JPH0794201A - Cooling apparatus for fuel cell and controlling method thereof - Google Patents

Cooling apparatus for fuel cell and controlling method thereof

Info

Publication number
JPH0794201A
JPH0794201A JP5240760A JP24076093A JPH0794201A JP H0794201 A JPH0794201 A JP H0794201A JP 5240760 A JP5240760 A JP 5240760A JP 24076093 A JP24076093 A JP 24076093A JP H0794201 A JPH0794201 A JP H0794201A
Authority
JP
Japan
Prior art keywords
cooling water
flow rate
fuel cell
heat exchanger
secondary cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5240760A
Other languages
Japanese (ja)
Other versions
JP3310412B2 (en
Inventor
Nobuhiro Iwasa
信弘 岩佐
Yuji Sawada
雄治 澤田
Norihisa Kamiya
規寿 神家
Shunsuke Oga
俊輔 大賀
Yasumiki Kubota
康幹 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Original Assignee
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Osaka Gas Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24076093A priority Critical patent/JP3310412B2/en
Publication of JPH0794201A publication Critical patent/JPH0794201A/en
Application granted granted Critical
Publication of JP3310412B2 publication Critical patent/JP3310412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent bumping of secondary cooling water and scale formation by installing a flow rate controlling mechanism to control the flow rate of the secondary cooling water in two stages of high and low and making a slight amount of secondary cooling water possible to flow even in the case the cell cooling water supply to a heat exchanger is shut by a three-way valve. CONSTITUTION:A three-way valve 8 is set on A side at the time of starting and normal driving of a cooling apparatus. At the time a shutoff valve 11 of a two-stage flow rate controlling mechanism 20 is closed and a slight amount of secondary cooling water 10W whose flow rate is throttled by a throttling mechanism 12 flows in the secondary cooling water system 10, so that heat is released from the three-way valve 8 to a heat exchanger 9 and boiling of the secondary cooling water 10W remaining in the heat exchanger 9 is prevented. Meanwhile, when the driving of a fuel cell power generating apparatus is stopped, the three-way valve 8 is switched to B side and at the same time the shutoff valve 11 of the two-stage flow rate controlling system 20 is opened, so that the cell cooling water 1W is cooled by a large amount of secondary cooling water 10W which flows in the secondary cooling water system and fuel cell stacks are cooled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、燃料電池スタックの
冷却を三方切換え弁の切換えによって水蒸気分離器また
は熱交換器で行う燃料電池用冷却装置、および熱交換器
への二次冷却水の通流制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell cooling device for cooling a fuel cell stack with a steam separator or a heat exchanger by switching a three-way switching valve, and a secondary cooling water passage to the heat exchanger. Flow control method.

【0002】[0002]

【従来の技術】図5は水冷式りん酸型燃料電池発電装置
を例に示す従来の冷却装置の概略系統図であり、単位セ
ルの積層体からなる燃料電池スタック1は複数の単位セ
ル毎に積層された水冷パイプを有する冷却板7を備え、
この水冷パイプとの間に三方切換え弁8,電池冷却水循
環ポンプ5,および電気ヒ−タ6を有する水蒸気分離器
4からなる電池冷却水1Wの循環系が形成される。さら
に三方切換え弁8のC−B間を通して循環系に切換え接
続可能に連結された熱交換器9が設けられ、例えば遮断
弁11を有する二次冷却水系10に低温の二次冷却水1
0Wを流すことにより高温の電池冷却水1Wを冷却する
よう構成される。
2. Description of the Related Art FIG. 5 is a schematic system diagram of a conventional cooling device showing a water-cooled phosphoric acid fuel cell power generator as an example. A fuel cell stack 1 composed of a unit cell stack has a plurality of unit cells. A cooling plate 7 having laminated water cooling pipes,
A circulation system for the battery cooling water 1W is formed between the water cooling pipe and the three-way switching valve 8, the battery cooling water circulation pump 5, and the steam separator 4 having the electric heater 6. Further, a heat exchanger 9 is provided which is connected to the circulation system through C-B of the three-way switching valve 8 so as to be switchably connectable. For example, a secondary cooling water system 10 having a shutoff valve 11 is connected to a low temperature secondary cooling water 1
It is configured to cool 1 W of high-temperature battery cooling water by flowing 0 W.

