JP2005040683A - Method and apparatus for removing nitrogen dioxide and carbon dioxide - Google Patents

Method and apparatus for removing nitrogen dioxide and carbon dioxide Download PDF

Info

Publication number
JP2005040683A
JP2005040683A JP2003201435A JP2003201435A JP2005040683A JP 2005040683 A JP2005040683 A JP 2005040683A JP 2003201435 A JP2003201435 A JP 2003201435A JP 2003201435 A JP2003201435 A JP 2003201435A JP 2005040683 A JP2005040683 A JP 2005040683A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
denitration
nitrogen dioxide
dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003201435A
Other languages
Japanese (ja)
Other versions
JP4838489B2 (en
Inventor
Tomio Mimura
富雄 三村
Takashi Nojo
貴司 野条
Yuji Tanaka
裕士 田中
Toru Takashina
徹 高品
Takuya Hirata
琢也 平田
Kazuo Ishida
一男 石田
Masaki Iijima
正樹 飯嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2003201435A priority Critical patent/JP4838489B2/en
Publication of JP2005040683A publication Critical patent/JP2005040683A/en
Application granted granted Critical
Publication of JP4838489B2 publication Critical patent/JP4838489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for removing nitrogen dioxide and carbon dioxide, capable of efficiently removing nitrogen dioxide from a gas containing nitrogen oxides and carbon dioxide and capable of suppressing the accumulation of nitrogen oxides in a carbonic acid removing absorbing solution, and an apparatus for removing nitrogen dioxide and carbon dioxide. <P>SOLUTION: The method for removing nitrogen dioxide and carbon dioxide includes a denitration process 10 of bringing the gas 1 containing nitrogen oxides and carbon dioxide into contact with a basic absorbing solution 2 containing a reducible substance to remove nitrogen dioxide from the gas 1 and a carbonic acid removing process 20 of bringing the gas 3 subjected to denitration in the denitration process into contact with the carbonic acid removing absorbing solution 4 to remove carbon dioxide from the gas 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、窒素酸化物及び二酸化炭素を含有するガス中から二酸化窒素と二酸化炭素を除去する方法及びその装置に関する。
【0002】
【従来の技術】
近年、火力発電設備やボイラ設備では、天然ガス等の化石燃料を多量に用いており、大気汚染防止及び地球環境の清浄化の見地から、窒素酸化物、二酸化炭素等の放出に関する量的、濃度的抑制が問題になっている。この中で、窒素酸化物に関しては、酸性雨を引き起こし、人体、動植物等に被害を与える恐れがある。このため、窒素酸化物を処理する排煙脱硝が既に実施されており、その処理方法は触媒を用いたアンモニア触媒法が主流となっている。
【0003】
一方、二酸化炭素については、フロンガスやメタンガスと共に地球温暖化防止の見地から、例えば、PSA(圧力スウィング)法、膜分離法、及び塩基性化合物を用いた反応吸収法等の適用による排出の抑制が検討されている。また、燃焼排ガス中の一酸化窒素をオゾン添加により二酸化窒素に変換した後、脱炭酸工程においてアルカノールアミン水溶液と接触させて、二酸化炭素と共に二酸化窒素を除去する技術が開発されている(特許文献1参照)。
【0004】
【特許文献1】
特許第3233802号公報
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載の技術では、窒素酸化物の主成分である一酸化窒素もオゾンにより二酸化窒素に変換して、脱炭酸工程で除去しており、脱炭酸吸収液への窒素酸化物の蓄積量が比較的多く、脱炭酸吸収液のリクレーミング頻度が増加し、運転コストの増大等といった問題点がある。
【0006】
そこで、本発明は、前記の問題点に鑑み、窒素酸化物及び二酸化炭素を含有するガス中から二酸化窒素を効率良く除去することができ、かつ脱炭酸吸収液への窒素酸化物の蓄積を抑制することができる二酸化窒素と二酸化炭素の除去方法及びその装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る二酸化窒素と二酸化炭素の除去方法は、窒素酸化物及び二酸化炭素を含有するガスを還元性物質を含む塩基性吸収液に接触させて、前記ガス中から二酸化窒素を除去する脱硝工程と、前記脱硝工程で脱硝処理されたガスを脱炭酸吸収液と接触させて、前記ガス中から二酸化炭素を除去する脱炭酸工程とを含んでなることを特徴とする。前記脱硝工程で脱硝処理されたガス中の二酸化窒素濃度は、5ppm以下とすることが好ましい。
【0008】
窒素酸化物のうち二酸化窒素は脱炭酸吸収液で吸収されるものの、一酸化窒素は吸収され難い。一方、炭酸ナトリウムなどの炭酸塩、水酸化ナトリウムなどの水酸化塩を用いた脱硝処理では、二酸化窒素の吸収率が低く、ガス中の二酸化窒素を十分に除去することができない。そこで、本発明では、処理対象となるガスを脱炭酸処理する前に、還元性物質を含む塩基性吸収液を用いて、ガス中の二酸化窒素を予め除去することとした。これにより、ガス中の二酸化窒素を高い効率で除去できるので、脱炭酸工程における脱炭酸吸収液への窒素酸化物の蓄積を抑制することが可能となる。
【0009】
前記還元性物質としては、標準還元電位が−0.5V以上であるものが好ましい。具体的には、前記還元性物質として、亜硫酸塩、亜硫酸水素塩、チオ硫酸塩、亜ジチオン酸塩及びヨウ化物からなる群から選ばれた1つの化合物又は2以上の混合物が好ましい。
【0010】
前記脱炭酸吸収液としては、塩基性アミン化合物を含む吸収液を用いることが好ましい。前記塩基性アミン化合物としては、アルコール性水酸基含有1級アミン類、アルコール性水酸基含有2級アミン類、アルコール性水酸基含有3級アミン類、ポリエチレンポリアミン類、環状アミン類、ポリアミン類及びアミノ酸類からなる群から選ばれた1つの化合物又は2以上の混合物を使用することが好ましい。
【0011】
また、本発明は、別の態様として、二酸化窒素と二酸化炭素の除去装置であって、ガスに脱硝吸収液を接触させる脱硝手段と、ガスに脱炭酸吸収液を接触させる脱炭酸手段と、前記脱硝手段の脱硝処理後ガスを前記脱炭酸手段に導入する配管とを含んでなり、前記脱硝吸収液が還元性物質を含む塩基性吸収液であることを特徴とする。
【0012】
前記還元性物質としては、標準還元電位が−0.5V以上であるものが好ましい。具体的には、前記還元性物質として、亜硫酸塩、亜硫酸水素塩、チオ硫酸塩、亜ジチオン酸塩及びヨウ化物からなる群から選ばれた1つの化合物又は2以上の混合物が好ましい。
【0013】
前記脱炭酸吸収液としては、塩基性アミン化合物を含む吸収液が好ましい。前記塩基性アミン化合物としては、アルコール性水酸基含有1級アミン類、アルコール性水酸基含有2級アミン類、アルコール性水酸基含有3級アミン類、ポリエチレンポリアミン類、環状アミン類、ポリアミン類及びアミノ酸類からなる群から選ばれた1つの化合物又は2以上の混合物が好ましい。
【0014】
【発明の実施の形態】
以下に、添付図面を参照して、本発明の実施の形態を説明する。図1は、本発明に係る二酸化窒素と二酸化炭素の除去装置の概要を示す模式図である。図1に示すように、本装置は、脱硝手段10と、その後流側に設けた脱炭酸手段20とで主に構成される。脱硝手段10は、処理対象のガスに脱硝吸収液2を接触させる湿式(気液接触型)の吸収装置であって、使用する吸収液に応じてガス分散型吸収塔、液分散型吸収塔、濡れ壁吸収塔、充填塔などを採用することができる。また、脱炭酸手段20も同様に、処理対象のガスに脱炭酸吸収液4を接触させる湿式の吸収装置であって、特に、後述する図2に示す装置を採用することが好ましい。
