JPH0878033A - Solid polymer fuel cell and its operation method - Google Patents

Solid polymer fuel cell and its operation method

Info

Publication number
JPH0878033A
JPH0878033A JP6214396A JP21439694A JPH0878033A JP H0878033 A JPH0878033 A JP H0878033A JP 6214396 A JP6214396 A JP 6214396A JP 21439694 A JP21439694 A JP 21439694A JP H0878033 A JPH0878033 A JP H0878033A
Authority
JP
Japan
Prior art keywords
heat medium
cell
fuel cell
polymer electrolyte
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6214396A
Other languages
Japanese (ja)
Inventor
Shinichi Maruyama
晋一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6214396A priority Critical patent/JPH0878033A/en
Publication of JPH0878033A publication Critical patent/JPH0878033A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE: To adequately hold the state of an electrolyte film to stabilize operation by controlling the flow of a heating medium to a solid polymer fuel cell to control cell surface inside temperature distribution so that reaction gas outlet side temperature is always higher than others. CONSTITUTION: An electrolyte layer made of a solid polymer film is interposed between a fuel electrode and an oxidizing agent electrode to constitute a cell. A plurality of cells are stacked through a separator, and a heating medium flow path is arranged to form a stack 11. A fuel gas and an oxidizing gas are supplied to the cell to generate d.c. power. In the solid polymer fuel cell, valves 3 to 6 are installed in heating medium flow paths 13 to 17 for circulating a heating medium to the stack 11. In the start of operation of the cell or during low load operation, the heating medium is passed from the lower part of the cell surface to the upper part. During normal operation, a cooling medium is passed from the upper part to the lower part. Cell surface inside temperature is adequately controlled to prevent drying and produced water condensation on the surface of a solid electrolyte film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、起動時,低負荷運転
時および定常運転時のどの状態においても固体高分子型
燃料電池のセル面内温度分布を適切に制御して、固体高
分子電解質膜の乾燥及び過度の濡れを防止し、固体高分
子型燃料電池の安定した運転を行う方法とその装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention appropriately controls the in-plane temperature distribution of a solid polymer electrolyte fuel cell at any time of startup, low load operation and steady operation to provide a solid polymer electrolyte. The present invention relates to a method and a device for preventing the membrane from drying and excessively wetting, and performing a stable operation of a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】燃料電池は、これに使用される電解質の
種類や動作温度により、固体高分子型燃料電池,りん酸
型燃料電池,溶融炭酸塩型燃料電池,固体電解質型燃料
電池などに大別される。固体高分子型燃料電池は、他の
燃料電池方式に比べて両電極間の差圧許容度が高く、電
池の加圧化が容易であるため高出力密度が得られ、ま
た、二酸化炭素耐性により二酸化炭素含有ガスを使用で
きる特徴を有している。さらに低温動作型であるため、
電池構成材料面での制約が少なく、また、常温で短時間
にて起動可能である。
2. Description of the Related Art Fuel cells are classified into solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid electrolyte fuel cells, etc., depending on the type of electrolyte used and the operating temperature. Be separated. Compared to other fuel cell systems, the polymer electrolyte fuel cell has a higher tolerance for the differential pressure between both electrodes, and because it is easier to pressurize the cell, a high output density can be obtained. It has the feature that a carbon dioxide-containing gas can be used. Furthermore, because it is a low temperature operation type,
There are few restrictions in terms of battery constituent materials, and it can be started at room temperature in a short time.

【0003】図5に固体高分子型燃料電池セルの基本構
成を示す。単電池8は、固体高分子電解質膜7の両面に
アノード74aとカソード74bとを有し、さらにその
外両面に集電子75a,75bを具備しており、この集
電子75aは燃料ガス通流路29aを、集電子75bは
酸化剤ガス通流路29bを有している。さらにその外側
はガス不透過性セパレータ76a,76bとによって狭
持されている。
FIG. 5 shows the basic structure of a polymer electrolyte fuel cell. The unit cell 8 has an anode 74a and a cathode 74b on both surfaces of the solid polymer electrolyte membrane 7, and further has current collectors 75a and 75b on both outer surfaces thereof. The current collector 75a is a fuel gas passage. 29a and the current collector 75b have an oxidant gas passage 29b. Further, the outside thereof is sandwiched by the gas impermeable separators 76a and 76b.

【0004】燃料電池の発電効率を高く維持するには、
固体高分子電解質膜を湿潤状態に維持してやることが必
要であるため、反応ガスは予め加湿してからセルに供給
される。セルに供給された燃料ガスおよび酸化剤ガス
は、それぞれの触媒層内の触媒と固体高分子電解質とで
形成された三相界面において、以下の電気化学反応で消
費される。
To maintain high power generation efficiency of a fuel cell,
Since it is necessary to keep the solid polymer electrolyte membrane in a wet state, the reaction gas is humidified in advance and then supplied to the cell. The fuel gas and the oxidant gas supplied to the cell are consumed by the following electrochemical reaction at the three-phase interface formed by the catalyst in each catalyst layer and the solid polymer electrolyte.

【0005】[0005]

【化1】 H2 → 2H+ + 2e- アノード[Chemical formula 1] H 2 → 2H + + 2e - anode

【0006】[0006]

【化2】 (1/2)O2 + 2H+ + 2e- → H2O カソード上記
のように全体反応としてカソードで水が生成し、またア
ノードからカソードに移動するプロトンは固体高分子膜
中を水和の状態で移動するため、即ち、カソード側で水
が生成する。固体高分子型燃料電池は低温動作型である
ため生成水は液状であり、その濃度勾配によって固体高
分子膜をカソードからアノードへ通過するものと、また
は、カソード中に水滴となって残留するものがある。い
ずれの場合においても、電極触媒層付近の生成水による
反応サイト減少,反応ガス拡散阻害,固体高分子電解質
膜の局部的膨潤等によりセル特性が低下するため、生成
水を系外へ除去してやる必要がある。
Embedded image (1/2) O 2 + 2H + + 2e → H 2 O cathode As described above, water is produced at the cathode as a whole reaction, and the protons moving from the anode to the cathode are in the solid polymer film. To move in the hydrated state, that is, water is generated on the cathode side. Since the polymer electrolyte fuel cell is a low-temperature operation type, the produced water is liquid, and one that passes through the polymer electrolyte membrane from the cathode to the anode due to its concentration gradient, or one that remains as water droplets in the cathode There is. In any case, it is necessary to remove the generated water to the outside of the system because the cell characteristics deteriorate due to the reduction of reaction sites due to the generated water near the electrode catalyst layer, the inhibition of the reaction gas diffusion, the local swelling of the solid polymer electrolyte membrane, etc. There is.