【0003】このように構成された水冷式りん酸型燃料
電池発電装置の運転は、その始動に際し、三方切換え弁
8をA側として循環ポンプ5により電池冷却水1Wを冷
却板7の水冷パイプおよび水蒸気分離器4間で循環し、
この状態で電気ヒ−タ6によって水蒸気分離器4内の電
池冷却水1Wを燃料電池の運転温度(例えば190〜2
00°C )近傍に予熱することにより、燃料電池スタッ
ク1をその運転温度近くに加熱昇温させる。燃料電池温
度が運転可能な温度に到達した時点で電気ヒ−タ6を切
り、反応空気供給装置3から反応空気を,燃料改質装置
2から燃料ガスを燃料電池の酸化剤極および燃料極にそ
れぞれ供給することにより電気化学反応に基づく発電運
転が開始される。また、電気化学反応は発熱反応であ
り、燃料電池スタック1から発電生成熱を奪って昇温し
た電池冷却水1Wは水蒸気分離器4内で水蒸気を分離す
ることによって冷却され、冷却した電池冷却水が冷却板
7に還流されることによって燃料電池スタック1を運転
温度に維持する冷却が行われる。さらに、水蒸気分離器
4内で分離されたスチ−ムは原燃料と混合されて燃料改
質装置2に供給され、水蒸気改質反応に利用されるとと
もに、熱回収用蒸気として図示しない排熱回収系に供給
され、その供給量の制御によって電池冷却水1Wの温度
が燃料電池の運転温度より低い一定温度に制御される。
In the operation of the water-cooled phosphoric acid fuel cell power generator configured as described above, at the time of its start-up, the three-way switching valve 8 is set to the A side to circulate 1W of the cell cooling water by the circulation pump 5 to the water cooling pipe of the cooling plate 7 and Circulates between the steam separators 4,
In this state, the electric heater 6 supplies 1 W of the cell cooling water in the steam separator 4 to the operating temperature of the fuel cell (for example, 190 to 2).
The fuel cell stack 1 is heated to a temperature close to its operating temperature by preheating in the vicinity of 00 ° C. When the temperature of the fuel cell reaches the operable temperature, the electric heater 6 is turned off, and the reaction air is supplied from the reaction air supply device 3 and the fuel gas is supplied from the fuel reforming device 2 to the oxidizer electrode and the fuel electrode of the fuel cell. By supplying each, the power generation operation based on the electrochemical reaction is started. Further, the electrochemical reaction is an exothermic reaction, and the cell cooling water 1W that has been heated by depriving the fuel cell stack 1 of heat generated by power generation is cooled by separating water vapor in the water vapor separator 4 and cooled cell cooling water. Are circulated to the cooling plate 7 to cool the fuel cell stack 1 at the operating temperature. Further, the steam separated in the steam separator 4 is mixed with the raw fuel and supplied to the fuel reforming apparatus 2 to be used for the steam reforming reaction and also as exhaust heat recovery (not shown) as heat recovery steam. The temperature of the cell cooling water 1W supplied to the system is controlled to a constant temperature lower than the operating temperature of the fuel cell by controlling the supply amount.

【0004】一方、発電運転の停止時には、燃料電池の
出力を絞った状態で三方切換え弁8をB側に切り換えて
熱交換器9を電池冷却水1Wの循環通路に組み込み、二
次冷却水系10の遮断弁11を開いて二次冷却水10W
を熱交換器に通流し、電池冷却水1Wを冷却する運転モ
−ド(発電冷却運転)を行い、燃料電池温度があらかじ
め定まる運転停止温度にまで低下した時点で初めて電流
を遮断し、かつ反応空気および燃料ガスの供給を停止し
て燃料電池発電装置としての運転操作を終了する。すな
わち、燃料電池の出力電流をその運転温度で遮断する
と、単位セルの電極間電位差が開回路電圧に上昇し、燃
料電池の電極触媒が高温開回路電圧に曝されて劣化する
現象を示すことが知られており、発電冷却運転を行って
燃料電池温度を開回路電圧による触媒の劣化が問題にな
らない温度まで下げた後、電流の遮断および反応空気お
よび燃料ガスの供給を停止することにより、燃料電池の
劣化を防止することができる。
On the other hand, when the power generation operation is stopped, the three-way switching valve 8 is switched to the B side while the output of the fuel cell is throttled, and the heat exchanger 9 is installed in the circulation passage of the battery cooling water 1W, and the secondary cooling water system 10 is connected. Open the shutoff valve 11 of the secondary cooling water 10W
Flow into the heat exchanger to carry out the operation mode (power generation cooling operation) of cooling the battery cooling water 1W, and the current is interrupted and the reaction is stopped only when the fuel cell temperature drops to the predetermined operation stop temperature. The supply of air and fuel gas is stopped to complete the operation of the fuel cell power generator. That is, when the output current of the fuel cell is cut off at its operating temperature, the potential difference between the electrodes of the unit cell rises to the open circuit voltage, and the electrode catalyst of the fuel cell may be exposed to the high temperature open circuit voltage and deteriorate. It is known that the fuel cell temperature is lowered to a temperature at which catalyst deterioration due to open circuit voltage is not a problem by performing a power generation cooling operation, then interrupting the current and stopping the supply of reaction air and fuel gas It is possible to prevent deterioration of the battery.

【0005】[0005]

【発明が解決しようとする課題】上述の運転方法によれ
ば、熱交換器9は発電冷却運転時に電池冷却水の冷却器
として利用されるのみであり、定常運転中は三方切換え
弁8はA側に切り換えられて電池冷却水1Wの循環が停
止するとともに、遮断弁11も遮断されて二次冷却水1
0Wの通流も停止され、熱交換器内には電池冷却水およ
び二次冷却水が滞留した状態となる。この状態で水蒸気
分離器4で燃料電池スタック1を冷却する定常的な発電
運転を継続して行うと、三方切換え弁8と熱交換器9が
比較的近い位置にあって短い配管で連結されている場
合、三方切換え弁から熱交換器への熱伝導によって熱交
換器が加熱され、熱交換器9内に滞留した電池冷却水1
Wの温度が130〜150°Cに昇温し、この時点で熱
交換器内に滞留している二次冷却水10Wが沸騰し、突
沸現象により熱交換器9に機械的衝撃が加わるととも
に、衝撃音が発生し、かつ時間の経過に伴って滞留した
二次冷却水が蒸発して不純物が濃縮され、スケ−ルとし
て熱交換面に付着するため、熱交換器の熱交換能力の低
下や応力腐食割れを招くという問題が発生する。
According to the above operating method, the heat exchanger 9 is only used as a cooler for the battery cooling water during the power generation cooling operation, and the three-way switching valve 8 is set to A during normal operation. To the secondary cooling water 1W while the circulation of the battery cooling water 1W is stopped and the shutoff valve 11 is also shut off.
The 0 W flow is also stopped, and the battery cooling water and the secondary cooling water remain in the heat exchanger. In this state, when the steam generator 4 continues to perform a steady power generation operation for cooling the fuel cell stack 1, the three-way switching valve 8 and the heat exchanger 9 are relatively close to each other and are connected by a short pipe. If there is, the heat exchanger is heated by heat conduction from the three-way switching valve to the heat exchanger, and the battery cooling water 1 accumulated in the heat exchanger 9
The temperature of W rises to 130 to 150 ° C., at which point the secondary cooling water 10W remaining in the heat exchanger boils, and a mechanical shock is applied to the heat exchanger 9 by the bumping phenomenon, Impact noise is generated, and the secondary cooling water that has accumulated over time evaporates and impurities are concentrated, and adhere to the heat exchange surface as a scale, which reduces the heat exchange capacity of the heat exchanger. The problem of causing stress corrosion cracking occurs.