【0015】
このような構成によれば、先ず、脱硝手段10に、窒素酸化物と二酸化炭素を含有する燃焼排ガス1を導入する。なお、処理対象となるガスは、燃焼排ガス1に限られず、燃料用のガスであってもよく、その他様々なガスも適用できる。対象となるガスは水分、酸素、その他の成分を含んでいてもよい。ガスの圧力は加圧であっても、常圧であってもよく、温度は低温であっても高温であってもよく、特に制限はない。好ましくは、常圧の燃焼排ガスである。
【0016】
脱硝手段10では、導入した燃焼排ガス1に対して、還元性物質を含む塩基性の脱硝吸収液2を噴霧し、気液接触させる。ガス1中の二酸化窒素は、還元性物質との反応吸収によりガス中から除去される。還元性物質としては、二酸化窒素の除去性能の観点から、標準還元電位が−0.5ボルト以上の物質であることが好ましい。標準還元電位が−0.5ボルト以上の物質としては、例えば、亜硫酸ナトリウムなどの亜硫酸塩、亜硫酸水素ナトリウムなどの亜硫酸水素塩、チオ硫酸ナトリウムなどのチオ硫酸塩、亜ジチオン酸ナトリウムなどの亜ジチオン酸塩、ヨウ化カリウムなどのヨウ化物がある。特に、二酸化窒素の除去性能の観点から、亜硫酸塩、亜硫酸水素塩、亜ジチオン酸塩がより好ましい。脱硝吸収液2は、これらのうちの1つの化合物又は2以上の混合物を含むことができる。また、還元性物質は、必要に応じて水酸化ナトリウムや炭酸ナトリウム等の塩基性化合物の水溶液と混合して、脱硝吸収液2として使用する。還元性物質は、0.01〜30重量%、好ましくは0.1〜10重量%の水溶液として使用する。
【0017】
脱硝手段10により二酸化窒素が除去された脱硝処理後ガス3は、脱硝手段10から排出して、後流側に設置した脱炭酸手段20に導入する。なお、脱硝処理後ガス3中の二酸化窒素濃度は、5ppm以下にすることが好ましく、3ppm以下にすることがより好ましい。ガス3中の二酸化窒素濃度を5ppm以下にすることで、後述する脱炭酸吸収液に二酸化窒素が蓄積されるのを抑制することができる。
【0018】
脱炭酸手段20では、導入した脱硝処理後ガス3に対して塩基性アミン化合物を含む脱炭酸吸収液4を噴霧し、気液接触させる。ガス3中の二酸化炭素及び残存する二酸化窒素は、脱炭酸吸収液4に吸収されてガス中から除去される。塩基性アミン化合物としては、例えば、モノエタノールアミン、2−アミノ−2−メチル−1−プロパノールなどのアルコール性水酸基含有1級アミン類、ジエタノールアミン、2−メチルアミノエタノール、2−エチルアミノエタノールなどのアルコール性水酸基含有2級アミン類、トリエタノールアミン、N−メチルジエタノールアミン、2−ジメチルアミノエタノール、2−ジエチルアミノエタノールなどのアルコール性水酸基含有3級アミン類、エチレンジアミン、トリエチレンジアミン、ジエチレントリアミンなどのポリエチレンポリアミン類、ピペラジン類、ピペリジン類、ピロリジン類などの環状アミン類、キシリレンジアミンなどのポリアミン類、メチルアミノカルボン酸などのアミノ酸類が使用できる。
【0019】
脱炭酸吸収液4は、これらのうちの1つの化合物又は2以上の混合物を含むことができる。塩基性アミン化合物は、通常10〜70重量%の水溶液として使用される。また、吸収液には、二酸化炭素吸収促進剤や腐食防止剤を加えることができるし、その他の媒体としてメタノール、ポリエチレングリコール、スルフォラン等を加えることもできる。脱炭酸手段20により二酸化炭素と残存する二酸化窒素が除去された脱炭酸処理後ガス5は、脱炭酸手段20から排出して、放出又は次の必要な工程(図示省略)に送る。
【0020】
このように、二酸化窒素は脱炭酸吸収液4に吸収されるものの、一酸化窒素は吸収され難いため、予め脱硝手段10において還元性物質を含む塩基性の脱硝吸収液2を用いて二酸化窒素を効率良く除去しておくことにより、脱炭酸吸収液4への窒素酸化物の蓄積を抑制することが可能となる。
【0021】
図2は、本発明における脱炭酸手段の一実施の形態の概要を示す模式図である。図2に示すように、脱炭酸手段20は、吸収塔21と再生塔26とから主に構成される。吸収塔21は、塔の底部から順に、二酸化炭素吸収部22、二酸化炭素吸収部デミスタ23、水洗部24、水洗部デミスタ25を備えている。吸収塔21には、二酸素炭素吸収部22と二酸素炭素吸収部デミスタ23の間に塩基性アミン化合物を含む再生吸収液45を供給するライン、二酸素炭素吸収部デミスタ23と水洗部24の間から洗浄水46を取り出し、これを水洗部24と水洗部デミスタ25の間に供給するライン、吸収塔21の底部から脱硝処理後ガス3と接触後の負荷吸収液34を再生塔26に送るライン、吸収塔21の頂上部から脱炭酸処理後ガス5を放出又は次の工程(図示省略)に導入するラインが設けられている。上記の再生吸収液45を供給するラインと洗浄水46を供給するラインとには、それぞれ熱交換器36、37が設けられている。
【0022】
再生塔26は、塔の底部から順に、回収部27、濃縮部28を備えている。再生塔26には、回収部27と濃縮部28の間に負荷吸収液44を導入するライン、再生塔26の底部から加熱後の負荷吸収液44をリボイラ31及びリクレーマ32に供給するライン、再生塔26の頂上部から加熱により発生する二酸化炭素含有ガス42を二酸化炭素分離器34に供給するラインが設けられている。この二酸化炭素分離器34に二酸化炭素含有ガス42を供給するラインには、コンデンサ33が設けられている。
【0023】
リボイラ31には、蒸気を再生塔26の回収部27下部に供給するラインと、再生吸収液45を吸収塔21に供給するラインが設けられている。この再生吸収液45を供給するラインには、吸収塔21から再生塔26に負荷吸収液44を供給するラインとの間で熱交換を行うための熱交換器35が設けられている。また、リクレーマ32には、リクレーミング操作後の再生吸収液35を再生塔26の回収部27下部に供給するラインが設けられている。さらに、二酸化炭素分離器34には、高純度二酸化炭素43を放出又は次工程(図示省略)に供給するラインと、生成した水を再生塔還流水47として再生塔26の濃縮部28上部及び洗浄水46として吸収塔21に供給するラインが設けられている。
【0024】
このような構成によれば、先ず、脱炭酸手段20では、必要に応じて冷却された脱硝処理後ガス3を吸収塔21に導入し、二酸化炭素吸収部22で塩基性アミン化合物を含む再生吸収液45と接触させ、ガス3中の二酸化炭素と残存する二酸化窒素を除去する。さらにガスを水洗部24で水洗した後、脱炭酸処理後ガス5として吸収塔21から排出する。一方、接触後の負荷吸収液44は、再生塔26に送り、リボイラ31へ供給されるスチーム41により加熱して、二酸化炭素を放散する。一方、負荷吸収液44中の二酸化窒素の大部分は放散されずに硝酸塩あるいは亜硝酸塩として吸収液中に残存する。
【0025】
吸収液中の硝酸塩あるいは亜硝酸塩を取り除く場合には、吸収液をリクレーマ32に送る。リクレーマ32では、塩基性ナトリウム化合物48を添加した後、スチーム(図示省略)により加熱して、アミン化合物を留出して再生塔26に送る。アミン化合物と分離された硝酸塩あるいは亜硝酸塩は、硝酸ナトリウムと亜硝酸ナトリウムの混合物であるスラッジ49としてリクレーマ32から排出する。通常、二酸化炭素を放散した再生吸収液45は、再び脱硝処理後ガス3中の二酸化炭素を吸収するために、吸収塔21に供給する。
【0026】
一方、回収部27で放散された二酸化炭素は、濃縮部28で洗浄した後、再生塔26から排出する。再生塔26から排出された二酸化炭素含有ガス42は、コンデンサ33で冷却した後、二酸化炭素分離器34に導入する。二酸化炭素分離器34では、高純度二酸化炭素43と水とに分離し、水は、洗浄水46として吸収塔21に供給するとともに、再生塔還流水47として再生塔26に供給する。
【0027】
このように、再生塔26において、吸収液中に吸収された二酸化窒素は硝酸塩あるいは亜硝酸塩として残存するため、これを取り除くためには、吸収液をリクレーマ32に送り、リクレーミングする必要がある。本発明によれば、還元性物質を含む脱硝吸収液によって、ガス中のほとんどの二酸化窒素を予め除去しており、また一酸化窒素は脱炭酸吸収液に吸収され難いため、脱炭酸吸収液には窒素酸化物がほとんど蓄積されない。よって、リクレーマ32による脱炭酸吸収液のリクレーミング頻度を減少させることができ、運転コスト等を低減させることができる。
【0028】
【実施例】
以下、実施例と比較例により、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
濡れ壁吸収塔を用いて、先ず、試験ガスを脱硝吸収液と接触させて、試験ガス中の二酸化窒素を吸収させた。試験ガスとしては、二酸化窒素が27ppm、二酸化炭素が3%、一酸化窒素が150ppm、酸素が15%の組成(体積比)を有するガスを使用した。また、脱硝吸収液としては、濃度0.5mol/Lの亜硫酸ナトリウム水溶液を使用した。そして、濡れ壁吸収塔のガス出口において、脱硝処理後のガス中の二酸化窒素濃度を測定した。次に、この脱硝処理後のガスを脱炭酸吸収液に通気して、試験ガス中の二酸化窒素と二酸化炭素を脱炭酸吸収液に吸収させた。脱炭酸吸収液としては、アルコール性水酸基含有アミン水溶液を使用した。そして、脱炭酸吸収液中の窒素酸化物の蓄積量を測定した。この結果を表1に示す。
【0029】
(比較例1)
脱硝吸収液として、亜硫酸ナトリウム水溶液の代わりに濃度0.5mol/Lの炭酸ナトリウム水溶液を用いたことを除いて、実験例1と同様にして、試験ガスの脱硝処理を行うと共に、脱硝処理後のガスを脱炭酸吸収液に通気した。この結果を実験例1の結果と併せて表1に示す。
【0030】
【表1】

