JP2008168227A - Absorbing liquid of carbon dioxide in exhaust gas - Google Patents

Absorbing liquid of carbon dioxide in exhaust gas Download PDF

Info

Publication number
JP2008168227A
JP2008168227A JP2007004934A JP2007004934A JP2008168227A JP 2008168227 A JP2008168227 A JP 2008168227A JP 2007004934 A JP2007004934 A JP 2007004934A JP 2007004934 A JP2007004934 A JP 2007004934A JP 2008168227 A JP2008168227 A JP 2008168227A
Authority
JP
Japan
Prior art keywords
absorption
amines
carbon dioxide
desorption
amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007004934A
Other languages
Japanese (ja)
Inventor
Shinkichi Shimizu
信吉 清水
Kazuya Goto
和也 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for the Earth RITE filed Critical Research Institute of Innovative Technology for the Earth RITE
Priority to JP2007004934A priority Critical patent/JP2008168227A/en
Publication of JP2008168227A publication Critical patent/JP2008168227A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for absorbing and dissociating CO<SB>2</SB>in an exhaust gas to efficiently recover CO<SB>2</SB>of high purity in a low energy consumption state. <P>SOLUTION: This absorbing liquid for separating and recovering carbon dioxide from the exhaust gas containing carbon dioxide contains 2-amino-2-methyl-1-propanol (a), N-ethyl-2-aminoethanol (c) and, if necessary, N-methyldiethanolamine (b). The sum total concentration of the amines (a)-(c) in the absorbing liquid is 20-60 wt.% and the amines (a)-(c) are contained in the absorbing liquid so as to satisfy 0.1≤a<0.6, o≤b≤0.6, 0.2≤c≤0.6 and a+b+c=1 [wherein a, b and c are the respective weight ratios of the amines (a), (b) and (c) with respect to the total amines of (a), (b) and (c)]. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガス中に含まれる二酸化炭素(CO)を、分離回収するためのCO吸収液、及び当該CO回収液を用いて吸収し、続いてCOが吸収されたCO吸収液からCOを脱離して分離回収する方法に関する。 In the present invention, carbon dioxide (CO 2 ) contained in a gas is absorbed using a CO 2 absorbing solution for separating and recovering, and the CO 2 recovering solution, and then CO 2 absorption in which CO 2 is absorbed. The present invention relates to a method of separating and recovering CO 2 from a liquid.

近年、地球温暖化に起因すると考えられる気象変動や災害の頻発が、農業生産、住環境、エネルギー消費等に多大の影響をおよぼしている。この地球温暖化は、人間の活動が活発になることに付随して増大するCO、メタン、亜酸化窒素、フロン等の温室効果ガスが大気中に増大するためであると考えられている。その温室効果ガスの中で最も主要なものとして、大気中のCOがあげられる。地球温暖化の防止のため1997年12月には温暖化防止京都会議(COP3)が開催され、その会議で採択された京都議定書が2005年2月16日に発効し、CO放出量の削減に向けての対策が緊急に必要となっている。 In recent years, frequent weather fluctuations and disasters that are thought to be caused by global warming have greatly affected agricultural production, living environment, energy consumption, and the like. This global warming is thought to be due to the increase in the atmosphere of greenhouse gases such as CO 2 , methane, nitrous oxide, and chlorofluorocarbon, which increase with the increase in human activity. The most important greenhouse gas is atmospheric CO 2 . To prevent global warming, the Kyoto Conference on Global Warming Prevention (COP3) was held in December 1997, and the Kyoto Protocol adopted at the conference entered into force on February 16, 2005, reducing CO 2 emissions. There is an urgent need to take measures toward this.

COの発生源としては石炭、重油、天然ガス等を燃料とする火力発電所、製造所のボイラーあるいはセメント工場のキルン、コークスで酸化鉄を還元する製鐵所の高炉、そしてガソリン、重油、軽油等を燃料とする自動車、船舶、航空機等の輸送機器などがある。これらのうち輸送機器を除くものについては固定的な設備であり、COの放出を削減する対策を施しやすい設備として期待されている。 Sources of CO 2 include coal, heavy oil, natural gas fueled thermal power plants, factory boilers or cement kilns, blast furnace blast furnaces that reduce iron oxide with coke, gasoline, heavy oil, There are transportation equipment such as automobiles, ships, and aircraft that use light oil as fuel. Of these, those other than transportation equipment are fixed facilities, and are expected to be easy to implement measures to reduce CO 2 emissions.

ガス中のCOを回収する方法としてはこれまでもいくつかの方法が知られている。そしてまた現在も広く種々の方法が研究されている。 Several methods have been known so far for recovering CO 2 in gas. And now, various methods are widely studied.

例えば、COを含むガスを吸収塔内でアルカノールアミン水溶液と接触させてCOを吸収させた後、そのCO吸収液を加熱して脱離塔でCOを脱離回収させる方法は、1930年代から開発され、尿素合成プラント塔で実用化されている。この方法は、経済的でありかつ大型化しやすいものである。 For example, after absorption of CO 2 by a gas containing CO 2 is contacted with an aqueous alkanolamine solution in an absorption tower, a method for desorption recovered CO 2 and the CO 2 absorbing solution by heating at desorption column, Developed since the 1930s and put into practical use in urea synthesis plant towers. This method is economical and easy to enlarge.

ここでアルカノールアミンとしては、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)、トリエタノールアミン(TEA)、メチルジエタノールアミン(MDEA)、ジイソプロバノールアミン(DIPA)、ジグリコールアミン(DGA)などが知られているが、通常モノエタノールアミンが用いられている。   Here, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), methyldiethanolamine (MDEA), diisopropanolamine (DIPA), diglycolamine (DGA) and the like are known as alkanolamines. However, monoethanolamine is usually used.

しかし、例えばMEA等のアルカノールアミンの水溶液を吸収液として用いた場合、単位体積あたりのCO吸収容量はすぐれているものの、装置の材質の腐食性が高いため、装置に高価な耐食鋼を用いる必要があったり、吸収液中のアミン濃度をさげる必要がある。また、吸収したCOを脱離しにくいために、脱離の温度を120℃と高い温度に加熱して脱離、回収する必要がある。また、それとは別にCOを吸収液から脱離するのに必要なエネルギーが、20 Cal/mol COと高いという欠点もある。例えば、この方法を用いて発電所においてCOを回収するには、発電量の20%にもあたる余分なエネルギーが必要となってしまう。COの発生の削減、省エネルギー及び省資源が求められる時代においては、この高エネルギー消費はCO吸収、回収設備の実用化を阻む大きな要因となっている。 However, for example, when an aqueous solution of alkanolamine such as MEA is used as the absorbing solution, although the CO 2 absorption capacity per unit volume is excellent, the corrosiveness of the material of the device is high, so that expensive corrosion-resistant steel is used for the device. It is necessary to reduce the concentration of amine in the absorbing solution. Further, since it is difficult to desorb absorbed CO 2 , it is necessary to desorb and recover by heating the desorption temperature to a high temperature of 120 ° C. In addition, there is a disadvantage that the energy required to desorb CO 2 from the absorbing solution is as high as 20 Cal / mol CO 2 . For example, in order to collect CO 2 at a power plant using this method, extra energy equivalent to 20% of the power generation amount is required. In an era where reduction of CO 2 generation, energy saving and resource saving are required, this high energy consumption is a major factor hindering the practical use of CO 2 absorption and recovery equipment.

特許文献1には燃焼排ガスからのCOの除去に限定して、2級のヒンダードアミンとして2−メチルアミノエタノール(MAE)、2−エチルアミノエタノール(EAE)、2−プロピルアミノエタノール(PAE)、及び2−イソプロピルアミノエタノールを例示し、EAEとMAEが好ましいとしている。 In Patent Document 1, the secondary hindered amine is limited to the removal of CO 2 from the combustion exhaust gas, and 2-methylaminoethanol (MAE), 2-ethylaminoethanol (EAE), 2-propylaminoethanol (PAE), And 2-isopropylaminoethanol, with EAE and MAE being preferred.