【0006】また、三方切換え弁8と熱交換器9とが比
較的遠い位置にある場合には突沸現象は生じないもの
の、滞留した二次冷却水が蒸発して不純物が濃縮され、
スケ−ルとして熱交換面に付着する現象が発生し、熱交
換器の熱交換能力の低下を招くという問題が発生する。
そこで、上記問題点を回避するために、燃料電池が定常
運転中も熱交換器9に二次冷却水を持続して通流し、熱
交換器の温度上昇を阻止する方法も考えられるが、この
とき二次冷却水の温度上昇は少なくその熱利用が困難な
ため、付加価値の低い二次冷却水を循環し続けるという
不合理を生ずる。
Further, when the three-way switching valve 8 and the heat exchanger 9 are located relatively far from each other, the bumping phenomenon does not occur, but the accumulated secondary cooling water is evaporated and the impurities are concentrated.
As a scale, the phenomenon of adhesion to the heat exchange surface occurs, which causes a problem that the heat exchange capacity of the heat exchanger is deteriorated.
Therefore, in order to avoid the above-mentioned problems, a method is conceivable in which the secondary cooling water is continuously passed through the heat exchanger 9 even during the steady operation of the fuel cell to prevent the temperature rise of the heat exchanger. At this time, the temperature of the secondary cooling water does not rise so much that it is difficult to use the heat.

【0007】この発明の目的は、熱交換器の停止中に発
生する二次冷却水の突沸現象やスケ−ルの発生を阻止
し、これらに起因する障害を防止することにある。
An object of the present invention is to prevent the bumping phenomenon of secondary cooling water and the generation of scale that occur while the heat exchanger is stopped, and to prevent the troubles resulting from these.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、燃料電池スタックに複数の単位
セル毎に積層された水冷パイプを有する冷却板と、前記
水冷パイプとの間に三方切換え弁を介して電池冷却水の
循環系を形成する循環ポンプおよび水蒸気分離器と、前
記三方切換え弁により循環系に切換え可能に連結されて
高温の前記電池冷却水と低温の二次冷却水との間で熱交
換を行う熱交換器とを備え、前記燃料電池スタックの冷
却を前記水蒸気分離器または熱交換器のいずれかに切り
換えて行うものにおいて、前記二次冷却水の流量を大小
二段階に制御する二段階式流量制御機構を二次冷却水系
に備えてなるものとする。
In order to solve the above-mentioned problems, according to the present invention, between a cooling plate having a water-cooling pipe laminated in a fuel cell stack for each unit cell and the water-cooling pipe. A circulation pump and a water vapor separator that form a circulation system of the battery cooling water through a three-way switching valve, and a circulation system that is switchably connected to the circulation system by the three-way switching valve, and the high-temperature battery cooling water and the low-temperature secondary cooling. A heat exchanger for exchanging heat with water, wherein the fuel cell stack is cooled by switching to either the steam separator or the heat exchanger, wherein the flow rate of the secondary cooling water is large or small. It is assumed that the secondary cooling water system is equipped with a two-stage flow control mechanism that controls in two stages.

【0009】二段階式流量制御機構が遮断弁と、これに
並列に連結された絞り機構とからなるものとする。二段
階式流量制御機構が互いに並列に連結され,かつ互いに
流量が異なる一対の遮断弁からなるものとする。二段階
式流量制御機構が流量を二段階に制御する制御機構を有
する一つの流量制御弁からなるものとする。
It is assumed that the two-stage flow rate control mechanism comprises a shutoff valve and a throttle mechanism connected in parallel with the shutoff valve. The two-stage flow control mechanism shall be connected in parallel with each other and shall consist of a pair of shutoff valves with different flow rates. It is assumed that the two-stage flow rate control mechanism comprises one flow rate control valve having a control mechanism for controlling the flow rate in two stages.

【0010】燃料電池スタックに複数の単位セル毎に積
層された水冷パイプを有する冷却板と、前記水冷パイプ
との間に三方切換え弁を介して電池冷却水の循環系を形
成する循環ポンプおよび水蒸気分離器と、前記三方切換
え弁により循環系に切換え可能に連結されて高温の前記
電池冷却水と低温の二次冷却水との間で熱交換を行う熱
交換器とを備え、前記燃料電池スタックの冷却を前記水
蒸気分離器または熱交換器のいずれかに切り換えて行う
燃料電池用冷却装置において、燃料電池スタックの冷却
を熱交換器で行うよう前記三方切換え弁を操作したとき
には二次冷却水流量を大流量側に制御して熱交換を行
い、燃料電池スタックの冷却を水蒸気分離器で行うよう
前記三方切換え弁を操作したときには二次冷却水流量を
小流量側に絞って前記循環系からの伝導熱による熱交換
器の過熱を防止することとする。
A cooling plate having a water cooling pipe laminated in a fuel cell stack for each of a plurality of unit cells, and a circulation pump and steam for forming a circulation system of the cell cooling water through a three-way switching valve between the cooling plate and the water cooling pipe. A fuel cell stack including a separator and a heat exchanger switchably connected to the circulation system by the three-way switching valve to exchange heat between the high-temperature battery cooling water and the low-temperature secondary cooling water. In a cooling device for a fuel cell that performs cooling of either the water vapor separator or the heat exchanger, when the three-way switching valve is operated so that the fuel cell stack is cooled by the heat exchanger, the secondary cooling water flow rate When the three-way switching valve is operated so that the fuel cell stack is cooled by the steam separator to perform heat exchange, the secondary cooling water flow rate is reduced to the small flow rate side. And to prevent overheating of the heat exchanger by conduction heat from the circulatory system.

