JPH0447674A - Temperature control device for fuel cell - Google Patents

Temperature control device for fuel cell

Info

Publication number
JPH0447674A
JPH0447674A JP2154506A JP15450690A JPH0447674A JP H0447674 A JPH0447674 A JP H0447674A JP 2154506 A JP2154506 A JP 2154506A JP 15450690 A JP15450690 A JP 15450690A JP H0447674 A JPH0447674 A JP H0447674A
Authority
JP
Japan
Prior art keywords
temperature
heating tank
fuel cell
thermo
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2154506A
Other languages
Japanese (ja)
Inventor
Harumi Miyama
深山 晴美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2154506A priority Critical patent/JPH0447674A/en
Publication of JPH0447674A publication Critical patent/JPH0447674A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To control the supply amount of a thermo-medium from a heating tank in a wide range by divergence control using a three-way valve, by furnishing a bypass through which the thermo-medium flows divergently through the three-way valve in a position nearer the heating tank on a main circulation line, and thereby allowing the heating tank to function as a buffer tank. CONSTITUTION:A heating tank 11 having an upper space functions as a buffer tank and the ratio of the rate of thermo-medium flow heated to 170 deg.C from the heating tank 11, which converges with the suction side of a circulation pump 13, to the rate of thermo-medium flow from a bypass 27 becomes controllable as desired by the use of a three-way selector valve. When this fuel cell concerned 1 is to be held at a standby temp. around 130 deg.C, therefore, it is practicable to sink the temp. of thermo-medium flowing through the circulation line down to around 130 deg.C while the temp. of the thermo-medium 12 stored in the heating tank 11 is kept at 170 deg.C through utilization of the heat radiated from the circulation system leading via the bypass 27, and the fuel cell temp. can be maintained stably and accurately at the standby temp. by compensating the downward overshooting temp. of the thermo-medium with a high temp. thermo-medium fed from the heating tank 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、液冷式燃料電池における運転温度。[Detailed description of the invention] [Industrial application field] This invention relates to operating temperatures in liquid-cooled fuel cells.

起動温度、および発電待機温度の制御装置如関する。It is related to the control device for the startup temperature and power generation standby temperature.

〔従来の技術〕[Conventional technology]

電解質を保持したマトリックスを挟んで燃料電極および
空気電極を配した単位セル複数層を、複数の単位セルご
とに液冷式の冷却板を介在させて積層した、例えばシん
酸型に代表される燃料電池は、ガス透過性の電極基材の
マトリックス側に担持した電極触媒層に、反マトリック
ス側に形成された反応ガス通路を介して燃料ガスまたは
反応空気を供給し、電極基材を透過した反応活物質が一
対の電極触媒層で電気化学反応を起こすこと如よって発
電が行われる。
A typical example is the cynic acid type, in which multiple layers of unit cells are stacked with fuel electrodes and air electrodes arranged with a matrix holding an electrolyte sandwiched between them, with a liquid-cooled cooling plate interposed between each unit cell. In a fuel cell, fuel gas or reaction air is supplied to an electrode catalyst layer supported on the matrix side of a gas-permeable electrode base material through a reaction gas passage formed on the opposite side of the matrix, and the fuel gas or reaction air is passed through the electrode base material. Electric power is generated by the reaction active material causing an electrochemical reaction in a pair of electrode catalyst layers.

上記反応活物質の電極触媒層への拡散を容易化し、電気
化学反応を活性化するために、その運転温度はシん酸型
燃料電池の場合例えば190℃に保持される。したがっ
て、燃料電池が長期間運転を休止してその温度が常mK
低下している場合、燃料電池温度に外淵する起動操作を
必要とする。
In order to facilitate the diffusion of the reactive active material into the electrode catalyst layer and activate the electrochemical reaction, the operating temperature is maintained at, for example, 190° C. in the case of a cynic acid fuel cell. Therefore, when the fuel cell is out of operation for a long period of time, its temperature remains constant at mK.
If the fuel cell temperature has dropped, a start-up operation is required to bring the fuel cell temperature to the limit.

また、発電運転を短時間停止する場合には、運転の再開
に備えて運転温度よシ低い所定の待機淵度に保持する操
作を必要とする。
Further, when the power generation operation is stopped for a short time, it is necessary to maintain the temperature at a predetermined standby temperature lower than the operating temperature in preparation for restarting the operation.

