JP2003242993A - Air conditioner utilizing fuel cell heat - Google Patents

Air conditioner utilizing fuel cell heat

Info

Publication number
JP2003242993A
JP2003242993A JP2002041908A JP2002041908A JP2003242993A JP 2003242993 A JP2003242993 A JP 2003242993A JP 2002041908 A JP2002041908 A JP 2002041908A JP 2002041908 A JP2002041908 A JP 2002041908A JP 2003242993 A JP2003242993 A JP 2003242993A
Authority
JP
Japan
Prior art keywords
cooling water
cold
heat
hot water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002041908A
Other languages
Japanese (ja)
Other versions
JP4186473B2 (en
Inventor
Hitoshi Iijima
等 飯嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002041908A priority Critical patent/JP4186473B2/en
Publication of JP2003242993A publication Critical patent/JP2003242993A/en
Application granted granted Critical
Publication of JP4186473B2 publication Critical patent/JP4186473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an air conditioner utilizing the fuel cell heat that can effectively utilize the heat generated from the fuel cell unit. <P>SOLUTION: The air conditioner device utilizing the fuel cell heat comprises a cooling water circulating route in which the fuel cell unit and the radiator is connected by a forward and a return pipes, a freezing cycle circulating route in which a compressor, a utilizing water heat exchanger, and an outdoor heat exchanger are connected in order, a heat recovery circulating route which is connected over the forward and return pipes and connects a heat-recovery flow control valve and a heat-recovery water heat exchanger on the way, and a cold and hot water circulating route made of a first circuit in which a F coil, a pump, and a first flow control valve are connected in order to the utilizing water heat exchanger and a second circuit made of a F coil, a pump, a second flow control valve, and a heat-recovery water heat exchanger. And a first and a second detecting means for detecting the forward and return temperature are provided at the forward and return pipes and a third detecting means for detecting the cold and hot water temperature is provided at the F coil connecting side of the cold and hot water circulating route. And a controller for inputting the detected signal of the first, second, and third detecting means and outputting a control signal to the heat-recovery flow control valve, the first and second flow control valves, and the compressor is provided. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池の電気化
学反応の際に発生する熱を空調に利用する燃料電池熱利
用空気調和機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell heat utilization air conditioner that utilizes heat generated during an electrochemical reaction of a fuel cell for air conditioning.

【0002】[0002]

【従来の技術】図11に従来の固体高分子型燃料電池シ
ステムの概略構成図を示す。図11において、1は燃料
電池本体、2はブロアー5により取込まれた例えば炭化
水素系の燃料ガスを、水蒸気と混合し高温で触媒(例え
ばニッケル系など)反応させ分解して水素ガスを発生
(改質)させる改質器である。尚、前記水蒸気化される
水はポンプ9により供給される。3は前記改質器2を高
温にするための燃焼部で、ブロアー6、7により燃料ガ
スと燃焼用空気が供給される。4は前記改質器2からの
水素ガスとブロアー8により取込まれた酸素(空気)と
の電気化学反応により電気をつくる電池スタックであ
る。10は前記電池スタック4で電気化学反応する際に
発生する熱を大気中に放出するための送風機11を有す
る放熱器であり、前記電池スタック4との間で冷却水行
き配管12と冷却水戻り配管13により循環回路を形成
する。14は前記電池スタック4と前記放熱器10との
間の前記冷却水行き配管12の中途に配置された冷却水
循環用ポンプである。尚、図中の矢印は、冷却水の流れ
方向を示している。
2. Description of the Related Art FIG. 11 shows a schematic configuration diagram of a conventional polymer electrolyte fuel cell system. In FIG. 11, 1 is a fuel cell main body, 2 is a hydrocarbon-based fuel gas taken in by a blower 5, is mixed with water vapor, and is reacted at a high temperature with a catalyst (for example, nickel-based) to decompose to generate hydrogen gas. It is a reformer for (reforming). The water to be steamed is supplied by the pump 9. Reference numeral 3 denotes a combustion section for raising the temperature of the reformer 2 to a high temperature, and fuel gas and combustion air are supplied by blowers 6 and 7. Reference numeral 4 is a battery stack that produces electricity by an electrochemical reaction between hydrogen gas from the reformer 2 and oxygen (air) taken in by the blower 8. Reference numeral 10 denotes a radiator having a blower 11 for releasing the heat generated during the electrochemical reaction in the battery stack 4 to the atmosphere, and a cooling water going pipe 12 and a cooling water return with the battery stack 4. A circulation circuit is formed by the pipe 13. Reference numeral 14 is a cooling water circulation pump disposed in the middle of the cooling water going pipe 12 between the battery stack 4 and the radiator 10. The arrows in the figure indicate the flow direction of the cooling water.

