JP3197172B2 - Method for removing carbon dioxide in flue gas - Google Patents

Method for removing carbon dioxide in flue gas

Info

Publication number
JP3197172B2
JP3197172B2 JP24291494A JP24291494A JP3197172B2 JP 3197172 B2 JP3197172 B2 JP 3197172B2 JP 24291494 A JP24291494 A JP 24291494A JP 24291494 A JP24291494 A JP 24291494A JP 3197172 B2 JP3197172 B2 JP 3197172B2
Authority
JP
Japan
Prior art keywords
flue gas
aqueous solution
absorption
amino acid
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24291494A
Other languages
Japanese (ja)
Other versions
JPH08103629A (en
Inventor
富雄 三村
繁 下條
正樹 飯島
薫明 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP24291494A priority Critical patent/JP3197172B2/en
Priority to DE69503937T priority patent/DE69503937T2/en
Priority to EP95103018A priority patent/EP0671200B1/en
Priority to CN95102255A priority patent/CN1050528C/en
Publication of JPH08103629A publication Critical patent/JPH08103629A/en
Priority to US08/701,069 priority patent/US5744110A/en
Application granted granted Critical
Publication of JP3197172B2 publication Critical patent/JP3197172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は燃焼排ガス中に含まれる
CO2 (二酸化炭素)を除去する方法に関し、さらに詳
しくは、特定のアミノ酸金属塩、特定のアミン化合物、
さらには特定の金属化合物を含有させた混合水溶液を用
いて燃焼排ガス中のCO2 を除去する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing CO 2 (carbon dioxide) contained in flue gas, and more particularly, to a specific amino acid metal salt, a specific amine compound,
Furthermore, the present invention relates to a method for removing CO 2 in combustion exhaust gas using a mixed aqueous solution containing a specific metal compound.

【0002】[0002]

【従来の技術】近年、地球の温暖化現象の原因の一つと
して、CO2 による温室効果が指摘され、地球環境を守
る上で国際的にもその対策が急務となってきた。CO2
の発生源としては、化石燃料を燃焼させるあらゆる人間
の活動分野に及び、その排出抑制への要求が一層強まる
傾向にある。これに伴い大量の化石燃料を使用する火力
発電所などの動力発生設備を対象に、ボイラーの燃焼排
ガスをアルカノールアミン水溶液等と接触させ、燃焼排
ガス中のCO2 を除去し回収する方法及び回収されたC
2 を大気へ放出することなく貯蔵する方法が精力的に
研究されている。
2. Description of the Related Art In recent years, the greenhouse effect of CO 2 has been pointed out as one of the causes of the global warming phenomenon, and countermeasures have been urgently required internationally to protect the global environment. CO 2
As a source of the occurrence, all human activity fields burning fossil fuels tend to be increasingly demanded for emission control. To the target power generation facilities such as thermal power plants using large amounts of fossil fuels with this, the combustion exhaust gas of boilers into contact with an aqueous alkanolamine solution or the like, is a method and recovered to the recovered CO 2 removal in the combustion exhaust gas C
Methods for storing O 2 without releasing it to the atmosphere are being vigorously studied.

【0003】アルカノールアミンとしてはモノエタノー
ルアミン(MEA)、ジエタノールアミン、トリエタノ
ールアミン、メチルジエタノールアミン、ジイソプロパ
ノールアミン、ジグリコールアミン(DGA)などをあ
げることができるが、通常MEAが好んで用いられる。
しかし、MEAに代表される上記のようなアルカノール
アミン水溶液を燃焼排ガス中のCO2 を吸収・除去する
吸収剤として用いても、所定濃度のアミン水溶液の所定
量当たりのCO2 の吸収量、所定濃度のアミン水溶液の
単位アミンモル当たりのCO2 吸収量、所定濃度におけ
るCO2 の吸収速度、さらには吸収後のアルカノールア
ミン水溶液の再生に要する熱エネルギーなどに照らし
て、必ずしも満足のできるものとはいえない。
Examples of the alkanolamine include monoethanolamine (MEA), diethanolamine, triethanolamine, methyldiethanolamine, diisopropanolamine, diglycolamine (DGA), and the like, and MEA is preferably used.
However, even if the alkanolamine aqueous solution represented by MEA as described above is used as an absorbent for absorbing and removing CO 2 in the combustion exhaust gas, the absorption amount of CO 2 per a predetermined amount of the aqueous amine solution having a predetermined concentration, a predetermined amount, In terms of the amount of CO 2 absorbed per unit amine mole of the aqueous amine solution of a given concentration, the absorption rate of CO 2 at a given concentration, and the thermal energy required for regeneration of the aqueous alkanolamine solution after absorption, it is not necessarily satisfactory. Absent.