Figure 2005040683
【0031】
表1に示した通り、脱硝吸収液として亜硫酸ナトリウム水溶液を用いた実験例1では、比較例1の炭酸ナトリウム水溶液の場合に比べて、二酸化窒素が効率良く除去され、脱硝処理後の二酸化窒素濃度は3ppmであった。さらに、実験例1の脱炭酸吸収液への窒素酸化物蓄積量は、比較例1に比べて0.1倍であり、実験例1では、脱炭酸吸収液への窒素酸化物の蓄積を抑えることができた。
【0032】
【発明の効果】
上述してきたように、本発明によれば、窒素酸化物及び二酸化炭素を含有するガス中から二酸化窒素を効率良く除去し、かつ脱炭酸吸収液への窒素酸化物の蓄積を抑制する二酸化窒素と二酸化炭素の除去方法及びその装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る二酸化窒素と二酸化炭素の除去装置の概要を示す模式図である。
【図2】本発明に適用できる脱炭酸手段の一実施の形態を示す模式図である。
【符号の説明】
1 燃焼排ガス
2 脱硝吸収液
3 脱硝処理後ガス
4 脱炭酸吸収液
5 脱炭酸処理後ガス
10 脱硝手段
20 脱炭酸手段
21 吸収塔
22 二酸化炭素吸収部
23 二酸化炭素吸収部デミスタ
24 水洗部
25 水洗部デミスタ
26 再生塔
27 回収部
28 濃縮部
31 リボイラ
32 リクレーマ
33 コンデンサ
34 二酸化炭素分離器
35〜37 熱交換器
41 スチーム
42 二酸化炭素含有ガス
43 高純度二酸化炭素
44 負荷吸収液
45 再生吸収液
46 洗浄水
47 再生塔還流水
48 塩基性ナトリウム化合物
49 スラッジ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for removing nitrogen dioxide and carbon dioxide from a gas containing nitrogen oxides and carbon dioxide.
[0002]
[Prior art]
In recent years, fossil fuels such as natural gas have been used in thermal power generation facilities and boiler facilities in large quantities. From the viewpoint of air pollution prevention and global environmental purification, quantitative and concentration related to the release of nitrogen oxides, carbon dioxide, etc. Control is a problem. Among these, nitrogen oxides cause acid rain and may cause damage to human bodies, animals and plants. For this reason, flue gas denitration for treating nitrogen oxides has already been carried out, and the ammonia catalysis method using a catalyst is the mainstream as the treatment method.
[0003]
On the other hand, with regard to carbon dioxide, from the standpoint of preventing global warming together with CFC and methane gas, for example, the suppression of emissions by applying the PSA (pressure swing) method, membrane separation method, reaction absorption method using basic compounds, etc. It is being considered. Further, a technique has been developed in which nitrogen monoxide in combustion exhaust gas is converted into nitrogen dioxide by adding ozone, and then contacted with an alkanolamine aqueous solution in a decarboxylation step to remove nitrogen dioxide together with carbon dioxide (Patent Document 1). reference).
[0004]
[Patent Document 1]
Japanese Patent No. 3233802 gazette
[Problems to be solved by the invention]
However, in the technique described in Patent Document 1, nitrogen monoxide, which is the main component of nitrogen oxide, is also converted into nitrogen dioxide by ozone and removed in the decarboxylation step. There is a problem that the accumulated amount of the carbon dioxide is relatively large, the reclaiming frequency of the decarbonized absorbent increases, and the operation cost increases.
[0006]
Therefore, in view of the above problems, the present invention can efficiently remove nitrogen dioxide from a gas containing nitrogen oxides and carbon dioxide, and suppress the accumulation of nitrogen oxides in the decarbonized absorbent. An object of the present invention is to provide a method and apparatus for removing nitrogen dioxide and carbon dioxide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a method for removing nitrogen dioxide and carbon dioxide according to the present invention comprises contacting a gas containing nitrogen oxides and carbon dioxide with a basic absorbent containing a reducing substance, and A denitration step for removing nitrogen dioxide from the inside, and a decarbonation step for contacting the gas denitrated in the denitration step with a decarboxylation absorbent to remove carbon dioxide from the gas. And The nitrogen dioxide concentration in the gas denitrated in the denitration step is preferably 5 ppm or less.
[0008]
Of the nitrogen oxides, nitrogen dioxide is absorbed by the decarboxylation absorbent, but nitric oxide is hardly absorbed. On the other hand, the denitration treatment using a carbonate such as sodium carbonate or a hydroxide such as sodium hydroxide has a low absorption rate of nitrogen dioxide and cannot sufficiently remove nitrogen dioxide in the gas. Therefore, in the present invention, before degassing the gas to be treated, nitrogen dioxide in the gas is removed in advance using a basic absorbent containing a reducing substance. Thereby, since nitrogen dioxide in gas can be removed with high efficiency, it becomes possible to suppress accumulation of nitrogen oxides in the decarboxylation absorbent in the decarboxylation step.
[0009]
As the reducing substance, those having a standard reduction potential of −0.5 V or more are preferable. Specifically, as the reducing substance, one compound selected from the group consisting of sulfite, bisulfite, thiosulfate, dithionate and iodide, or a mixture of two or more is preferable.
[0010]
As the decarboxylation absorbent, an absorbent containing a basic amine compound is preferably used. The basic amine compound includes alcoholic hydroxyl group-containing primary amines, alcoholic hydroxyl group-containing secondary amines, alcoholic hydroxyl group-containing tertiary amines, polyethylene polyamines, cyclic amines, polyamines, and amino acids. It is preferable to use one compound or a mixture of two or more selected from the group.
[0011]
In another aspect, the present invention provides an apparatus for removing nitrogen dioxide and carbon dioxide, a denitration means for bringing a denitration absorption liquid into contact with a gas, a decarbonation means for bringing a decarboxylation absorption liquid into contact with a gas, And a pipe for introducing gas after denitration treatment of the denitration means to the decarbonation means, wherein the denitration absorption liquid is a basic absorption liquid containing a reducing substance.
[0012]
As the reducing substance, those having a standard reduction potential of −0.5 V or more are preferable. Specifically, as the reducing substance, one compound selected from the group consisting of sulfite, bisulfite, thiosulfate, dithionate and iodide, or a mixture of two or more is preferable.
[0013]
As the decarboxylation absorbent, an absorbent containing a basic amine compound is preferable. The basic amine compound includes alcoholic hydroxyl group-containing primary amines, alcoholic hydroxyl group-containing secondary amines, alcoholic hydroxyl group-containing tertiary amines, polyethylene polyamines, cyclic amines, polyamines, and amino acids. One compound or a mixture of two or more selected from the group is preferred.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic view showing an outline of a nitrogen dioxide and carbon dioxide removing apparatus according to the present invention. As shown in FIG. 1, this apparatus mainly includes a denitration unit 10 and a decarboxylation unit 20 provided on the downstream side. The denitration means 10 is a wet (gas-liquid contact type) absorption device for bringing the denitration absorption liquid 2 into contact with the gas to be treated, and depending on the absorption liquid to be used, a gas dispersion type absorption tower, a liquid dispersion type absorption tower, A wet wall absorption tower, a packed tower, or the like can be employed. Similarly, the decarbonation means 20 is a wet type absorption device that makes the decarbonized absorbent 4 contact the gas to be treated, and it is particularly preferable to employ the device shown in FIG. 2 described later.