【0003】上記の構成において、都市ガスなどの炭化
水素を含む燃料を前記改質器2で改質して得られる水素
と大気中から得られる空気中の酸素を、前記電池スタッ
ク4で電気化学的に反応させて直流電気を取り出し、直
流/交流変換器(図示せず)により交流電源を発生させ
るようにしている。
In the above structure, hydrogen obtained by reforming a fuel containing hydrocarbon such as city gas in the reformer 2 and oxygen in the air obtained from the atmosphere are electrochemically converted in the battery stack 4. The direct current is taken out by reacting dynamically, and an alternating current power source is generated by a direct current / alternating current converter (not shown).

【0004】[0004]

【発明が解決しようとする課題】上記のように構成され
た従来の固体高分子型燃料電池システムにおいては、水
素ガスと酸素とを電気化学反応させて電気を作り出す前
記電池スタック4の温度が100℃を超えると、その機
能が損なわれる恐れがあることから、前記電池スタック
4の冷却用に、前記電池スタック4と放熱器10との間
に冷却水行き配管12と冷却水戻り配管13により循環
回路を形成し、冷却水循環用ポンプ14により冷却水を
循環して、前記放熱器10で送風機11により大気中に
放熱して100℃を超えないよう冷却している。このよ
うに従来は電池スタック4から発生する熱を放熱器10
で大気中に排出しているだけで、この熱を例えば空調等
に積極的に利用しようとする試みがされていなかった。
In the conventional solid polymer type fuel cell system configured as described above, the temperature of the cell stack 4 for producing electricity by electrochemically reacting hydrogen gas and oxygen is 100. If the temperature exceeds ℃, the function may be impaired. Therefore, for cooling the battery stack 4, the cooling water going pipe 12 and the cooling water return pipe 13 circulate between the battery stack 4 and the radiator 10. A circuit is formed, and the cooling water is circulated by the cooling water circulation pump 14, and the radiator 10 radiates heat to the atmosphere by the blower 11 to cool it so as not to exceed 100 ° C. As described above, conventionally, the heat generated from the battery stack 4 is applied to the radiator 10
However, there is no attempt to positively utilize this heat for air conditioning, for example, by simply discharging it into the atmosphere.

【0005】本発明は上記の点に鑑みてなされたもの
で、固体高分子型燃料電池本体から発生する電気化学反
応する際に発生する熱を有効に利用することにより省エ
ネを図ることができる燃料電池熱利用空気調和機を得る
ことを目的とする。
The present invention has been made in view of the above points, and it is possible to achieve energy saving by effectively utilizing the heat generated during the electrochemical reaction generated from the polymer electrolyte fuel cell main body. The purpose is to obtain an air conditioner that utilizes battery heat.

【0006】[0006]