【0004】また、MEA水溶液を用いて、酸素及びC
2 を含む高温の燃焼排ガス中から気液接触によりCO
2 を吸収・除去を続けると、該CO2 や酸素を含む燃焼
排ガスや吸収溶液と接するCO2 の吸収塔、吸収溶液を
加熱してCO2 を遊離させ吸収溶液を再生させる再生
塔、更には途中の配管、熱交換器、ポンプなど金属を使
用している装置の至るところが腐蝕する。そのため、通
常の化学プラントで採用されている素材を用いる装置設
計では耐用年数が著しく短くなり、実験室的には実施可
能であっても、工業的プロセスとしては到底成立し得な
い。
In addition, oxygen and C are dissolved by using an MEA aqueous solution.
CO by gas-liquid contact from the hot combustion exhaust gas containing O 2
Continuing with the absorption and removal of the 2, the CO 2 and absorption tower of the CO 2 oxygen contact with the flue gas and absorption solution containing, regeneration tower to absorb the solution was heated to liberate the CO 2 to regenerate the absorbent solution, and further Corrosion occurs in piping, heat exchangers, pumps, and other equipment that uses metal. For this reason, in the design of an apparatus using materials used in a normal chemical plant, the service life is significantly shortened, and even if it can be performed in a laboratory, it cannot be realized as an industrial process at all.

【0005】このような酸素及びCO2 を含む燃焼排ガ
スから、MEAあるいはその類似化合物の水溶液からな
るCO2 吸収溶液を用いてCO2 を吸収する装置の腐蝕
を改善する方法としては、米国特許4,440,731
号明細書に提案されている。この提案によれば、前記の
ような吸収溶液に少なくとも50ppm以上の二価の銅
イオン、さらにはこれにジヒドロキシエチルグリシン、
アルカリ金属の炭酸塩、アルカリ金属もしくはアンモニ
ウムの過マンガン酸塩、アルカリ金属炭酸塩もしくはア
ンモニウムのチオシアン酸塩、ニッケルもしくはビスマ
スの酸化物などが併せて添加される。この方法によれ
ば、高酸素濃度の燃焼ガスを処理する際にも、吸収剤の
MEAなどの分解が抑えられると記載されている。この
米国特許の実施例では、アミン化合物としてMEAの水
溶液を用いた試験例のみが記載され、より詳しくはリフ
ラックスしている30%MEA水溶液に30ポンドのC
2 及び15ポンドの酸素を供給し、温度130℃で種
々の腐蝕防止剤の存在下で軟鋼試験片(MILD STEEL COU
PONS) に対する腐蝕促進試験を行っている。その結果、
腐蝕防止剤を添加しない場合の腐蝕度約40〜52mi
l/y(mpy)に対し、200ppmの炭酸銅〔Cu
CO3 ・Cu(OH)2 ・H 2 O、CuCO3 量は56
重量%〕を加えることにより0.9〜1.2mpyまで
腐蝕が抑えられると記載されている。またこれらとは別
に、後述する本発明で用いる一般式〔1〕で表されるア
ミノ酸金属塩の内の一種は水溶液として燃焼排ガスのC
2 回収に用いられ、あるいは別の一種は水溶液として
CO2 及びH2 Sを含む合成ガスなどからH2 Sのみを
選択的回収するために用いる技術が既に知られている。
[0005] Such oxygen and COTwoIncluding combustion exhaust gas
From aqueous solutions of MEA or similar compounds.
COTwoCO using absorption solutionTwoCorrosion of equipment to absorb
As a method of improving the above, US Pat. No. 4,440,731
It is proposed in the specification. According to this proposal,
At least 50 ppm or more of divalent copper in such an absorbing solution
Ions, and also dihydroxyethyl glycine,
Alkali metal carbonate, alkali metal or ammonium
Permanganate, alkali metal carbonate or aluminum
Ammonium thiocyanate, nickel or bismuth
Oxide and the like are also added. This way
For example, when processing combustion gas with high oxygen concentration,
It is described that decomposition of MEA and the like is suppressed. this
In the examples of the US patent, MEA water is used as the amine compound.
Only test examples using solutions are described.
30 lbs of C in a 30% aqueous MEA solution
OTwoAnd 15 lbs of oxygen, seed at 130 ° C
Mild steel specimens (MILD STEEL COU) in the presence of various corrosion inhibitors
PONS). as a result,
Corrosion degree about 40-52mi when no corrosion inhibitor is added
200 ppm of copper carbonate [Cu
COThree・ Cu (OH)Two・ H TwoO, CuCOThreeThe quantity is 56
Wt%] to 0.9 to 1.2 mpy
It is stated that corrosion is suppressed. Also separate from these
In the following, there will be described an atom represented by the general formula [1] used in the present invention described later.
One of the metal salts of amino acid is C
OTwoUsed for recovery, or another as an aqueous solution
COTwoAnd HTwoH from synthetic gas containing STwoOnly S
Techniques used for selective recovery are already known.

【0006】[0006]