【0011】[0011]

【作用】この発明において、二次冷却水の流量を大小二
段階に制御する二段階式流量制御機構を二次冷却水系に
設けるよう構成したことにより、発電冷却運転時には燃
料電池の冷却に必要な大きな流量の二次冷却水を熱交換
器に通流して電池冷却水を冷却し、熱交換器を必要とし
ない定常運転時には二次冷却水流量を少量に絞って三方
切換え弁からの伝導熱による熱交換器の過熱を防止し、
熱交換器内に滞留する二次冷却水の沸騰を阻止できるの
で、二次冷却水の無駄な循環を排除した状態で二次冷却
水の突沸現象に基づく機械的衝撃や衝撃音の発生、二次
冷却水の蒸発によるスケ−ルの発生を阻止し、熱交換効
率の低下や熱交換器の応力腐食割れなどの障害を防止す
る機能が得られる。
In the present invention, the two-stage flow rate control mechanism for controlling the flow rate of the secondary cooling water in two steps, large and small, is provided in the secondary cooling water system, which is necessary for cooling the fuel cell during the power generation cooling operation. A large amount of secondary cooling water is passed through the heat exchanger to cool the battery cooling water, and during steady operation without the need for a heat exchanger, the secondary cooling water flow rate is reduced to a small amount and the conduction heat from the three-way switching valve is used. Prevents overheating of the heat exchanger,
Since it is possible to prevent the boiling of the secondary cooling water that accumulates in the heat exchanger, mechanical shock and impact noise due to the bumping phenomenon of the secondary cooling water can be generated without wasteful circulation of the secondary cooling water. It is possible to obtain a function of preventing the generation of scale due to evaporation of the secondary cooling water, and preventing a failure such as a decrease in heat exchange efficiency and stress corrosion cracking of the heat exchanger.

【0012】また、二段階式流量制御機構を遮断弁と、
これに並列に連結された絞り機構とで構成すれば、三方
切換え弁の切換えに同期して遮断弁を開閉制御する簡単
な操作で、熱交換器に通流する二次冷却水の流量を大小
二段階に容易に制御できるとともに、微量な二次冷却水
の流量を絞り機構により特別の制御を必要とせずに安定
して保持する機能が得られる。さらに、二段階式流量制
御機構を互いに並列に連結され,かつ互いに流量が異な
る一対の遮断弁で構成するか、あるいは流量を二段階に
制御する制御機構を有する一つの流量制御弁で構成して
も、上記と同様な機能を得ることができる。
Further, a two-stage flow control mechanism is provided with a shutoff valve,
If it is configured with a throttling mechanism connected in parallel to this, the flow rate of the secondary cooling water flowing to the heat exchanger can be increased or decreased by a simple operation of opening and closing the shutoff valve in synchronization with the switching of the three-way switching valve. In addition to being able to easily control in two steps, it is possible to obtain a function of stably holding a small flow rate of the secondary cooling water by the throttling mechanism without requiring special control. Further, the two-stage flow rate control mechanism is configured by a pair of shutoff valves that are connected in parallel with each other and have different flow rates, or one flow rate control valve that has a control mechanism that controls the flow rate in two stages. Also, the same function as described above can be obtained.

【0013】一方、燃料電池用冷却装置の制御方法とし
て、燃料電池スタックの冷却を熱交換器で行うよう三方
切換え弁を操作したときには二次冷却水流量を大流量側
に制御して熱交換を行うよう構成することにより、燃料
電池スタックの温度をあらかじめ定まる一定温度以下に
冷却する発電冷却運転を経由した後、燃料電池の出力電
流を遮断し、反応ガスの供給を停止して運転を停止でき
るので、燃料電池に高温開回路電圧による障害を及ぼす
ことなく運転を停止する機能が得られる。また、燃料電
池スタックの冷却を水蒸気分離器で行うよう三方切換え
弁を操作したとき、二次冷却水流量を小流量側に絞って
循環系からの伝導熱による熱交換器の過熱を防止するよ
う構成すれば、三方切換え弁からの伝導熱によって熱交
換器内に滞留した二次冷却水が沸騰することを阻止でき
るので、二次冷却水の無駄な循環を排除した状態で二次
冷却水の突沸現象に基づく機械的衝撃や衝撃音の発生、
二次冷却水の蒸発によるスケ−ルの発生を阻止し、熱交
換効率の低下や熱交換器の応力腐食割れなどの障害を防
止する機能が得られる。
On the other hand, as a method of controlling the cooling device for the fuel cell, when the three-way switching valve is operated so that the fuel cell stack is cooled by the heat exchanger, the secondary cooling water flow rate is controlled to the large flow rate side to perform the heat exchange. With this configuration, the output current of the fuel cell is cut off, the reaction gas supply is stopped, and the operation can be stopped after the power generation cooling operation of cooling the temperature of the fuel cell stack to a predetermined temperature or lower. Therefore, it is possible to obtain the function of stopping the operation of the fuel cell without causing any trouble due to the high temperature open circuit voltage. When the three-way switching valve is operated so that the fuel cell stack is cooled by the steam separator, the secondary cooling water flow rate is reduced to the small flow rate side to prevent overheating of the heat exchanger due to conduction heat from the circulation system. With this configuration, it is possible to prevent the secondary cooling water that has accumulated in the heat exchanger from boiling due to the conduction heat from the three-way switching valve, so that the secondary cooling water can be removed without wasteful circulation of the secondary cooling water. Generation of mechanical shocks and impact sounds based on bumping phenomenon,
The function of preventing the generation of scale due to evaporation of the secondary cooling water and preventing obstacles such as reduction of heat exchange efficiency and stress corrosion cracking of the heat exchanger can be obtained.