【0007】従来採用されている固体高分子型燃料電池
の冷却方法に関しては、例えば特開平5 ─144451号公
報, 特願平5 ─269344号に示されているように、内部に
冷却部を持ち、この冷却部に冷却媒体を循環させ燃料電
池セル面内温度分布を形成するようにしたものがある。
図6に従来のセル面内温度分布の形成手段を表す固体高
分子型燃料電池のセル断面図を示す。
Regarding a cooling method of a polymer electrolyte fuel cell that has been conventionally adopted, as shown in, for example, Japanese Patent Application Laid-Open No. 5-144451 and Japanese Patent Application No. 5-269344, a cooling unit is provided inside. There is a cooling unit in which a cooling medium is circulated to form an in-plane temperature distribution of the fuel cell.
FIG. 6 shows a cell cross-sectional view of a polymer electrolyte fuel cell which represents a conventional means for forming a temperature distribution in a cell surface.

【0008】セパレータ76a,76bには、反応ガス
流路29a,29bに並行して複数の冷却媒体流路65
が設けられ、冷却媒体と反応ガスの流通方向を等しくす
ることにより、セパレータ76a,76bの一端から流
入した冷却媒体がセルの発電生成熱を吸収し温度上昇す
るため、セル面内の温度分布は反応ガス入口側で低く、
反応ガス出口側で高くなる。反応ガス流路を通流する反
応ガス中には反応生成水が水蒸気として放出されるた
め、通流過程で反応ガス中の水蒸気濃度が徐々に上昇
し、すなわち水蒸気圧が徐々に上昇する。反応ガス出口
側温度を高く形成することで、反応ガス出口側における
水蒸気吸収能が保持される。すなわち、反応ガスがセル
面内温度の低い部分側から反応ガス流路に流入し、セル
面内温度の高い部分側から排出されるように制御するこ
とにより、反応ガスの水蒸気圧と触媒層反応部の飽和水
蒸気圧とは、いずれもセル面内温度低温側で低く高温側
で高くなり、互いに適切に平衡した状態となる。したが
って、セル面内のどの部分においても水の生成と排出の
バランスが取れた状態となるので、固体高分子電解質膜
の乾燥,および生成水の凝縮に起因する触媒層の過度の
濡れを防止することができ、また、電池特性の低下を防
止することができる。
A plurality of cooling medium flow paths 65 are provided in the separators 76a and 76b in parallel with the reaction gas flow paths 29a and 29b.
Is provided, and the cooling medium and the reaction gas are made to flow in the same direction, the cooling medium flowing in from one end of the separators 76a and 76b absorbs heat generated by power generation of the cells and rises in temperature. Low on the reaction gas inlet side,
It becomes higher on the reaction gas outlet side. Since the reaction product water is released as water vapor into the reaction gas flowing through the reaction gas passage, the water vapor concentration in the reaction gas gradually increases in the flowing process, that is, the water vapor pressure gradually increases. By forming the reaction gas outlet side temperature to be high, the water vapor absorption capacity at the reaction gas outlet side is maintained. That is, by controlling the reaction gas so that it flows into the reaction gas passage from the side where the in-cell temperature is low and is discharged from the side where the in-cell temperature is high, the water vapor pressure of the reaction gas and the catalyst layer reaction The saturated water vapor pressure in each part is low in the in-plane temperature of the cell, low in the high temperature side, and high in the high temperature side. Therefore, in any part of the cell surface, the generation and the discharge of water are balanced, so that the solid polymer electrolyte membrane is prevented from being dried and the catalyst layer is prevented from being excessively wetted due to the condensation of the generated water. In addition, it is possible to prevent deterioration of battery characteristics.

【0009】図7は従来の固体高分子型燃料電池の熱媒
体配管系統を模式的に示したものである。熱媒体タンク
1内の熱媒体の温度を制御し、冷却媒体として熱媒体ポ
ンプ2によってこの冷却媒体流路を循環させ、スタック
11内部において冷却媒体を熱媒体上部出入口12から
熱媒体下部出入口10へ通流する。ここで、熱媒体は、
熱媒体流路を流通する際反応熱を吸収するため、反応ガ
ス流通方向に対して順次高くなるセル面内温度分布が形
成される。
FIG. 7 schematically shows a heating medium piping system of a conventional polymer electrolyte fuel cell. The temperature of the heat medium in the heat medium tank 1 is controlled, and this heat medium pump 2 is circulated as a cooling medium by the heat medium pump 2, and the cooling medium is transferred from the heat medium upper port 12 to the heat medium lower port 10 inside the stack 11. Flow through. Here, the heat medium is
Since the reaction heat is absorbed when flowing through the heat medium flow path, a temperature distribution in the cell plane that gradually increases in the reaction gas flowing direction is formed.

【0010】ところで、燃料電池の熱バランスは、発電
による内部発熱,セル外への放熱および冷却水による排
熱で成り立っている。従って、発電が低い、すなわち低
負荷運転では、燃料電池の内部発熱より系外への放熱の
ほうが大きくなり、セルの温度が低下することがある。
この状態を低負荷運転と呼ぶ。このような低負荷運転時
および起動時においては燃料電池の温度が低いため、熱
媒体として加熱媒体を供給して燃料電池動作温度を上昇
させている。
By the way, the heat balance of the fuel cell is constituted by internal heat generation by power generation, heat radiation to the outside of the cell, and exhaust heat by cooling water. Therefore, when the power generation is low, that is, in the low load operation, the heat radiation to the outside of the system becomes larger than the heat generation inside the fuel cell, and the temperature of the cell may decrease.
This state is called low load operation. Since the temperature of the fuel cell is low during such low load operation and startup, a heating medium is supplied as a heat medium to raise the operating temperature of the fuel cell.

【0011】[0011]

【発明が解決しようとする課題】前述のような従来の燃
料電池の運転方法においては、起動時および低負荷運転
時における加熱媒体は、セル面内上部からセル面内下部
へ通流する間に低温状態にある燃料電池によって熱を奪
われて温度降下し、セル面内で下部のほうが上部より低
い温度分布となる。このため、燃料電池の起動時および
低負荷運転時においては、生成水の排出が円滑に行われ
なくなるという欠点を有していた。
In the conventional method for operating a fuel cell as described above, the heating medium at the time of start-up and at the time of low-load operation flows while flowing from the upper part inside the cell surface to the lower part inside the cell surface. The fuel cell in the low temperature state takes heat to lower the temperature, and the temperature distribution in the lower part is lower in the cell plane than in the upper part. For this reason, there is a drawback that the generated water is not smoothly discharged at the time of starting the fuel cell and at the time of low load operation.

【0012】この発明は、上記の従来技術の問題点に鑑
み、燃料電池の起動時,低負荷運転時および定常運転時
のどの状態においても固体高分子電解質膜表面における
乾燥および生成水凝縮を防ぐための、適切な固体高分子
型燃料電池およびその運転方法を提供することを目的と
する。
In view of the above-mentioned problems of the prior art, the present invention prevents drying and condensation of generated water on the surface of the solid polymer electrolyte membrane in any state of starting the fuel cell, low load operation and steady operation. It is an object of the present invention to provide an appropriate polymer electrolyte fuel cell and its operating method.

【0013】[0013]

【課題を解決するための手段】上記目的は、まず、燃料
ガス及び酸化剤ガスの供給を受けて直流電力を発生する
セルが、セパレータを介して複数積層された単電池集積
体(スタック)と、該スタック内に、前記セル毎あるい
は複数のセル毎に、冷却媒体あるいは加熱媒体である熱
媒体を通流させる熱媒体流路とを備え、前記セルは、固
体高分子膜からなる電解質層と、該電解質層を挟んでそ
れぞれ配設された燃料電極(アノード)と酸化剤電極
(カソード)とを有する固体高分子型燃料電池の運転方
法において、起動時,低負荷運転時および定常運転時の
どの状態においても、前記セル面内温度が、反応ガス入
口側温度(セル面内上部温度)より、反応ガス出口側温
度(セル面内下部温度)の方が高くなるように前記熱媒
体を通流させることにより達成される。
To achieve the above object, first of all, a single cell integrated body (stack) in which a plurality of cells, which receive a supply of a fuel gas and an oxidant gas and generate a direct current power, are stacked through a separator, A heat medium flow path for allowing a heat medium that is a cooling medium or a heating medium to flow therethrough in each of the cells or in each of a plurality of cells in the stack, and the cells include an electrolyte layer formed of a solid polymer membrane; In a method of operating a polymer electrolyte fuel cell having a fuel electrode (anode) and an oxidant electrode (cathode), which are respectively disposed with the electrolyte layer sandwiched between them, during start-up, low-load operation and steady-state operation In any state, the heat medium is passed through so that the temperature inside the cell surface is higher than the reaction gas inlet side temperature (cell surface upper temperature) than the reaction gas outlet side temperature (cell surface lower temperature). Letting it flow More is achieved.

【0014】また、上記固体高分子型燃料電池の運転方
法において、起動時あるいは低負荷運転時はセル面内下
部よりセル面内上部へ前記加熱媒体を通流させ、定常運
転時はセル面内上部よりセル面内下部へ前記冷却媒体を
通流させることにより達成される。また、上記固体高分
子型燃料電池の運転方法において、起動時あるいは低負
荷運転時における前記熱媒体通流方向と、定常運転時に
おける前記熱媒体通流方向とを逆にすることにより達成
される。
In the method for operating a polymer electrolyte fuel cell described above, the heating medium is caused to flow from the lower part inside the cell surface to the upper part inside the cell surface at the time of start-up or low load operation, and within the cell surface during steady operation. This is achieved by flowing the cooling medium from the upper part to the lower part in the cell plane. In the method for operating the polymer electrolyte fuel cell, it is achieved by reversing the heat medium flow direction at the time of startup or low load operation and the heat medium flow direction at the time of steady operation. .

【0015】さらに、燃料ガス及び酸化剤ガスの供給を
受けて直流電力を発生するセルが、セパレータを介して
複数積層された単電池集積体(スタック)と、該スタッ
ク内に、前記セル毎あるいは複数のセル毎に、冷却媒体
あるいは加熱媒体である熱媒体を通流させる熱媒体流路
と、該熱媒体タンクおよび熱媒体循環用ポンプとを備
え、前記セルは、固体高分子膜からなる電解質層と、該
電解質層を挟んでそれぞれ配設された燃料電極(アノー
ド)と酸化剤電極(カソード)とを有する固体高分子型
燃料電池において、起動時あるいは所定の低負荷運転時
における熱媒体通流方向と定常運転時における熱媒体通
流方向とを逆にする熱媒体通流方向切換え弁装置を備え
ることにより達成される。
Further, a unit cell stack (stack) in which a plurality of cells, which receive the supply of the fuel gas and the oxidant gas and generate DC power, are stacked via a separator, and each cell in the stack or Each of a plurality of cells is provided with a heat medium passage for allowing a heat medium that is a cooling medium or a heating medium to flow therethrough, the heat medium tank and a heat medium circulation pump, and the cell is an electrolyte composed of a solid polymer membrane. In a polymer electrolyte fuel cell having a layer, and a fuel electrode (anode) and an oxidant electrode (cathode), which are arranged with the electrolyte layer sandwiched therebetween, a heat transfer medium at start-up or during predetermined low load operation is used. This is achieved by providing a heat medium flow direction switching valve device that reverses the flow direction and the heat medium flow direction during steady operation.

【0016】また、上記固体高分子型燃料電池におい
て、熱媒体通流方向切換え弁装置は、オンオフ弁4個を
有して成ることにより達成される。また、上記固体高分
子型燃料電池において、熱媒体通流方向切換え弁装置
は、3方向弁2個を有して成ることにより達成される。
また、上記固体高分子型燃料電池において、熱媒体通流
方向切換え弁装置は、5方向弁を有して成ることにより
達成される。
Further, in the above solid polymer fuel cell, the heat medium flow direction switching valve device is achieved by having four on / off valves. Further, in the polymer electrolyte fuel cell, the heat medium flow direction switching valve device is achieved by including two three-way valves.
In the polymer electrolyte fuel cell described above, the heat medium flow direction switching valve device is achieved by including a 5-way valve.

【0017】また、上記固体高分子型燃料電池におい
て、熱媒体の固体高分子型燃料電池セルにおける出入口
温度を測定する温度センサと、該温度センサの出力によ
り、熱媒体上部出入口温度より熱媒体下部出入口温度の
方が高い場合には、熱媒体をセル面内上部から下部へ通
流させ、熱媒体下部出入口温度より熱媒体上部出入口温
度の方が高い場合には、熱媒体をセル面内下部から上部
へ通流させるように制御する制御装置とを設けることに
より達成される。
In the polymer electrolyte fuel cell, a temperature sensor for measuring the inlet / outlet temperature of the heat carrier of the polymer electrolyte fuel cell, and the output of the temperature sensor are used to determine the temperature of the heat medium above and below the heat medium below the heat medium. When the inlet / outlet temperature is higher, the heat medium is made to flow from the upper part to the lower part in the cell surface, and when the inlet / outlet temperature of the heat medium upper part is higher than the inlet / outlet temperature of the lower part of the heat medium, And a control device for controlling the current to flow from the upper part to the upper part.

【0018】[0018]

【作用】燃料電池の起動時あるいは所定の低負荷運転時
においてはセル面内下部よりセル面内上部へ加熱媒体を
通流させ、定常運転時においてはセル面内上部よりセル
面内下部へ冷却媒体を通流させるように熱媒体通流方向
切換え弁装置を用いて制御することにより、常にセル面
内温度を、反応ガス入口側温度(セル面内上部温度)よ
り反応ガス出口側温度(セル面内下部温度)の方が高く
なるように維持して運転できる。これにより、起動時,
低負荷運転時および定常運転時のどの場合においても、
常に触媒層反応部における飽和水蒸気圧がセル面内上部
より下部が高くなり、この傾向は、水の生成に伴う反応
ガス水蒸気圧のセル面内上部より下部への増加傾向とバ
ランスして平衡状態を実現することができる。すなわ
ち、水の生成と排出のバランスが取れた状態となるの
で、生成水凝縮および固体高分子電解質膜の乾燥による
セル特性の低下を防止することができる。
[Operation] When the fuel cell is started or when a predetermined low load operation is performed, the heating medium is caused to flow from the lower part inside the cell surface to the upper part inside the cell surface, and at the time of steady operation, it is cooled from the upper part inside the cell surface to the lower part inside the cell surface. By controlling using the heat medium flow direction switching valve device so that the medium flows, the temperature inside the cell surface is always higher than the reaction gas inlet side temperature (upper cell surface inside temperature) than the reaction gas outlet side temperature (cell It can be operated by maintaining the lower temperature in the plane). This ensures that at startup,
In all cases of low load operation and steady operation,
The saturated steam pressure in the reaction part of the catalyst layer is always higher in the lower part than in the upper part in the cell surface, and this tendency balances with the increasing tendency of the reaction gas steam pressure from the upper part in the cell surface to the lower part due to water generation. Can be realized. That is, since the generation and discharge of water are balanced, it is possible to prevent deterioration of cell characteristics due to condensation of generated water and drying of the solid polymer electrolyte membrane.

【0019】[0019]

【実施例】以下、この発明の実施例を図面を参照して説
明する。 実施例1;図1は、請求項5に係る本発明の実施例の一
つであり、固体高分子型燃料電池の熱媒体の配管系統を
模式的に示したものである。燃料電池起動時あるいは低
負荷運転時においては、燃料電池を昇温するために熱媒
体タンク1内の熱媒体を加温して熱媒体ポンプ2で系内
へ送る。弁4,弁5を開け弁3,弁6を閉じることによ
り、加熱媒体は弁4,熱媒体経路16,熱媒体経路17
を通流し、セル面内下部熱媒体出入口10からスタック
11に入り、スタックを加温し、セル面内上部熱媒体出
入口12から排出される。その後、熱媒体経路13,弁
5,熱媒体経路15を経て熱媒体タンク1内へ戻る。熱
媒体の温度が所定の値になると熱媒体タンク1の加温は
不要となり、そのまま循環を行うが、さらに熱媒体の温
度が所定の温度に上昇すると弁4,弁5を閉じ弁3,弁
6を開けて熱媒体を冷却媒体として通流させ、燃料電池
の冷却モードに切換えられて定常運転となる。冷却媒体
は熱媒体タンク1から熱媒体ポンプで圧送され、弁3,
熱媒体経路13を通流し、セル面内上部熱媒体出入口1
2からスタック11に入り、スタックを冷却し、セル面
内下部熱媒体出入口10から排出される。その後、熱媒
体経路17,熱媒体経路14,弁6,熱媒体経路15を
経て熱媒体タンク1内へ戻る。ここで弁と称しているも
のは、手動弁,電磁弁,空圧弁,また省電力にて利用で
きるマグネラッチ弁,機械ラッチ弁などの弁開閉後に駆
動源から独立するタイプ等、どのような形式のものでも
採用できる。
Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1; FIG. 1 is one of the embodiments of the present invention according to claim 5, and schematically shows a piping system of a heating medium of a polymer electrolyte fuel cell. At the time of starting the fuel cell or at the time of low load operation, the heat medium in the heat medium tank 1 is heated to raise the temperature of the fuel cell and sent to the system by the heat medium pump 2. By opening the valve 4 and the valve 5 and closing the valve 3 and the valve 6, the heating medium is supplied to the valve 4, the heat medium passage 16 and the heat medium passage 17
It flows through, enters the stack 11 from the lower heat medium inlet / outlet 10 in the cell plane, heats the stack, and is discharged from the upper heat medium inlet / outlet 12 in the cell plane. Then, it returns to the inside of the heat medium tank 1 via the heat medium path 13, the valve 5, and the heat medium path 15. When the temperature of the heat medium reaches a predetermined value, heating of the heat medium tank 1 becomes unnecessary and the circulation is continued as it is, but when the temperature of the heat medium further rises to the predetermined temperature, the valves 4 and 5 are closed and the valves 3 and 3 are closed. 6 is opened to let the heat medium flow as a cooling medium, and the mode is switched to the cooling mode of the fuel cell, and the steady operation is performed. The cooling medium is pressure-fed by the heat medium pump from the heat medium tank 1, and the valve 3,
It flows through the heat medium passage 13, and the upper heat medium inlet / outlet port 1 in the cell plane
2 enters the stack 11, cools the stack, and is discharged from the lower heat medium inlet / outlet 10 in the cell plane. Then, it returns to the inside of the heat medium tank 1 via the heat medium path 17, the heat medium path 14, the valve 6, and the heat medium path 15. What is called a valve here is of any type such as a manual valve, a solenoid valve, a pneumatic valve, a type that can be used for power saving, such as a magnetlatch valve, a mechanical latch valve, etc. Anything can be adopted.

【0020】実施例2;図2は、請求項6に係る本発明
の異なる実施例の一つであり、固体高分子型燃料電池の
熱媒体の配管系統を模式的に示したものである。図1に
示した模式図と同一部分には同じ符号を付し、その説明
を省略する。本実施例は、3方向電磁弁を用いて配管系
を簡素化した点が実施例1と異なり、省電力にて運転可
能である。
Embodiment 2; FIG. 2 is one of different embodiments of the present invention according to claim 6 and schematically shows a piping system of a heat medium of a polymer electrolyte fuel cell. The same parts as those in the schematic diagram shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. The present embodiment differs from the first embodiment in that the piping system is simplified by using a three-way solenoid valve, and can be operated with low power consumption.

【0021】図1に示す経路と同様に、燃料電池起動時
あるいは低負荷運転時においては、熱媒体タンク1,熱
媒体ポンプ2,熱媒体経路16,弁20,熱媒体経路1
7,セル面内下部熱媒体出入口10,セル面内上部熱媒
体出入口12,弁19,熱媒体経路15の順に加熱媒体
が通流する。逆に定常運転時においては、熱媒体タンク
1,熱媒体ポンプ2,弁19,熱媒体経路13,セル面
内上部熱媒体出入口12,セル面内下部熱媒体出入口1
0,熱媒体経路17,弁20,熱媒体経路14,熱媒体
経路15の順に冷却媒体が通流する。
Similar to the path shown in FIG. 1, at the time of starting the fuel cell or operating at low load, the heat medium tank 1, the heat medium pump 2, the heat medium path 16, the valve 20, the heat medium path 1
7, the heating medium flows through the cell surface lower heat medium inlet / outlet 10, the cell surface upper heat medium inlet / outlet 12, the valve 19, and the heat medium passage 15. On the contrary, during steady operation, the heat medium tank 1, the heat medium pump 2, the valve 19, the heat medium path 13, the upper heat medium inlet / outlet 12 in the cell plane, and the lower heat medium inlet / outlet 1 in the cell plane
The cooling medium flows in the order of 0, the heat medium passage 17, the valve 20, the heat medium passage 14, and the heat medium passage 15.

【0022】実施例3;図3は、請求項7に係る本発明
の異なる実施例の一つであり、固体高分子型燃料電池の
熱媒体の配管系統を模式的に示したものである。図1に
示した模式図と同一部分には同じ符号を付し、その説明
を省略する。本実施例は、5方向電磁弁を用いて配管系
をさらに簡素化した点が実施例1および実施例2と異な
り、さらに省電力にて運転可能である。
Embodiment 3; FIG. 3 is one of different embodiments of the present invention according to claim 7, and schematically shows a piping system of a heat medium of a polymer electrolyte fuel cell. The same parts as those in the schematic diagram shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. The present embodiment differs from the first and second embodiments in that the piping system is further simplified by using a 5-way solenoid valve, and can be operated with further power saving.

【0023】燃料電池起動時あるいは低負荷運転時にお
いては、5方向電磁弁26の接続口21と接続口24,
接続口22と 接続口25が繋がっており、接続口23
は閉鎖されている。従って、加熱媒体はセル面内下部熱
媒体出入口10よりスタック11内に供給され、セル面
内上部熱媒体出入口12寄り排出され、熱媒体タンク1
に戻る。逆に定常運転時においては、5方向電磁弁26
の接続口21と接続口23,接続口22と接続口24が
繋がっており、接続口25は閉鎖されている。従って、
冷却媒体はセル面内上部熱媒体出入口12よりスタック
11内に供給され、セル面内下部熱媒体出入口10寄り
排出され、熱媒体タンク1に戻る。
At the time of starting the fuel cell or operating at low load, the connection port 21 and the connection port 24 of the five-way solenoid valve 26,
The connection port 22 and the connection port 25 are connected, and the connection port 23
Is closed. Therefore, the heating medium is supplied into the stack 11 from the lower heat medium inlet / outlet 10 in the cell plane, and discharged toward the upper heat medium inlet / outlet 12 in the cell plane, and the heat medium tank 1
Return to On the contrary, during steady operation, the five-way solenoid valve 26
The connection port 21 and the connection port 23, the connection port 22 and the connection port 24 are connected, and the connection port 25 is closed. Therefore,
The cooling medium is supplied into the stack 11 from the upper heat medium inlet / outlet port 12 in the cell plane, discharged toward the lower heat medium inlet / outlet port 10 in the cell plane, and returned to the heat medium tank 1.

【0024】なお、前述の実施例1,実施例2ないし実
施例3の何れにおいても、熱媒体上部出入口12が熱媒
体下部出入口10より高温である状態を所定の低負荷状
態あるいは無負荷状態(起動時)としており、ここで熱
媒体上下出入口温度の検知手段は、例えば温度センサで
ある。なお、前記実施例1〜3において、起動時あるい
は所定の低負荷状態と定常状態の判断を温度センサの出
力に基づいて行う前述の方法以外に、例えば、燃料電池
セルの負荷電流の変動を検出することによって行うこと
もできる。ただしその場合には、セル面内温度分布の逆
転は所定の低負荷状態になるタイミングに一定の遅れを
とるため、これを考慮にいれる必要がある。また、実施
例1,実施例2ないし実施例3の何れにおいても、固体
高分子型燃料電池において、請求項1,請求項2,請求
項3の運転方法を実施することができる。
In any of the first, second, and third embodiments described above, a state in which the heat medium upper inlet / outlet 12 is at a higher temperature than the heat medium lower inlet / outlet 10 is set to a predetermined low load state or no load state ( At the time of startup), the means for detecting the temperature of the upper and lower inlet / outlet ports of the heat medium is, for example, a temperature sensor. In addition, in the first to third embodiments, other than the above-described method of determining the start-up time or the predetermined low load state and the steady state based on the output of the temperature sensor, for example, the fluctuation of the load current of the fuel cell is detected. It can also be done by doing. However, in that case, the reversal of the in-cell temperature distribution has a certain delay in the timing of reaching a predetermined low load state, and this needs to be taken into consideration. Further, in any of Examples 1, 2 and 3, the operating methods of Claims 1, 2 and 3 can be carried out in the polymer electrolyte fuel cell.

【0025】実施例4;図4は、請求項8に係る本発明
の異なる実施例の一つであり、固体高分子型燃料電池の
熱媒体の配管系統を模式的に示したものである。図1お
よび図3に示した模式図と同一部分には同じ符号を付
し、その説明を省略する。図4は、熱媒体上部出入口1
2および熱媒体下部出入口10付近に温度センサ40,
41をそれぞれ備え、これに制御装置18を配し、それ
ぞれの温度を比較測定する方式を取り入れた点が実施例
3と異なる。
Embodiment 4; FIG. 4 is one of the different embodiments of the present invention according to claim 8 and schematically shows a piping system of a heat medium of a polymer electrolyte fuel cell. The same parts as those in the schematic diagrams shown in FIGS. 1 and 3 are designated by the same reference numerals, and the description thereof will be omitted. FIG. 4 shows the heat medium upper port 1
2 and a temperature sensor 40 near the lower entrance 10 of the heat medium,
The third embodiment is different from the third embodiment in that each unit is provided with a control device 18, and the control device 18 is arranged in the control device 41, and a method of comparatively measuring each temperature is adopted.

【0026】熱媒体の固体高分子型燃料電池セルにおけ
る出入口温度を温度センサ40,41により検出し、温
度センサ40,41の出力信号を制御装置18に入力す
る。この制御装置18は、燃料電池セル内へ通流させる
熱媒体の通流方向を前記温度センサ40,41の出力信
号に基づいて判断し、さらにその通流方向を5方向弁2
6の接続口21〜25によって切換える制御を行う。ス
タック11における熱媒体入口温度より熱媒体出口温度
の方が高い場合、即ち、温度センサ40の検知温度より
温度センサ41の検知温度の方が高い場合には、冷却媒
体をセル面内上部から下部へ通流させ、逆に熱媒体出口
温度より熱媒体入口温度のほうが高い場合には、加熱媒
体をセル面内下部から上部へ通流させるように制御す
る。また、この制御装置18は、温度センサ40,41
の出力に基づき燃料電池の熱媒体を加熱媒体とするか冷
却媒体とするべきか判断し、この判断に基づき図示しな
い温度制御装置によって熱媒体タンク1内の熱媒体が加
熱または冷却される。加熱媒体および冷却媒体は、例え
ば熱媒体タンク1内に設けた加熱ヒーターおよび冷却装
置を備えた図示しない温度制御装置により熱媒体温度を
制御して得られる。
The inlet / outlet temperature of the polymer electrolyte fuel cell of the heat medium is detected by the temperature sensors 40 and 41, and the output signals of the temperature sensors 40 and 41 are input to the control device 18. The control device 18 determines the flow direction of the heat medium to flow into the fuel cell based on the output signals of the temperature sensors 40 and 41, and further determines the flow direction of the five-way valve 2.
Switching control is performed by the connection ports 21 to 25 of 6. When the heat medium outlet temperature is higher than the heat medium inlet temperature in the stack 11, that is, when the temperature detected by the temperature sensor 41 is higher than the temperature detected by the temperature sensor 40, the cooling medium is moved from the upper part to the lower part in the cell plane. When the heat medium inlet temperature is higher than the heat medium outlet temperature, conversely, the heating medium is controlled so as to flow from the lower part in the cell plane to the upper part. The control device 18 also includes temperature sensors 40 and 41.
It is determined whether the heat medium of the fuel cell should be used as the heating medium or the cooling medium based on the output of 1. and the heat medium in the heat medium tank 1 is heated or cooled by the temperature control device (not shown) based on this determination. The heating medium and the cooling medium are obtained, for example, by controlling the temperature of the heating medium by a temperature control device (not shown) provided with a heating heater and a cooling device provided in the heating medium tank 1.

【0027】[0027]

【発明の効果】この発明においては、前述のような構成
と運転方法を採用することにより、固体高分子型燃料電
池の起動時,低負荷運転時および定常運転時のどの場合
においても常に反応ガス入口側温度(セル面内上部温
度)より反応ガス出口側温度(セル面内下部温度)が高
くなるように制御して運転することができ、固体高分子
電解質膜の乾燥および過度の濡れを防止して常に安定し
たセル出力特性が得られる。
According to the present invention, by adopting the above-described structure and operating method, the reaction gas is always supplied at any time of starting, low load operation and steady operation of the polymer electrolyte fuel cell. It can be operated by controlling so that the reaction gas outlet side temperature (cell surface lower temperature) is higher than the inlet side temperature (cell surface upper temperature), and prevents the solid polymer electrolyte membrane from drying and excessive wetting. As a result, stable cell output characteristics can always be obtained.

【0028】また、熱媒体配管経路内に電磁弁を用いた
ことにより、配管の簡素化および作業の簡素化がはかれ
る。さらに、熱媒体配管経路内に温度センサ制御装置を
用いたことにより、燃料電池セルの面内温度分布の自動
的制御が可能となる。
Further, since the solenoid valve is used in the heat medium pipe passage, the pipe can be simplified and the work can be simplified. Furthermore, by using the temperature sensor control device in the heat medium piping path, it becomes possible to automatically control the in-plane temperature distribution of the fuel cell unit.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例になる固体高分子型燃料電池
の熱媒体配管系統図
FIG. 1 is a heat medium piping system diagram of a polymer electrolyte fuel cell according to an embodiment of the present invention.

【図2】この発明の異なる実施例になる固体高分子型燃
料電池の熱媒体配管系統図
FIG. 2 is a heat medium piping system diagram of a polymer electrolyte fuel cell according to another embodiment of the present invention.

【図3】この発明のさらに異なる実施例になる固体高分
子型燃料電池の熱媒体配管系統図
FIG. 3 is a heat medium piping system diagram of a polymer electrolyte fuel cell according to still another embodiment of the present invention.

【図4】この発明のさらに異なる実施例になる固体高分
子型燃料電池の温度センサを具備した熱媒体配管制御系
統図
FIG. 4 is a heat medium piping control system diagram equipped with a temperature sensor for a polymer electrolyte fuel cell according to still another embodiment of the present invention.

【図5】固体高分子型燃料電池セルの基本構成図FIG. 5: Basic configuration diagram of polymer electrolyte fuel cell

【図6】従来の固体高分子型燃料電池のセル面内温度分
布を形成する冷却構成におけるセル断面図
FIG. 6 is a cell cross-sectional view of a conventional polymer electrolyte fuel cell in a cooling configuration that forms a temperature distribution in a cell plane.

【図7】従来の固体高分子型燃料電池の熱媒体配管制御
系統図
FIG. 7: Heat medium piping control system diagram of a conventional polymer electrolyte fuel cell

【符号の説明】[Explanation of symbols]

1 熱媒体タンク 2 熱媒体ポンプ 3, 4, 5, 6 弁 19, 20 3 方向弁 26 5 方向弁 21〜 25 5 方向弁接続口 13〜 17 熱媒体経路 18 制御装置 8 単電池 7 固体高分子電解質膜 11 スタック 74 a アノード 74 b カソード 75 a, 75 b 集電子 65 冷却媒体流路 12 熱媒体上部出入口 10 熱媒体下部出入口 40 温度センサ 41 温度センサ 29 a 燃料ガス通流路 29 b 酸化剤ガス通流路 76 a, 76 b セパレータ 1 Heat medium tank 2 Heat medium pump 3, 4, 5, 6 Valve 19, 20 3 Directional valve 26 5 Directional valve 21 to 25 5 Directional valve connection port 13 to 17 Heat medium path 18 Controller 8 Single cell 7 Solid polymer Electrolyte membrane 11 Stack 74 a Anode 74 b Cathode 75 a, 75 b Current collector 65 Coolant channel 12 Heat medium upper inlet / outer 10 Heat medium lower inlet / outer 40 Temperature sensor 41 Temperature sensor 29 a Fuel gas passage 29 b Oxidant gas Flow path 76 a, 76 b Separator

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】燃料ガス及び酸化剤ガスの供給を受けて直
流電力を発生するセルが、セパレータを介して複数積層
された単電池集積体(スタック)と、 該スタック内に、前記セル毎あるいは複数のセル毎に、
冷却媒体あるいは加熱媒体である熱媒体を通流させる熱
媒体流路とを備え、 前記セルは、固体高分子膜からなる電解質層と、該電解
質層を挟んでそれぞれ配設された燃料電極(アノード)
と酸化剤電極(カソード)とを有する固体高分子型燃料
電池の運転方法において、 起動時,低負荷運転時および定常運転時のどの状態にお
いても、前記セル面内温度が、反応ガス入口側温度(セ
ル面内上部温度)より、反応ガス出口側温度(セル面内
下部温度)の方が高くなるように前記熱媒体を通流させ
ることを特徴とする固体高分子型燃料電池の運転方法。
1. A unit cell integrated body (stack) in which a plurality of cells, which receive a supply of a fuel gas and an oxidant gas and generate direct current power, are stacked via a separator, and each of the cells in the stack, or For multiple cells,
A heating medium flow path for passing a heating medium that is a cooling medium or a heating medium is provided, and the cell includes an electrolyte layer made of a solid polymer membrane, and fuel electrodes (anodes) respectively arranged with the electrolyte layer sandwiched therebetween. )
In a method of operating a polymer electrolyte fuel cell having an oxidizer electrode (cathode) and an oxidizer electrode (cathode), the cell surface temperature is the temperature at the inlet side of the reaction gas at any of startup, low load operation and steady operation. A method for operating a polymer electrolyte fuel cell, characterized in that the heat medium is caused to flow so that the reaction gas outlet side temperature (cell surface lower temperature) is higher than the (cell surface upper temperature).
【請求項2】請求項1記載の固体高分子型燃料電池の運
転方法において、起動時あるいは低負荷運転時はセル面
内下部よりセル面内上部へ加熱媒体を通流させ、定常運
転時はセル面内上部よりセル面内下部へ冷却媒体を通流
させることを特徴とする固体高分子型燃料電池の運転方
法。
2. The method for operating a polymer electrolyte fuel cell according to claim 1, wherein the heating medium is made to flow from the lower part inside the cell surface to the upper part inside the cell surface at the time of start-up or low load operation, and at the time of steady operation. A method for operating a polymer electrolyte fuel cell, characterized in that a cooling medium is caused to flow from an upper portion in the cell plane to a lower portion in the cell plane.
【請求項3】請求項1記載の固体高分子型燃料電池の運
転方法において、起動時あるいは低負荷運転時における
熱媒体通流方向と、定常運転時における熱媒体通流方向
とを逆にすることを特徴とする固体高分子型燃料電池の
運転方法。
3. The operating method of the polymer electrolyte fuel cell according to claim 1, wherein the heat medium flowing direction at the time of start-up or low load operation is opposite to the heat medium flowing direction at the time of steady operation. A method for operating a polymer electrolyte fuel cell, comprising:
【請求項4】燃料ガス及び酸化剤ガスの供給を受けて直
流電力を発生するセルが、セパレータを介して複数積層
された単電池集積体(スタック)と、 該スタック内に、前記セル毎あるいは複数のセル毎に、
冷却媒体あるいは加熱媒体である熱媒体を通流させる熱
媒体流路と、 該熱媒体タンクおよび熱媒体循環用ポンプとを備え、 前記セルは、固体高分子膜からなる電解質層と、該電解
質層を挟んでそれぞれ配設された燃料電極(アノード)
と酸化剤電極(カソード)とを有する固体高分子型燃料
電池において、 起動時あるいは所定の低負荷運転時における熱媒体通流
方向と定常運転時における熱媒体通流方向とを逆にする
熱媒体通流方向切換え弁装置を備えたことを特徴とする
固体高分子型燃料電池。
4. A unit cell integrated body (stack) in which a plurality of cells, which receive a supply of a fuel gas and an oxidant gas and generate a direct current power, are stacked with a separator interposed therebetween, and in the stack, each cell or each cell. For multiple cells,
A heat medium passage for allowing a heat medium that is a cooling medium or a heating medium to flow therethrough; and a heat medium tank and a heat medium circulation pump, wherein the cell is an electrolyte layer made of a solid polymer membrane, and the electrolyte layer. Fuel electrodes (anode) that are respectively placed across the
In a polymer electrolyte fuel cell having a cathode and an oxidizer electrode (cathode), a heat medium in which the heat medium flowing direction at the time of start-up or a predetermined low load operation is opposite to the heat medium flowing direction at the time of steady operation A polymer electrolyte fuel cell comprising a flow direction switching valve device.
【請求項5】請求項4記載の固体高分子型燃料電池にお
いて、熱媒体通流方向切換え弁装置は、オンオフ弁4個
を有して成ることを特徴とする固体高分子型燃料電池。
5. The polymer electrolyte fuel cell according to claim 4, wherein the heat medium flow direction switching valve device has four on / off valves.
【請求項6】請求項4記載の固体高分子型燃料電池にお
いて、熱媒体通流方向切換え弁装置は、3方向弁2個を
有して成ることを特徴とする固体高分子型燃料電池。
6. A polymer electrolyte fuel cell according to claim 4, wherein the heat medium flow direction switching valve device comprises two three-way valves.
【請求項7】請求項4記載の固体高分子型燃料電池にお
いて、熱媒体通流方向切換え弁装置は、5方向弁を有し
て成ることを特徴とする固体高分子型燃料電池。
7. The polymer electrolyte fuel cell according to claim 4, wherein the heat medium flow direction switching valve device has a five-way valve.
【請求項8】請求項4記載の固体高分子型燃料電池にお
いて、熱媒体の固体高分子型燃料電池セルにおける出入
口温度を測定する温度センサと、該温度センサの出力に
より、熱媒体上部出入口温度より熱媒体下部出入口温度
の方が高い場合には、熱媒体をセル面内上部から下部へ
通流させ、熱媒体下部出入口温度より熱媒体上部出入口
温度の方が高い場合には、熱媒体をセル面内下部から上
部へ通流させるように制御する制御装置とを設けたこと
を特徴とする固体高分子型燃料電池。
8. The solid polymer fuel cell according to claim 4, wherein a temperature sensor for measuring the inlet / outlet temperature of the heat medium in the polymer electrolyte fuel cell, and the output of the temperature sensor are used to determine the inlet / outlet temperature of the upper portion of the heat medium. If the lower heating medium inlet / outlet temperature is higher, the heating medium is made to flow from the upper part to the lower portion in the cell plane, and if the heating medium upper / lower inlet temperature is higher than the lower heating medium inlet / outlet temperature, the heating medium is A polymer electrolyte fuel cell, which is provided with a control device for controlling the flow from the lower part to the upper part in the cell plane.
JP6214396A 1994-09-08 1994-09-08 Solid polymer fuel cell and its operation method Pending JPH0878033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6214396A JPH0878033A (en) 1994-09-08 1994-09-08 Solid polymer fuel cell and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6214396A JPH0878033A (en) 1994-09-08 1994-09-08 Solid polymer fuel cell and its operation method

Publications (1)

Publication Number Publication Date
JPH0878033A true JPH0878033A (en) 1996-03-22

Family

ID=16655100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6214396A Pending JPH0878033A (en) 1994-09-08 1994-09-08 Solid polymer fuel cell and its operation method

Country Status (1)

Country Link
JP (1) JPH0878033A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408389B (en) * 1999-03-17 2001-11-26 Vaillant Gmbh REFRIGERATED FUEL CELL ARRANGEMENT
US6383672B1 (en) 1999-04-28 2002-05-07 Toyota Jidoshi Kabushiki Kaisha Temperature regulator for fuel cell
JP2003017105A (en) * 2001-07-04 2003-01-17 Honda Motor Co Ltd Cooling device for fuel cell
KR20040002072A (en) * 2002-06-29 2004-01-07 현대자동차주식회사 Fuel cell stack system
JP2006302627A (en) * 2005-04-20 2006-11-02 Aisin Seiki Co Ltd Fuel cell system
JP2007317553A (en) * 2006-05-26 2007-12-06 Nissan Motor Co Ltd Fuel cell system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408389B (en) * 1999-03-17 2001-11-26 Vaillant Gmbh REFRIGERATED FUEL CELL ARRANGEMENT
US6383672B1 (en) 1999-04-28 2002-05-07 Toyota Jidoshi Kabushiki Kaisha Temperature regulator for fuel cell
JP2003017105A (en) * 2001-07-04 2003-01-17 Honda Motor Co Ltd Cooling device for fuel cell
KR20040002072A (en) * 2002-06-29 2004-01-07 현대자동차주식회사 Fuel cell stack system
JP2006302627A (en) * 2005-04-20 2006-11-02 Aisin Seiki Co Ltd Fuel cell system
JP4728686B2 (en) * 2005-04-20 2011-07-20 アイシン精機株式会社 Fuel cell system
JP2007317553A (en) * 2006-05-26 2007-12-06 Nissan Motor Co Ltd Fuel cell system

Similar Documents

Publication Publication Date Title
US6815103B2 (en) Start control device for fuel cell system
JP3699063B2 (en) Fuel cell and control method thereof
JPH10284096A (en) Solid high polymer electrolyte fuel cell
JP2008524812A (en) Passive micro coolant loop for electrochemical fuel cells
JPH09283162A (en) Solid high molecular fuel cell
JP2008059922A (en) Fuel cell system
JP2004311277A (en) Fuel cell system
JP3918691B2 (en) Polymer electrolyte fuel cell
JPH0878033A (en) Solid polymer fuel cell and its operation method
JP2002280029A (en) Control device for fuel cell system
JP2003068337A (en) Fuel cell system
JP2005116256A (en) Fuel cell cogeneration system
US7067209B2 (en) High temperature reactant recycling for PEM fuel cell humidification
JP2002319425A (en) Fuel cell condition detecting device
JP2006092801A (en) Fuel cell system
JP2009140614A (en) Fuel cell
US7063907B2 (en) Passive water management system for a fuel cell power plant
JP2005032561A (en) Solid polymer fuel cell and operation system of solid polymer fuel cell
JP2004186008A (en) Solid polymer fuel cell, solid polymer fuel cell system and mobile body
JP5191160B2 (en) Fuel cell operating method and fuel cell system
JP2009218113A (en) Fuel cell system
JP2006236779A (en) Humidifying system and fuel cell power generation system
JP2006351241A (en) Fuel cell system
JP2007280642A (en) Fuel cell system and its operation method
JP2006049133A (en) Fuel cell system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050111

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050112

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110121

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20140121

LAPS Cancellation because of no payment of annual fees