【発明が解決しようとする課題】前述のように燃焼排ガ
スからCO2 を効率よく、除去する方法が望まれてい
る。特に、一定濃度のCO2 吸収剤を含む水溶液で燃焼
排ガスを処理する場合、吸収剤単位モル当たりのCO2
吸収量、水溶液の単位体積当たりのCO2 の吸収量、及
び吸収速度の大きい吸収剤を選択することが重要な課題
である。さらにはCO2 の吸収後、CO2 を分離し、吸
収液を再生させる際に必要な熱エネルギ−の少ない吸収
剤が望まれる。とりわけCO2 の吸収能力は大きいにも
拘らず、吸収速度が小さい吸収剤の吸収速度を改善する
ことが望まれる。加えて燃焼排ガスからCO2 を除去す
る際に使用する除去装置は通常金属製、中でもステンレ
ス鋼に比べ安価な炭素鋼製である場合がほとんどであ
り、炭素鋼に対し腐蝕性が抑えられた吸収液であること
が非常に重要となる。
As described above, there is a need for a method for efficiently removing CO 2 from flue gas. In particular, when treating flue gas with an aqueous solution containing a certain concentration of CO 2 absorbent, CO 2 per unit mole of absorbent is used.
It is important to select an absorbent having a large absorption amount, an absorption amount of CO 2 per unit volume of the aqueous solution, and an absorption rate. Furthermore after absorption of CO 2, separating the CO 2, the heat energy required in regenerating the absorbing solution - less absorbent is desired. In particular, it is desired to improve the absorption rate of an absorbent having a small absorption rate despite its large CO 2 absorption capacity. In addition, the removal equipment used to remove CO 2 from the combustion exhaust gas is usually made of metal, especially carbon steel, which is cheaper than stainless steel, in most cases. It is very important that it is a liquid.

【0007】[0007]

【課題を解決するための手段】本発明者らは前記課題に
鑑み、燃焼排ガス中のCO2 を除去する際に用いられる
吸収剤について鋭意検討した結果、特定のアミン酸金属
塩に比較的少量の特定のアミン化合物を混合した混合水
溶液がアミノ酸金属塩の吸収速度を改善する上で特に有
効であり、さらに前記混合水溶液に二価の銅化合物を所
定量含有させることにより炭素鋼に対して著しく腐蝕性
が抑えられるとの知見を得て、本発明を完成させるに至
った。
Means for Solving the Problems In view of the above problems, the present inventors have conducted intensive studies on absorbents used for removing CO 2 in flue gas, and found that a relatively small amount of a specific metal salt of aminic acid is contained in the absorbent. A mixed aqueous solution in which a specific amine compound is mixed is particularly effective in improving the absorption rate of the amino acid metal salt, and the mixed aqueous solution contains a predetermined amount of a divalent copper compound. The knowledge that corrosiveness is suppressed was obtained, and the present invention was completed.

【0008】すなわち本発明は、下記一般式〔1〕で表
されるアミノ酸金属塩(X)100重量部、ピペラジン
(Y)1〜25重量部の範囲、さらに二価の銅イオンに
換算して10〜1000ppmの範囲(混合水溶液に対
する含量)の銅化合物を含有する混合水溶液と大気圧下
の燃焼排ガスとを接触させて、前記燃焼排ガス中のCO
2 を除去する方法である。
That is, the present invention relates to an amino acid metal salt (X) represented by the following general formula (1): 100 parts by weight, piperazine (Y): 1 to 25 parts by weight, and further converted to divalent copper ions. A mixed aqueous solution containing a copper compound in a range of 10 to 1000 ppm (content based on the mixed aqueous solution) is brought into contact with flue gas at atmospheric pressure to reduce CO2 in the flue gas.
This is a method for removing 2 .

【化2】 CH3 NR1 CHR2 COOM 〔1〕 (R1 及びR2 は水素または低級アルキル基を表し、か
つR1 が水素であるときはR2 は低級アルキル基であ
り、R1 が低級アルキル基であるときはR2 は水素であ
り、Mはアルカリ金属を表す。)
## STR2 ## CH 3 NR 1 CHR 2 COOM (1) (R 1 and R 2 represent hydrogen or a lower alkyl group, and R 2 when R 1 is hydrogen a lower alkyl group, R 1 is When it is a lower alkyl group, R 2 is hydrogen and M represents an alkali metal.)

【0009】[0009]

【作用】本発明で用いられる一般式〔1〕で表されるア
ミノ酸金属塩(X)のR1 及びR2 で表される低級アル
キル基としては、メチル基、エチル基、プロピル基など
を例示できるが、特に好ましくはメチル基である。また
Mで表されるアルカリ金属としてはナトリウム、カリウ
ムなどが例示されるが、カリウムであることが好まし
い。一般式〔1〕で表されるアミノ酸金属塩(X)とし
ては、ジメチルアミノ酢酸カリウム、α−メチルアミノ
プロピオン酸カリウムが例示され、なかでもジメチルア
ミノ酢酸カリウムが好ましい。
The lower alkyl group represented by R 1 and R 2 in the amino acid metal salt (X) represented by the general formula [1] used in the present invention is exemplified by a methyl group, an ethyl group and a propyl group. Although it is possible, a methyl group is particularly preferable. Examples of the alkali metal represented by M include sodium and potassium, and potassium is preferable. Examples of the amino acid metal salt (X) represented by the general formula [1] include potassium dimethylaminoacetate and potassium α-methylaminopropionate, with potassium dimethylaminoacetate being preferred.

【0010】本発明でアミノ酸金属塩(X)と共に用い
られるのはピペラジン(Y)である。アミノ酸金属塩
(X)とピペラジン(Y)の混合割合はアミノ酸金属塩
(X)100重量部に対し、ピペラジン(Y)が1〜2
5重量部の範囲、さらに好ましくは1〜10重量部の範
囲である。
In the present invention, piperazine (Y) is used together with the amino acid metal salt (X). The mixing ratio of the amino acid metal salt (X) and the piperazine (Y) was such that piperazine (Y) was 1 to 2 with respect to 100 parts by weight of the amino acid metal salt (X).
It is in the range of 5 parts by weight, more preferably in the range of 1 to 10 parts by weight.

【0011】燃焼排ガス中のCO2 の吸収液として使用
するアミノ酸金属塩(X)とピペラジン(Y)、さらに
後記する二価の銅化合物を加えた混合水溶液(以下「吸
収液」とも称す)中のアミノ酸金属塩(X)の濃度は通
常15〜65重量%である。
In a mixed aqueous solution (hereinafter also referred to as "absorbent solution") to which an amino acid metal salt (X) and piperazine (Y) used as an absorbing solution of CO 2 in flue gas and a divalent copper compound described later are added. The concentration of the amino acid metal salt (X) is usually 15 to 65% by weight.

【0012】また本発明で用いる混合水溶液には、二価
の銅化合物が加えられる。このような銅化合物としては
限定的ではないが、好ましくは、例えば炭酸銅〔CuC
3・Cu(OH)2 ・H2 O〕があげられる。炭酸銅
は別名塩基性炭酸銅とも呼ばれるものであり、その添加
量は二価の銅イオンに換算して10〜1000ppm、
好ましくは100〜800ppm、さらに好ましくは2
00〜600ppmの範囲である。
A divalent copper compound is added to the mixed aqueous solution used in the present invention. Although such a copper compound is not limited, preferably, for example, copper carbonate [CuC
O 3 .Cu (OH) 2 .H 2 O]. Copper carbonate is also known as basic copper carbonate, its addition amount is 10 to 1000 ppm in terms of divalent copper ions,
Preferably 100 to 800 ppm, more preferably 2
The range is from 00 to 600 ppm.

【0013】さらに本発明における大気圧下とは、燃焼
排ガスを供給するためブロワなどを作用させる程度の大
気圧近傍の圧力範囲は含まれるものである。また燃焼排
ガスとの接触時の混合水溶液の温度は通常30〜70℃
の範囲である。
Further, the term "atmospheric pressure" in the present invention includes a pressure range near atmospheric pressure at which a blower or the like acts to supply combustion exhaust gas. The temperature of the mixed aqueous solution at the time of contact with the combustion exhaust gas is usually 30 to 70 ° C.
Range.

【0014】本発明の燃焼排ガス中のCO2 を除去する
方法で採用できるプロセスは、特に限定されないが、そ
の一例について図1によって説明する。図1では主要設
備のみ示し、付属設備は省略した。図1において、1は
脱CO2 塔、2は下部充填部、3は上部充填部またはト
レイ、4は脱CO2 塔燃焼排ガス供給口、5は脱CO2
燃焼排ガス排出口、6は吸収液供給口、7はノズル、8
は必要に応じて設けられる燃焼排ガス冷却器、9はノズ
ル、10は充填部、11は加湿冷却水循環ポンプ、12
は補給水供給ライン、13はCO2 を吸収した吸収液排
出ポンプ、14は熱交換器、15は吸収液再生(以下、
「再生」とも略称)塔、16はノズル、17は下部充填
部、18は再生加熱器(リボイラ)、19は上部充填
部、20は還流水ポンプ、21はCO2分離器、22は
回収CO2 排出ライン、23は再生塔還流冷却器、24
はノズル、25は再生塔還流水供給ライン、26は燃焼
排ガス供給ブロワ、27は冷却器、28は再生塔還流水
供給口である。
The process that can be employed in the method of the present invention for removing CO 2 from flue gas is not particularly limited, but one example thereof will be described with reference to FIG. In FIG. 1, only the main equipment is shown, and the auxiliary equipment is omitted. In FIG. 1, 1 is a CO 2 removal tower, 2 is a lower filling section, 3 is an upper filling section or tray, 4 is a CO 2 removal tower exhaust gas inlet, and 5 is a CO 2 removal section.
Combustion exhaust gas outlet, 6 is an absorbent supply port, 7 is a nozzle, 8
Is a flue gas cooler provided as required, 9 is a nozzle, 10 is a filling section, 11 is a humidification cooling water circulation pump, 12
Is a make-up water supply line, 13 is an absorption liquid discharge pump that has absorbed CO 2 , 14 is a heat exchanger, 15 is an absorption liquid regeneration (hereinafter, referred to as
Tower, 16 is a nozzle, 17 is a lower filling section, 18 is a regenerative heater (reboiler), 19 is an upper filling section, 20 is a reflux water pump, 21 is a CO 2 separator, and 22 is recovered CO. 2 discharge line, 23 is a regeneration tower reflux condenser, 24
Is a nozzle, 25 is a regeneration tower reflux water supply line, 26 is a combustion exhaust gas supply blower, 27 is a cooler, and 28 is a regeneration tower reflux water supply port.