【0014】なお、燃料電池スタックの冷却を熱交換器
で行うよう三方切換え弁を操作したとき、熱交換によっ
て昇温した二次冷却水を排熱利用装置に供給することに
より、熱交換器を熱回収用熱交換器として兼用して熱回
収を行う機能が得られる。
When the three-way switching valve is operated so that the fuel cell stack is cooled by the heat exchanger, the heat exchanger is operated by supplying the secondary cooling water whose temperature has been raised by heat exchange to the exhaust heat utilization device. The function of performing heat recovery also as a heat recovery heat exchanger is obtained.

【0015】[0015]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる燃料電池用冷却装置
を示す概略系統図であり、従来技術と同じ構成部分には
同一参照符号を付すことにより、重複した説明を省略す
る。図において、電池冷却水冷却器として構成される熱
交換器9の二次冷却水系10には、2段式流量制御機構
20として流量の大きい遮断弁11と、絞り機構12と
が互いに並列に設けられる。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is a schematic system diagram showing a cooling device for a fuel cell according to an embodiment of the present invention, and the same components as those in the prior art are designated by the same reference numerals, and a duplicate description will be omitted. In the figure, in a secondary cooling water system 10 of a heat exchanger 9 configured as a battery cooling water cooler, a shutoff valve 11 having a large flow rate and a throttle mechanism 12 are provided in parallel as a two-stage flow rate control mechanism 20. To be

【0016】このように構成された二段式流量制御機構
20を有する燃料電池用冷却装置において、その始動操
作および定常運転は三方切換え弁8をA側とし、水蒸気
分離器4内の電池冷却水1Wの温度をヒ−タ6で調整す
るか、あるいは燃料電池スタック1の冷却を水蒸気分離
器内でのスチ−ムの発生量により調節し、燃料電池を運
転温度に保持することによって行われる。このとき、2
段式流量制御機構20の遮断弁11は閉じられ、絞り機
構12によって流量が絞られた少量の二次冷却水10W
が二次冷却水系10を流れることにより、三方切換え弁
8から熱交換器9への伝導熱の排熱が行われ、熱交換器
内に滞留した二次冷却水10Wが沸騰することを阻止で
きるので、二次冷却水の無駄な循環を排除した状態で二
次冷却水の突沸現象に基づく機械的衝撃や衝撃音の発
生、二次冷却水の蒸発によるスケ−ルの発生を阻止し、
熱交換効率の低下や熱交換器の応力腐食割れなどの障害
を防止することができる。
In the cooling device for a fuel cell having the two-stage flow rate control mechanism 20 configured as described above, the three-way switching valve 8 is set to the A side for the starting operation and the steady operation, and the battery cooling water in the steam separator 4 is operated. It is performed by adjusting the temperature of 1 W with the heater 6 or by controlling the cooling of the fuel cell stack 1 by the amount of steam generated in the steam separator to keep the fuel cell at the operating temperature. At this time, 2
The shutoff valve 11 of the stepped flow control mechanism 20 is closed, and a small amount of the secondary cooling water 10W whose flow rate is throttled by the throttle mechanism 12
Flowing in the secondary cooling water system 10 exhausts the conduction heat from the three-way switching valve 8 to the heat exchanger 9 and can prevent the secondary cooling water 10W accumulated in the heat exchanger from boiling. Therefore, the generation of mechanical shock and impact noise based on the bumping phenomenon of the secondary cooling water and the generation of scale due to the evaporation of the secondary cooling water are prevented in a state in which the wasteful circulation of the secondary cooling water is eliminated.
It is possible to prevent problems such as a decrease in heat exchange efficiency and stress corrosion cracking of the heat exchanger.

【0017】また、燃料電池発電装置の運転を停止する
場合、発電冷却運転は三方切換え弁8をB側に切換える
と同時に、二段式流量制御機構20の遮断弁11を開く
ことによって行われ、2次冷却水系に流れる多量の二次
冷却水10Wによって電池冷却水1Wが冷却され、燃料
電池スタック1の温度があらかじめ定まる一定温度以下
に冷却冷却された時点で、燃料電池の出力電流を遮断
し、反応ガスの供給を停止して運転を停止することによ
り、燃料電池スタック1の各単位セルが高温開回路電圧
に曝されることを回避できるので、高温開回路電圧に曝
されることによって燃料電池スタックに生ずる電極触媒
の劣化を防止することができる。
When the operation of the fuel cell power generator is stopped, the power generation cooling operation is performed by switching the three-way switching valve 8 to the B side and simultaneously opening the shut-off valve 11 of the two-stage flow rate control mechanism 20, When the cell cooling water 1W is cooled by a large amount of the secondary cooling water 10W flowing in the secondary cooling water system and the temperature of the fuel cell stack 1 is cooled to a predetermined temperature or lower, the output current of the fuel cell is shut off. By stopping the supply of the reaction gas to stop the operation, it is possible to avoid exposing each unit cell of the fuel cell stack 1 to the high temperature open circuit voltage. It is possible to prevent the deterioration of the electrode catalyst that occurs in the battery stack.