3級アミンとしてジ−非置換アルキルアミノプロパノール及びジ−非置換アルキルアミノブタノールすなわちメチル基、エチル基、プロピル基、イソプロピル基で置換されたジ−非置換アルキルアミノプロパノール及びジ−非置換アルキルアミノブタノールをあげ1−ジエチルアミノ−2−プロパノールと3−ジエチルアミノ−1−プロパノールを例示している。しかしながら他の特定のアミン類を混合することにより吸収したCOを著しく放散しやすくなることは述べられていない。 Di-unsubstituted alkylaminopropanol and di-unsubstituted alkylaminobutanol as tertiary amines, i.e. di-unsubstituted alkylaminopropanol and di-unsubstituted alkylaminobutanol substituted with methyl, ethyl, propyl, isopropyl groups 1-diethylamino-2-propanol and 3-diethylamino-1-propanol are exemplified. However it is likely to significantly dissipate the absorbed CO 2 by mixing other specific amines is not mentioned.

特許文献2は吸収液としてアミンの水溶液に限定して、上記文献と同じく2級あるいは3級炭素と結合した2級アミノ基あるいは3級炭素と結合した1級アミンを提案している。2−アミノ−2-メチル−1−プロパノール(AMP)や2−メチルピペラジンも提案されている。   Patent Document 2 proposes a secondary amino group bonded to a secondary or tertiary carbon or a primary amine bonded to a tertiary carbon, as in the above-mentioned document, by limiting to an aqueous amine solution as an absorbing solution. 2-Amino-2-methyl-1-propanol (AMP) and 2-methylpiperazine have also been proposed.

特許文献3では請求項1に第三級炭素を含む1級アルカノールアミンと2級アルカノールアミンの100重量部:1〜25重量部の組合せ、および請求項3にAMPや1,3−プロパンジオール類の群と2級アルカノールアミンの100重量部:1〜25重量部の組合せが開示され、実施例としてAMP−MAE、AMP−ピペラジン(PZ)、DEA−MAE、およびDEA−PZが示されている。   In Patent Document 3, claim 1 is a combination of 100 parts by weight of primary alkanolamine and secondary alkanolamine containing tertiary carbon: 1 to 25 parts by weight, and claim 3 is AMP or 1,3-propanediol. A combination of 100 parts by weight of a secondary alkanolamine with 1 to 25 parts by weight is disclosed, examples of which are AMP-MAE, AMP-piperazine (PZ), DEA-MAE, and DEA-PZ. .

特許文献4ではやはり燃焼排ガスに限定しているが2級アミン及び3級アミンの混合水溶液を用いてCO吸収量、及び吸収速度を改善して、吸収及び回収に要するエネルギーを改善できたとしている。 Although it is still limited to combustion exhaust gas in Patent Document 4, it is possible to improve the energy required for absorption and recovery by improving the CO 2 absorption amount and absorption rate using a mixed aqueous solution of secondary amine and tertiary amine. Yes.

好ましい2級アミンとしては2−メチルアミノエタノール(MAE)、2−エチルアミノエタノール(EAE)、2−イソプロピルアミノエタノール(IPAE)、2−n−ブチルアミノエタノール(nBAE)などのアルカノールアミンの他ピペラジン、2−メチルピペラジンジメチルピペラジン、2−ピペリジノエタノールの環状アミンが例示されている。また好ましい3級アミンとして2−ジメチルアミノエタノール(DMAE)、2−ジエチルアミノエタノール(DEAE)、3−ジメチルアミノ−1−プロパノール(3DMA1P)、4−ジメチルアミノ−1−ブタノール(4DMA1B)、2−ジメチルアミノ−2−メチル−1−プロパノール(2DMA2M1P)、N−エチル−N−メチルエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、N−t−ブチルジエタノールアミン(tBDEA)、N−メチルジイソプロパノールアミン(MDIPA)が示されている。しかし3級アルカノールアミンの濃度は単独で最多くCOを吸収する濃度の±10重量%と極めて限定されている。 Preferred secondary amines include piperazine in addition to alkanolamines such as 2-methylaminoethanol (MAE), 2-ethylaminoethanol (EAE), 2-isopropylaminoethanol (IPAE), 2-n-butylaminoethanol (nBAE) and the like. , 2-methylpiperazine dimethylpiperazine, and cyclic amines of 2-piperidinoethanol are exemplified. Preferred tertiary amines include 2-dimethylaminoethanol (DMAE), 2-diethylaminoethanol (DEAE), 3-dimethylamino-1-propanol (3DMA1P), 4-dimethylamino-1-butanol (4DMA1B), 2-dimethyl. Amino-2-methyl-1-propanol (2DMA2M1P), N-ethyl-N-methylethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, Nt-butyldiethanolamine (tBDEA), N-methyldiisopropanolamine ( MDIPA) is shown. However, the concentration of the tertiary alkanolamine is extremely limited to ± 10% by weight of the concentration that absorbs the largest amount of CO 2 alone.

以上のように、COの吸収及び脱離回収を改良しようとする多くの試みがなされている。しかし、さらに吸収及び脱離回収性能のバランスや、CO吸収の反応熱、換言すればCO脱離のために必要な熱を小さくすることが大きな課題となっている。
特許2871334号 米国特許第4,112,052号 特許2871335号 特許3197183号
As described above, many attempts have been made to improve the absorption and desorption recovery of CO 2 . However, further reduction of the balance between absorption and desorption recovery performance, the reaction heat of CO 2 absorption, in other words, the heat necessary for CO 2 desorption is a major issue.
Japanese Patent No. 2871334 U.S. Pat. No. 4,112,052 Japanese Patent No. 2871335 Patent 3197183

以上の従来技術の問題点に鑑み、本発明は、効率的かつ低いエネルギー消費量でガス中のCOを吸収及び脱離して、高純度のCOを分離回収する方法を提供することを目的とする。具体的には、単位量あたりのCO吸収量やCO脱離量が大きく、かつ、CO脱離に必要なエネルギーが低いCO吸収液を用いて、効率的にCOを吸収しかつ脱離して高純度のCOを分離回収する方法を提供することを目的とする。 In view of the above problems of the prior art, the present invention aims to provide a method for efficiently and apart absorbing and de of CO 2 in the gas at low energy consumption, to separate and recover high purity CO 2 And Specifically, CO 2 is absorbed efficiently by using a CO 2 absorbing solution having a large amount of CO 2 absorption and CO 2 desorption per unit amount and low energy required for CO 2 desorption. It is another object of the present invention to provide a method for separating and recovering high purity CO 2 by desorption.

本発明者らは、上記課題を解決するために、鋭意研究した結果、COの吸収量よりも吸収したCOを放散する過程において如何に多くのCOを放散するか及び吸収速度が如何に大きいかが効率的にCOを吸収しかつ脱離する目的に対して重用なポイントであることを見出した。そして2−アミノ−2−メチル−1−プロパノール、N−メチルジエタノールアミン及びN−エチル−2−アミノエタノールの3種のアミンを特定の組成とすることにより高いCO吸収量、吸収速度、高いCO脱離量及び脱離速度を顕著に示すことを見出した。かかる知見に基づき、更に研究を重ねた結果、本発明を完成するに至った。 The present inventors have found that in order to solve the above problems, intensive studies and as a result, how do and how absorption rate to dissipate a lot of CO 2 in the process of dissipation of CO 2 absorbed than the absorption of CO 2 Has been found to be an important point for the purpose of efficiently absorbing and desorbing CO 2 . The 2-amino-2-methyl-1-propanol, N- methyldiethanolamine and high CO 2 absorption by the three amines be specific composition of N- ethyl-2-aminoethanol, absorption rate, a high CO 2 It was found that the amount of desorption and the desorption rate were remarkably shown. As a result of further research based on this knowledge, the present invention has been completed.

即ち、本発明は以下の新規な二酸化炭素を分離回収するための二酸化炭素の吸収液及び二酸化炭素吸収方法を提供する。   That is, the present invention provides the following carbon dioxide absorbing solution and carbon dioxide absorbing method for separating and recovering the following carbon dioxide.