【0015】図1において、燃焼排ガスは燃焼排ガス供
給ブロワ26により燃焼排ガス冷却器8に押込められ、
ノズル9からの加湿冷却水と充填部10で接触し、加湿
冷却され、脱CO2 塔燃焼排ガス供給口4を通って脱C
2 塔1へ導かれる。燃焼排ガスと接触した加湿冷却水
は燃焼排ガス冷却器8の下部に溜り、ポンプ11により
ノズル9へ循環使用される。加湿冷却水は燃焼排ガスを
加湿冷却することにより徐々に失われるので、補給水供
給ライン12により補充される。燃焼排ガスを加湿冷却
の状態より、さらに冷却する場合は、加湿冷却循環ポン
プ11とノズル9との間に熱交換器を置き、加湿冷却水
を冷却して燃焼排ガス冷却器8に供給することにより可
能となる。
In FIG. 1, flue gas is pushed into a flue gas cooler 8 by a flue gas supply blower 26,
Contact with humidifying cooling water and the filling section 10 from the nozzle 9, is fogging, de-C through the de-CO 2 tower combustion exhaust gas feed port 4
It is led to the O 2 tower 1. The humidified cooling water in contact with the combustion exhaust gas accumulates in the lower part of the combustion exhaust gas cooler 8 and is circulated to the nozzle 9 by the pump 11. Since the humidified cooling water is gradually lost by humidifying and cooling the combustion exhaust gas, it is replenished through the makeup water supply line 12. When the combustion exhaust gas is further cooled from the humidified cooling state, a heat exchanger is placed between the humidification cooling circulation pump 11 and the nozzle 9 to cool the humidification cooling water and supply it to the combustion exhaust gas cooler 8. It becomes possible.

【0016】脱CO2 塔1に押し込められた燃焼排ガス
はノズル7から供給される一定濃度の吸収液と下部充填
部2で向流接触させられ、燃焼排ガス中のCO2 は吸収
液により吸収除去され、脱CO2 燃焼排ガスは上部充填
部3へと向う。脱CO2 塔1に供給される吸収液はCO
2 を吸収し、その吸収による反応熱のため、通常吸収液
供給口6における温度よりも高温となり、CO2 を吸収
した吸収液排出ポンプ13により熱交換器14に送られ
て加熱され、吸収液再生塔5へ導かれる。再生された吸
収液の温度調節は熱交換器14あるいは必要に応じて熱
交換器14と吸収液供給口6の間に設けられる冷却器2
7により行うことができる。
The flue gas pushed into the CO 2 removal tower 1 is brought into countercurrent contact with the absorbing solution of a constant concentration supplied from the nozzle 7 in the lower filling section 2, and CO 2 in the flue gas is absorbed and removed by the absorbing solution. Then, the CO 2 -free flue gas is directed to the upper filling section 3. The absorbing solution supplied to the CO 2 removal tower 1 is CO
2 is absorbed, and the temperature of the reaction is normally higher than the temperature at the absorption liquid supply port 6 due to the heat of reaction caused by the absorption. The absorption liquid is sent to the heat exchanger 14 by the absorption liquid discharge pump 13 that has absorbed CO 2 and is heated. It is led to the regeneration tower 5. The temperature of the regenerated absorbent is controlled by the heat exchanger 14 or, if necessary, the cooler 2 provided between the heat exchanger 14 and the absorbent supply port 6.
7 can be performed.

【0017】再生塔15では、再生加熱器18による加
熱により下部充填部17で吸収液が再生され、熱交換器
14及び必要に応じて冷却器27により冷却されて脱C
2塔1へ戻される。吸収液再生塔15の上部におい
て、吸収液から分離されたCO 2 はノズル24より供給
される還流水と接触し、再生塔還流冷却器23により冷
却され、CO2 分離器21にてCO2 に同伴した水蒸気
が凝縮した還流水と分離され、回収CO2 排出ライン2
2よりCO2 回収工程へ導かれる。還流水の一部は還流
水ポンプ20で、再生塔15へ還流され、一部は再生塔
還流水供給ライン25を経て脱CO2 塔1の再生塔還流
水供給口28に供給される。この再生塔還流水には微量
の吸収液が含まれているので、脱CO2 塔1の上部充填
部3で排ガスと接触し、排ガス中に含まれる微量のCO
2 の除去に貢献する。
In the regeneration tower 15, the heating by the regeneration heater 18 is performed.
The absorption liquid is regenerated in the lower filling section 17 by heat, and the heat exchanger
14 and, if necessary, cooled by a cooler 27 to remove C
OTwoReturned to Tower 1. Above the absorption liquid regeneration tower 15
And the CO separated from the absorbing solution TwoIs supplied from nozzle 24
And is cooled by the regenerative tower reflux cooler 23.
Rejected, COTwoCO in the separator 21TwoWater vapor associated with
Is separated from the condensed reflux water, and the recovered COTwoDischarge line 2
CO from 2TwoGuided to the recovery process. Part of the reflux water is refluxed
The water is returned to the regeneration tower 15 by the water pump 20, and a part is regenerated.
CO 2 removal through the reflux water supply line 25TwoRegeneration tower reflux of tower 1
The water is supplied to the water supply port 28. A trace amount of this recycle tower reflux water
Desorbed CO.TwoTop filling of tower 1
Contact with the exhaust gas in the part 3 and trace amount of CO contained in the exhaust gas
TwoContributes to the removal of.

【0018】[0018]

【実施例】以下、実施例により本発明を具体的に説明す
る。なお、本発明の混合水溶液のCO2 に対する吸収性
能は二価の銅化合物の有無により殆ど変化がないので、
吸収性能に関しては、二価の銅化合物を添加していない
混合水溶液の結果を参考例及び比較参考例として示し
た。
The present invention will be described below in detail with reference to examples. Since the absorption performance of the mixed aqueous solution of the present invention for CO 2 hardly changes depending on the presence or absence of the divalent copper compound,
Regarding the absorption performance, the results of the mixed aqueous solution to which the divalent copper compound was not added are shown as Reference Examples and Comparative Reference Examples.

【0019】(参考例1〜4、比較参考例1〜4)恒温
槽内に設置したガラス製反応容器にアミノ酸金属塩
(X)としてジメチルアミノ酢酸カリウムまたはα−メ
チルアミノプロピオン酸カリウム、及びピペラジンを表
1に示す濃度で混合した水溶液50mlを入れ、温度4
0℃で攪拌下、試験ガスを大気圧下1リットル/分の流
速で通した。試験ガスはCO2 :10モル%、O2 :3
モル%、N2 :87モル%の組成を有する40℃のモデ
ル燃焼排ガス(LNG焚き相当)を用いた。
(Reference Examples 1 to 4, Comparative Reference Examples 1 to 4) Potassium dimethylaminoacetate or potassium α-methylaminopropionate, and piperazine as amino acid metal salts (X) were placed in a glass reaction vessel installed in a thermostat. Was mixed at the concentration shown in Table 1 and the temperature was 4
Under stirring at 0 ° C., the test gas was passed at atmospheric pressure at a flow rate of 1 liter / min. Test gas: CO 2 : 10 mol%, O 2 : 3
A model combustion exhaust gas (equivalent to LNG firing) at 40 ° C. having a composition of mol% and N 2 : 87 mol% was used.

【0020】試験ガスを通し続け、出入りガスのCO2
濃度が等しくなった時点で、吸収液に含まれるCO2
CO2 分析計(全有機炭素計)を用いて測定し、CO2
飽和吸収量(Nm3 CO2 /m3 水溶液、モルCO2
モルアミノ酸金属塩)を求めた。またガラス製反応器か
ら排出されるガスの組成をガス分析器で連続的に測定
し、それに含まれる最初のCO2 濃度(初期出口ガスC
2 濃度)、及びCO2 の吸収率(初期吸収率)を求め
た。
The test gas continues to pass through, and the CO 2
When the concentrations become equal, CO 2 contained in the absorbing solution was measured using a CO 2 analyzer (total organic carbon meter), and CO 2 was measured.
Saturated absorption (Nm 3 CO 2 / m 3 aqueous solution, molar CO 2 /
Molar amino acid metal salt). The composition of the gas discharged from the glass reactor is continuously measured by a gas analyzer, and the initial CO 2 concentration (initial outlet gas C) contained therein is measured.
O 2 concentration) and the absorption rate of CO 2 (initial absorption rate) were determined.

【0021】表1の結果から明らかなように、アミノ酸
金属塩(X)にピペラジン(Y)を比較的少量混合して
用いることにより、アミノ酸金属塩(X)を単独で用い
る場合よりも初期出口ガスCO2 濃度が著しく低くなっ
ており、吸収速度の大幅な向上が達成されていることが
分かる。これは特にジメチルアミノ酢酸カリウムにピペ
ラジンを少量用いた場合に顕著である。同じくジメチル
アミノ酢酸カリウムにピペラジンを少量用いた場合に、
90%飽和に要する時間がかなり短縮されることにも表
れている。なお、表1には比較のため、ピペラジン及び
MEAを単独で用いた場合の結果を示した。
As is clear from the results in Table 1, by using a relatively small amount of piperazine (Y) mixed with the amino acid metal salt (X), the initial outlet can be reduced as compared with the case where the amino acid metal salt (X) is used alone. It can be seen that the gas CO 2 concentration is significantly lower, and that the absorption rate has been greatly improved. This is particularly noticeable when a small amount of piperazine is used for potassium dimethylaminoacetate. Similarly, when a small amount of piperazine is used for potassium dimethylaminoacetate,
It also shows that the time required for 90% saturation is significantly reduced. For comparison, Table 1 shows the results when piperazine and MEA were used alone.

【0022】[0022]

【表1】 [Table 1]

【0023】(参考例5、比較参考例5)吸収液を再生
させる際に必要な熱エネルギ−を調べるため、参考例1
及び比較参考例4に用いた吸収液とCO2 との反応熱
(吸収発熱量)を測定した。吸収液200gを断熱試験
器に入れ、マグネチックスターラーで攪拌し、水溶液の
温度が安定するまで放置した。次に純CO2 を約200
cc/分の速度で試験器内に吹込み、試験器の入口及び
出口のCO2 流量、吸収液の温度を連続的に記録した。
試験器出口のCO2 流量が急激に増加した時点で試験を
終了した。吸収液に吸収されたCO2 のモル数(モル負
荷)、CO2 の吹込み開始からの上昇温度から吸収液が
CO2 を1モル吸収するときの反応熱量(Kcal/モ
ル)を吸収CO2 のモル区間別に求めた。なお、試験器
の熱容量は水200gを試験器に入れ、30.0V、
0.3Aで所定時間ヒーターに通電し、上昇温度から求
めた。また、試験の温度範囲は20〜80℃、測定時の
室温は20〜25℃であった。結果を表2に示す。
(Reference Example 5, Comparative Reference Example 5) In order to examine the heat energy required for regenerating the absorbent, Reference Example 1 was used.
The heat of reaction (absorption heat value) between the absorbing solution used in Comparative Reference Example 4 and CO 2 was measured. 200 g of the absorbing solution was placed in an adiabatic tester, stirred with a magnetic stirrer, and allowed to stand until the temperature of the aqueous solution was stabilized. Then pure CO 2 from about 200
cc / min at blowing the the tester, CO 2 flow rate of the inlet and outlet of the tester and the temperature of the absorbing solution continuously recorded.
The test was terminated when the CO 2 flow rate at the outlet of the tester sharply increased. Absorbing liquid moles of absorbed CO 2 to (moles load), absorbs reaction heat (Kcal / mol) when absorbing liquid from a raised temperature from blowing initiation of CO 2 is 1 mol absorb CO 2 CO 2 Was calculated for each mole interval. In addition, the heat capacity of the tester was as follows.
The heater was energized at 0.3 A for a predetermined time, and the temperature was determined from the temperature rise. The temperature range of the test was 20 to 80 ° C, and the room temperature at the time of measurement was 20 to 25 ° C. Table 2 shows the results.

【0024】[0024]

【表2】 * ピペラジン:3wt%添加 表2から分かるように、アミノ酸金属塩とピペラジンの
混合水溶液とCO2 との反応熱は、MEAの場合よりも
小さく、これからも再生に必要なエネルギ−がMEAの
場合より著しく小さく有利であることが分かる。
[Table 2] * Piperazine: 3 wt% addition As can be seen from Table 2, the heat of reaction between the mixed aqueous solution of amino acid metal salt and piperazine and CO 2 is smaller than in the case of MEA, and the energy required for regeneration will be greater than in the case of MEA. It is found to be significantly smaller and advantageous.

【0025】(実施例1,2、比較例1,2)炭素鋼
(SS41)の試験片(表面積約1.9inch2 、重
量約8.2g)をJIS R6252に規定するNo.
120、No.240、No.400の研磨紙の順で用
いて磨き、その後アセトンで洗浄し、真空乾燥し、重量
を測定した。次いでこの試験片を予めCO2 を飽和させ
た吸収液700mlを満たしたガラス試験器に移し、こ
れを大気中で2リットルのステンレス製加圧容器内に設
置し、密封した。このステンレス製加圧容器を高温乾燥
器内で、温度130℃、48時間静置後、試験片を取り
出し、洗浄し、真空乾燥後重量測定した。なお、試験は
同じ吸収液について二度繰り返した。その結果を表3に
示す。なお、表中、「銅イオン」とあるのは、吸収溶液
中に二価の銅イオンに換算した表示量の銅イオンを含む
ように炭素銅を添加したことを表す。
(Examples 1 and 2 and Comparative Examples 1 and 2) A test piece (surface area: about 1.9 inch 2 , weight: about 8.2 g) of carbon steel (SS41) was prepared according to JIS R6252.
120, no. 240, no. It was polished using 400 abrasive papers in that order, then washed with acetone, vacuum dried and weighed. Next, the test piece was transferred to a glass tester filled with 700 ml of an absorbing solution saturated with CO 2 in advance, and placed in a 2 liter stainless steel pressurized container in the atmosphere and sealed. The stainless steel pressurized container was allowed to stand at a temperature of 130 ° C. for 48 hours in a high-temperature dryer, and then the test piece was taken out, washed, vacuum-dried, and weighed. The test was repeated twice for the same absorbent. Table 3 shows the results. In the table, “copper ion” means that carbon copper was added to the absorption solution so as to include the indicated amount of copper ion in terms of divalent copper ion.

【0026】[0026]

【表3】 *:( )内はmpyの換算値を示す。[Table 3] *: () Shows the converted value of mpy.

【0027】[0027]

【発明の効果】以上詳細に述べたごとく、本発明の方法
により大気圧下の燃焼排ガスに対し、特定のアミノ酸金
属塩(X)とピペラジン(Y)の混合水溶液にさらに二
価の銅化合物を含有させ、CO2 の吸収液として用いる
ことにより、アミノ酸金属塩(X)を単独で用いる場合
よりも、CO2 の吸収速度の点で向上が達成され、また
腐蝕性、特に炭素鋼に対する腐蝕性が著しく改善される
こととなった。また、MEAを用いる場合よりも、再生
エネルギの観点からも、CO2 を効率よく除去できるこ
ととなった。
As described above in detail, according to the method of the present invention, a divalent copper compound is further added to a mixed aqueous solution of a specific amino acid metal salt (X) and piperazine (Y) against flue gas at atmospheric pressure. By containing it and using it as a CO 2 absorbing solution, an improvement in the CO 2 absorption rate is achieved as compared with the case where the amino acid metal salt (X) is used alone, and the corrosiveness, particularly the corrosiveness to carbon steel. Has been significantly improved. Further, as compared with the case of using the MEA, from the viewpoint of regeneration energy, it became to the CO 2 can be efficiently removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で採用できる工程の一例の説明図。FIG. 1 is a diagram illustrating an example of a process that can be employed in the present invention.

フロントページの続き (72)発明者 飯島 正樹 東京都千代田区丸の内二丁目5番1号 三菱重工業株式会社本社内 (72)発明者 光岡 薫明 広島県広島市西区観音新町四丁目6番22 号 三菱重工業株式会社 広島研究所内 (56)参考文献 特開 昭52−63171(JP,A) 特開 昭52−125491(JP,A) 特開 平6−91135(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/62 Continued on the front page (72) Inventor Masaki Iijima 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Heavy Industries, Ltd. Headquarters (72) Inventor Kaoru Mitsuoka 4-2-2 Kanon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Mitsubishi (56) References JP-A-52-63171 (JP, A) JP-A-52-154991 (JP, A) JP-A-6-91135 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01D 53/62

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記一般式〔1〕で表されるアミノ酸金
属塩(X)100重量部、ピペラジン(Y)1〜25重
量部の範囲、さらに二価の銅イオンに換算して10〜1
000ppmの範囲(混合水溶液に対する含量)の銅化
合物を含有する混合水溶液と大気圧下の燃焼排ガスとを
接触させて、前記燃焼排ガス中のCO 2 を除去する方
法。 【化1】 CH3 NR1 CHR2 COOM 〔1〕 (R1 及びR2 は水素または低級アルキル基を表し、か
つR1 が水素であるときはR2 は低級アルキル基であ
り、R1 が低級アルキル基であるときはR2 は水素であ
り、Mはアルカリ金属を表す。)
An amino acid gold represented by the following general formula [1]:
100 parts by weight of genus salt (X), 1 to 25 piperazine (Y)
Parts by weight, and further 10 to 1 in terms of divalent copper ions.
Copper in the range of 000 ppm (content based on mixed aqueous solution)
The mixed aqueous solution containing the compound and the flue gas at atmospheric pressure.
The CO in the flue gas is brought into contact TwoWho remove
Law. Embedded image CHThreeNR1CHRTwoCOOM [1] (R1And RTwoRepresents hydrogen or a lower alkyl group;
One R1When R is hydrogenTwoIs a lower alkyl group
R1Is a lower alkyl group;TwoIs hydrogen
And M represents an alkali metal. )
JP24291494A 1994-03-09 1994-10-06 Method for removing carbon dioxide in flue gas Expired - Fee Related JP3197172B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24291494A JP3197172B2 (en) 1994-10-06 1994-10-06 Method for removing carbon dioxide in flue gas
DE69503937T DE69503937T2 (en) 1994-03-09 1995-03-03 Process for removing carbon dioxide from combustion gases
EP95103018A EP0671200B1 (en) 1994-03-09 1995-03-03 Method for the removal of carbon dioxide from combustion exhaust gas
CN95102255A CN1050528C (en) 1994-03-09 1995-03-08 Method for the removal of carbon dioxide from combustion exhaust gas
US08/701,069 US5744110A (en) 1994-03-09 1996-08-21 Method for the removal of carbon dioxide from combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24291494A JP3197172B2 (en) 1994-10-06 1994-10-06 Method for removing carbon dioxide in flue gas

Publications (2)

Publication Number Publication Date
JPH08103629A JPH08103629A (en) 1996-04-23
JP3197172B2 true JP3197172B2 (en) 2001-08-13

Family

ID=17096096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24291494A Expired - Fee Related JP3197172B2 (en) 1994-03-09 1994-10-06 Method for removing carbon dioxide in flue gas

Country Status (1)

Country Link
JP (1) JP3197172B2 (en)

Also Published As

Publication number Publication date
JPH08103629A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
JP2895325B2 (en) Method for removing carbon dioxide in flue gas
KR0123107B1 (en) Method for removing carbon dioxide from combustion exhaust gas
US5744110A (en) Method for the removal of carbon dioxide from combustion exhaust gas
US4101633A (en) Process and composition for removing carbon dioxide containing acidic gases from gaseous mixtures
US5700437A (en) Method for removing carbon dioxide from combustion exhaust gas
JP5230080B2 (en) Absorption liquid, CO2 removal apparatus and method
US6423282B1 (en) Method for the regeneration of an acid gas absorbing fluid containing methydiethanolamine and a (lower alkyl) piperazine
JP3761960B2 (en) Method for removing carbon dioxide in gas
JP2871334B2 (en) Method of removing carbon dioxide from flue gas
US6689332B1 (en) Process for removing carbon dioxide from combustion gases
JP2009006275A (en) Efficient recovering method of carbon dioxide in exhaust gas
JP2006240966A (en) Method for recovering carbon dioxide in exhaust gas by absorption and releasing
JP2871335B2 (en) Method for removing carbon dioxide in flue gas
JP6479543B2 (en) Acid gas absorbent, acid gas removal method, and acid gas removal apparatus
JPH05184867A (en) Method for recovering carbon dioxide in combustion exhaust gas
JP2786560B2 (en) Apparatus and method for removing carbon dioxide from flue gas
JP3197173B2 (en) Method of removing carbon dioxide from flue gas
JP2871422B2 (en) Method for removing carbon dioxide in flue gas
JP3197172B2 (en) Method for removing carbon dioxide in flue gas
JP3426685B2 (en) Method for removing carbon dioxide in flue gas
JP3233809B2 (en) Method for removing carbon dioxide in flue gas
JP2871447B2 (en) Method for removing carbon dioxide in flue gas
JP2007000702A (en) Liquid absorbent, and device and method for removing co2 or h2s, or both
JPH08257353A (en) Process for removing carbon dioxide in combustion exhaust gas
JPH05237341A (en) Method for removing carbon dioxide in waste combustion gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010508

LAPS Cancellation because of no payment of annual fees