【0018】図2はこの発明の異なる実施例を簡略化し
て示す系統図であり、熱回収用熱交換器19の二次冷却
水系21に遮断弁11および絞り機構12からなる2段
式流量制御機構20を設けた点が前述の実施例と異なっ
ている。このように構成された燃料電池用冷却装置にお
いては、燃料電池スタック1の発電生成熱を熱回収用熱
交換器19が回収し、昇温した二次冷却水21Wを図示
しない熱利用系に供給して排熱の利用を行うことができ
る。このとき、三方切換え弁8をB側に切り換えて熱回
収用熱交換器19を電池冷却水1Wの循環系に組み込
み、遮断弁11を開いて二次冷却水21Wを熱回収用熱
交換器19に通流することによって熱交換が行われる。
FIG. 2 is a simplified system diagram showing a different embodiment of the present invention. A two-stage flow rate control including a shutoff valve 11 and a throttle mechanism 12 in a secondary cooling water system 21 of a heat recovery heat exchanger 19. The point that the mechanism 20 is provided is different from the above-described embodiment. In the fuel cell cooling device thus configured, the heat recovery heat exchanger 19 recovers the heat generated by the power generation of the fuel cell stack 1 and supplies the heated secondary cooling water 21W to the heat utilization system (not shown). Then, the exhaust heat can be used. At this time, the three-way switching valve 8 is switched to the B side to incorporate the heat recovery heat exchanger 19 into the circulation system of the battery cooling water 1W, the shutoff valve 11 is opened, and the secondary cooling water 21W is transferred to the heat recovery heat exchanger 19. Heat exchange is carried out by flowing it through.

【0019】また、熱回収を停止する場合には三方切換
え弁8をA側に切り換えて熱回収用熱交換器19を電池
冷却水1Wの循環系から切り離し、遮断弁11を閉じて
絞り機構12で絞られた少量の二次冷却水21Wを熱回
収用熱交換器19に通流することにより、三方切換え弁
8からの伝導熱による熱回収用熱交換器19の過熱を防
ぎ、二次冷却水21Wの沸騰や蒸発によって生ずる障害
を排除することができる。さらに、発電冷却運転時に
は、三方切換え弁8をB側に切り換えて熱回収用熱交換
器19を電池冷却水1Wの循環系に組み込み、遮断弁1
1を開いて低温の二次冷却水21Wを熱回収用熱交換器
19に通流することによって電池冷却水を冷却し、高温
開回路電圧による電極触媒の劣化を防止することができ
る。
When the heat recovery is stopped, the three-way switching valve 8 is switched to the A side to disconnect the heat recovery heat exchanger 19 from the circulation system of the battery cooling water 1W, and the shutoff valve 11 is closed to close the throttle mechanism 12. By passing a small amount of the secondary cooling water 21W squeezed by the heat recovery heat exchanger 19, it is possible to prevent the heat recovery heat exchanger 19 from being overheated due to the conduction heat from the three-way switching valve 8 and to perform the secondary cooling. It is possible to eliminate obstacles caused by boiling or evaporation of 21 W of water. Further, during the power generation cooling operation, the three-way switching valve 8 is switched to the B side to incorporate the heat recovery heat exchanger 19 into the circulation system of the battery cooling water 1W, and the shutoff valve 1
1 is opened to allow the low-temperature secondary cooling water 21W to flow through the heat recovery heat exchanger 19, whereby the battery cooling water can be cooled and the deterioration of the electrode catalyst due to the high temperature open circuit voltage can be prevented.

【0020】図3はこの発明の他の実施例を示す要部の
構成図であり、二段式流量制御機構30として流量の大
きい遮断弁31と流量の小さい遮断弁32とを互いに並
列にして熱交換器の二次冷却水系に連結した点が前述の
実施例と異なっており、三方切換え弁8をA側にしたと
きには流量の小さい遮断弁32を開いて少量の二次冷却
水を熱交換器に通流し、三方切換え弁8をB側にしたと
きには流量の大きい遮断弁31を開いて多量の二次冷却
水を熱交換器に通流することにより、前述の実施例と同
様な作用効果が得られる。
FIG. 3 is a block diagram of a main part showing another embodiment of the present invention, in which a shutoff valve 31 having a large flow rate and a shutoff valve 32 having a small flow rate are arranged in parallel as a two-stage flow rate control mechanism 30. It differs from the above-described embodiment in that it is connected to the secondary cooling water system of the heat exchanger. When the three-way switching valve 8 is set to the A side, the shutoff valve 32 with a small flow rate is opened to exchange a small amount of secondary cooling water with heat. When the three-way switching valve 8 is set to the B side, the shut-off valve 31 having a large flow rate is opened to allow a large amount of secondary cooling water to flow to the heat exchanger. Is obtained.

【0021】図4はこの発明の異なる他の実施例を示す
要部の構成図であり、二段式流量制御機構40を流量制
御弁41と、この流量制御弁の流量を二段階に制御する
制御機構42とで構成し、熱交換器の二次冷却水系に連
結した点が前述の実施例と異なっており、三方切換え弁
8の切換えに対応して流量を二段階に切り換えることに
より、前述の実施例におけると同様な作用効果が得られ
る。
FIG. 4 is a block diagram of the essential parts showing another embodiment of the present invention. The two-stage flow rate control mechanism 40 controls the flow rate control valve 41 and the flow rate of this flow rate control valve in two stages. It is different from the above-mentioned embodiment in that it is constituted by a control mechanism 42 and is connected to the secondary cooling water system of the heat exchanger, and the flow rate is switched in two stages in response to the switching of the three-way switching valve 8 so that The same effects and advantages as in the embodiment can be obtained.