項1.二酸化炭素を含むガスから二酸化炭素を分離回収するための吸収液であって、
前記吸収液は、
(i)2−アミノ−2−メチル−1−プロパノール(a)、N−メチルジエタノールアミン(b)及びN−エチル−2−アミノエタノール(c)を含有し、
これら(a)〜(c)のアミンの吸収液中での合計の濃度は、20〜60重量%であり、かつ
(a)〜(c)のアミンが、0.1≦a≦0.6、0<b≦0.6、0.2≦c≦0.6かつa+b+c=1を満たすように吸収液中に含まれているか、
[ここで、aは、(a)〜(c)の総アミンに対する(a)のアミンの重量割合を示し、
bは、(a)〜(c)の総アミンに対する(b)のアミンの重量割合を示し、
cは、(a)〜(c)の総アミンに対する(c)のアミンの重量割合を示す]
または
前記吸収液は、
(ii)2−アミノ−2−メチル−1−プロパノール(a)及びN−エチル−2−アミノエタノール(c)を含有しかつN−メチルジエタノールアミン(b)を含まず、
これら(a)及び(c)のアミンの吸収液中での合計の濃度は、20〜60重量%であり、かつ
(a)及び(c)のアミンが、0.4≦a≦0.6、0.4≦c≦0.6かつa+c=1を満たすように吸収液中に含まれている、
[ここで、aは、(a)及び(c)の総アミンに対する(a)のアミンの重量割合を示し、
cは、(a)及び(c)の総アミンに対する(c)のアミンの重量割合を示す]
吸収液。
Item 1. An absorption liquid for separating and recovering carbon dioxide from a gas containing carbon dioxide,
The absorbent is
(I) containing 2-amino-2-methyl-1-propanol (a), N-methyldiethanolamine (b) and N-ethyl-2-aminoethanol (c);
The total concentration of the amines (a) to (c) in the absorbing solution is 20 to 60% by weight, and the amines (a) to (c) are 0.1 ≦ a ≦ 0.6. , 0 <b ≦ 0.6, 0.2 ≦ c ≦ 0.6 and a + b + c = 1,
[Where a represents the weight ratio of the amine of (a) to the total amines of (a) to (c);
b represents the weight ratio of the amine of (b) to the total amines of (a) to (c);
c represents the weight ratio of the amine of (c) to the total amines of (a) to (c)]
Or the absorbent is
(Ii) containing 2-amino-2-methyl-1-propanol (a) and N-ethyl-2-aminoethanol (c) and not containing N-methyldiethanolamine (b);
The total concentration of the amines (a) and (c) in the absorbing solution is 20 to 60% by weight, and the amines (a) and (c) are 0.4 ≦ a ≦ 0.6. , 0.4 ≦ c ≦ 0.6 and a + c = 1.
[Where a represents the weight ratio of the amine of (a) to the total amine of (a) and (c);
c represents the weight ratio of the amine of (c) to the total amines of (a) and (c)]
Absorbing liquid.

項2.(1)二酸化炭素を含むガスを項1に記載の吸収液に60℃以下の温度で接触させる工程、及び
(2)上記工程(1)で得られた二酸化炭素が吸収された吸収液を70℃以上の温度で加熱して二酸化炭素を脱離して回収する工程
を含む二酸化炭素の分離回収方法。
Item 2. (1) a step of bringing a gas containing carbon dioxide into contact with the absorbing liquid according to item 1 at a temperature of 60 ° C. or lower; and (2) an absorbing liquid in which carbon dioxide obtained in step (1) is absorbed is 70. A method for separating and recovering carbon dioxide, comprising a step of desorbing and recovering carbon dioxide by heating at a temperature of at least ° C.

本発明の二酸化炭素の吸収液を用いた二酸化炭素の分離回収方法は、効率的かつ低いエネルギー消費量でガス中のCOを吸収及び脱離して、高純度のCOを回収することができる。これにより、CO吸収塔、CO脱離塔及びこれらに付随する装置を小型化し、液循環量も減らしてエネルギー損失を削減し、合わせて建設費用を減らすことが可能となる。 The method for separating and recovering carbon dioxide using the carbon dioxide-absorbing liquid of the present invention can absorb and desorb CO 2 in gas with an efficient and low energy consumption, and recover high-purity CO 2. . As a result, the CO 2 absorption tower, the CO 2 desorption tower, and the devices associated therewith can be miniaturized, the amount of liquid circulation can be reduced, energy loss can be reduced, and construction costs can be reduced.

本発明の二酸化炭素の吸収液を用いた二酸化炭素の分離回収方法は、CO吸収の反応熱が小さいという特徴も有する。CO吸収の反応熱は、CO脱離時に必要な熱に相当するため、COを脱離させるために必要なエネルギー消費を低く抑えることができる。 The method for separating and recovering carbon dioxide using the carbon dioxide absorbing liquid of the present invention also has a feature that the reaction heat of CO 2 absorption is small. Since the reaction heat of CO 2 absorption corresponds to the heat necessary for CO 2 desorption, the energy consumption necessary for desorbing CO 2 can be kept low.

また、CO吸収に用いるMEA等のアルカノールアミン類は、一般的に炭素鋼などの金属材料に対して高い腐食性を示すが、本発明で用いる混合アミンの水溶液は腐食性も著しく低下し、プラント建設において、高価な高級耐食鋼を用いる必要がない点で有利である。 In addition, alkanolamines such as MEA used for CO 2 absorption generally show high corrosiveness to metal materials such as carbon steel, but the aqueous solution of mixed amine used in the present invention has a markedly reduced corrosiveness, This is advantageous in that it is not necessary to use expensive high-grade corrosion-resistant steel in plant construction.

以下、本発明を詳述する。   The present invention is described in detail below.

(1)二酸化炭素の吸収液
本発明の二酸化炭素吸収液は、2−アミノ−2−メチル−1−プロパノール(a)及びN−エチル−2−アミノエタノール(c)を含有する。
(1) Carbon dioxide absorbent The carbon dioxide absorbent of the present invention contains 2-amino-2-methyl-1-propanol (a) and N-ethyl-2-aminoethanol (c).

1つの実施形態において、本発明の二酸化炭素吸収液は、2−アミノ−2−メチル−1−プロパノール(a)、N−メチルジエタノールアミン(b)及びN−エチル−2−アミノエタノール(c)を含有する。   In one embodiment, the carbon dioxide absorbing liquid of the present invention comprises 2-amino-2-methyl-1-propanol (a), N-methyldiethanolamine (b), and N-ethyl-2-aminoethanol (c). contains.

当該実施形態において、これら(a)〜(c)のアミンの吸収液中での合計の濃度は、通常20〜60重量%、好ましくは25〜50重量%程度である。   In the embodiment, the total concentration of the amines (a) to (c) in the absorbing solution is usually 20 to 60% by weight, preferably about 25 to 50% by weight.

ここで、(a)〜(c)の総アミンに対する(a)のアミンの重量割合をaとし、(a)〜(c)の総アミンに対する(b)のアミンの重量割合をbとし、(a)〜(c)の総アミンに対する(c)のアミンの重量割合をcとすると、本発明の吸収液は、(a)〜(c)のアミンを、0.1≦a≦0.6、0<b≦0.6、0.2≦c≦0.6、かつa+b+c=1(好ましくは、0.15≦a≦0.5、0.1≦b≦0.55、0.2≦c≦0.55、かつa+b+c=1、より好ましくは、0.20≦a≦0.45、0.2≦b≦0.5、0.2≦c≦0.5、かつa+b+c=1)を満たすように含んでいる。   Here, the weight ratio of the amine of (a) to the total amine of (a) to (c) is a, the weight ratio of the amine of (b) to the total amine of (a) to (c) is b, When the weight ratio of the amine of (c) to the total amines of a) to (c) is c, the absorbent according to the present invention contains the amines of (a) to (c) with 0.1 ≦ a ≦ 0.6. 0 <b ≦ 0.6, 0.2 ≦ c ≦ 0.6, and a + b + c = 1 (preferably 0.15 ≦ a ≦ 0.5, 0.1 ≦ b ≦ 0.55, 0.2 ≦ c ≦ 0.55 and a + b + c = 1, more preferably 0.20 ≦ a ≦ 0.45, 0.2 ≦ b ≦ 0.5, 0.2 ≦ c ≦ 0.5, and a + b + c = 1 ) To satisfy.

本発明の別の実施形態において、二酸化炭素吸収液は、N−メチルジエタノールアミン(b)を含まず、2−アミノ−2−メチル−1−プロパノール(a)及びN−エチル−2−アミノエタノール(c)を含有する。   In another embodiment of the present invention, the carbon dioxide absorbing liquid does not contain N-methyldiethanolamine (b), and 2-amino-2-methyl-1-propanol (a) and N-ethyl-2-aminoethanol ( c).

当該実施形態において、これら(a)及び(c)のアミンの吸収液中での合計の濃度は、通常20〜60重量%、好ましくは25〜50重量%程度である。   In the embodiment, the total concentration of the amines (a) and (c) in the absorbing solution is usually 20 to 60% by weight, preferably about 25 to 50% by weight.

ここで、(a)及び(c)の総アミンに対する(a)のアミンの重量割合をaとし、(a)及び(c)の総アミンに対する(c)のアミンの重量割合をcとすると、本発明の吸収液は、(a)及び(c)のアミンを、0.4≦a≦0.6、0.4≦c≦0.6、かつa+c=1(好ましくは、0.45≦a≦0.5、0.5≦c≦0.55、かつa+c=1、より好ましくは、0.5≦a≦0.45、0.55≦c≦0.5、かつa+c=1)を満たすように含んでいる。   Here, when the weight ratio of the amine of (a) to the total amine of (a) and (c) is a, and the weight ratio of the amine of (c) to the total amine of (a) and (c) is c, The absorbing liquid of the present invention comprises the amines (a) and (c), 0.4 ≦ a ≦ 0.6, 0.4 ≦ c ≦ 0.6, and a + c = 1 (preferably 0.45 ≦ a ≦ 0.5, 0.5 ≦ c ≦ 0.55, and a + c = 1, more preferably 0.5 ≦ a ≦ 0.45, 0.55 ≦ c ≦ 0.5, and a + c = 1) Includes to satisfy.

2−アミノ−2−メチル−1−プロパノールのみでは、CO脱離量はある程度あるものの、CO吸収速度も低い。N−メチルジエタノールアミンのみではCO吸収量も小さく、CO吸収速度も低い。またN−エチル−2−アミノエタノールのみではCO吸収量は特に大きくはないがCO吸収速度は高い。しかしながらCO脱離量は小さくCO脱離速度も低い。 Only with 2-amino-2-methyl-1-propanol, although there is a certain amount of CO 2 desorption, the CO 2 absorption rate is also low. The only N- methyldiethanolamine CO 2 absorption amount is small, CO 2 absorption rate is low. Further, only with N-ethyl-2-aminoethanol, the amount of CO 2 absorption is not particularly large, but the CO 2 absorption rate is high. However, the CO 2 desorption amount is small and the CO 2 desorption rate is low.

本発明者はCO−アミン水溶液の気液平衡データからCOの吸収・放散プロセスの吸収塔及び放散塔の液流通1サイクルにおける実質的なCO回収量を予測するとともに、吸収液のスクリーニングにおいてもこの実質的なCO回収量をほぼ正しく推定できる条件を見出し、数多くのアミン類及びその混合物の水溶液のCO吸収量、吸収速度、CO脱離量及び脱離速度を測定した。 The present inventor has CO 2 - as well as predicting the substantial CO 2 recovery amount in the liquid circulation cycle of the absorption tower and stripping tower of absorption and dissipation processes from vapor-liquid equilibrium data of CO 2 aqueous amine solution, screening of the absorbent The conditions under which this substantial CO 2 recovery amount can be estimated almost correctly were found, and the CO 2 absorption amount, absorption rate, CO 2 desorption amount and desorption rate of aqueous solutions of many amines and their mixtures were measured.

具体的には20%のCOを含んだガス流から40℃でCOを吸収させた後、同じガス流下70℃に昇温して放散されるCOの量と速度を測定する。ここで得られたCO放散量は気液平衡データの値ときれいな比例関係にあることが分かった。 Specifically, after absorbing CO 2 at 40 ° C. from a gas stream containing 20% CO 2 , the temperature and temperature are increased to 70 ° C. under the same gas stream, and the amount and rate of CO 2 released are measured. It was found that the CO 2 emission obtained here was in a clean proportional relationship with the value of the vapor-liquid equilibrium data.

驚くべきことに、2−アミノ−2−メチル−1−プロパノール及びN−エチル−2−アミノエタノール、ならびに必要に応じてN−メチルジエタノールアミンを特定の組成で含む水溶液にいて、これらのアミンを単独で含む水溶液では得られなかったきわめて高いCO放散量が得られることを見出した。 Surprisingly, 2-amino-2-methyl-1-propanol and N-ethyl-2-aminoethanol, and optionally N-methyldiethanolamine in an aqueous solution with a specific composition, these amines alone It was found that an extremely high CO 2 emission amount that could not be obtained with the aqueous solution containing 1 was obtained.

2−アミノ−2−メチル−1−プロパノール及びN−エチル−2−アミノエタノール、ならびに必要に応じてN−メチルジエタノールアミンを上記割合で含む水溶液では、CO吸収量、CO吸収速度、CO脱離量及びCO脱離速度のいずれも高い値を示した。すなわちこれらのアミンを上記割合で含む水溶液ではきわめて大きな相乗効果が得られる。この組成以外の範囲ではこの相乗効果が少なくCO脱離量及びCO脱離速度は低い値しか得られない。 In an aqueous solution containing 2-amino-2-methyl-1-propanol and N-ethyl-2-aminoethanol and, if necessary, N-methyldiethanolamine in the above proportion, CO 2 absorption, CO 2 absorption rate, CO 2 Both the desorption amount and the CO 2 desorption rate showed high values. That is, an extremely large synergistic effect is obtained with an aqueous solution containing these amines in the above proportions. This This synergistic effect in the range other than the composition less CO 2 desorption amount and CO 2 desorption rate can only be obtained a low value.

一般的にはアミン成分の濃度が高い方が単位液容量あたりのCOの吸収量、吸収速度、脱離量及び脱離速度が大きく、エネルギー消費やプラント設備の大きさや効率からは望ましいが、重量濃度として70%を越える場合、活性剤としての水の効果が減少するためかCOの吸収量が減少する。またアミン成分が水と均一に混合しない、粘度が上昇する、及びCOを吸収して液のpHが低下した時泡立ちや乳化状態になる等の問題が生じることもある。 In general, the higher the concentration of the amine component, the greater the amount of CO 2 absorbed, the rate of absorption, the amount of desorption and the rate of desorption per unit liquid volume, which is desirable from the viewpoint of energy consumption and the size and efficiency of plant equipment. When the weight concentration exceeds 70%, the amount of CO 2 absorbed decreases because the effect of water as an activator decreases. The amine component is not uniformly mixed with water, the viscosity is increased, and the pH of the liquid to absorb CO 2 is sometimes arise problems such as would foaming and emulsification conditions when the drops.

また、上記水溶液には設備の腐食を防止するためにリン酸系などの防食剤を、泡立ち防止のためにシリコーン系などの消泡剤を、そして吸収剤の劣化防止のために酸化防止剤等などを加えてもよい。   In addition, anticorrosives such as phosphoric acid are used in the aqueous solution to prevent corrosion of equipment, antifoaming agents such as silicone are used to prevent foaming, and antioxidants are used to prevent deterioration of the absorbent. Etc. may be added.

本発明の二酸化炭素吸収液は、溶媒として水を用いる。   The carbon dioxide absorbing liquid of the present invention uses water as a solvent.

(1)二酸化炭素の分離回収方法
本発明は、(1)二酸化炭素を含むガスを上記した二酸化炭素の吸収液に60℃以下の温度で接触させる工程、及び
(2)上記工程(1)で得られた二酸化炭素が吸収された吸収液を70℃以上の温度で加熱して二酸化炭素を脱離して回収する工程
を含む二酸化炭素の分離回収方法を提供する。
(1) Method for separating and recovering carbon dioxide The present invention includes (1) a step of bringing a gas containing carbon dioxide into contact with the above-mentioned carbon dioxide absorption liquid at a temperature of 60 ° C. or less, and (2) the step (1). Provided is a method for separating and recovering carbon dioxide, comprising a step of heating the obtained absorption liquid in which carbon dioxide has been absorbed at a temperature of 70 ° C. or higher to desorb and recover carbon dioxide.

COを含むガスとしては、例えば、重油、天然ガス等を燃料とする火力発電所、製造所のボイラーあるいはセメント工場のキルン、コークスで酸化鉄を還元する製鐵所の高炉、銑鉄中の炭素を燃焼して製鋼する同じく製鉄所の転炉等からの排ガスが挙げられ、該ガス中のCO濃度は、通常5〜30体積%程度、特に10〜20程度であればよい。かかるCO濃度範囲では、本発明の作用効果が好適に発揮される。なお、本発明における混合アミン水溶液からなるCO吸収液を使用する時、COを含むガスに共存するガスとして酸素、一酸化炭素(CO)あるいは水素は、CO以外に水蒸気、CO等のガスが含まれていてもCOの吸収・放散性能に影響はない。一酸化窒素(NO)等の窒素酸化物や二酸化硫黄(SO)等の硫黄酸化物も100ppm程度においてはCOの吸収・放散性能に影響はない。 The gas containing CO 2 includes, for example, a thermal power plant fueled with heavy oil, natural gas, etc., a boiler in a factory or a kiln in a cement factory, a blast furnace in a steelworks that reduces iron oxide with coke, and carbon in pig iron Exhaust gas from the converter of the same steel mill that burns steel to produce steel, and the CO 2 concentration in the gas is usually about 5 to 30% by volume, particularly about 10 to 20. In such a CO 2 concentration range, the effects of the present invention are suitably exhibited. Incidentally, when using CO 2 absorbing solution comprising a mixed aqueous amine solution in the present invention, the oxygen as a gas to co-exist in the gas containing CO 2, carbon monoxide (CO) or hydrogen, water vapor in addition to CO 2, such as CO Even if gas is contained, there is no influence on the absorption and emission performance of CO 2 . Nitrogen oxides such as nitrogen monoxide (NO) and sulfur oxides such as sulfur dioxide (SO 2 ) also have no effect on the absorption and emission performance of CO 2 at about 100 ppm.

COを含むガスを、本発明の二酸化炭素の吸収液に接触させる方法は特に限定はない。例えば、該水溶液中にCOを含むガスをバブリングさせて吸収する方法、COを含むガス気流中に該水溶液を霧状に降らす方法(噴霧乃至スプレー方式)、あるいは磁製や金属網製の充填材の入った吸収塔内でCOを含むガスと該水溶液を向流接触させる方法などによって行われる。吸収されたCOは、水溶液中にてカルバミン酸アニオンや重炭酸イオンを形成しているものと考えられる。 The method for bringing the gas containing CO 2 into contact with the carbon dioxide absorbent of the present invention is not particularly limited. For example, a method of bubbling and absorbing a gas containing CO 2 in the aqueous solution, a method of dropping the aqueous solution into a gas stream containing CO 2 (spraying or spraying method), or a magnet or metal mesh This is performed by a method in which a gas containing CO 2 and the aqueous solution are brought into countercurrent contact with each other in an absorption tower containing a filler. The absorbed CO 2 is considered to form carbamate anions and bicarbonate ions in the aqueous solution.

COを含むガスを吸収液に吸収させる時の液温度は、通常室温から60℃以下で行われ、好ましくは50℃以下、より好ましくは20〜45℃程度で行われる。温度が低いほど吸収量は増加するが、どこまで温度を下げるかはプロセス上のガス温度や熱回収目標等によって決定される。CO吸収時の圧力は通常ほぼ大気圧で行われる。吸収性能を高めるためより高い圧力まで加圧することもできるが、圧縮のために要するエネルギー消費を抑えるため大気圧下で行うのが好ましい。 The liquid temperature when the gas containing CO 2 is absorbed by the absorption liquid is usually from room temperature to 60 ° C. or less, preferably 50 ° C. or less, more preferably about 20 to 45 ° C. The amount of absorption increases as the temperature decreases, but the extent to which the temperature is lowered is determined by the gas temperature in the process, the heat recovery target, and the like. The pressure at the time of CO 2 absorption is usually about atmospheric pressure. Although it is possible to pressurize to a higher pressure in order to enhance the absorption performance, it is preferable to carry out under atmospheric pressure in order to suppress energy consumption required for compression.

本発明の方法において、(a)〜(c)のアミン成分の濃度の合計が30〜60重量%水溶液を用いた場合、CO吸収時(40℃)におけるCO飽和吸収量は、4〜9g/50ml程度、特に5〜8g/50ml程度であり、飽和吸収量の3/4のCOを吸収した時点のCO吸収速度は0.05〜0.30g/50ml/分程度、特に0.07〜0.20g/50ml/分程度である。なお、CO飽和吸収量は、該水溶液中の無機炭素量をガスクロマトグラフ式の全有機炭素計で測定した値であり、また、CO吸収速度は、飽和吸収量の3/4のCOを吸収した時点において赤外線式CO計を用いて測定した値である。アミン成分濃度を30重量%以上にした場合、上記のCO飽和吸収量及びCO吸収速度の値はアミン濃度40〜50重量%で最高値を取った後低下する。 In the method of the present invention, when an aqueous solution having a total concentration of amine components (a) to (c) of 30 to 60% by weight is used, the CO 2 saturated absorption amount at the time of CO 2 absorption (40 ° C.) is 4 to 4%. 9 g / 50 ml approximately, in particular 5~8g / 50ml about saturated CO 2 absorption rate of the time that has absorbed CO 2 3/4 of absorption is 0.05~0.30g / 50ml / min approximately, in particular 0 0.07 to 0.20 g / 50 ml / min. The CO 2 saturated absorption is a value obtained by measuring the amount of inorganic carbon in the aqueous solution with a gas chromatographic total organic carbon meter, and the CO 2 absorption rate is 3/4 of the saturated absorption of CO 2. is a value measured using a infrared CO 2 meter at the time that has absorbed. When the amine component concentration above 30 wt%, the value of the above-mentioned CO 2 saturation absorption and CO 2 absorption rate decreases after taking the highest value with an amine concentration of 40 to 50 wt%.

また、本発明で用いられる水溶液は、CO吸収の反応熱が小さいという特徴も有している。CO吸収の反応熱は、CO脱離時に必要な熱に相当するため、COを脱離させるために必要なエネルギー消費を低く抑えることができる。具体例として、実施例9と比較例4及び5を参照すれば容易に理解できる。 Further, the aqueous solution used in the present invention has a feature that the reaction heat of CO 2 absorption is small. Since the reaction heat of CO 2 absorption corresponds to the heat necessary for CO 2 desorption, the energy consumption necessary for desorbing CO 2 can be kept low. As a specific example, it can be easily understood by referring to Example 9 and Comparative Examples 4 and 5.

COを吸収した水溶液からCOを脱離し、純粋なあるいは高濃度のCOを回収する方法としては、蒸留と同じく水溶液を加熱して釜で泡立てて脱離する方法、棚段塔、スプレー塔、磁製や金属網製の充填材の入った脱離塔内で液界面を広げて加熱する方法などが挙げられる。これにより、カルバミン酸アニオンや重炭酸イオンからCOが遊離して放出される。 CO 2 The CO 2 from the absorbed solution desorbed as a method for recovering pure or high concentrations of CO 2, a method of leaving it bubbled kettle was similarly heated aqueous solution and distilled, plate column, spray Examples include a method of heating by expanding the liquid interface in a tower, a desorption tower containing a magnetic or metal mesh filler. Thus, CO 2 is released to release the carbamate anions and bicarbonate ions.

CO脱離時の液温度は通常70℃以上で行われ、好ましくは80℃以上、より好ましくは90〜120℃程度で行われる。温度が高いほど吸収量は増加するが、温度を上げると吸収液の加熱に要するエネルギーが増すため、その温度はプロセス上のガス温度や熱回収目標等によって決定される。CO脱離時の圧力は通常ほぼ大気圧で行われる。脱離性能を高めるためより低い圧力まで減圧することもできるが、減圧のために要するエネルギー消費を抑えるため大気圧下で行うのが好ましい。 The liquid temperature during CO 2 desorption is usually 70 ° C. or higher, preferably 80 ° C. or higher, and more preferably about 90 to 120 ° C. The higher the temperature, the greater the amount of absorption, but the higher the temperature, the greater the energy required to heat the absorbent, so the temperature is determined by the process gas temperature, heat recovery target, etc. The pressure at the time of desorption of CO 2 is usually about atmospheric pressure. Although the pressure can be reduced to a lower pressure in order to enhance the desorption performance, it is preferably performed under atmospheric pressure in order to suppress energy consumption required for the pressure reduction.

本発明の方法において、(a)〜(c)のアミン成分の濃度の合計が30〜60重量%である吸収液を用いた場合、CO脱離時(70℃)におけるCO脱離量は、0.8〜3.0g/50ml程度、特に1.0〜2.5g/50ml程度であり、昇温開始から10分までの平均CO脱離速度は0.12〜0.25g/50ml/分程度、特に0.15〜0.20g/50ml/分程度である。なお、CO脱離量は全有機炭素計で測定した値であり、また、CO脱離速度は赤外線式CO計で測定した値である。アミン成分濃度を30重量%以上にした場合、上記のCO脱離量及び平均CO脱離速度の値はほぼ濃度に比例した値となる。 In the method of the present invention, when an absorbing solution in which the total concentration of the amine components (a) to (c) is 30 to 60% by weight is used, the CO 2 desorption amount at the time of CO 2 desorption (70 ° C.) Is about 0.8 to 3.0 g / 50 ml, particularly about 1.0 to 2.5 g / 50 ml, and the average CO 2 desorption rate from the start of temperature increase to 10 minutes is 0.12 to 0.25 g / It is about 50 ml / min, especially about 0.15 to 0.20 g / 50 ml / min. The CO 2 desorption amount is a value measured with a total organic carbon meter, and the CO 2 desorption rate is a value measured with an infrared CO 2 meter. When the amine component concentration is 30% by weight or more, the CO 2 desorption amount and the average CO 2 desorption rate are substantially proportional to the concentration.

この様に、CO脱離時の温度が70℃と比較的低い場合でも、アミン水溶液から良好なCO脱離量及びCO脱離速度が達成される。もちろん、CO脱離時の温度が70℃を越える場合、例えば、80℃、90℃、100℃、110℃、120℃と上昇するに従い、CO脱離量及びCO脱離速度もさらに向上する。 Thus, even when the temperature during CO 2 desorption is relatively low at 70 ° C., a good CO 2 desorption amount and CO 2 desorption rate can be achieved from the aqueous amine solution. Of course, when the temperature at the time of CO 2 desorption exceeds 70 ° C., for example, as the temperature increases to 80 ° C., 90 ° C., 100 ° C., 110 ° C., 120 ° C., the CO 2 desorption amount and the CO 2 desorption rate further increase. improves.

COを脱離した後の水溶液は、再びCO吸収工程に送られ循環使用(リサイクル)される。また、CO吸収の際に生じた熱は、一般的には水溶液のリサイクル過程において脱離塔に注入される水溶液の予熱のために熱交換器で熱交換されて冷却される。 The aqueous solution from which CO 2 has been desorbed is sent again to the CO 2 absorption step and recycled (recycled). In addition, the heat generated during CO 2 absorption is generally cooled by heat exchange in a heat exchanger in order to preheat the aqueous solution injected into the desorption tower in the aqueous solution recycling process.

このようにして回収されたCOの純度は、通常、95〜99体積%程度と極めて純度が高いものである。この純粋なCOあるいは高濃度のCOは、化学品、あるいは高分子物質の合成原料、食品冷凍用の冷剤等として用いられる。その他、回収したCOを、現在技術開発されつつある地下等へ隔離貯蔵することも可能である。 The purity of CO 2 recovered in this manner is usually as high as about 95 to 99% by volume. This pure CO 2 or high-concentration CO 2 is used as a chemical, a synthetic raw material for polymer substances, a cooling agent for freezing foods, and the like. In addition, it is also possible to sequester and store the recovered CO 2 in the underground or the like where technology is currently being developed.

次に、本発明について実施例を用いて詳細に説明するが、本発明はこの実施例に限定されるものではない。   Next, although this invention is demonstrated in detail using an Example, this invention is not limited to this Example.

実施例1
液の温度が40℃になるように設定した恒温水槽内に、ガラス製のガス洗浄ビンを浸し、これにAMP 15重量%、MDEA重量%及びEAE 15重量%を含む水溶液50mlを充填した。この液の中に、目の粗さ100μm、直径13mmのガラスフィルターを通して、大気圧、0.7リツトル/分でCO 20体積%及びN 80体積%を含む混合ガスを泡状に分散させて吸収させた。
Example 1
A glass gas cleaning bottle was immersed in a constant temperature water bath set to a temperature of 40 ° C., and 50 ml of an aqueous solution containing 15% by weight of AMP, 15% by weight of MDEA and 15% by weight of EAE was filled therein. A mixed gas containing 20% by volume of CO 2 and 80% by volume of N 2 is dispersed in a foam state through this glass filter having a coarseness of 100 μm and a diameter of 13 mm at atmospheric pressure and 0.7 liter / min. Absorbed.

吸収液前及び吸収液出口のガス中のCO濃度を、赤外線式のCO計で連続的に測定して、入口及び出口のCO流量の差からCO吸収量を測定した。必要により吸収液中の無機炭素量をガスクロマトグラフ式の全有機炭素計で測定し赤外線式CO計から算出される値と比較した。飽和吸収量は吸収液出口のCO濃度が入口のCO濃度に一致する時点における量とした。吸収速度は吸収量の1/2を吸収した時点ではガス中のCOのほとんどが吸収され、CO供給速度に等しいので、吸収量の3/4を吸収した時点の吸収速度で比較することとした。CO飽和吸収量5.55gで飽和吸収量3/4吸収時の吸収速度は0.12g/分であった。なお全有機炭素計で測定したCO吸収量は5.58gであり、ガス分析による値とよく一致した。 The CO 2 concentration in the gas before the absorbing liquid and in the gas at the outlet of the absorbing liquid was continuously measured with an infrared CO 2 meter, and the CO 2 absorption was measured from the difference in the CO 2 flow rate between the inlet and the outlet. If necessary, the amount of inorganic carbon in the absorbing solution was measured with a gas chromatographic total organic carbon meter and compared with a value calculated from an infrared CO 2 meter. Saturated absorption amount was the amount of time at which the CO 2 concentration in the absorbing solution outlet matches the CO 2 concentration of the inlet. The rate of absorption at the time of absorbing the half of absorption are absorbed most of CO 2 gas, is equal to the CO 2 feed rate, comparing the absorption rate at the time of absorbing the 3/4 of the absorption It was. Absorption rate at saturation absorption 3/4 absorbed CO 2 saturated absorption 5.55g was 0.12 g / min. The CO 2 absorption measured with a total organic carbon meter was 5.58 g, which agreed well with the value obtained by gas analysis.

ついで同じガス気流中で液温を数分にて70℃にあげて、液からのCO脱離量と脱離速度を測定した。比較に用いる脱離速度は、昇温開始から10分までの平均脱離速度とした。CO脱離量は2.06gで脱離速度は0.16g/分であった。 Subsequently, the liquid temperature was raised to 70 ° C. in several minutes in the same gas stream, and the amount of CO 2 desorbed from the liquid and the desorption rate were measured. The desorption rate used for comparison was the average desorption rate from the start of temperature increase to 10 minutes. The CO 2 desorption amount was 2.06 g and the desorption rate was 0.16 g / min.

実施例2
実施例1と同じ装置を用い、酸素が10体積%含まれている他は同条件で、実施例1で用いたと同じ吸収液を用いてCOの飽和吸収量、同速度とCO脱離量及び同速度の測定を行った。40℃のCO飽和吸収量は5.65gで、飽和吸収量3/4吸収時の吸収速度は0.12g/分であった。70℃のCO脱離量は2.20gで脱離速度は0.15g/分であった。
Example 2
Using the same apparatus as in Example 1, except that oxygen is contained 10% by volume in the same conditions, the saturated absorption amount of CO 2 with the same absorbent solution as employed in Example 1, the same speed and CO 2 desorption Volume and speed measurements were taken. The saturated absorption of CO 2 at 40 ° C. was 5.65 g, and the absorption rate at the absorption of 3/4 of the saturated absorption was 0.12 g / min. The amount of CO 2 desorbed at 70 ° C. was 2.20 g, and the desorption rate was 0.15 g / min.

実施例3〜7
実施例1と同じ装置を用い、同条件で表1に記載の組成でAMP、MDEA、及びEAEを含むアミン水溶液を用いてCOの飽和吸収量、同速度とCO脱離量及び同速度の測定を行った。得られた結果を表1に示した。
Examples 3-7
Using the same apparatus as in Example 1, AMP in the composition described in Table 1 under the same conditions, MDEA, and saturated absorption amount of CO 2 with an amine aqueous solution containing EAE, the speed and CO 2 desorption amount and same speed Was measured. The obtained results are shown in Table 1.