第5図は従来の温度制御装置を示すシステム70−図で
あり、単位セルの積層体からなる液冷式の燃料電池1け
、複数単位セルごとに液冷式の冷却板5全備え、その冷
却パイプ5Aは熱媒体12の主循環路15に連結される
。主循環路15け、ヒータ11Aによシ加熱された熱媒
体12を包蔵した加熱タンク11から熱媒体12を循環
ポンプ13を介して冷却パイプ5Aに供給し、冷却パイ
プ5Aから出た熱媒体12を冷却する熱交換器14を径
由して加熱タンク11に戻すよう構成され、冷却パイプ
5Aの入口、出口には、冷却パイプ5Aと並列に調節弁
16を有する側路17が設けられる。
FIG. 5 is a system 70 diagram showing a conventional temperature control device, in which one liquid-cooled fuel cell is composed of a stack of unit cells, each unit cell is equipped with liquid-cooled cooling plates 5, and The cooling pipe 5A is connected to the main circulation path 15 for the heat medium 12. The main circulation path 15 supplies the heat medium 12 from the heating tank 11 containing the heat medium 12 heated by the heater 11A to the cooling pipe 5A via the circulation pump 13, and the heat medium 12 exits from the cooling pipe 5A. The cooling pipe 5A is configured to return the heat to the heating tank 11 via a heat exchanger 14, and a side passage 17 having a control valve 16 is provided in parallel with the cooling pipe 5A at the inlet and outlet of the cooling pipe 5A.

このように構成された装置における燃料電池1の起動操
作は、熱交換器14への冷媒の供給を停止した状態で例
えば170℃に加熱された熱媒体12を主循環路15に
循環することによって行われ、燃料電池温度の昇温速度
1−1l:m度センサ18で冷却板5の温度を検出した
温度調節器19が調節弁16の開度全制御することによ
り、冷却板5と側路17とに熱媒体を分流させることに
よって行われる。また、待機温度の保持も同様な方法に
よって行われる。
The starting operation of the fuel cell 1 in the device configured as described above is carried out by circulating the heat medium 12 heated to, for example, 170° C. to the main circulation path 15 while the supply of refrigerant to the heat exchanger 14 is stopped. The temperature controller 19 detects the temperature of the cooling plate 5 with the temperature sensor 18 and fully controls the opening of the control valve 16, thereby increasing the temperature of the cooling plate 5 and the side passage. This is carried out by dividing the heat medium into 17 and 17. Furthermore, the standby temperature is maintained in a similar manner.

一方、運転温度の保持は、加熱タンク11が包蔵する熱
媒体12の温度170℃と運転温度190℃との差を利
用して起動時あるいは待機時の操作と同様に行われるが
、発電生成熱が大きい重負荷状態では、生成熱の一部を
熱交換器14で吸収することにより運転温度を保持する
操作が行われる。
On the other hand, the operating temperature is maintained in the same way as during startup or standby by utilizing the difference between the temperature of the heat medium 12 contained in the heating tank 11, 170°C, and the operating temperature of 190°C. In a heavy load state with a large amount of heat, a part of the generated heat is absorbed by the heat exchanger 14 to maintain the operating temperature.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第6図は無負荷状態の燃料電池の温度と電極触媒層の劣
化速度との関係を示す特性線図であり、燃料電池を無負
荷または負荷率25%以下の軽負荷状態で160℃を超
える高温に保持すると、電極触媒粒子が粗大化して電極
表面積が低下したり、あるいは触媒粒子を担持するカー
ボンブラックが腐食するなど、いわゆる電極の高温劣化
が起こシ、電池の発電性能および残存寿命が低下するな
どの障害が発生する。また、130℃以下の温度では電
極触媒層への反応ガスの拡散や発電生成水の電極外への
放出速度が低下する。
Figure 6 is a characteristic diagram showing the relationship between the temperature of the fuel cell in a no-load state and the deterioration rate of the electrode catalyst layer. If kept at high temperatures, the electrode catalyst particles become coarse and the electrode surface area decreases, or the carbon black that supports the catalyst particles corrodes, causing so-called high-temperature deterioration of the electrode, which reduces the power generation performance and remaining life of the battery. Failures such as Further, at a temperature of 130° C. or lower, the diffusion of reaction gas into the electrode catalyst layer and the rate of release of generated water to the outside of the electrode decrease.

そこで燃料電池の待機温度を160℃程度に保ち、反応
ガスを供給することくより発電生成熱を利用して電池流
度全運転温度に昇温し、発電運転を開始できるようにす
るとともに、起動時においても上記同様に熱媒体によっ
て130℃程度に外淵した状態で燃料ガスGFおよび空
気GAの供給を開始すると同時に、電流制御装置7によ
り燃料電池の出力電流を徐々に増し、発電生成熱によっ
て電池温度を運転温度まで外淵する操作を行うことによ
り、この昇温過程での電極の高温劣化を回避する手段が
とられる。
Therefore, by keeping the standby temperature of the fuel cell at around 160°C and using the generated heat of power generation instead of supplying a reaction gas, the temperature is raised to the full operating temperature of the cell flow, so that power generation operation can be started. At the same time, the supply of fuel gas GF and air GA is started in a state where the temperature is about 130°C by the heating medium, and at the same time, the output current of the fuel cell is gradually increased by the current control device 7, and the output current of the fuel cell is gradually increased by the generated heat. By performing an operation to bring the battery temperature up to the operating temperature, a measure is taken to avoid high-temperature deterioration of the electrodes during this temperature raising process.

一方、加熱タンクが包蔵する熱媒体の温度は、待機温度
と運転温度の中間温度である170℃程度に設定され、
起動時の加熱媒体と、運転時の冷却媒体との二つの機能
を一つの液体例えば水が、その設定温度を変えることな
く兼ねるよう構成される。
On the other hand, the temperature of the heat medium contained in the heating tank is set at approximately 170°C, which is an intermediate temperature between the standby temperature and the operating temperature.
A single liquid such as water is configured to serve as a heating medium during startup and as a cooling medium during operation without changing its set temperature.

しかしながら、待機温度の保持や起動時の昇温速度を、
主に調節弁16により側路17へのバイパス流量を制御
して行う従来の方法では、熱媒体凌ぐ 湛能動口熱タンクで固定されているために、細かな温度
制御が困難な場合が多く、待機温度や運転温度が変化し
やすいという問題があった。
However, it is difficult to maintain the standby temperature and the temperature increase rate at startup.
In the conventional method, which mainly controls the bypass flow rate to the side passage 17 using the control valve 16, it is often difficult to finely control the temperature because it is fixed with a flooded active mouth heat tank that exceeds the heat medium. There was a problem in that the standby temperature and operating temperature were prone to change.

この発明の目的は、設備の構成を複雑化することなく、
電池温度の制御精度全向上かつ安定化することにある。
The purpose of this invention is to
The aim is to completely improve and stabilize battery temperature control accuracy.

〔課題全解決するだめの手段〕[Means to solve all problems]

上記課題を解決するために、この発明によれば、複数層
の単位セルごとに液冷式の冷却板が積層された燃料電池
と、この燃料電池の運転温度と待機温度との中間温度に
保持された熱媒体を包蔵する加熱タンクと、前記熱媒体
全前記冷却板全径由して前記加熱タンクに戻す循環ポン
プを含む主循環路金偏えたものにおいて、前記主循環路
の加熱タンク入口寄りに配された三方切換弁と、この三
方切換弁の一つの吐出側と前記循環ポンプの吸込み側と
に連通ずる側路とを備え、前記三方切換弁の操作によシ
前記燃料電池の起動時1発電待機時。
In order to solve the above problems, the present invention provides a fuel cell in which liquid-cooled cooling plates are stacked for each unit cell in multiple layers, and a temperature maintained at an intermediate temperature between the operating temperature and the standby temperature of this fuel cell. A main circulation path including a heating tank containing a heated heat medium and a circulation pump that returns the heat medium to the heating tank through the entire cooling plate, wherein the main circulation path is located near the heating tank inlet of the main circulation path. a three-way switching valve disposed in the fuel cell, and a side passage communicating with the discharge side of one of the three-way switching valves and the suction side of the circulation pump; 1 When power generation is on standby.

および発電運転時における温度を制御するよう構成して
なるものとする。
and shall be configured to control the temperature during power generation operation.

〔作用〕[Effect]

この発明の構成において、主循環路の加熱タンク寄りに
三方弁を介して熱媒体が分流する側路を設けたことによ
り、加熱タンクが緩衝槽として機能し、三方弁による分
流制御で加熱タンクからの熱媒体の供給量全広範囲に制
御することが容易化される。側路を介して冷却板側に循
環する熱媒体は、循環系の熱放散によって熱媒体が冷却
されるので、熱媒体温度を例えば燃料電池の待機温度に
下げることが容易であQ、加熱タンクからの熱補給と併
せて待機流度や昇流速度全円滑に制御できる。
In the configuration of this invention, by providing a side path in which the heat medium is diverted via the three-way valve near the heating tank in the main circulation path, the heating tank functions as a buffer tank, and the heating tank is controlled by the three-way valve to separate the heat medium from the heating tank. This makes it easy to control the supply amount of heat medium over a wide range. The heat medium that circulates to the cooling plate side via the side passage is cooled by heat dissipation in the circulation system, so it is easy to lower the heat medium temperature to, for example, the standby temperature of the fuel cell. In addition to heat supply from the pump, standby flow rate and rising speed can all be controlled smoothly.

〔実施例〕〔Example〕

以下この発明全実施例に基づいて説明する。 The following description will be made based on all the embodiments of this invention.

第1図はこの発明の実施例になる燃料電池の温度制御装
置を示すシステムフロー図である。図において、170
℃に加熱された熱媒体12が加熱タンク11を出て、循
環ポンプ13.燃料電池1の冷却板5.熱交換器14を
径由して加熱タンク11に戻る主循環路15には、その
加熱タンク11の入口側寄シに比例制御型の三方切換弁
26が設けられ、その一方の吐出側は側路27を介して
循環ポンプ13の吸込み側に連結される。また、冷却板
5の温度は、温度センサ18によシ検出され、温度調節
器19が検出温度と設定温度との差に基づいて発する指
令信号により、流量調節器29が三方切換弁26を比例
制御することにより、熱媒体12が加熱タンク11に戻
る量と、側路27側に環流する量とが制御される。
FIG. 1 is a system flow diagram showing a temperature control device for a fuel cell according to an embodiment of the present invention. In the figure, 170
The heat medium 12 heated to .degree. Cooling plate of fuel cell 1 5. The main circulation path 15 returning to the heating tank 11 via the heat exchanger 14 is provided with a proportional control type three-way switching valve 26 on the inlet side of the heating tank 11, and one of the discharge sides is connected to the side. It is connected via line 27 to the suction side of circulation pump 13 . Further, the temperature of the cooling plate 5 is detected by the temperature sensor 18, and the flow rate regulator 29 proportionally controls the three-way switching valve 26 according to a command signal issued by the temperature regulator 19 based on the difference between the detected temperature and the set temperature. Through this control, the amount of heat medium 12 that returns to heating tank 11 and the amount that flows back to side passage 27 are controlled.

このように構成されたシステムにおいては、上部空間を
有する加熱タンク11が緩衝槽として機能し、循環ポン
プ13の吸込み側に合流する加熱タンク11からの17
0℃に加熱された熱媒体の流量と、側路27からの熱媒
体の流量との割合を三方切換弁によって自由に制御する
ことが可能になる。したがって、燃料電池1を130℃
程度の待機温度に保持する場合、側路27を径由する循
環系の放熱を利用して加熱タンク11が包蔵する熱媒体
12の温度を170℃に保ったま\、循環路を流れる熱
媒体の温度を130℃近くにまで下げることが可能にな
り、熱媒体温度の下がシ過ぎ全加熱タンク11からの高
温の熱媒体によって補うことにより、燃料電池温度を待
機温度に精度よく安定して保持することができる。また
、起動時についても同様であ)、循環する熱媒体温度を
一方切換弁26の流量配分によって制御することにより
、所望の昇温速度を得ることができる。
In the system configured in this way, the heating tank 11 having an upper space functions as a buffer tank, and the 17 ml of water from the heating tank 11 that joins the suction side of the circulation pump 13 is
The ratio between the flow rate of the heat medium heated to 0° C. and the flow rate of the heat medium from the side path 27 can be freely controlled by the three-way switching valve. Therefore, the temperature of the fuel cell 1 is 130°C.
When maintaining the standby temperature at a temperature of about It is now possible to lower the temperature to nearly 130 degrees Celsius, and by supplementing with the high temperature heat medium from the full heating tank 11 when the heat medium temperature is too low, the fuel cell temperature can be accurately and stably maintained at the standby temperature. can do. Further, the same applies at the time of startup), by controlling the temperature of the circulating heat medium by the flow rate distribution of the one-way switching valve 26, a desired temperature increase rate can be obtained.