【0022】[0022]

【発明の効果】この発明は前述のように、三方切換え弁
を介して電池冷却水の循環系に連結される電池冷却水冷
却器または熱回収用熱交換器として構成される熱交換器
の二次冷却水系に、二次冷却水の流量を大小二段階に制
御する二段階式流量制御機構を設け、熱交換器への電池
冷却水を三方切換え弁によって遮断したときにも少量の
二次冷却水を通流するよう構成した。その結果、三方切
換え弁からの伝導熱によって熱交換器が過熱されて熱交
換器内に滞留した二次冷却水が沸騰または蒸発するとい
う従来技術の問題点が排除され、二次冷却水の突沸現象
による機械的衝撃および衝撃音がなく、また不純物の濃
縮によるスケ−ルの発生も回避できるので、低騒音で熱
交換能力を安定して保持でき、かつ応力腐食割れなどの
障害も生じにくい信頼性の高い冷却装置を備えた燃料電
池発電装置を提供することができる。
As described above, the present invention provides a heat exchanger configured as a battery cooling water cooler or a heat recovery heat exchanger that is connected to a battery cooling water circulation system via a three-way switching valve. The secondary cooling water system is equipped with a two-stage flow rate control mechanism that controls the flow rate of the secondary cooling water in two steps, large and small, and a small amount of secondary cooling is achieved even when the battery cooling water to the heat exchanger is shut off by the three-way switching valve. It was configured to flow water. As a result, the problem of the prior art that the heat exchanger is overheated by the conduction heat from the three-way switching valve and the secondary cooling water accumulated in the heat exchanger boils or evaporates is eliminated, and the secondary cooling water bumps. There is no mechanical shock and impact noise due to the phenomenon, and the occurrence of scale due to the concentration of impurities can be avoided, so that the heat exchange capacity can be stably maintained with low noise, and damage such as stress corrosion cracking is unlikely to occur. It is possible to provide a fuel cell power generation device including a highly efficient cooling device.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例になる燃料電池用冷却装置を
示す概略系統図
FIG. 1 is a schematic system diagram showing a cooling device for a fuel cell according to an embodiment of the present invention.

【図2】この発明の異なる実施例を簡略化して示す系統
FIG. 2 is a system diagram showing a simplified example of a different embodiment of the present invention.

【図3】この発明の他の実施例を示す要部の構成図FIG. 3 is a configuration diagram of a main part showing another embodiment of the present invention.

【図4】この発明の異なる他の実施例を示す要部の構成
FIG. 4 is a configuration diagram of a main part showing another embodiment of the present invention.

【図5】水冷式りん酸型燃料電池発電装置を例に示す従
来の冷却装置の概略系統図
FIG. 5 is a schematic system diagram of a conventional cooling device showing a water-cooled phosphoric acid fuel cell power generator as an example.

【符号の説明】[Explanation of symbols]

1 燃料電池スタック 1W 電池冷却水 2 燃料改質装置 3 反応空気供給装置 4 水蒸気分離器 5 電池冷却水循環ポンプ 6 電気ヒ−タ 7 冷却板 8 三方切換え弁 9 熱交換器(電池冷却水冷却器) 10 二次冷却水系 10W 二次冷却水 11 遮断弁 12 絞り機構 19 熱交換器(熱回収用熱交換器) 20 二段式流量制御機構 21 二次冷却水系(熱利用系に連結) 21W 二次冷却水 30 二段式流量制御機構 31 遮断弁(大型) 32 遮断弁(小型) 40 二段式流量制御機構 41 流量制御弁 42 二段階切換え制御機構 1 Fuel Cell Stack 1W Battery Cooling Water 2 Fuel Reforming Device 3 Reactive Air Supply Device 4 Steam Separator 5 Battery Cooling Water Circulation Pump 6 Electric Heater 7 Cooling Plate 8 Three-way Switching Valve 9 Heat Exchanger (Battery Cooling Water Cooler) 10 Secondary Cooling Water System 10W Secondary Cooling Water 11 Shutoff Valve 12 Throttling Mechanism 19 Heat Exchanger (Heat Recovery Heat Exchanger) 20 Two-Stage Flow Control Mechanism 21 Secondary Cooling Water System (Connected to Heat Utilization System) 21W Secondary Cooling water 30 Two-stage flow control mechanism 31 Shut-off valve (large) 32 Shut-off valve (small) 40 Two-stage flow control mechanism 41 Flow control valve 42 Two-stage switching control mechanism