実施例8
攪拌翼を内装した容量1.5リツトルのステンレス製耐圧容器に、実施例1と同じ組成の吸収液700ミリリットルを充填した。この容器にCOを含むCO−N混合ガスを全圧で0.1−0.6気圧として圧を変化することにより、CO分圧が0.003MPから0.2MPの間の飽和吸収量を測定した。容器は、容器外壁に巻かれた電熱ヒーターによって加熱し、40℃、70℃、100℃及び120℃における気液平衡曲線を測定した。
Example 8
A stainless steel pressure-resistant container having a capacity of 1.5 liters equipped with a stirring blade was filled with 700 ml of an absorbent having the same composition as in Example 1. By varying the pressure of 0.1-0.6 atm total pressure of CO 2 -N 2 mixed gas containing CO 2 into the vessel, CO 2 partial pressure of saturation between 0.2MP from 0.003MP Absorption was measured. The container was heated by an electric heater wound around the outer wall of the container, and gas-liquid equilibrium curves at 40 ° C, 70 ° C, 100 ° C and 120 ° C were measured.

その結果を図1に示す。40℃では広いCO分圧において高い平衡液中CO濃度(0.02MPで0.54molCO/molアミン)を示し、120℃においては逆に広いCO分圧において低い平衡液中CO濃度(0.02MPで0.06molCO/molアミン)を示していて、低温における吸収と高温における脱離操作による、効率的なCO回収が可能であることが明らかとなった。 The result is shown in FIG. 40 shows a ℃, wide CO 2 high equilibrium solution in partial pressure CO 2 concentration (0.54molCO 2 / mol amine 0.02MP), in a low equilibrium solution in a wide CO 2 partial pressure reversed at 120 ° C. CO 2 The concentration (0.02 MP at 0.06 mol CO 2 / mol amine) was shown, and it became clear that efficient CO 2 recovery was possible by absorption at low temperature and desorption operation at high temperature.

実施例9
マグネチックスターラー、熱電対及び電熱式パイプヒーターの入った内容積300mlの魔法瓶に、実施例1と同じ組成の吸収液200mlを充填した後、COガスを200ml/分で吹込み、液の温度上昇をCO吸収が終了するまで温度記録計にて連続的に記録した。次に、もう一度新たに同一組成の液を同一量この装置に充填し、パイプヒーターで先のCO吹込み時の温度上昇と同じ速度で液の温度が上昇するようにヒーターの電流量を制御して、その電力量を測定した。その結果、CO吸収の反応熱は17.6kcal/molCOであった。
Example 9
A thermos with an internal volume of 300 ml containing a magnetic stirrer, thermocouple, and electrothermal pipe heater was filled with 200 ml of an absorption liquid having the same composition as in Example 1, and then CO 2 gas was blown at 200 ml / min, and the liquid temperature was The rise was continuously recorded with a temperature recorder until CO 2 absorption was completed. Next, once again add the same amount of liquid of the same composition to this device, and control the current amount of the heater so that the temperature of the liquid rises at the same rate as the temperature rise at the previous CO 2 injection with a pipe heater. Then, the amount of electric power was measured. As a result, the reaction heat of CO 2 absorption was 17.6kcal / molCO 2.

比較例1
実施例1と同じ装置を用い、同条件でAMP 45重量%を含む水溶液を用いてCOの飽和吸収量、同速度とCO脱離量及び同速度の測定を行った。40℃のCO飽和吸収量は5.43gで、飽和吸収量3/4吸収時の吸収速度は0.05g/分であった。70℃のCO脱離量は2.52gで脱離速度は0.17g/分であった。CO吸収量、CO吸収速度、CO脱離量及びCO脱離速度のいずれもが低いことが分かった。
Comparative Example 1
Using the same apparatus as in Example 1, was measured saturation absorption of CO 2, the speed and CO 2 desorption amount and the same speed with an aqueous solution containing AMP 45 wt% under the same conditions. The saturated absorption of CO 2 at 40 ° C. was 5.43 g, and the absorption rate at the absorption of 3/4 of the saturated absorption was 0.05 g / min. The amount of CO 2 desorbed at 70 ° C. was 2.52 g, and the desorption rate was 0.17 g / min. It was found that all of the CO 2 absorption amount, the CO 2 absorption rate, the CO 2 desorption amount, and the CO 2 desorption rate were low.

比較例2〜3
実施例1と同じ装置を用い、同条件で表2に記載のMDEA、及びEAEを表2に記載の濃度で含む水溶液を用いて、COの飽和吸収量、同速度とCO脱離量及び同速度の測定を行った。得られた結果を表2に示した。
Comparative Examples 2-3
Using the same apparatus as in Example 1, MDEA described in Table 2 under the same conditions, and the EAE using an aqueous solution at a concentration shown in Table 2, the saturated absorption amount of CO 2, the speed and CO 2 desorption amount And the same speed was measured. The obtained results are shown in Table 2.

比較例2〜3ではMDEAは比較的70℃のCO脱離量が大きかったが、40℃のCO吸収速度が低く、60分の吸収では飽和に達しない。EAEは40℃のCO吸収速度は高いものの70℃のCO脱離量が小さい。 In Comparative Examples 2 to 3, MDEA had a relatively large amount of CO 2 desorption at 70 ° C., but the CO 2 absorption rate at 40 ° C. was low, and saturation did not reach saturation at 60 minutes. Although EAE has a high CO 2 absorption rate at 40 ° C., the amount of CO 2 desorption at 70 ° C. is small.

比較例4
実施例9と同じ装置を用いてAMP30重量%水溶液のCO吸収の反応熱を測定したところ、CO吸収の反応熱は19.0kcal/molCOであった。
Comparative Example 4
Measurement of the heat of reaction CO 2 absorption AMP30 wt% aqueous solution using the same apparatus as in Example 9, the reaction heat of CO 2 absorption was 19.0kcal / molCO 2.

比較例5
実施例9と同じ装置を用いてEAE30重量%水溶液のCO吸収の反応熱を測定したところ、CO吸収の反応熱は18.0kcal/molCOであった。実施例9と比較例4及び比較例5との比較から、本発明で用いられる吸収液が、CO吸収の反応熱が小さいという特徴を有することが分かる。
Comparative Example 5
Measurement of the heat of reaction CO 2 absorption EAE30 wt% aqueous solution using the same apparatus as in Example 9, the reaction heat of CO 2 absorption was 18.0kcal / molCO 2. From a comparison between Example 9 and Comparative Examples 4 and 5, it can be seen that the absorbent used in the present invention has a characteristic that the reaction heat of CO 2 absorption is small.

Figure 2008168227
Figure 2008168227

Figure 2008168227
Figure 2008168227

これらの結果より、実施例の方法によれば、効率的かつ低いエネルギー消費でガス中のCOを吸収及び脱離して回収することができる。 From these results, according to the method of the embodiment, CO 2 in the gas can be absorbed and desorbed and recovered with efficient and low energy consumption.

実施例8における40℃、70℃、100℃及び120℃の気液平行曲線を示す。The gas-liquid parallel curve of 40 degreeC, 70 degreeC, 100 degreeC, and 120 degreeC in Example 8 is shown.

Claims (2)

二酸化炭素を含むガスから二酸化炭素を分離回収するための吸収液であって、
前記吸収液は、
(i)2−アミノ−2−メチル−1−プロパノール(a)、N−メチルジエタノールアミン(b)及びN−エチル−2−アミノエタノール(c)を含有し、
これら(a)〜(c)のアミンの吸収液中での合計の濃度は、20〜60重量%であり、かつ
(a)〜(c)のアミンが、0.1≦a≦0.6、0<b≦0.6、0.2≦c≦0.6かつa+b+c=1を満たすように吸収液中に含まれているか、
[ここで、aは、(a)〜(c)の総アミンに対する(a)のアミンの重量割合を示し、
bは、(a)〜(c)の総アミンに対する(b)のアミンの重量割合を示し、
cは、(a)〜(c)の総アミンに対する(c)のアミンの重量割合を示す]
または
前記吸収液は、
(ii)2−アミノ−2−メチル−1−プロパノール(a)及びN−エチル−2−アミノエタノール(c)を含有しかつN−メチルジエタノールアミン(b)を含まず、
これら(a)及び(c)のアミンの吸収液中での合計の濃度は、20〜60重量%であり、かつ
(a)及び(c)のアミンが、0.4≦a≦0.6、0.4≦c≦0.6かつa+c=1を満たすように吸収液中に含まれている、
[ここで、aは、(a)及び(c)の総アミンに対する(a)のアミンの重量割合を示し、
cは、(a)及び(c)の総アミンに対する(c)のアミンの重量割合を示す]
吸収液。
An absorption liquid for separating and recovering carbon dioxide from a gas containing carbon dioxide,
The absorbent is
(I) containing 2-amino-2-methyl-1-propanol (a), N-methyldiethanolamine (b) and N-ethyl-2-aminoethanol (c);
The total concentration of the amines (a) to (c) in the absorbing solution is 20 to 60% by weight, and the amines (a) to (c) are 0.1 ≦ a ≦ 0.6. , 0 <b ≦ 0.6, 0.2 ≦ c ≦ 0.6 and a + b + c = 1,
[Where a represents the weight ratio of the amine of (a) to the total amines of (a) to (c);
b represents the weight ratio of the amine of (b) to the total amines of (a) to (c);
c represents the weight ratio of the amine of (c) to the total amines of (a) to (c)]
Or the absorbent is
(Ii) containing 2-amino-2-methyl-1-propanol (a) and N-ethyl-2-aminoethanol (c) and not containing N-methyldiethanolamine (b);
The total concentration of the amines (a) and (c) in the absorbing solution is 20 to 60% by weight, and the amines (a) and (c) are 0.4 ≦ a ≦ 0.6. , 0.4 ≦ c ≦ 0.6 and a + c = 1.
[Where a represents the weight ratio of the amine of (a) to the total amine of (a) and (c);
c represents the weight ratio of the amine of (c) to the total amines of (a) and (c)]
Absorbing liquid.
(1)二酸化炭素を含むガスを請求項1に記載の吸収液に60℃以下の温度で接触させる工程、及び
(2)上記工程(1)で得られた二酸化炭素が吸収された吸収液を70℃以上の温度で加熱して二酸化炭素を脱離して回収する工程
を含む二酸化炭素の分離回収方法。
(1) a step of bringing a gas containing carbon dioxide into contact with the absorbent according to claim 1 at a temperature of 60 ° C. or lower; and (2) an absorbent in which carbon dioxide obtained in the step (1) is absorbed. A method for separating and recovering carbon dioxide, comprising a step of desorbing and recovering carbon dioxide by heating at a temperature of 70 ° C. or higher.
JP2007004934A 2007-01-12 2007-01-12 Absorbing liquid of carbon dioxide in exhaust gas Pending JP2008168227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004934A JP2008168227A (en) 2007-01-12 2007-01-12 Absorbing liquid of carbon dioxide in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004934A JP2008168227A (en) 2007-01-12 2007-01-12 Absorbing liquid of carbon dioxide in exhaust gas

Publications (1)

Publication Number Publication Date
JP2008168227A true JP2008168227A (en) 2008-07-24

Family

ID=39696823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004934A Pending JP2008168227A (en) 2007-01-12 2007-01-12 Absorbing liquid of carbon dioxide in exhaust gas

Country Status (1)

Country Link
JP (1) JP2008168227A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008156085A1 (en) * 2007-06-18 2008-12-24 Mitsubishi Heavy Industries, Ltd. Absorbing liquid and apparatus and method for removing co2 or h2s with absorbing liquid
WO2011080838A1 (en) * 2009-12-28 2011-07-07 バブコック日立株式会社 Absorbing solution and recovery method for carbon dioxide
US10377647B2 (en) 2010-12-15 2019-08-13 Queen's University at Kingson Systems and methods for use of water with switchable ionic strength
WO2020208959A1 (en) 2019-04-12 2020-10-15 三菱重工エンジニアリング株式会社 Absorbing liquid for co2, h2s, or both, and device and method for removing co2, h2s, or both
US10857502B2 (en) 2015-09-30 2020-12-08 Mitsubishi Heavy Industries Engineering, Ltd. Absorbent liquid for CO2 and/or H2S, and apparatus and method using same
US11498853B2 (en) 2010-02-10 2022-11-15 Queen's University At Kingston Water with switchable ionic strength

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008156085A1 (en) * 2007-06-18 2008-12-24 Mitsubishi Heavy Industries, Ltd. Absorbing liquid and apparatus and method for removing co2 or h2s with absorbing liquid
US8597418B2 (en) 2007-06-18 2013-12-03 Mitsubishi Heavy Industries, Ltd. Absorbent, CO2 or H2S reducing apparatus, and CO2 or H2S reducing method using absorbent
US9211496B2 (en) 2007-06-18 2015-12-15 Mitsubishi Heavy Industries, Ltd. Absorbent, CO2 or H2S reducing apparatus, and CO2 or H2S reducing method using absorbent
WO2011080838A1 (en) * 2009-12-28 2011-07-07 バブコック日立株式会社 Absorbing solution and recovery method for carbon dioxide
US8741245B2 (en) 2009-12-28 2014-06-03 Babcock-Hitachi Kabushiki Kaisha Carbon dioxide-absorbing solution and method of recovering carbon dioxide
JP5576879B2 (en) * 2009-12-28 2014-08-20 バブコック日立株式会社 Carbon dioxide absorption liquid and recovery method
US11498853B2 (en) 2010-02-10 2022-11-15 Queen's University At Kingston Water with switchable ionic strength
US10377647B2 (en) 2010-12-15 2019-08-13 Queen's University at Kingson Systems and methods for use of water with switchable ionic strength
US10857502B2 (en) 2015-09-30 2020-12-08 Mitsubishi Heavy Industries Engineering, Ltd. Absorbent liquid for CO2 and/or H2S, and apparatus and method using same
EP3827893A1 (en) 2015-09-30 2021-06-02 Mitsubishi Heavy Industries Engineering, Ltd. Absorbent liquid for co2 and/or h2s, and apparatus and method using same
WO2020208959A1 (en) 2019-04-12 2020-10-15 三菱重工エンジニアリング株式会社 Absorbing liquid for co2, h2s, or both, and device and method for removing co2, h2s, or both

Similar Documents

Publication Publication Date Title
JP5452222B2 (en) Method for efficiently recovering carbon dioxide in gas
JP2009006275A (en) Efficient recovering method of carbon dioxide in exhaust gas
JP5506486B2 (en) Aqueous solution that effectively absorbs and recovers carbon dioxide contained in gas
JP2006240966A (en) Method for recovering carbon dioxide in exhaust gas by absorption and releasing
JP2008013400A (en) Method for recovering carbon dioxide in waste gas by absorption and releasing
JP5557426B2 (en) Aqueous solution and method for efficiently absorbing and recovering carbon dioxide in gas
JP5215595B2 (en) Absorbing liquid, CO2 or H2S removing apparatus and method using absorbing liquid
JP6095579B2 (en) Aqueous solution that efficiently absorbs and recovers carbon dioxide in exhaust gas, and carbon dioxide recovery method using the same
JP5659127B2 (en) Acid gas absorbent, acid gas removal method, and acid gas removal apparatus
KR101432951B1 (en) Aqueous solution capable of absorbing and collecting carbon dioxide in exhaust gas with high efficiency
EP2679296B1 (en) Acid gas absorbent comprising diamine, acid gas removal method, and acid gas removal device
JP2007325996A (en) Absorbent, and apparatus and method for removing co2 and/or h2s
JP2015027647A (en) Acid gas absorbent, acid gas removal method and acid gas removal device
JP2017035669A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
JP2008168227A (en) Absorbing liquid of carbon dioxide in exhaust gas
AU2016202116B2 (en) Acidic gas absorbing agent, method for removing acidic gas and apparatus for removing acidic gas
JP2009213974A (en) Aqueous solution and method of absorbing and desorption-recovering effectively carbon dioxides in gas
JP2008168184A (en) Composition for absorbing and dissociating carbon dioxide in exhaust gas to recover it and carbon dioxide recovering method using it
JP2015112574A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
JP2005040683A (en) Method and apparatus for removing nitrogen dioxide and carbon dioxide
JP2008056642A (en) Method for producing highly concentrated piperazine-containing aqueous solution and method for recovering carbon dioxide
JP2007000702A (en) Liquid absorbent, and device and method for removing co2 or h2s, or both
JP2015047581A (en) Carbon dioxide absorbent and carbon dioxide separation and recovery method using the same
KR20170129920A (en) An absorption liquid for separating and recovering carbon dioxide and a method for separating and recovering carbon dioxide using the same