さらに、運転中には熱交換器14を作動させて発電生成
熱を回収する作用と、加熱タンク11が包蔵する170
℃に加熱した熱媒体と運転温度との差を利用して燃料電
池を冷却する作用とによって運転温度を保持できるとと
もに、熱交換器14で冷却された熱媒体が側路27を通
って冷却板に環流することにより、効率のよい冷却が可
能になる。
Furthermore, during operation, the heat exchanger 14 is operated to recover the generated heat, and the heating tank 11 contains 170
The operating temperature can be maintained by cooling the fuel cell using the difference between the heating medium heated to ℃ and the operating temperature, and the heating medium cooled by the heat exchanger 14 passes through the side passage 27 to the cooling plate. By refluxing the water, efficient cooling becomes possible.

第2図は実施例における変形例を示す図であり、オン・
オフ制御形の三方切換弁を用いた点が前述の実施例と異
なっておシ、前述の実施例と同様な機能が得られるとと
もに、その制御系を簡素化できる利点が得られる。
FIG. 2 is a diagram showing a modification of the embodiment;
This embodiment differs from the previous embodiment in that an off-control type three-way switching valve is used, and the same functions as the previous embodiment can be obtained, as well as the advantage that the control system can be simplified.

第3図は実施例のさらに異なる変形側を示す図であり、
三方切換弁46を2個の操作弁47,48で構成してお
り、加熱タンク11.側路27に分流する熱媒体の流量
を2個の操作弁を交互に所定のタイミングでオン・オフ
制御することによシ前述の説明と同様な機能を得ること
ができる。
FIG. 3 is a diagram showing a further modified version of the embodiment,
The three-way switching valve 46 is composed of two operation valves 47 and 48, and the heating tank 11. The same function as described above can be obtained by controlling the flow rate of the heat medium diverted to the side path 27 by turning on and off the two operation valves alternately at a predetermined timing.

第4図は他の実施例を示す要部の構成図であり、加熱タ
ンクを170℃に加熱された熱媒体12の貯槽51と、
熱媒体12を加熱する熱交換器52とに分割し、循環ポ
ンプ53を介して連結した点が前述の実施例と異なって
おシ、例えば熱交換器52をその熱源に近い場所に配し
て排熱利用を行う場合、装置のレイアウトを合理化でき
るなどの利点が得られる。
FIG. 4 is a configuration diagram of main parts showing another embodiment, in which the heating tank is a storage tank 51 for the heat medium 12 heated to 170°C,
This differs from the previous embodiment in that it is divided into a heat exchanger 52 that heats the heat medium 12 and connected via a circulation pump 53. For example, the heat exchanger 52 is placed close to the heat source. When exhaust heat is utilized, there are advantages such as being able to rationalize the layout of the equipment.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、主循環路の加熱タンク入口側
に配した三方切換弁と循環ポンプ吸込み側との間に側路
を設け、加熱タンクからの熱媒体と側路からの熱媒体が
循環ポンプの吸込み側で合流するよう構成した。その結
果、待機温度と運転温度との中間温度に加熱された熱媒
体全循環ポンプの吐出側で一部側路に分流して燃料電池
温度を調整する従来の方法に比べ、燃料電池の冷却板を
通る熱媒体の温度全自由に変えることが可能になるので
、例えば熱媒体温度を待機温度に近づけることによって
待機温度全精度よく保持できるとともに、起動時の昇温
速度の調整を容易化することができる。また、上記待機
操作および起動操作は加熱タンク内の熱媒体温度を変え
ずに行うことができるので、この温度の熱媒体を冷却媒
体に利用して行う運転温度の制御への切換も容易であシ
、かつ熱交換器で冷却した熱媒体を側路を介して冷却板
側に環流することにより、重負荷時の運転温度を精度よ
く保持できる利点が得られる。
As described above, this invention provides a side passage between the three-way switching valve placed on the heating tank inlet side of the main circulation passage and the circulation pump suction side, so that the heat medium from the heating tank and the heat medium from the side passage are The configuration was such that they merged on the suction side of the circulation pump. As a result, compared to the conventional method in which the heat medium is heated to an intermediate temperature between the standby temperature and the operating temperature, the cooling plate of the fuel cell is Since the temperature of the heat medium passing through can be changed freely, for example, by bringing the heat medium temperature close to the standby temperature, the standby temperature can be maintained with high accuracy, and the temperature increase rate at startup can be easily adjusted. I can do it. Furthermore, since the standby operation and start-up operation described above can be performed without changing the temperature of the heat medium in the heating tank, it is easy to switch to control of the operating temperature using the heat medium at this temperature as the cooling medium. Moreover, by circulating the heat medium cooled by the heat exchanger to the cooling plate side through the side passage, an advantage is obtained that the operating temperature under heavy load can be maintained with high accuracy.

さらに、待機温度や昇温速度が精度よく保たれることに
より、電極の高温劣化を確実に防止する機#Uが得られ
るので、燃料電池の発電性能を長期間安定に保持するこ
とに貢献できるとともに、装置の複雑化全件わないので
、燃料電池発電装置の低コスト化にも貢献できる利点が
得られる。
Furthermore, by maintaining the standby temperature and temperature increase rate with high accuracy, it is possible to obtain a device #U that reliably prevents high temperature deterioration of the electrodes, contributing to maintaining the power generation performance of the fuel cell stably for a long period of time. At the same time, since the device does not need to be complicated at all, there is an advantage that it can contribute to cost reduction of the fuel cell power generation device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例になる燃料電池の温度制御装
置金示すシステム70−図、第2図および第3図は実施
例における互いに異なる変形例を示す図、第4図はこの
発明の異なる実施例を示す図、第5図は従来の温度制御
装置を示すシステムフロー図、第6図は燃料電池温度と
電極触媒の劣化速度との関係を示す特性線図である。
FIG. 1 is a diagram showing a system 70 of a temperature control device for a fuel cell according to an embodiment of the present invention, FIGS. 2 and 3 are diagrams showing mutually different modifications of the embodiment, and FIG. FIG. 5 is a system flow diagram showing a conventional temperature control device, and FIG. 6 is a characteristic diagram showing the relationship between fuel cell temperature and deterioration rate of an electrode catalyst.

Claims (1)

【特許請求の範囲】[Claims] 1)複数層の単位セルごとに液冷式の冷却板が積層され
た燃料電池と、この燃料電池の運転温度と待機温度との
中間温度に保持された熱媒体を包蔵する加熱タンクと、
前記熱媒体を前記冷却板を径由して前記加熱タンクに戻
す循環ポンプを含む主循環路を備えたものにおいて、前
記主循環路の加熱タンク入口寄りに配された三方切換弁
と、この三方切換弁の一つの吐出側と前記循環ポンプの
吸込み側とに連通する側路とを備え、前記三方切換弁の
操作により前記燃料電池の起動時、発電待機時、および
発電運転時における温度を制御するよう構成してなるこ
とを特徴とする燃料電池の温度制御装置。
1) a fuel cell in which liquid-cooled cooling plates are stacked for each unit cell in multiple layers; a heating tank containing a heat medium maintained at an intermediate temperature between the operating temperature and standby temperature of the fuel cell;
A main circulation path including a circulation pump that returns the heat medium to the heating tank via the cooling plate, the three-way switching valve disposed near the heating tank inlet of the main circulation path; A side passage communicating with the discharge side of one of the switching valves and the suction side of the circulation pump, and by operating the three-way switching valve, the temperature of the fuel cell is controlled during startup, standby for power generation, and power generation operation. 1. A temperature control device for a fuel cell, characterized in that it is configured to.
JP2154506A 1990-06-13 1990-06-13 Temperature control device for fuel cell Pending JPH0447674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2154506A JPH0447674A (en) 1990-06-13 1990-06-13 Temperature control device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2154506A JPH0447674A (en) 1990-06-13 1990-06-13 Temperature control device for fuel cell

Publications (1)

Publication Number Publication Date
JPH0447674A true JPH0447674A (en) 1992-02-17

Family

ID=15585736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2154506A Pending JPH0447674A (en) 1990-06-13 1990-06-13 Temperature control device for fuel cell

Country Status (1)

Country Link
JP (1) JPH0447674A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054777A1 (en) * 1997-05-29 1998-12-03 Aeg Energietechnik Gmbh Fuel cell system
JP2005501374A (en) * 2001-04-05 2005-01-13 ユーティーシー フューエル セルズ,エルエルシー Method and apparatus for operation of a battery stack assembly at sub-freezing temperatures
JP2006286649A (en) * 2006-06-07 2006-10-19 Nissan Motor Co Ltd Control device for fuel cell system
JP2014010924A (en) * 2012-06-27 2014-01-20 Kyocera Corp Controller, fuel cell unit and control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198058A (en) * 1986-02-25 1987-09-01 Fuji Electric Co Ltd Electric heat supply system of liquid cooling type fuel cell
JPS6471076A (en) * 1987-09-10 1989-03-16 Fuji Electric Res Cooling equipment of fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198058A (en) * 1986-02-25 1987-09-01 Fuji Electric Co Ltd Electric heat supply system of liquid cooling type fuel cell
JPS6471076A (en) * 1987-09-10 1989-03-16 Fuji Electric Res Cooling equipment of fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054777A1 (en) * 1997-05-29 1998-12-03 Aeg Energietechnik Gmbh Fuel cell system
US6551731B1 (en) 1997-05-29 2003-04-22 Aeg Energietechnik Gmbh Fuel cell system
JP2005501374A (en) * 2001-04-05 2005-01-13 ユーティーシー フューエル セルズ,エルエルシー Method and apparatus for operation of a battery stack assembly at sub-freezing temperatures
JP4663960B2 (en) * 2001-04-05 2011-04-06 ユーティーシー パワー コーポレイション Method and apparatus for operation of a battery stack assembly at sub-freezing temperatures
JP2006286649A (en) * 2006-06-07 2006-10-19 Nissan Motor Co Ltd Control device for fuel cell system
JP4529948B2 (en) * 2006-06-07 2010-08-25 日産自動車株式会社 Control device for fuel cell system
JP2014010924A (en) * 2012-06-27 2014-01-20 Kyocera Corp Controller, fuel cell unit and control method

Similar Documents

Publication Publication Date Title
JP2951025B2 (en) Operating method of small phosphoric acid type fuel cell
EP2215679B1 (en) Fuel cell system
US7147951B1 (en) Cogeneration device
CN113140749A (en) Low-temperature quick start control method and system for fuel cell
JP2006528827A (en) Operation of low-temperature fuel cell generator
JP5799766B2 (en) Fuel cell system
JP3966839B2 (en) Waste heat utilization heat source device
JP4716352B2 (en) Hot water storage hot water source
CN106887616B (en) Fuel cell cold start system and method based on liquid organic hydrogen storage
JPH0447674A (en) Temperature control device for fuel cell
JP3470909B2 (en) Hybrid fuel cell
JP2005294118A (en) Fuel cell system and fuel cell vehicle
CN116344861A (en) Proton exchange membrane hydrogen fuel cell cogeneration system
JP2003282108A (en) Fuel cell system
JP3871792B2 (en) Fuel cell device
JP2013503438A (en) Reduction of electrode erosion in high temperature PEM fuel cells
JP4322040B2 (en) Fuel cell system and control method thereof
JP5287368B2 (en) Fuel cell system
JP2008226712A (en) Fuel cell system and its control method
CN113497247A (en) High-response-level hydrogen fuel cell system
JPH0878033A (en) Solid polymer fuel cell and its operation method
US11664508B2 (en) Fuel cell system and method of controlling fuel cell system
JP6868830B2 (en) Cogeneration system and its operation method
JP4578890B2 (en) Starting method of fuel cell system
JPH09320626A (en) Phosphoric acid fuel cell generating system