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大賀 俊輔 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 久保田 康幹 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shunsuke Oga 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. No. 1 inside Fuji Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】燃料電池スタックに複数の単位セル毎に積
層された水冷パイプを有する冷却板と、前記水冷パイプ
との間に三方切換え弁を介して電池冷却水の循環系を形
成する循環ポンプおよび水蒸気分離器と、前記三方切換
え弁により循環系に切換え可能に連結されて高温の前記
電池冷却水と低温の二次冷却水との間で熱交換を行う熱
交換器とを備え、前記燃料電池スタックの冷却を前記水
蒸気分離器または熱交換器のいずれかに切り換えて行う
ものにおいて、前記二次冷却水の流量を大小二段階に制
御する二段階式流量制御機構を二次冷却水系に備えてな
ることを特徴とする燃料電池用冷却装置。
1. A circulation pump which forms a circulation system of cell cooling water between a cooling plate having a water cooling pipe laminated in a fuel cell stack for each of a plurality of unit cells and a three-way switching valve between the water cooling pipe. And a steam separator, and a heat exchanger that is switchably connected to the circulation system by the three-way switching valve to exchange heat between the high-temperature battery cooling water and the low-temperature secondary cooling water, In the one in which the cooling of the battery stack is switched to either the steam separator or the heat exchanger, the secondary cooling water system is provided with a two-stage flow rate control mechanism for controlling the flow rate of the secondary cooling water in two steps, large and small. A cooling device for a fuel cell characterized by the following.
【請求項2】二段階式流量制御機構が遮断弁と、これに
並列に連結された絞り機構とからなることを特徴とする
請求項1記載の燃料電池用冷却装置。
2. A cooling device for a fuel cell according to claim 1, wherein the two-stage flow control mechanism comprises a shutoff valve and a throttle mechanism connected in parallel with the shutoff valve.
【請求項3】二段階式流量制御機構が互いに並列に連結
され,かつ互いに流量が異なる一対の遮断弁からなるこ
とを特徴とする請求項1記載の燃料電池用冷却装置。
3. The cooling device for a fuel cell according to claim 1, wherein the two-stage flow rate control mechanism is connected in parallel with each other and comprises a pair of shutoff valves having different flow rates.
【請求項4】二段階式流量制御機構が流量を二段階に制
御する制御機構を有する一つの流量制御弁からなること
を特徴とする請求項1記載の燃料電池用冷却装置。
4. The cooling device for a fuel cell according to claim 1, wherein the two-stage type flow rate control mechanism comprises one flow rate control valve having a control mechanism for controlling the flow rate in two stages.
【請求項5】燃料電池スタックに複数の単位セル毎に積
層された水冷パイプを有する冷却板と、前記水冷パイプ
との間に三方切換え弁を介して電池冷却水の循環系を形
成する循環ポンプおよび水蒸気分離器と、前記三方切換
え弁により循環系に切換え可能に連結されて高温の前記
電池冷却水と低温の二次冷却水との間で熱交換を行う熱
交換器とを備え、前記燃料電池スタックの冷却を前記水
蒸気分離器または熱交換器のいずれかに切り換えて行う
燃料電池用冷却装置において、燃料電池スタックの冷却
を熱交換器で行うよう前記三方切換え弁を操作したとき
には二次冷却水流量を大流量側に制御して熱交換を行
い、燃料電池スタックの冷却を水蒸気分離器で行うよう
前記三方切換え弁を操作したときには二次冷却水流量を
小流量側に絞って前記循環系からの伝導熱による熱交換
器の過熱を防止することを特徴とする燃料電池用冷却装
置の制御方法。
5. A circulation pump which forms a circulation system of cell cooling water through a three-way switching valve between a cooling plate having a water cooling pipe laminated in a fuel cell stack for each of a plurality of unit cells and the water cooling pipe. And a steam separator, and a heat exchanger that is switchably connected to the circulation system by the three-way switching valve to exchange heat between the high-temperature battery cooling water and the low-temperature secondary cooling water, In a cooling device for a fuel cell in which the cooling of the cell stack is switched to either the steam separator or the heat exchanger, secondary cooling is performed when the three-way switching valve is operated so that the heat exchanger cools the fuel cell stack. When the three-way switching valve is operated so that the water flow rate is controlled to a large flow rate for heat exchange and the fuel cell stack is cooled by the steam separator, the secondary cooling water flow rate is reduced to a small flow rate side. Control method of the fuel cell cooling device, characterized in that to prevent overheating of the heat exchanger by conduction heat from the circulatory system.
JP24076093A 1993-09-28 1993-09-28 Fuel cell cooling device and control method thereof Expired - Fee Related JP3310412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24076093A JP3310412B2 (en) 1993-09-28 1993-09-28 Fuel cell cooling device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24076093A JP3310412B2 (en) 1993-09-28 1993-09-28 Fuel cell cooling device and control method thereof

Publications (2)

Publication Number Publication Date
JPH0794201A true JPH0794201A (en) 1995-04-07
JP3310412B2 JP3310412B2 (en) 2002-08-05

Family

ID=17064313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24076093A Expired - Fee Related JP3310412B2 (en) 1993-09-28 1993-09-28 Fuel cell cooling device and control method thereof

Country Status (1)

Country Link
JP (1) JP3310412B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010176900A (en) * 2009-01-27 2010-08-12 Toshiba Home Technology Corp Fuel cell device and fuel cell inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010176900A (en) * 2009-01-27 2010-08-12 Toshiba Home Technology Corp Fuel cell device and fuel cell inspection device

Also Published As

Publication number Publication date
JP3310412B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
US5316870A (en) Heat supply and electric power-generating fuel cell
JP4296200B2 (en) Hot water system
JP2003086213A (en) Fuel cell system
JPS61168876A (en) Operation system of fuel cell
JP5980025B2 (en) Fuel cell cogeneration system
JP3966839B2 (en) Waste heat utilization heat source device
JPH09283158A (en) Cooling device and cooling method for fuel cell stack
JP2004127841A (en) Fuel battery cogeneration system
JP2004206896A (en) Fuel cell-gas turbine power generation facility
JPH0794201A (en) Cooling apparatus for fuel cell and controlling method thereof
JP2619947B2 (en) Fuel cell generator
JP2003242993A (en) Air conditioner utilizing fuel cell heat
JPH01265460A (en) Fuel cell operating method
JP2920018B2 (en) Fuel cell power generator
JP2000030726A5 (en)
JP2023538763A (en) Fuel cell system and method
JP2002025590A (en) Fuel cell power generating device and its control method
JP2004039560A (en) Fuel cell system
JP3350164B2 (en) Fuel cell cogeneration system and cooling water waste heat recovery method
JPH0529013A (en) Fuel cell power generation system
JP2004039524A (en) Fuel cell generator
JPH10223245A (en) Fuel cell electricity-generating apparatus
JPH0447674A (en) Temperature control device for fuel cell
JP3796887B2 (en) Fuel cell power generation system
JP4440676B2 (en) Fuel cell power generation hot water supply system

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees