モルホリノなどが挙げられる。 Examples of the tertiary alkylamino group having 2 to 4 carbon atoms include, for example, dimethylamino, ethyl (methyl) amino, diethylamino, isopropyl (methyl) amino, methoxy (methyl) amino, methoxy (optionally substituted). Ethyl) amino, dimethoxyamino, ethoxy (methyl) amino, ethoxy (ethyl) amino, diethoxyamino, methoxymethyl (methyl) amino, methoxymethyl (ethyl) amino, dimethoxymethylamino, methoxyethyl (methyl) amino, ethoxymethyl (Methyl) amino, morpholino and the like.
 好ましいR4は、ジメチルアミノ、ジエチルアミノ、ジメトキシメチルアミノ又はモルホリノである。R5も同様である。 Preferred R 4 is dimethylamino, diethylamino, dimethoxymethylamino or morpholino. R 5 is the same.
 一般式[2]において、mは1、2又は3を表し、好ましくは1又は2であり、より好ましくは1である。 In the general formula [2], m represents 1, 2 or 3, preferably 1 or 2, and more preferably 1.
 また、本発明では、一般式[2]で表されるエーテル基を有する三級脂肪族アミン化合物として、一般式[3]で表されるエーテル基を有する三級脂肪族アミン化合物も好ましい。 In the present invention, a tertiary aliphatic amine compound having an ether group represented by the general formula [3] is also preferred as the tertiary aliphatic amine compound having an ether group represented by the general formula [2].
 一般式[3]で表されるエーテル基を有する三級脂肪族アミン化合物 Tertiary aliphatic amine compound having an ether group represented by the general formula [3]
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、R6及びR7は、両基の炭素原子の総和は2~4であって、それぞれ独立して、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基若しくは炭素数2~3のアルコキシアルキル基を、又は両基が同一に炭素数2のアルキル基であって1個の酸素原子を介して相互に結合してアミノ基を構成する窒素原子とともに6員環の環状構造を表し、R8及びR9は、両基の炭素原子の総和は2~4であって、それぞれ独立して、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基若しくは炭素数2~3のアルコキシアルキル基を、又は両基が同一に炭素数2のアルキル基であって1個の酸素原子を介して相互に結合してアミノ基を構成する窒素原子とともに6員環の環状構造を表し、Lは1、2又は3を表す。) (In the formula, R 6 and R 7 are a total of 2 to 4 carbon atoms in both groups, and each independently represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or a carbon atom. An alkoxyalkyl group of 2 to 3 or a group of 6-membered rings together with a nitrogen atom that is an alkyl group of 2 carbon atoms, and both groups are bonded to each other through one oxygen atom to form an amino group R 8 and R 9 each represent a cyclic structure, and the total number of carbon atoms of both groups is 2 to 4, and each independently represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or 6-membered ring with an alkoxyalkyl group having 2 to 3 carbon atoms, or a nitrogen atom that forms an amino group bonded to each other through one oxygen atom, both of which are the same alkyl group having 2 carbon atoms And L represents 1, 2 or 3.)
 一般式[3]において、炭素数1~3のアルキル基としては、直鎖状又は分枝鎖状のいずれでもよく、例えば、メチル、エチル、プロピル、イソプロピルなどが挙げられる。 In the general formula [3], the alkyl group having 1 to 3 carbon atoms may be linear or branched, and examples thereof include methyl, ethyl, propyl, isopropyl and the like.
 炭素数1~3のアルコキシ基としては、直鎖状又は分枝鎖状のいずれでもよく、例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシなどが挙げられる。 The alkoxy group having 1 to 3 carbon atoms may be linear or branched, and examples thereof include methoxy, ethoxy, propoxy, isopropoxy and the like.
 炭素数2~3のアルコキシアルキル基としては、メトキシメチル、メトキシエチル、エトキシメチルなどが挙げられる。 Examples of the alkoxyalkyl group having 2 to 3 carbon atoms include methoxymethyl, methoxyethyl, ethoxymethyl and the like.
 両基が同一に炭素数2のアルキル基であって1個の酸素原子を介して相互に結合してアミノ基を構成する窒素原子とともに表される6員環の環状構造はモルホリノである。 The 6-membered ring structure represented by the nitrogen atoms constituting the amino group in which both groups are the same alkyl group having 2 carbon atoms and bonded to each other through one oxygen atom is morpholino.
 一般式[3]において、Lは1、2又は3を表し、好ましくは1又は2であり、より好ましくは1である。 In the general formula [3], L represents 1, 2 or 3, preferably 1 or 2, and more preferably 1.
 好ましいR6及びR7は、いずれもメチル、いずれもエチル、いずれもメトキシメチル、又はモルホリノである。R8及びR9も同様である。 Preferred R 6 and R 7 are all methyl, both ethyl, both methoxymethyl, and morpholino. The same applies to R 8 and R 9 .
 好ましい-NR6R7は、ジメチルアミノ、ジエチルアミノ、ジメトキシメチルアミノ又はモルホリノである。-NR8R9も同様である。 Preferred —NR 6 R 7 is dimethylamino, diethylamino, dimethoxymethylamino or morpholino. The same applies to -NR 8 R 9 .
 一般式[2]及び[3]で表されるエーテル基を有する三級脂肪族アミン化合物の具体例としては、ビス(2-ジメチルアミノエチル)エーテル、ビス(2-ジエチルアミノエチル)エーテル、1,8-ビス(ジメチルアミノ)-3,6-ジオキサオクタン、1,11-ビス(ジメチルアミノ)-3,6,9-トリオキサウンデカン、ビス(2-モルホリノエチル)エーテルなどが挙げられる。 Specific examples of the tertiary aliphatic amine compound having an ether group represented by the general formulas [2] and [3] include bis (2-dimethylaminoethyl) ether, bis (2-diethylaminoethyl) ether, 1, Examples include 8-bis (dimethylamino) -3,6-dioxaoctane, 1,11-bis (dimethylamino) -3,6,9-trioxaundecane, and bis (2-morpholinoethyl) ether.
 本発明の吸収剤は、一般式[2]で表されるエーテル基を有する三級脂肪族アミン化合物を、1種単独で含んでもよいし、2種以上同時に含んでもよい。 The absorbent of the present invention may contain one kind of tertiary aliphatic amine compound having an ether group represented by the general formula [2], or two or more kinds at the same time.
 一般式[1]で表されるアルカノールアミン化合物及び一般式[2]で表されるエーテル基を有する三級脂肪族アミン化合物は、市販品を入手できるか又は公知の方法により製造できる。 The alkanolamine compound represented by the general formula [1] and the tertiary aliphatic amine compound having an ether group represented by the general formula [2] are commercially available or can be produced by a known method.
 本発明の吸収剤に含まれるアミン化合物の総質量濃度は、60%より高く85%より低いことが好ましく、また、本発明の吸収剤に含まれる水の質量濃度は、40%より低く15%より高いことが好ましい。 The total mass concentration of the amine compound contained in the absorbent of the present invention is preferably higher than 60% and lower than 85%, and the mass concentration of water contained in the absorbent of the present invention is lower than 40% and 15%. Higher is preferred.
 本発明の吸収剤に含まれるアミン化合物の総質量濃度を60%より高くし、水の質量濃度を40%より低くすることにより、吸収剤の誘電率を有意に低減することができ、二酸化炭素との反応における溶媒和エネルギーが低下する。その結果、二酸化炭素吸収熱を有意に低減できる。更に、吸収剤の比熱を低下させる効果も得られる。 By making the total mass concentration of the amine compound contained in the absorbent of the present invention higher than 60% and the water mass concentration lower than 40%, the dielectric constant of the absorbent can be significantly reduced, and carbon dioxide The solvation energy in the reaction with is reduced. As a result, the carbon dioxide absorption heat can be significantly reduced. Furthermore, the effect of reducing the specific heat of the absorbent is also obtained.
 アミン化合物の水溶液からなる従来の二酸化炭素吸収剤は、アミン化合物の高濃度化により、粘度の増大が著しく物質の拡散が抑制され、また、二酸化炭素との反応に寄与する水の質量濃度が低下するため、アミン化合物の質量濃度を60%より高めると、すなわち、水の質量濃度を40%より低くすると、性能の低下が著しい。 Conventional carbon dioxide absorbents consisting of an aqueous solution of an amine compound, due to the increased concentration of the amine compound, increase in viscosity is remarkably suppressed, and the mass concentration of water contributing to the reaction with carbon dioxide is reduced. Therefore, when the mass concentration of the amine compound is increased from 60%, that is, when the mass concentration of water is lower than 40%, the performance is remarkably deteriorated.
 エーテル基を有する三級脂肪族アミン化合物は一般に低い粘性を持っており、そのため、本発明の吸収剤は、一般式[2]で表されるエーテル基を有する三級脂肪族アミン化合物をもって吸収剤を高濃度化することで、水の質量濃度を40%より低くしても、物質の拡散が抑制されることなく、二酸化炭素及び水との良好な反応性を維持できる。 The tertiary aliphatic amine compound having an ether group generally has a low viscosity. Therefore, the absorbent of the present invention has a tertiary aliphatic amine compound having an ether group represented by the general formula [2]. By increasing the concentration of water, even when the mass concentration of water is lower than 40%, it is possible to maintain good reactivity with carbon dioxide and water without suppressing the diffusion of the substance.
 本発明の吸収剤に含まれるアミン化合物の総質量濃度が60%より高く85%より低い範囲、及び水の質量濃度が40%より低く15%より高い範囲であれば、上記のとおり、二酸化炭素及び水との良好な反応性を維持しつつ、二酸化炭素吸収熱の低減及び比熱低下の効果が得られる。 If the total mass concentration of the amine compound contained in the absorbent of the present invention is higher than 60% and lower than 85%, and the mass concentration of water is lower than 40% and higher than 15%, as described above, carbon dioxide In addition, while maintaining good reactivity with water, the effect of reducing the heat of absorption of carbon dioxide and lowering the specific heat can be obtained.
 本発明の吸収剤に含まれるアミン化合物の総質量濃度は、より好ましくは61~84%であり、より一層好ましくは65~80%である。また、本発明の吸収剤に含まれる水の質量濃度は、より好ましくは16~39%であり、より一層好ましくは20~35%である。 The total mass concentration of the amine compound contained in the absorbent of the present invention is more preferably 61 to 84%, still more preferably 65 to 80%. Further, the mass concentration of water contained in the absorbent of the present invention is more preferably 16 to 39%, and still more preferably 20 to 35%.
 本発明の吸収剤に含まれる水は、特に限定されず、蒸留水、イオン交換水、水道水、地下水等を適宜用いることができる。 The water contained in the absorbent of the present invention is not particularly limited, and distilled water, ion-exchanged water, tap water, ground water, etc. can be used as appropriate.
 本発明の吸収剤に含まれるアルカノールアミン化合物の質量濃度は37~83%であることが好ましい。この範囲であれば、アルカノールアミン化合物の高い二酸化炭素の吸収性により、吸収剤が高い二酸化炭素回収量を持つとともに、吸収剤に含まれるアミン化合物の高濃度化が可能である。より好ましくは、45~75%である。 The mass concentration of the alkanolamine compound contained in the absorbent of the present invention is preferably 37 to 83%. Within this range, due to the high carbon dioxide absorptivity of the alkanolamine compound, the absorbent has a high carbon dioxide recovery amount, and the concentration of the amine compound contained in the absorbent can be increased. More preferably, it is 45 to 75%.
 本発明の吸収剤に含まれるエーテル基を有する三級脂肪族アミン化合物の質量濃度は1~24%であることが好ましい。この範囲であれば、吸収剤に含まれるアミン化合物の高濃度化による粘度の上昇が抑えられ、二酸化炭素及び水との良好な反応性を維持しつつ、二酸化炭素吸収熱の低減及び比熱低下の効果が得られる。また、一般式[2]で表されるエーテル基を有する三級脂肪族アミン化合物は、水溶液として二酸化炭素を吸収及び放散する性能を持っており、そのため、吸収剤の二酸化炭素回収量を増加させる効果も得られる。より好ましくは、5~20%である。 The mass concentration of the tertiary aliphatic amine compound having an ether group contained in the absorbent of the present invention is preferably 1 to 24%. Within this range, the increase in viscosity due to the increase in concentration of the amine compound contained in the absorbent is suppressed, and while maintaining good reactivity with carbon dioxide and water, the carbon dioxide absorption heat is reduced and the specific heat is reduced. An effect is obtained. Moreover, the tertiary aliphatic amine compound having an ether group represented by the general formula [2] has the ability to absorb and dissipate carbon dioxide as an aqueous solution, thereby increasing the amount of carbon dioxide recovered by the absorbent. An effect is also obtained. More preferably, it is 5 to 20%.
 本発明の吸収剤に含まれるエーテル基を有する三級脂肪族アミン化合物は、分子対称性を有することが好ましい。エーテル基を有し分子対称性が高い三級脂肪族アミン化合物は誘電率が非常に低いため、吸収剤に含まれるアミン化合物の高濃度化により得られる吸収剤の溶媒和エネルギーを低減する効果に優れ、その結果、二酸化炭素吸収熱を低減する効果が高い。 The tertiary aliphatic amine compound having an ether group contained in the absorbent of the present invention preferably has molecular symmetry. Tertiary aliphatic amine compounds having an ether group and high molecular symmetry have a very low dielectric constant, so that the solvation energy of the absorbent obtained by increasing the concentration of the amine compound contained in the absorbent is reduced. As a result, the effect of reducing the heat absorbed by carbon dioxide is high.
 本発明の吸収剤に含まれるエーテル基を有する三級脂肪族アミン化合物のうち分子対称性を有する化合物は、一般式[2]において、RとRとが同じ化学構造である化合物であり、一般式[3]にあっては、NR6R7とNR8R9とが同じ化学構造である化合物である。例えば、ビス(2-ジメチルアミノエチル)エーテル、ビス(2-ジエチルアミノエチル)エーテル、1,8-ビス(ジメチルアミノ)-3,6-ジオキサオクタン、1,11-ビス(ジメチルアミノ)-3,6,9-トリオキサウンデカン、ビス(2-モルホリノエチル)エーテルである。 Among the tertiary aliphatic amine compounds having an ether group contained in the absorbent of the present invention, a compound having molecular symmetry is a compound in which R 4 and R 5 have the same chemical structure in the general formula [2]. In general formula [3], NR 6 R 7 and NR 8 R 9 are compounds having the same chemical structure. For example, bis (2-dimethylaminoethyl) ether, bis (2-diethylaminoethyl) ether, 1,8-bis (dimethylamino) -3,6-dioxaoctane, 1,11-bis (dimethylamino) -3 , 6,9-trioxaundecane, bis (2-morpholinoethyl) ether.
 本発明の吸収剤に含まれるエーテル基を有する三級脂肪族アミン化合物は、ヒドロキシ基を有さないことが好ましい。エーテル基を有する三級脂肪族アミン化合物は一般に低い粘性を持つが、ヒドロキシ基は水和性が高いため水を含む吸収剤の粘度を上昇させる。エーテル基を有しヒドロキシ基を有さない三級脂肪族アミン化合物を含有することで、より一層、粘性が低く二酸化炭素の吸収性能及び放散性能に優れた吸収剤とすることができ、吸収剤に含まれるアミン化合物を高濃度化しても高い二酸化炭素回収量が得られる。 The tertiary aliphatic amine compound having an ether group contained in the absorbent of the present invention preferably has no hydroxy group. A tertiary aliphatic amine compound having an ether group generally has a low viscosity, but a hydroxy group has a high hydration property and thus increases the viscosity of an absorbent containing water. By containing a tertiary aliphatic amine compound having an ether group and no hydroxy group, the absorbent can be further reduced in viscosity and excellent in carbon dioxide absorption performance and emission performance. Even if the concentration of the amine compound contained in is increased, a high carbon dioxide recovery amount can be obtained.
 本発明の吸収剤は、一般式[1]で表されるアルカノールアミン化合物、一般式[2]で表されるエーテル基を有する三級脂肪族アミン化合物、及び水以外の成分を、必要に応じて、本発明の効果を阻害しない範囲で含んでいてもよい。その他の成分としては、本発明の吸収剤の化学的又は物理的安定性を確保するための安定剤(酸化防止剤等の副反応抑制剤)、本発明の吸収剤を用いる装置や設備の材質の劣化を防ぐための防止剤(腐食防止剤等)、本発明の吸収剤による二酸化炭素の吸収及び放散を補足するための二酸化炭素の物理吸収剤等が挙げられる。本発明の吸収剤におけるこれらその他の成分の含有量は本発明の効果を阻害しない範囲であれば特に制限的なものではないが、質量濃度で5%以下が好ましい。 The absorbent of the present invention contains components other than the alkanolamine compound represented by the general formula [1], the tertiary aliphatic amine compound having an ether group represented by the general formula [2], and water as necessary. In addition, it may be included within a range that does not impair the effects of the present invention. Other components include stabilizers (side reaction inhibitors such as antioxidants) for securing the chemical or physical stability of the absorbent of the present invention, and materials for devices and equipment using the absorbent of the present invention. Examples include an inhibitor (such as a corrosion inhibitor) for preventing deterioration of carbon dioxide, a physical absorbent of carbon dioxide for supplementing absorption and emission of carbon dioxide by the absorbent of the present invention, and the like. The content of these other components in the absorbent of the present invention is not particularly limited as long as it does not inhibit the effects of the present invention, but is preferably 5% or less by mass concentration.
 上記酸化防止剤としては、例えば、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、エリソルビン酸ナトリウム、亜硫酸ナトリウム、二酸化硫黄等が挙げられる。 Examples of the antioxidant include dibutylhydroxytoluene, butylhydroxyanisole, sodium erythorbate, sodium sulfite, and sulfur dioxide.
 上記腐食防止剤としては、例えば、1-ヒドロキシエタン-1,1-ジホスホン酸、2-ホスホノブタン-1,2,4-トリカルボン酸、1-ホスホノプロパン-2,3-ジカルボン酸、ホスホノスクシン酸、2-ヒドロキシホスホノ酢酸、マレイン酸系重合体(例えばマレイン酸及びアミレンの共重合体、又はマレイン酸、アクリル酸、及びスチレンの三元共重合体)等が挙げられる。 Examples of the corrosion inhibitor include 1-hydroxyethane-1,1-diphosphonic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, 1-phosphonopropane-2,3-dicarboxylic acid, phosphonosuccinic acid, 2-hydroxyphosphonoacetic acid, maleic acid-based polymer (for example, a copolymer of maleic acid and amylene, or a terpolymer of maleic acid, acrylic acid, and styrene).
 上記物理吸収剤としては、例えば、シクロテトラメチレンスルホン及びその誘導体、脂肪族酸アミド(例えばアセチルモルホリン、又はN-ホルミルモルホリン)、N-アルキル化ピロリドン及び相応するピペリドン(例えばN-メチルピロリドン、又はN-メチルピペリドン)、プロピレンカーボネート、メタノール、ポリエチレングリコールのジアルキルエーテル等が挙げられる。 Examples of the physical absorbent include, for example, cyclotetramethylene sulfone and derivatives thereof, aliphatic acid amides (for example, acetylmorpholine or N-formylmorpholine), N-alkylated pyrrolidones and corresponding piperidones (for example, N-methylpyrrolidone, or N-methylpiperidone), propylene carbonate, methanol, dialkyl ethers of polyethylene glycol and the like.
 二酸化炭素を含むガスとしては、例えば、石炭、重油、天然ガス等を燃料とする火力発電所、製造所のボイラー、セメント工場のキルン、コークスで酸化鉄を還元する製鐵高炉、銑鉄中の炭素を燃焼して製鋼する製鉄転炉、石炭ガス化複合発電設備等からの排ガス、採掘時天然ガス、改質ガスなどが挙げられ、該ガス中の二酸化炭素濃度は、体積濃度で通常5~50%程度、特に10~40%程度であればよい。かかる二酸化炭素濃度範囲では、本発明の作用効果が好適に発揮される。なお、二酸化炭素を含むガスには、二酸化炭素以外にN2、水蒸気、CO、H2S、COS、SO2、NO2、CH4、水素等のガスが含まれていてもよい。 Gases containing carbon dioxide include, for example, thermal power plants fueled with coal, heavy oil, natural gas, boilers at factories, kilns at cement plants, ironmaking blast furnaces that reduce iron oxide with coke, carbon in pig iron Exhaust gas from coal-fired combined power generation facilities, etc., natural gas at the time of mining, reformed gas, etc., and the carbon dioxide concentration in the gas is usually 5-50 by volume. %, Especially about 10-40%. In such a carbon dioxide concentration range, the effects of the present invention are suitably exhibited. The gas containing carbon dioxide may contain gases such as N 2 , water vapor, CO, H 2 S, COS, SO 2 , NO 2 , CH 4 , and hydrogen in addition to carbon dioxide.
 吸収剤による二酸化炭素の分離回収方法
 本発明の吸収剤による二酸化炭素の分離回収方法は、二酸化炭素を含むガス中の二酸化炭素を分離回収するための方法であって、本発明の吸収剤を、二酸化炭素を含むガスと接触させ、二酸化炭素を含むガスから二酸化炭素を吸収した吸収剤を得る工程A、及び、工程Aで得られた二酸化炭素を吸収した吸収剤を加熱して、吸収剤から二酸化炭素を脱離して放散させ、放散した二酸化炭素を回収する工程Bを含むことを特徴とする。
A method for separating and recovering carbon dioxide using an absorbent according to the present invention is a method for separating and recovering carbon dioxide in a gas containing carbon dioxide. Step A for obtaining an absorbent that has absorbed carbon dioxide from a gas containing carbon dioxide, and contacting the gas containing carbon dioxide, and heating the absorbent that has absorbed carbon dioxide obtained in step A, from the absorbent It includes a step B in which carbon dioxide is desorbed and released, and the released carbon dioxide is recovered.
 (工程A)
 工程Aでは、吸収剤を、二酸化炭素を含むガスと接触させることで、該二酸化炭素を含むガス中の二酸化炭素を吸収剤に吸収させて分離する。
(Process A)
In the step A, the absorbent is brought into contact with a gas containing carbon dioxide, so that the carbon dioxide in the gas containing carbon dioxide is absorbed by the absorbent and separated.
 工程Aにおける、吸収剤を、二酸化炭素を含むガスと接触させる方法は、特に限定されるものではない。例えば、吸収剤中に二酸化炭素を含むガスをバブリングさせる方法、二酸化炭素を含むガス中に吸収剤を霧状に降らす方法(噴霧乃至スプレー方式)、磁製や金属網製の充填材が入った吸収塔内で高圧の二酸化炭素を含むガスと吸収剤とを向流接触させる方法等が挙げられる。 The method for bringing the absorbent into contact with the gas containing carbon dioxide in step A is not particularly limited. For example, a method of bubbling a gas containing carbon dioxide in the absorbent, a method of dropping the absorbent into a gas containing carbon dioxide (a spray or spray method), and a magnetic or metal mesh filler Examples thereof include a method in which a gas containing high-pressure carbon dioxide and an absorbent are brought into countercurrent contact in an absorption tower.
 工程Aにおける温度は、25~60℃とすることができる。この範囲であれば、吸収剤が二酸化炭素回収量及び二酸化炭素吸収速度に優れる。工程Aにおける温度は、好ましくは25~50℃であり、より好ましくは25~40℃である。 The temperature in step A can be 25-60 ° C. If it is this range, an absorber will be excellent in a carbon dioxide recovery amount and a carbon dioxide absorption rate. The temperature in step A is preferably 25 to 50 ° C, more preferably 25 to 40 ° C.
 工程Aにおける圧力は、通常1.0bar以上、好ましくは1.0~3.5barとすることができる。また、より高い圧力で行うことで更に高い二酸化炭素の吸収性能が得られる。 The pressure in step A is usually 1.0 bar or higher, preferably 1.0 to 3.5 bar. Further, higher carbon dioxide absorption performance can be obtained by carrying out at a higher pressure.
 (工程B)
 工程Bでは、工程Aで得られた二酸化炭素を吸収した吸収剤を加熱して、吸収剤から二酸化炭素を脱離して放散させ、放散した二酸化炭素を回収する。
(Process B)
In the process B, the absorbent that has absorbed the carbon dioxide obtained in the process A is heated to desorb and dissipate carbon dioxide from the absorbent, and the diffused carbon dioxide is recovered.
 工程Bの二酸化炭素を脱離して放散させる工程における温度は、70~150℃とすることができる。この範囲であれば、吸収剤が二酸化炭素の放散速度に優れる。工程Bにおける温度は、好ましくは70~120℃であり、より好ましくは70~100℃である。 The temperature in the step B of desorbing and releasing carbon dioxide can be 70 to 150 ° C. Within this range, the absorbent is excellent in the carbon dioxide emission rate. The temperature in step B is preferably 70 to 120 ° C, more preferably 70 to 100 ° C.
 工程Bの二酸化炭素を脱離して放散させる工程における圧力は、通常3.5bar以下、好ましくは1.0~3.5barとすることができる。また、より低い圧力で行うことで更に高い二酸化炭素の放散性能が得られる。 The pressure in the step B of desorbing and releasing carbon dioxide in step B is usually 3.5 bar or less, preferably 1.0 to 3.5 bar. Further, higher carbon dioxide emission performance can be obtained by carrying out at a lower pressure.
 二酸化炭素を吸収した吸収剤を加熱して、二酸化炭素を脱離して放散させ、回収する方法は、特に限定されるものではない。例えば、蒸留と同じく、吸収剤を加熱して釜で泡立てて脱離する方法、棚段塔、スプレー塔、磁製、金属網製等の充填材の入った放散塔内で液界面を広げて加熱する方法等が挙げられる。これらの方法により、純粋な、あるいは非常に高濃度の二酸化炭素を回収することができる。 The method for heating and absorbing the carbon dioxide-absorbing agent to desorb and dissipate the carbon dioxide and recovering it is not particularly limited. For example, as with distillation, the absorbent is heated and bubbled in a kettle, and the liquid interface is expanded in a diffusion tower containing packing materials such as plate towers, spray towers, magnetic, metal mesh, etc. The method of heating etc. are mentioned. By these methods, pure or very high concentration carbon dioxide can be recovered.
 工程Bにおいて二酸化炭素を放散した後の吸収剤は、再び工程Aに戻し、循環再利用することができる。該循環過程において、工程Bで加えられた熱は、二酸化炭素を吸収した吸収剤との熱交換により、吸収剤の昇温に利用される。該熱交換により二酸化炭素分離回収工程全体のエネルギーの低減が計られる。 The absorbent after releasing carbon dioxide in the process B can be returned to the process A and recycled. In the circulation process, the heat applied in the step B is utilized for increasing the temperature of the absorbent by heat exchange with the absorbent that has absorbed carbon dioxide. The heat exchange can reduce the energy of the entire carbon dioxide separation and recovery process.
 本発明の吸収剤による二酸化炭素の分離回収方法により分離回収された二酸化炭素は、通常95~100%の体積濃度を持ち、純粋で、あるいは非常に高濃度であり得る。該分離回収された二酸化炭素は、現在その技術が開発されつつある地中や海底等への隔離貯蔵(CCS)や石油増進回収法(Enhanced Oil Recovery、EOR)に供することができる。その他、該分離回収された二酸化炭素の利用用途は、特に限定されるものではない。例えば、化成品等の合成原料、或いは食品冷凍用の冷剤等が挙げられる。 The carbon dioxide separated and recovered by the method for separating and recovering carbon dioxide with the absorbent of the present invention usually has a volume concentration of 95 to 100%, and may be pure or very high. The separated and recovered carbon dioxide can be subjected to sequestration and storage (CCS) and enhanced oil recovery (EOR), which are currently under development of the technology. In addition, the use application of the separated and recovered carbon dioxide is not particularly limited. For example, synthetic raw materials such as chemical products, or a cooling agent for freezing foods can be used.
 以下、実施例を挙げて本発明を更に詳しく説明する。但し、本発明はこれら実施例等に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
 試薬
 実施例及び比較例で使用した試薬及びガス種をそれぞれ表1及び表2に示す。
The reagents and gas types used in the reagent examples and comparative examples are shown in Table 1 and Table 2, respectively.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 試験方法
 (二酸化炭素回収量)
 実施例及び比較例において、吸収剤に対する二酸化炭素回収量の測定は、炭酸ガスボンベ及び窒素ガスボンベ、炭酸ガス流量コントローラー及び窒素ガス流量コントローラー、ガラス製反応容器(0.5L)及び温度調整器、ガス流量計、チラー、並びに二酸化炭素濃度計(横河電機製(株)IR100)を順次接続した二酸化炭素吸収放散装置を用いて行った。
Test method (carbon dioxide recovery)
In the examples and comparative examples, the measurement of the amount of carbon dioxide recovered with respect to the absorbent is carried out using a carbon dioxide gas cylinder and a nitrogen gas cylinder, a carbon dioxide gas flow rate controller and a nitrogen gas flow rate controller, a glass reaction vessel (0.5 L), a temperature regulator, and a gas flow meter. , A chiller, and a carbon dioxide concentration meter (IR100, manufactured by Yokogawa Electric Corporation) were used in sequence to perform the carbon dioxide absorption and emission device.
 ガラス製反応容器の周囲は、電気式ヒーターで覆い、温度調整器によりガラス製反応容器内の吸収剤の温度を任意に制御する仕様とした。ガラス製反応容器内には撹拌翼を設け、ガラス製反応容器内の吸収剤を強制撹拌することで気液接触を促す仕様とした。 The periphery of the glass reaction vessel was covered with an electric heater, and the temperature regulator was used to arbitrarily control the temperature of the absorbent in the glass reaction vessel. A stirring blade was provided in the glass reaction vessel, and the gas-liquid contact was promoted by forcibly stirring the absorbent in the glass reaction vessel.
 ガラス製反応容器内に0.1Lの吸収剤を加えた後、窒素ガスによりガラス製反応容器内上部の気体を置換した。ガラス製反応容器内の吸収剤を二酸化炭素の吸収工程の温度条件及び圧力条件で保持した。0.14L/minの流量の炭酸ガス及び0.56L/minの流量の窒素ガスをガラス製反応容器内の吸収剤に吹き込み二酸化炭素の吸収工程を開始し、2時間継続した。 After adding 0.1 L of absorbent into the glass reaction vessel, the gas inside the glass reaction vessel was replaced with nitrogen gas. The absorbent in the glass reaction vessel was maintained under the temperature and pressure conditions of the carbon dioxide absorption process. Carbon dioxide gas at a flow rate of 0.14 L / min and nitrogen gas at a flow rate of 0.56 L / min were blown into the absorbent in the glass reaction vessel to start the carbon dioxide absorption process and continued for 2 hours.
 二酸化炭素の吸収工程及び二酸化炭素の放散工程における温度条件及び圧力条件は、それぞれ温度40℃及び圧力1bar並びに温度70℃及び圧力1barであった。但し、上記の温度条件及び圧力条件は、本発明を何ら限定するものではない。 The temperature condition and pressure condition in the carbon dioxide absorption process and carbon dioxide emission process were a temperature of 40 ° C. and a pressure of 1 bar, a temperature of 70 ° C. and a pressure of 1 bar, respectively. However, the above temperature conditions and pressure conditions do not limit the present invention.
 二酸化炭素の吸収工程が終了した後、ガラス製反応容器内の吸収剤を二酸化炭素の放散工程の温度条件及び圧力条件に設定し、二酸化炭素の放散工程を開始し、2時間継続した。上記二酸化炭素の吸収工程及び放散工程において、ガラス製反応容器からの排出ガスを二酸化炭素濃度計により分析した。 After completion of the carbon dioxide absorption step, the absorbent in the glass reaction vessel was set to the temperature and pressure conditions of the carbon dioxide emission step, and the carbon dioxide emission step was started and continued for 2 hours. In the carbon dioxide absorption step and the emission step, the exhaust gas from the glass reaction vessel was analyzed with a carbon dioxide concentration meter.
 吸収剤への二酸化炭素溶解量Sc [g/L]は、二酸化炭素濃度計から得られる二酸化炭素濃度C [体積%]の経時変化から下記の式[4]を用いて求めた。 The amount of carbon dioxide dissolved in the absorbent S c [g / L] was determined from the change over time of the carbon dioxide concentration C [volume%] obtained from the carbon dioxide concentration meter using the following equation [4].
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 吸収剤による二酸化炭素回収量は、二酸化炭素の吸収工程の開始2時間後における二酸化炭素溶解量から、二酸化炭素放散工程の開始2時間後における二酸化炭素溶解量を引いた値として定義した。 The amount of carbon dioxide recovered by the absorbent was defined as a value obtained by subtracting the amount of carbon dioxide dissolved 2 hours after the start of the carbon dioxide emission process from the amount of carbon dioxide dissolved 2 hours after the start of the carbon dioxide absorption process.
 (二酸化炭素吸収熱)
 二酸化炭素吸収熱は、示差熱式熱量計(SETARAM製DRC Evolution)を用いて測定した。2台の同一形状の反応器にそれぞれ吸収剤を所定量充填し、40℃において攪拌しながら一方の反応器にのみ二酸化炭素を所定量吹込んだ。所定時間における2台の反応器間の発熱量の差と吸収剤への二酸化炭素の溶解量から、吸収された二酸化炭素量当りの発熱量を求め二酸化炭素吸収熱とした。
(CO2 absorption heat)
The carbon dioxide absorption heat was measured using a differential calorimeter (DRC Evolution manufactured by SETARAM). Two reactors of the same shape were each filled with a predetermined amount of absorbent, and a predetermined amount of carbon dioxide was blown into only one reactor while stirring at 40 ° C. The calorific value per absorbed amount of carbon dioxide was determined from the difference in calorific value between the two reactors at a given time and the amount of carbon dioxide dissolved in the absorbent, and was defined as the carbon dioxide absorption heat.
 (吸収剤比熱)
 吸収剤の比熱は、液体比熱計(京都電子工業(株)製SHA-500)を用いて測定した。
(Absorbent specific heat)
The specific heat of the absorbent was measured using a liquid specific heat meter (SHA-500 manufactured by Kyoto Electronics Industry Co., Ltd.).
 実施例1~3
 前記アルカノールアミン化合物としてIPAE、前記エーテル基を有する三級脂肪族アミン化合物としてBDER、及び前記水を、それぞれ表3に示す濃度で含む吸収剤について、前記試験方法に従い二酸化炭素回収量、二酸化炭素吸収熱及び吸収剤比熱を測定した。
Examples 1 to 3
For the absorbent containing IPAE as the alkanolamine compound, BDER as the tertiary aliphatic amine compound having an ether group, and the water at the concentrations shown in Table 3, respectively, the amount of carbon dioxide recovered, the carbon dioxide absorption in accordance with the test methods Heat and absorbent specific heat were measured.
 実施例4~9
 前記アルカノールアミン化合物としてIPAE及びAMP(実施例4~8)、又はIPAE及びEAE(実施例9)、前記エーテル基を有する三級脂肪族アミン化合物としてBDER、並びに前記水を、それぞれ表3に示す濃度で含む吸収剤について、前記試験方法に従い二酸化炭素回収量、二酸化炭素吸収熱及び吸収剤比熱を測定した。
Examples 4 to 9
Table 3 shows IPAE and AMP (Examples 4 to 8) or IPAE and EAE (Example 9) as the alkanolamine compound, BDER as the tertiary aliphatic amine compound having the ether group, and water. For the absorbent contained in concentration, carbon dioxide recovery, carbon dioxide absorption heat and absorbent specific heat were measured according to the test method.
 実施例10~11
 前記アルカノールアミン化合物としてIPAE及びAMP(実施例10)、又はIPAE及びEAE(実施例11)、前記エーテル基を有する三級脂肪族アミン化合物としてBMER、並びに前記水を、それぞれ表3に示す濃度で含む吸収剤について、前記試験方法に従い二酸化炭素回収量、二酸化炭素吸収熱及び吸収剤比熱を測定した。
Examples 10-11
IPAE and AMP (Example 10) or IPAE and EAE (Example 11) as the alkanolamine compound, BMER as the tertiary aliphatic amine compound having an ether group, and water at concentrations shown in Table 3, respectively. About the absorber to contain, according to the said test method, the carbon dioxide recovery amount, the carbon dioxide absorption heat, and the absorber specific heat were measured.
 実施例12~13
 前記アルカノールアミン化合物としてIPAP(実施例12)又はEAE(実施例13)、前記エーテル基を有する三級脂肪族アミン化合物としてBDER、及び前記水を、それぞれ表3に示す濃度で含む吸収剤について、前記試験方法に従い二酸化炭素回収量、二酸化炭素吸収熱及び吸収剤比熱を測定した。
Examples 12-13
About the absorbent containing IPAP (Example 12) or EAE (Example 13) as the alkanolamine compound, BDER as the tertiary aliphatic amine compound having the ether group, and the water at concentrations shown in Table 3, respectively. According to the test method, the carbon dioxide recovery, carbon dioxide absorption heat and absorbent specific heat were measured.
 比較例1~3
 前記アルカノールアミン化合物としてIPAE、及び前記水を、それぞれ表3に示す濃度で含み、前記エーテル基を有する三級脂肪族アミン化合物を含まない吸収剤について、前記試験方法に従い二酸化炭素回収量、二酸化炭素吸収熱及び吸収剤比熱を測定した。
Comparative Examples 1 to 3
For the absorbent containing IPAE and the water as the alkanolamine compound at the concentrations shown in Table 3 and not containing the tertiary aliphatic amine compound having the ether group, the carbon dioxide recovery amount, carbon dioxide The heat of absorption and the specific heat of the absorbent were measured.
 比較例4~6
 前記アルカノールアミン化合物としてIPAE、飽和炭化水素鎖のみからなる三級アルキルアミンであるTMDAH、及び前記水を、それぞれ表3に示す濃度で含み、前記エーテル基を有する三級脂肪族アミン化合物を含まない吸収剤について、前記試験方法に従い二酸化炭素回収量、二酸化炭素吸収熱及び吸収剤比熱を測定した。
Comparative Examples 4-6
As the alkanolamine compound, IPAE, TMDAH, which is a tertiary alkylamine consisting only of a saturated hydrocarbon chain, and the water are contained at the concentrations shown in Table 3, respectively, and the tertiary aliphatic amine compound having the ether group is not included. The absorbent was measured for carbon dioxide recovery, carbon dioxide absorption heat, and specific heat of the absorbent according to the test method.
 比較例7~8
 前記アルカノールアミン化合物としてIPAE、飽和炭化水素鎖のみからなる一級アルキルポリアミンであるDAMPA、及び前記水を、それぞれ表3に示す濃度で含み、前記エーテル基を有する三級脂肪族アミン化合物を含まない吸収剤について、前記試験方法に従い二酸化炭素回収量、二酸化炭素吸収熱及び吸収剤比熱を測定した。
Comparative Examples 7-8
Absorption which does not contain the tertiary aliphatic amine compound which has IPAE, DAMPA which is a primary alkyl polyamine which consists only of a saturated hydrocarbon chain, and the water as the alkanolamine compound at the concentrations shown in Table 3, respectively. With respect to the agent, the amount of carbon dioxide recovered, the carbon dioxide absorption heat, and the specific heat of the absorbent were measured according to the test method.
 比較例9~10
 前記アルカノールアミン化合物としてIPAE、エーテル基を含む一級アルキルポリアミンであるBAEOE、及び前記水を、それぞれ表3に示す濃度で含み、前記エーテル基を有する三級脂肪族アミン化合物を含まない吸収剤について、前記試験方法に従い二酸化炭素回収量、二酸化炭素吸収熱及び吸収剤比熱を測定した。
Comparative Examples 9-10
For the absorbent containing IPAE as the alkanolamine compound, BAEOE, which is a primary alkyl polyamine containing an ether group, and water, each at a concentration shown in Table 3, and not containing a tertiary aliphatic amine compound having the ether group, According to the test method, the carbon dioxide recovery, carbon dioxide absorption heat and absorbent specific heat were measured.
 比較例11
 前記アルカノールアミン化合物としてIPAE及びAMP、並びに前記水を、表3に示す濃度で含み、前記エーテル基を有する三級脂肪族アミン化合物を含まない吸収剤について、前記試験方法に従い二酸化炭素回収量、二酸化炭素吸収熱及び吸収剤比熱を測定した。
Comparative Example 11
With respect to the absorbent containing IPAE and AMP as the alkanolamine compound and water at the concentrations shown in Table 3 and not containing the tertiary aliphatic amine compound having the ether group, the amount of carbon dioxide recovered, The carbon absorption heat and the specific heat of the absorbent were measured.
 比較例12
 前記アルカノールアミン化合物としてIPAE及びAMP、前記エーテル基を有する三級脂肪族アミン化合物としてBDER、並びに前記水を、表3に示す濃度で含む吸収剤について、前記試験方法に従い二酸化炭素回収量、二酸化炭素吸収熱及び吸収剤比熱を測定した。
Comparative Example 12
With respect to the absorbent containing IPAE and AMP as the alkanolamine compound, BDER as the tertiary aliphatic amine compound having the ether group, and the water in the concentrations shown in Table 3, the amount of carbon dioxide recovered according to the test method, carbon dioxide The heat of absorption and the specific heat of the absorbent were measured.
 比較例13~14
 前記アルカノールアミン化合物としてIPAP(比較例13)又はEAE(比較例14)、及び前記水を、それぞれ表3に示す濃度で含み、前記エーテル基を有する三級脂肪族アミン化合物を含まない吸収剤について、前記試験方法に従い二酸化炭素回収量、二酸化炭素吸収熱及び吸収剤比熱を測定した。
Comparative Examples 13-14
About the absorbent containing IPAP (Comparative Example 13) or EAE (Comparative Example 14) as the alkanolamine compound and the water at the concentrations shown in Table 3 and not containing the tertiary aliphatic amine compound having the ether group. According to the test method, the carbon dioxide recovery, carbon dioxide absorption heat and absorbent specific heat were measured.
 実施例1~13及び比較例1~14で得られた結果を表3に、実施例1~11及び比較例1~12で得られた結果を図1に示す。なお、表中の%は質量濃度を表す。 The results obtained in Examples 1 to 13 and Comparative Examples 1 to 14 are shown in Table 3, and the results obtained in Examples 1 to 11 and Comparative Examples 1 to 12 are shown in FIG. In addition,% in a table | surface represents mass concentration.
 表中のC値は吸収剤比熱Bを二酸化炭素回収量Aで割った値に1000を掛けた値であり、吸収剤により二酸化炭素を分離回収する際に必要となる消費熱量の目安となる値である。該C値及び二酸化炭素吸収熱が低い吸収剤ほど低いエネルギーで二酸化炭素を分離回収できることを意味する。 The C value in the table is a value obtained by dividing the specific heat B of the absorbent by the amount of carbon dioxide recovered A and multiplying by 1000, and is a value that is a measure of the amount of heat consumed when carbon dioxide is separated and recovered by the absorbent. It is. It means that the carbon dioxide can be separated and recovered with lower energy as the absorbent has a lower C value and heat of absorption of carbon dioxide.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例1~11と比較例1~11との比較から、エーテル基を有する三級脂肪族アミン化合物を含む吸収剤は、エーテル基を有する三級脂肪族アミン化合物を含まない吸収剤に比べ、低いC値及び低い二酸化炭素吸収熱を持つことが確認され、本発明である吸収剤がエーテル基を有する三級脂肪族アミン化合物を含むことによる効果が明らかに示されている。 From a comparison between Examples 1 to 11 and Comparative Examples 1 to 11, the absorbent containing the tertiary aliphatic amine compound having an ether group was compared with the absorbent not containing the tertiary aliphatic amine compound having an ether group. It has been confirmed that it has a low C value and a low heat of carbon dioxide absorption, and clearly shows the effect of the absorbent according to the present invention containing a tertiary aliphatic amine compound having an ether group.
 実施例4~7、比較例11及び比較例12の結果から、吸収剤に含まれるエーテル基を有する三級脂肪族アミン化合物の質量濃度は1~24%の範囲で、該吸収剤が高い性能を示すことが、C値及び二酸化炭素吸収熱の値から確認できる。 From the results of Examples 4 to 7, Comparative Example 11 and Comparative Example 12, the mass concentration of the tertiary aliphatic amine compound having an ether group contained in the absorbent is in the range of 1 to 24%, and the absorbent has high performance. It can be confirmed from the value of C value and carbon dioxide absorption heat.
 比較例1~10の結果から、アミン化合物の水溶液からなる従来の二酸化炭素吸収剤はアミン化合物の総質量濃度を55%以上、或いは60%以上に高めることで、二酸化炭素回収量が低下することによるC値の増大が確認される。 From the results of Comparative Examples 1 to 10, a conventional carbon dioxide absorbent comprising an aqueous solution of an amine compound decreases the amount of carbon dioxide recovered by increasing the total mass concentration of the amine compound to 55% or more, or 60% or more. Increase in C value due to is confirmed.
 実施例1~11、比較例11及び比較例12の結果から、エーテル基を有する三級脂肪族アミン化合物を含むことにより吸収剤を高濃度化した場合、吸収剤に含まれるアミン化合物の総質量濃度は60%より高く85%より低い範囲で該吸収剤が高い性能を示すことが、C値及び二酸化炭素吸収熱の値から確認できる。 From the results of Examples 1 to 11, Comparative Example 11 and Comparative Example 12, when the concentration of the absorbent was increased by including a tertiary aliphatic amine compound having an ether group, the total mass of the amine compound contained in the absorbent It can be confirmed from the C value and the value of heat of carbon dioxide absorption that the absorbent exhibits high performance in a range where the concentration is higher than 60% and lower than 85%.
 比較例13の結果から、C値及び二酸化炭素吸収熱の値は、実施例12と比較してそれぞれ高い値が示されている。 From the results of Comparative Example 13, the values of C value and carbon dioxide absorption heat are higher than those of Example 12, respectively.
 比較例14の結果から、C値及び二酸化炭素吸収熱の値は、実施例13と比較してそれぞれ高い値が示されている。 From the results of Comparative Example 14, the C value and the carbon dioxide absorption heat value are higher than those of Example 13, respectively.

Claims (10)

  1.  二酸化炭素を含むガスから二酸化炭素を分離回収するための吸収剤であって、
     少なくとも1種の一般式[1]で表されるアルカノールアミン化合物、
     少なくとも1種の一般式[2]で表されるエーテル基を有する三級脂肪族アミン化合物、及び
     水
    を含み、該吸収剤に含まれるアミン化合物の質量濃度の総和が61~84%である、吸収剤。
    一般式[1]:
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は炭素数1~5のアルキル基又は水素基を表し、R2及びR3はそれぞれ独立して、炭素数1若しくは2のアルキル基又は水素基を表し、nは2又は3を表す。)
    一般式[2]:
    Figure JPOXMLDOC01-appb-C000002
    (式中、R4及びR5はそれぞれ独立して、炭素数2~4の三級アルキルアミノ基を表し、mは1、2又は3を表す。)
    An absorbent for separating and recovering carbon dioxide from a gas containing carbon dioxide,
    At least one alkanolamine compound represented by the general formula [1],
    A total of at least one tertiary aliphatic amine compound having an ether group represented by the general formula [2] and water, and the total mass concentration of the amine compounds contained in the absorbent is 61 to 84%. Absorbent.
    General formula [1]:
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 represents an alkyl group having 1 to 5 carbon atoms or a hydrogen group, R 2 and R 3 each independently represents an alkyl group having 1 or 2 carbon atoms or a hydrogen group, and n is 2 or 3)
    General formula [2]:
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 4 and R 5 each independently represents a tertiary alkylamino group having 2 to 4 carbon atoms, and m represents 1, 2 or 3).
  2.  前記アルカノールアミン化合物の質量濃度が37~83%であり、前記エーテル基を有する三級脂肪族アミン化合物の質量濃度が1~24%であり、水の質量濃度が16~39%であることを特徴とする、請求項1に記載の吸収剤。 The mass concentration of the alkanolamine compound is 37 to 83%, the mass concentration of the tertiary aliphatic amine compound having an ether group is 1 to 24%, and the mass concentration of water is 16 to 39%. 2. Absorbent according to claim 1, characterized in.
  3.  前記吸収剤に含まれるアミン化合物の質量濃度の総和が65~80%であり、前記アルカノールアミン化合物の質量濃度が45~75%であり、前記エーテル基を有する三級脂肪族アミン化合物の質量濃度が5~20%であり、水の質量濃度が20~35%であることを特徴とする、請求項1に記載の吸収剤。 The total mass concentration of the amine compound contained in the absorbent is 65 to 80%, the mass concentration of the alkanolamine compound is 45 to 75%, and the mass concentration of the tertiary aliphatic amine compound having an ether group The absorbent according to claim 1, characterized in that is 5 to 20% and the mass concentration of water is 20 to 35%.
  4.  前記アルカノールアミン化合物が、モノエタノールアミン、2-アミノ-2-メチル-1-プロパノール、2-(メチルアミノ)エタノール、2-(エチルアミノ)エタノール、2-(イソプロピルアミノ)エタノール及び3-(イソプロピルアミノ)プロパノールからなる群より選択される少なくとも1種である、請求項1から3のいずれか一項に記載の吸収剤。 The alkanolamine compound is monoethanolamine, 2-amino-2-methyl-1-propanol, 2- (methylamino) ethanol, 2- (ethylamino) ethanol, 2- (isopropylamino) ethanol and 3- (isopropyl The absorbent according to any one of claims 1 to 3, which is at least one selected from the group consisting of amino) propanol.
  5.  前記アルカノールアミン化合物が、2-アミノ-2-メチル-1-プロパノール、2-(エチルアミノ)エタノール、2-(イソプロピルアミノ)エタノール及び3-(イソプロピルアミノ)プロパノールからなる群より選択される少なくとも1種である、請求項1から3のいずれか一項に記載の吸収剤。 The alkanolamine compound is at least one selected from the group consisting of 2-amino-2-methyl-1-propanol, 2- (ethylamino) ethanol, 2- (isopropylamino) ethanol and 3- (isopropylamino) propanol. The absorbent according to any one of claims 1 to 3, which is a seed.
  6.  前記エーテル基を有する三級脂肪族アミン化合物が、エーテル基を有し分子対称性を有しヒドロキシ基を有さない三級脂肪族アミンからなる群より選択される少なくとも1種である、請求項1から5のいずれか一項に記載の吸収剤。 The tertiary aliphatic amine compound having an ether group is at least one selected from the group consisting of tertiary aliphatic amines having an ether group, molecular symmetry, and no hydroxy group. The absorbent according to any one of 1 to 5.
  7.  前記エーテル基を有する三級脂肪族アミン化合物が、ビス(2-ジメチルアミノエチル)エーテル及びビス(2-モルホリノエチル)エーテルからなる群より選択される少なくとも1種である、請求項1から5のいずれか一項に記載の吸収剤。 6. The tertiary aliphatic amine compound having an ether group is at least one selected from the group consisting of bis (2-dimethylaminoethyl) ether and bis (2-morpholinoethyl) ether. The absorbent according to any one of the above.
  8.  以下の工程A及びBを含む、二酸化炭素を含むガスから二酸化炭素を分離回収する方法:
    請求項1から7のいずれか一項に記載の吸収剤を、二酸化炭素を含むガスと接触させ、二酸化炭素を含むガスから二酸化炭素を吸収した吸収剤を得る工程A、及び、
    工程Aで得られた二酸化炭素を吸収した吸収剤を加熱して、吸収剤から二酸化炭素を脱離して放散させ、放散した二酸化炭素を回収する工程B。
    A method for separating and recovering carbon dioxide from a gas containing carbon dioxide, including the following steps A and B:
    A process A for obtaining an absorbent that absorbs carbon dioxide from a gas containing carbon dioxide by contacting the absorbent according to any one of claims 1 to 7 with a gas containing carbon dioxide, and
    A process B in which the absorbent obtained by absorbing the carbon dioxide obtained in the step A is heated to desorb and dissipate the carbon dioxide from the absorbent, and the diffused carbon dioxide is recovered.
  9.  前記工程Aが、25~60℃の温度で行われ、且つ、前記工程Bが、70~150℃の温度で行われる請求項8に記載の二酸化炭素を含むガスから二酸化炭素を分離回収する方法。 9. The method for separating and recovering carbon dioxide from a gas containing carbon dioxide according to claim 8, wherein the step A is performed at a temperature of 25 to 60 ° C., and the step B is performed at a temperature of 70 to 150 ° C. .
  10.  前記工程Aが、1.0bar以上の圧力下で行われ、且つ、前記工程Bが、3.5bar以下の圧力下で行われる請求項8又は9に記載の二酸化炭素を含むガスから二酸化炭素を分離回収する方法。 The said process A is performed under the pressure of 1.0 bar or more, and the said process B is isolate | separated and collect | recovered from the gas containing a carbon dioxide of Claim 8 or 9 performed under the pressure of 3.5 bar or less. how to.
PCT/JP2019/006457 2018-02-23 2019-02-21 Absorbent for carbon dioxide, and method for separating/collecting carbon dioxide WO2019163867A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020501020A JP7146891B2 (en) 2018-02-23 2019-02-21 Carbon dioxide absorbent and carbon dioxide separation and recovery method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018030938 2018-02-23
JP2018-030938 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019163867A1 true WO2019163867A1 (en) 2019-08-29

Family

ID=67687720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006457 WO2019163867A1 (en) 2018-02-23 2019-02-21 Absorbent for carbon dioxide, and method for separating/collecting carbon dioxide

Country Status (2)

Country Link
JP (1) JP7146891B2 (en)
WO (1) WO2019163867A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006275A (en) * 2007-06-28 2009-01-15 Research Institute Of Innovative Technology For The Earth Efficient recovering method of carbon dioxide in exhaust gas
WO2011071150A1 (en) * 2009-12-11 2011-06-16 財団法人地球環境産業技術研究機構 Carbon dioxide absorbent for use under high pressure, and method for absorption and collection of carbon dioxide under high pressure
WO2013118819A1 (en) * 2012-02-08 2013-08-15 公益財団法人地球環境産業技術研究機構 Aqueous solution which efficiently absorbs and recovers carbon dioxide in exhaust gas, and method for recovering carbon dioxide using same
JP2014036933A (en) * 2012-08-17 2014-02-27 Research Institute Of Innovative Technology For The Earth Liquid absorbent and separation-recovery method for separating-recovering carbon dioxide from gas flow containing high pressure carbon dioxide
JP2017189726A (en) * 2016-04-11 2017-10-19 川崎重工業株式会社 Carbon dioxide separation recovery system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006275A (en) * 2007-06-28 2009-01-15 Research Institute Of Innovative Technology For The Earth Efficient recovering method of carbon dioxide in exhaust gas
WO2011071150A1 (en) * 2009-12-11 2011-06-16 財団法人地球環境産業技術研究機構 Carbon dioxide absorbent for use under high pressure, and method for absorption and collection of carbon dioxide under high pressure
WO2013118819A1 (en) * 2012-02-08 2013-08-15 公益財団法人地球環境産業技術研究機構 Aqueous solution which efficiently absorbs and recovers carbon dioxide in exhaust gas, and method for recovering carbon dioxide using same
JP2014036933A (en) * 2012-08-17 2014-02-27 Research Institute Of Innovative Technology For The Earth Liquid absorbent and separation-recovery method for separating-recovering carbon dioxide from gas flow containing high pressure carbon dioxide
JP2017189726A (en) * 2016-04-11 2017-10-19 川崎重工業株式会社 Carbon dioxide separation recovery system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DU YANG ET AL.: "Thermal degradation of novel piperazine-based amine blends for C02 capture", INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, vol. 49, 2016, pages 239 - 249, XP029542024, doi:10.1016/j.ijggc.2016.03.010 *

Also Published As

Publication number Publication date
JPWO2019163867A1 (en) 2021-03-04
JP7146891B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
AU2013281027B2 (en) Aqueous alkanolamine absorbent composition comprising piperazine for enhanced removal of hydrogen sulfide from gaseous mixtures and method for using the same
CA2777326C (en) Acid gas absorbent, acid gas removal method, and acid gas removal device
JP5215595B2 (en) Absorbing liquid, CO2 or H2S removing apparatus and method using absorbing liquid
JP5452222B2 (en) Method for efficiently recovering carbon dioxide in gas
CA2870164C (en) Aqueous alkanolamine solution and process for the removal of h2s from gaseous mixtures
JP5868795B2 (en) Acid gas absorbent, acid gas removal method, and acid gas removal apparatus
JP6095579B2 (en) Aqueous solution that efficiently absorbs and recovers carbon dioxide in exhaust gas, and carbon dioxide recovery method using the same
JP6173817B2 (en) Acid gas absorbent, acid gas removal method, and acid gas removal apparatus
CN103814013A (en) Aminopyridine derivatives for removal of hydrogen sulfide from gas mixture
JP2009006275A (en) Efficient recovering method of carbon dioxide in exhaust gas
JP2017035669A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
JP6377602B2 (en) Liquid for absorbing and recovering carbon dioxide in gas, and method for recovering carbon dioxide using the same
JP6073088B2 (en) Liquid absorbent and separation and recovery method for separating and recovering carbon dioxide from a gas stream containing high-pressure carbon dioxide
JP2009213974A (en) Aqueous solution and method of absorbing and desorption-recovering effectively carbon dioxides in gas
JP2015112574A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
JP2008168184A (en) Composition for absorbing and dissociating carbon dioxide in exhaust gas to recover it and carbon dioxide recovering method using it
CA2986035C (en) An aqueous alkanolamine composition and process for the selective removal of hydrogen sulfide from gaseous mixtures
JP2019098284A (en) Formic acid recovery agent, formic acid removal method, formic acid removal device, carbon dioxide separation recovery method and carbon dioxide separation recovery device
WO2019163867A1 (en) Absorbent for carbon dioxide, and method for separating/collecting carbon dioxide
JP5039276B2 (en) Absorbing liquid, apparatus and method for removing CO2 or H2S in gas using absorbing liquid
JP5627534B2 (en) Absorbing liquid, apparatus and method for removing CO2 or H2S in gas using absorbing liquid
KR20170129920A (en) An absorption liquid for separating and recovering carbon dioxide and a method for separating and recovering carbon dioxide using the same
JP2024004780A (en) Absorption liquid for carbon dioxide and method for separation and recovery of carbon dioxide
JP6463186B2 (en) Absorbent for separating and recovering carbon dioxide, and method for separating and recovering carbon dioxide using the same
JP2011189346A (en) Absorbing liquid, and co2 or h2s removal apparatus and method using absorbing liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19756832

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501020

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19756832

Country of ref document: EP

Kind code of ref document: A1