[0015]
According to such a configuration, first, the combustion exhaust gas 1 containing nitrogen oxides and carbon dioxide is introduced into the denitration means 10. The gas to be treated is not limited to the combustion exhaust gas 1 but may be a fuel gas, and various other gases can be applied. The target gas may contain moisture, oxygen, and other components. The pressure of the gas may be pressurized or normal pressure, and the temperature may be low or high, and is not particularly limited. Preferably, it is an atmospheric pressure combustion exhaust gas.
[0016]
In the denitration means 10, a basic denitration absorption liquid 2 containing a reducing substance is sprayed on the introduced flue gas 1 to bring it into gas-liquid contact. Nitrogen dioxide in the gas 1 is removed from the gas by reaction absorption with the reducing substance. The reducing substance is preferably a substance having a standard reduction potential of −0.5 volts or more from the viewpoint of nitrogen dioxide removal performance. Examples of substances having a standard reduction potential of −0.5 volts or more include sulfites such as sodium sulfite, bisulfites such as sodium bisulfite, thiosulfates such as sodium thiosulfate, and dithiones such as sodium dithionite. There are iodides such as acid salts and potassium iodide. In particular, from the viewpoint of nitrogen dioxide removal performance, sulfites, bisulfites, and dithionites are more preferable. The denitration absorption liquid 2 can contain one of these compounds or a mixture of two or more thereof. Further, the reducing substance is mixed with an aqueous solution of a basic compound such as sodium hydroxide or sodium carbonate as necessary, and used as the denitration absorbing liquid 2. The reducing substance is used as an aqueous solution of 0.01 to 30% by weight, preferably 0.1 to 10% by weight.
[0017]
The denitration-treated gas 3 from which nitrogen dioxide has been removed by the denitration means 10 is discharged from the denitration means 10 and introduced into the decarboxylation means 20 installed on the downstream side. The nitrogen dioxide concentration in the gas 3 after the denitration treatment is preferably 5 ppm or less, more preferably 3 ppm or less. By setting the nitrogen dioxide concentration in the gas 3 to 5 ppm or less, it is possible to suppress accumulation of nitrogen dioxide in the decarboxylation absorbent described later.
[0018]
In the decarboxylation means 20, the decarboxylation absorbent 4 containing a basic amine compound is sprayed on the introduced denitration-treated gas 3 to bring it into gas-liquid contact. Carbon dioxide and remaining nitrogen dioxide in the gas 3 are absorbed by the decarboxylation absorbent 4 and removed from the gas. Examples of basic amine compounds include monoethanolamine, alcoholic hydroxyl group-containing primary amines such as 2-amino-2-methyl-1-propanol, diethanolamine, 2-methylaminoethanol, 2-ethylaminoethanol, and the like. Alcoholic hydroxyl group-containing secondary amines, triethanolamine, N-methyldiethanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol and other alcoholic hydroxyl group-containing tertiary amines, polyethylenediamines such as ethylenediamine, triethylenediamine and diethylenetriamine Further, cyclic amines such as piperazines, piperidines and pyrrolidines, polyamines such as xylylenediamine, and amino acids such as methylaminocarboxylic acid can be used.
[0019]
The decarboxylation absorbent 4 can contain one of these compounds or a mixture of two or more. The basic amine compound is usually used as a 10 to 70% by weight aqueous solution. In addition, a carbon dioxide absorption accelerator and a corrosion inhibitor can be added to the absorbing solution, and methanol, polyethylene glycol, sulfolane and the like can be added as other media. The decarbonation-treated gas 5 from which carbon dioxide and remaining nitrogen dioxide have been removed by the decarbonation means 20 is discharged from the decarbonation means 20 and sent to the next required process (not shown).
[0020]
As described above, although nitrogen dioxide is absorbed by the decarboxylation absorbent 4, nitrogen monoxide is not easily absorbed. Therefore, the nitrogen dioxide is removed in advance by using the basic denitration absorbent 2 containing a reducing substance in the denitration means 10. By removing it efficiently, accumulation of nitrogen oxides in the decarboxylation absorbent 4 can be suppressed.
[0021]
FIG. 2 is a schematic diagram showing an outline of an embodiment of the decarboxylation means in the present invention. As shown in FIG. 2, the decarbonation means 20 is mainly composed of an absorption tower 21 and a regeneration tower 26. The absorption tower 21 includes, in order from the bottom of the tower, a carbon dioxide absorption part 22, a carbon dioxide absorption part demister 23, a water washing part 24, and a water washing part demister 25. A line for supplying a regenerated absorbent 45 containing a basic amine compound between the dioxygen carbon absorbing section 22 and the dioxygen carbon absorbing section demister 23, the dioxygen carbon absorbing section demister 23, and the water washing section 24 The washing water 46 is taken out from between the lines, and this is supplied between the washing section 24 and the washing section demister 25. From the bottom of the absorption tower 21, the post-denitration treated gas 3 and the load absorption liquid 34 after contact are sent to the regeneration tower 26. A line for releasing the decarboxylated gas 5 from the top of the absorption tower 21 or introducing it into the next step (not shown) is provided. Heat exchangers 36 and 37 are provided in the line supplying the regenerated absorbent 45 and the line supplying the cleaning water 46, respectively.
[0022]
The regeneration tower 26 includes a recovery unit 27 and a concentration unit 28 in order from the bottom of the tower. In the regeneration tower 26, a line for introducing the load absorption liquid 44 between the recovery section 27 and the concentration section 28, a line for supplying the heated load absorption liquid 44 from the bottom of the regeneration tower 26 to the reboiler 31 and the reclaimer 32, regeneration A line for supplying a carbon dioxide-containing gas 42 generated by heating from the top of the column 26 to the carbon dioxide separator 34 is provided. A capacitor 33 is provided in a line for supplying the carbon dioxide-containing gas 42 to the carbon dioxide separator 34.
[0023]
The reboiler 31 is provided with a line for supplying steam to the lower part of the recovery unit 27 of the regeneration tower 26 and a line for supplying the regenerated absorbent 45 to the absorption tower 21. The line for supplying the regenerated absorbent 45 is provided with a heat exchanger 35 for exchanging heat with the line for supplying the load absorbent 44 from the absorber 21 to the regenerator 26. The reclaimer 32 is provided with a line for supplying the regenerated absorbent 35 after the reclaiming operation to the lower portion of the recovery unit 27 of the regenerator 26. Further, the carbon dioxide separator 34 has a line for releasing the high-purity carbon dioxide 43 or supplying it to the next step (not shown), and the generated water is used as the regeneration tower reflux water 47 and the upper part of the concentration section 28 of the regeneration tower 26 and the washing. A line for supplying water 46 to the absorption tower 21 is provided.
[0024]
According to such a configuration, first, in the decarbonation means 20, the denitration-treated gas 3 cooled as necessary is introduced into the absorption tower 21, and the carbon dioxide absorption unit 22 regenerates and absorbs the basic amine compound. The liquid 45 is brought into contact with carbon dioxide in the gas 3 and the remaining nitrogen dioxide is removed. Further, the gas is washed in the water washing section 24 and then discharged from the absorption tower 21 as the decarbonation-treated gas 5. On the other hand, the load absorbing liquid 44 after contact is sent to the regeneration tower 26 and heated by the steam 41 supplied to the reboiler 31 to dissipate carbon dioxide. On the other hand, most of the nitrogen dioxide in the load absorbing solution 44 is not dissipated and remains in the absorbing solution as nitrate or nitrite.
[0025]
When removing nitrate or nitrite from the absorbent, the absorbent is sent to the reclaimer 32. In the reclaimer 32, after adding the basic sodium compound 48, it heats with steam (illustration omitted), distills an amine compound, and sends it to the regeneration tower 26. The nitrate or nitrite separated from the amine compound is discharged from the reclaimer 32 as sludge 49 which is a mixture of sodium nitrate and sodium nitrite. Usually, the regenerated absorbent 45 that diffuses carbon dioxide is supplied to the absorption tower 21 in order to absorb the carbon dioxide in the gas 3 after the denitration treatment again.
[0026]
On the other hand, the carbon dioxide diffused by the recovery unit 27 is discharged from the regeneration tower 26 after being washed by the concentration unit 28. The carbon dioxide-containing gas 42 discharged from the regeneration tower 26 is cooled by the condenser 33 and then introduced into the carbon dioxide separator 34. The carbon dioxide separator 34 separates the water into high-purity carbon dioxide 43 and water. The water is supplied to the absorption tower 21 as wash water 46 and supplied to the regeneration tower 26 as regeneration tower reflux water 47.
[0027]
Thus, in the regeneration tower 26, the nitrogen dioxide absorbed in the absorption liquid remains as nitrate or nitrite. Therefore, in order to remove this, the absorption liquid needs to be sent to the reclaimer 32 and reclaimed. According to the present invention, most of the nitrogen dioxide in the gas is removed in advance by the denitration absorbing liquid containing the reducing substance, and since nitric oxide is difficult to be absorbed by the decarboxylating absorbing liquid, Hardly accumulates nitrogen oxides. Therefore, the reclaiming frequency of the decarboxylated absorbent by the reclaimer 32 can be reduced, and the operating cost and the like can be reduced.
[0028]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these.
(Example 1)
Using the wet wall absorption tower, first, the test gas was brought into contact with the denitration absorption liquid to absorb nitrogen dioxide in the test gas. As the test gas, a gas having a composition (volume ratio) of 27 ppm for nitrogen dioxide, 3% for carbon dioxide, 150 ppm for nitric oxide, and 15% for oxygen was used. Further, as the denitration absorbing solution, a sodium sulfite aqueous solution having a concentration of 0.5 mol / L was used. Then, the nitrogen dioxide concentration in the gas after the denitration treatment was measured at the gas outlet of the wet wall absorption tower. Next, the denitration-treated gas was passed through the decarboxylation absorbent, and nitrogen dioxide and carbon dioxide in the test gas were absorbed into the decarboxylation absorbent. An alcoholic hydroxyl group-containing amine aqueous solution was used as the decarboxylation absorbent. And the accumulation amount of the nitrogen oxide in a decarboxylation absorption liquid was measured. The results are shown in Table 1.
[0029]
(Comparative Example 1)
A denitration treatment of the test gas was performed in the same manner as in Experimental Example 1 except that a sodium carbonate aqueous solution having a concentration of 0.5 mol / L was used as the denitration absorption solution instead of the sodium sulfite aqueous solution. Gas was bubbled through the decarbonated absorbent. The results are shown in Table 1 together with the results of Experimental Example 1.
[0030]
[Table 1]
Figure 2005040683
[0031]
As shown in Table 1, in Experimental Example 1 using a sodium sulfite aqueous solution as a denitration absorbing solution, nitrogen dioxide was removed more efficiently than in the case of the sodium carbonate aqueous solution of Comparative Example 1, and the concentration of nitrogen dioxide after the denitration treatment Was 3 ppm. Further, the amount of nitrogen oxides accumulated in the decarboxylation absorbent in Experimental Example 1 is 0.1 times that in Comparative Example 1, and in Example 1, the accumulation of nitrogen oxides in the decarboxylation absorbent is suppressed. I was able to.
[0032]
【The invention's effect】
As described above, according to the present invention, nitrogen dioxide that efficiently removes nitrogen dioxide from a gas containing nitrogen oxides and carbon dioxide and suppresses the accumulation of nitrogen oxides in the decarboxylation absorbent, and A method and apparatus for removing carbon dioxide can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an outline of a nitrogen dioxide and carbon dioxide removing apparatus according to the present invention.
FIG. 2 is a schematic view showing an embodiment of a decarboxylation means applicable to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Combustion exhaust gas 2 Denitration absorption liquid 3 Gas after denitration treatment 4 Decarbonation absorption liquid 5 Gas after decarbonation treatment 10 Denitration means 20 Decarbonation means 21 Absorption tower 22 Carbon dioxide absorption part 23 Carbon dioxide absorption part demister 24 Water washing part 25 Water washing part Demister 26 Regeneration tower 27 Recovery unit 28 Concentration unit 31 Reboiler 32 Reclaimer 33 Condenser 34 Carbon dioxide separator 35-37 Heat exchanger 41 Steam 42 Carbon dioxide containing gas 43 High purity carbon dioxide 44 Load absorption liquid 45 Regeneration absorption liquid 46 Washing water 47 Regeneration tower reflux water 48 Basic sodium compound 49 Sludge

Claims (11)

窒素酸化物及び二酸化炭素を含有するガスを還元性物質を含む塩基性吸収液に接触させて、前記ガス中から二酸化窒素を除去する脱硝工程と、前記脱硝工程で脱硝処理されたガスを脱炭酸吸収液と接触させて、前記ガス中から二酸化炭素を除去する脱炭酸工程とを含んでなる二酸化窒素と二酸化炭素の除去方法。A denitration process for removing nitrogen dioxide from the gas by bringing a gas containing nitrogen oxides and carbon dioxide into contact with a basic absorbent containing a reducing substance, and decarbonation of the gas denitrated in the denitration process A method of removing nitrogen dioxide and carbon dioxide, comprising a decarboxylation step of removing carbon dioxide from the gas by contacting with an absorbing solution. 前記還元性物質は、標準還元電位が−0.5V以上である請求項1に記載の二酸化窒素と二酸化炭素の除去方法。The method for removing nitrogen dioxide and carbon dioxide according to claim 1, wherein the reducing substance has a standard reduction potential of −0.5 V or more. 前記還元性物質が、亜硫酸塩、亜硫酸水素塩、チオ硫酸塩、亜ジチオン酸塩及びヨウ化物からなる群から選ばれた1つの化合物又は2以上の混合物である請求項1に記載の二酸化窒素と二酸化炭素の除去方法。2. The nitrogen dioxide according to claim 1, wherein the reducing substance is one compound selected from the group consisting of sulfite, bisulfite, thiosulfate, dithionate, and iodide, or a mixture of two or more. How to remove carbon dioxide. 前記脱炭酸吸収液が塩基性アミン化合物を含む吸収液である請求項1〜3のいずれかに記載の二酸化窒素と二酸化炭素の除去方法。The method for removing nitrogen dioxide and carbon dioxide according to any one of claims 1 to 3, wherein the decarboxylating absorbent is an absorbent containing a basic amine compound. 前記塩基性アミン化合物が、アルコール性水酸基含有1級アミン類、アルコール性水酸基含有2級アミン類、アルコール性水酸基含有3級アミン類、ポリエチレンポリアミン類、環状アミン類、ポリアミン類及びアミノ酸類からなる群から選ばれた1つの化合物又は2以上の混合物である請求項4に記載の二酸化窒素と二酸化炭素の除去方法。The basic amine compound is composed of alcoholic hydroxyl group-containing primary amines, alcoholic hydroxyl group-containing secondary amines, alcoholic hydroxyl group-containing tertiary amines, polyethylene polyamines, cyclic amines, polyamines and amino acids. The method for removing nitrogen dioxide and carbon dioxide according to claim 4, wherein the compound is one compound selected from the group consisting of two or more. 前記脱硝工程で脱硝処理されたガス中の二酸化窒素濃度を5ppm以下とする請求項1〜5のいずれかに記載の二酸化窒素と二酸化炭素の除去方法。The method for removing nitrogen dioxide and carbon dioxide according to any one of claims 1 to 5, wherein the nitrogen dioxide concentration in the gas denitrated in the denitration step is 5 ppm or less. ガスに脱硝吸収液を接触させる脱硝手段と、ガスに脱炭酸吸収液を接触させる脱炭酸手段と、前記脱硝手段の脱硝処理後ガスを前記脱炭酸手段に導入する配管とを含んでなり、前記脱硝吸収液が還元性物質を含む塩基性吸収液である二酸化窒素と二酸化炭素の除去装置。A denitration means for contacting the denitration absorption liquid with the gas, a decarbonation means for bringing the decarbonization absorption liquid into contact with the gas, and a pipe for introducing the denitration treatment gas of the denitration means into the decarbonation means, An apparatus for removing nitrogen dioxide and carbon dioxide, in which the denitration absorption liquid is a basic absorption liquid containing a reducing substance. 前記還元性物質は、標準還元電位が−0.5V以上である請求項7に記載の二酸化窒素と二酸化炭素の除去装置。The apparatus for removing nitrogen dioxide and carbon dioxide according to claim 7, wherein the reducing substance has a standard reduction potential of −0.5 V or more. 前記還元性物質が、亜硫酸塩、亜硫酸水素塩、チオ硫酸塩、亜ジチオン酸塩及びヨウ化物からなる群から選ばれた1つの化合物又は2以上の混合物である請求項7に記載の二酸化窒素と二酸化炭素の除去装置。The nitrogen dioxide according to claim 7, wherein the reducing substance is one compound or a mixture of two or more selected from the group consisting of sulfite, bisulfite, thiosulfate, dithionite and iodide. Carbon dioxide removal device. 前記脱炭酸吸収液が塩基性アミン化合物を含む吸収液である請求項7〜9のいずれかに記載の二酸化窒素と二酸化炭素の除去装置。The apparatus for removing nitrogen dioxide and carbon dioxide according to any one of claims 7 to 9, wherein the decarboxylation absorbent is an absorbent containing a basic amine compound. 前記塩基性アミン化合物が、アルコール性水酸基含有1級アミン類、アルコール性水酸基含有2級アミン類、アルコール性水酸基含有3級アミン類、ポリエチレンポリアミン類、環状アミン類、ポリアミン類及びアミノ酸類からなる群から選ばれた1つの化合物又は2以上の混合物である請求項10に記載の二酸化窒素と二酸化炭素の除去装置。The basic amine compound is composed of alcoholic hydroxyl group-containing primary amines, alcoholic hydroxyl group-containing secondary amines, alcoholic hydroxyl group-containing tertiary amines, polyethylene polyamines, cyclic amines, polyamines and amino acids. The apparatus for removing nitrogen dioxide and carbon dioxide according to claim 10, which is one compound selected from the group consisting of two or more.
JP2003201435A 2003-07-25 2003-07-25 Method and apparatus for removing nitrogen dioxide and carbon dioxide Expired - Lifetime JP4838489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003201435A JP4838489B2 (en) 2003-07-25 2003-07-25 Method and apparatus for removing nitrogen dioxide and carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003201435A JP4838489B2 (en) 2003-07-25 2003-07-25 Method and apparatus for removing nitrogen dioxide and carbon dioxide

Publications (2)

Publication Number Publication Date
JP2005040683A true JP2005040683A (en) 2005-02-17
JP4838489B2 JP4838489B2 (en) 2011-12-14

Family

ID=34261495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003201435A Expired - Lifetime JP4838489B2 (en) 2003-07-25 2003-07-25 Method and apparatus for removing nitrogen dioxide and carbon dioxide

Country Status (1)

Country Link
JP (1) JP4838489B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346552A (en) * 2005-06-15 2006-12-28 Mitsubishi Heavy Ind Ltd Apparatus for treatment of nitrogen dioxide
JP2008221166A (en) * 2007-03-14 2008-09-25 Mitsubishi Heavy Ind Ltd Carbon dioxide recovery apparatus and waste material extraction method
JP2011098340A (en) * 2009-10-07 2011-05-19 Toshiba Corp Co2 recovery system and co2 absorption liquid
JP2011179338A (en) * 2010-02-26 2011-09-15 Denso Corp Nox removal system for internal combustion engine
JP2011179340A (en) * 2010-02-26 2011-09-15 Denso Corp Abnormality diagnostic device for exhaust emission control device
WO2013078221A1 (en) * 2011-11-21 2013-05-30 Fluor Technologies Corporation Prevention of nitro-amine formation in carbon dioxide absorption processes
WO2013176060A1 (en) 2012-05-25 2013-11-28 三菱重工業株式会社 Discharge gas treatment device
WO2013144822A3 (en) * 2012-03-30 2013-12-05 Alstom Technology Ltd Apparatus and method for the removal of nitrogen dioxide from a flue gas stream
WO2014030388A1 (en) * 2012-08-20 2014-02-27 三菱重工業株式会社 Co2 recovery device and co2 recovery method
CN106031844A (en) * 2015-03-20 2016-10-19 江西永丰博源实业有限公司 Agent for desulphurization and denitration
CN106031841A (en) * 2015-03-20 2016-10-19 北京博源恒升高科技有限公司 Denitration technology and equipment for gas
WO2023026855A1 (en) * 2021-08-26 2023-03-02 三菱重工業株式会社 Carbon dioxide absorption and reduction solution, carbon dioxide absorption and reduction device, and carbon dioxide absorption and reduction method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106870A (en) * 1974-01-30 1975-08-22
JPS5135669A (en) * 1974-09-20 1976-03-26 Osaka Soda Co Ltd Haigasuchu no nisankachitsuso no kyushujokyohoho
JPH05231A (en) * 1991-02-12 1993-01-08 Chiyoda Corp Removal of co2 from combustion exhaust gas
JPH07246313A (en) * 1994-03-09 1995-09-26 Kansai Electric Power Co Inc:The Method for removing carbon dioxide and sox in exhaust combustion gas
JPH0889756A (en) * 1994-09-28 1996-04-09 Tokyo Electric Power Co Inc:The Treatment of carbon dioxide in gas to be treated and liquid absorbent
JPH08168638A (en) * 1994-12-15 1996-07-02 Kansai Electric Power Co Inc:The Method for removing carbonic acid gas and nitrogen oxide in combustion exhaust gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106870A (en) * 1974-01-30 1975-08-22
JPS5135669A (en) * 1974-09-20 1976-03-26 Osaka Soda Co Ltd Haigasuchu no nisankachitsuso no kyushujokyohoho
JPH05231A (en) * 1991-02-12 1993-01-08 Chiyoda Corp Removal of co2 from combustion exhaust gas
JPH07246313A (en) * 1994-03-09 1995-09-26 Kansai Electric Power Co Inc:The Method for removing carbon dioxide and sox in exhaust combustion gas
JPH0889756A (en) * 1994-09-28 1996-04-09 Tokyo Electric Power Co Inc:The Treatment of carbon dioxide in gas to be treated and liquid absorbent
JPH08168638A (en) * 1994-12-15 1996-07-02 Kansai Electric Power Co Inc:The Method for removing carbonic acid gas and nitrogen oxide in combustion exhaust gas

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346552A (en) * 2005-06-15 2006-12-28 Mitsubishi Heavy Ind Ltd Apparatus for treatment of nitrogen dioxide
JP2008221166A (en) * 2007-03-14 2008-09-25 Mitsubishi Heavy Ind Ltd Carbon dioxide recovery apparatus and waste material extraction method
US8137441B2 (en) 2007-03-14 2012-03-20 Mitsubishi Heavy Industries Ltd. CO2 recovery system and waste-product removing method
JP2011098340A (en) * 2009-10-07 2011-05-19 Toshiba Corp Co2 recovery system and co2 absorption liquid
JP2011179338A (en) * 2010-02-26 2011-09-15 Denso Corp Nox removal system for internal combustion engine
JP2011179340A (en) * 2010-02-26 2011-09-15 Denso Corp Abnormality diagnostic device for exhaust emission control device
WO2013078221A1 (en) * 2011-11-21 2013-05-30 Fluor Technologies Corporation Prevention of nitro-amine formation in carbon dioxide absorption processes
AU2012340716B2 (en) * 2011-11-21 2017-03-30 Fluor Technologies Corporation Prevention of nitro-amine formation in carbon dioxide absorption processes
JP2015504367A (en) * 2011-11-21 2015-02-12 フルーア・テクノロジーズ・コーポレイション Prevention of nitroamine formation in carbon dioxide adsorption process.
CN104364002A (en) * 2011-11-21 2015-02-18 氟石科技公司 Prevention of nitro-amine formation in carbon dioxide absorption processes
WO2013144822A3 (en) * 2012-03-30 2013-12-05 Alstom Technology Ltd Apparatus and method for the removal of nitrogen dioxide from a flue gas stream
WO2013176060A1 (en) 2012-05-25 2013-11-28 三菱重工業株式会社 Discharge gas treatment device
JP2013244454A (en) * 2012-05-25 2013-12-09 Mitsubishi Heavy Ind Ltd Exhaust gas treatment apparatus
AU2013264029B2 (en) * 2012-05-25 2016-05-12 Mitsubishi Heavy Industries, Ltd. Discharge gas treatment device
US9789438B2 (en) 2012-05-25 2017-10-17 Mitsubishi Heavy Industries, Ltd. Air pollution control apparatus
WO2014030388A1 (en) * 2012-08-20 2014-02-27 三菱重工業株式会社 Co2 recovery device and co2 recovery method
US9789437B2 (en) 2012-08-20 2017-10-17 Mitsubishi Heavy Industries, Ltd. CO2 recovery device and CO2 recovery method
CN106031841A (en) * 2015-03-20 2016-10-19 北京博源恒升高科技有限公司 Denitration technology and equipment for gas
CN106031844A (en) * 2015-03-20 2016-10-19 江西永丰博源实业有限公司 Agent for desulphurization and denitration
WO2023026855A1 (en) * 2021-08-26 2023-03-02 三菱重工業株式会社 Carbon dioxide absorption and reduction solution, carbon dioxide absorption and reduction device, and carbon dioxide absorption and reduction method

Also Published As

Publication number Publication date
JP4838489B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4216152B2 (en) Desulfurization decarboxylation method and apparatus
JP4995084B2 (en) Super-cleaning of combustion gases including CO2 removal
JP3233802B2 (en) Method for removing carbon dioxide and nitrogen oxides from flue gas
JP4759514B2 (en) Method for recovering CO2 from a gas stream
JP5230080B2 (en) Absorption liquid, CO2 removal apparatus and method
JP3197183B2 (en) Method for removing carbon dioxide in flue gas
JPH09262432A (en) Method for recovering basic amine compound in waste gas of decarboxylation column
WO2014041986A1 (en) Desulfurization device and method for using condensate water generated thereby
US9399188B2 (en) Apparatus for removing carbon dioxide in combustion exhaust gas
JPWO2006107026A1 (en) Absorption liquid, CO2 and / or H2S removal method and apparatus
JP2002126439A (en) Method and apparatus for recovering amine and decarbonator provided with the apparatus
CA2819904A1 (en) Method and absorbent composition for recovering a gaseous component from a gas stream
JPH0691135A (en) Method for removing carbon dioxide from combustion exhaust gas
JP2015211969A (en) System and method for processing exhaust gas
JP2015166090A (en) Exhaust gas treatment system and exhaust gas treatment method
JP4838489B2 (en) Method and apparatus for removing nitrogen dioxide and carbon dioxide
KR20120116431A (en) Alcohol-based gas stripping process
JP2014036942A (en) Co2 recovery device and method
JP2012024718A (en) Exhaust gas treatment system having co2 removal facility
KR20150049835A (en) Apparatus for separating and recovering carbon dioxide having an oxygen separating apparatus and method of carbon dioxide separation and recovery from flue gas using the same
JP2016000381A (en) Acidic gas treatment method and acidic gas treatment device
KR101038764B1 (en) Appraratus and method for solvent scrubbing co2 capture system
US11413572B2 (en) Methods and systems for emissions control in solvent-based CO2 capture processes using CO2
JP2786562B2 (en) Treatment method of combustion exhaust gas
JP3716195B2 (en) Desulfurization decarboxylation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4838489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term