【課題を解決するための手段】本発明に係る請求項1記
載の燃料電池熱利用空気調和機は、燃料電池本体と放熱
器との間が冷却水行き用配管と戻り用の配管で接続さ
れ、前記冷却水行き用配管に冷却水循環用ポンプと冷却
水流量調整弁を配設して形成される冷却水循環経路と、
圧縮機と四方弁と利用側水熱交換器および室外空気熱交
換器が順次接続されて形成されるヒートポンプ冷凍サイ
クルの循環経路と、前記冷却水循環経路の前記冷却水循
環ポンプと前記冷却水流量調整弁との間の前記冷却水行
き用配管と、前記冷却水戻り用配管とに跨って接続さ
れ、途中に熱回収用冷却水流量調整弁と熱回収用水熱交
換器を接続した熱回収冷却水循環経路とを備え、前記冷
凍サイクルの利用側水熱交換器にファンコイル、冷温水
循環用ポンプおよび第1の冷温水流量調整弁を配管で順
次接続して形成される第1の循環回路と、前記冷温水循
環用ポンプと前記第1の冷温水流量調整弁との間の配管
と、前記利用側水熱交換器と前記ファンコイルとの間の
配管とに跨って接続され、途中に第2の冷温水流量調整
弁と前記熱回収用水熱交換器を接続した第2の循環回路
とで冷温水循環経路が形成され、前記冷却水循環経路の
前記冷却水行き用配管および戻り用配管に、前記燃料電
池本体を通して循環される冷却水の行き温度TcSと、
冷却水の戻り温度TcRとをそれぞれ検出する第1の温
度検出手段と第2の温度検出手段を設け、前記冷温水循
環経路の配管のファンコイル流入側に、ファンコイルへ
流入する冷温水温度ThSを検出する第3の温度検出手
段を設け、前記第1、第2の温度検出手段および前記第
3の温度検出手段の検出信号を入力し、前記冷却水流量
調整弁、前記熱回収用冷却水流量調整弁、前記第1、第
2の冷温水流量調整弁、前記放熱器の送風機および前記
圧縮機に制御信号を出力する制御器を設けたものであ
る。
In the fuel cell heat utilizing air conditioner according to claim 1 of the present invention, the fuel cell main body and the radiator are connected by a cooling water going pipe and a returning pipe. A cooling water circulation path formed by disposing a cooling water circulation pump and a cooling water flow rate adjusting valve in the cooling water going pipe;
A heat pump refrigeration cycle circulation path formed by sequentially connecting a compressor, a four-way valve, a use side water heat exchanger and an outdoor air heat exchanger, and the cooling water circulation pump and the cooling water flow rate adjusting valve in the cooling water circulation path. Between the cooling water going pipe and the cooling water returning pipe, and a heat recovery cooling water circulation path in which a heat recovery cooling water flow rate adjusting valve and a heat recovery water heat exchanger are connected in the middle of the pipe. And a first circulation circuit formed by sequentially connecting a fan coil, a hot / cold water circulation pump and a first cold / hot water flow rate adjusting valve to the utilization side water heat exchanger of the refrigeration cycle by piping, and the cold temperature It is connected across a pipe between the water circulation pump and the first cold / hot water flow rate adjusting valve and a pipe between the utilization side water heat exchanger and the fan coil, and a second cold / hot water is provided on the way. Flow control valve and water heat exchange for heat recovery A hot / cold water circulation path is formed with the second circulation circuit connecting the reactor, and a cooling water going temperature TcS circulated through the fuel cell main body is provided in the cooling water going pipe and the returning pipe of the cooling water circulating path. ,
A first temperature detecting means and a second temperature detecting means for respectively detecting the return temperature TcR of the cooling water are provided, and the cold / hot water temperature ThS flowing into the fan coil is provided on the fan coil inflow side of the pipe of the cold / hot water circulation path. A third temperature detecting means for detecting is provided, and the detection signals of the first and second temperature detecting means and the third temperature detecting means are inputted, the cooling water flow rate adjusting valve, and the heat recovery cooling water flow rate. A control valve, a controller for outputting a control signal to the first and second cold / hot water flow rate control valves, the fan of the radiator and the compressor are provided.

【0007】また、請求項2記載の燃料電池熱利用空気
調和機は、前記第1の温度検出手段により検出された冷
却水の行き温度TcSが、所定の設定温度より小さい場
合は、前記冷凍サイクルの循環経路と、前記第1の循環
回路の冷温水循環経路とでヒートポンプによる暖房運転
を、前記冷却水の行き温度TcSが、所定の設定温度よ
り高い場合は、前記熱回収冷却水循環経路と、前記冷凍
サイクルの循環経路および前記第1、第2循環回路の冷
温水循環経路とでヒートポンプ+熱回収による暖房運転
を、前記第3の温度検出手段により検出された冷温水温
度ThSが、所定の設定温度より高い場合は、前記冷却
水循環経路と、前記熱回収冷却水循環経路および前記第
2の循環回路の冷温水循環経路とで熱回収による暖房お
よび放熱器運転をするようにしたものである。
Further, in the fuel cell heat utilization air conditioner according to a second aspect of the present invention, when the going temperature TcS of the cooling water detected by the first temperature detecting means is smaller than a predetermined set temperature, the refrigeration cycle. Heating operation by a heat pump in the circulation path of the first circulation circuit and the hot and cold water circulation path of the first circulation circuit, when the going temperature TcS of the cooling water is higher than a predetermined set temperature, the heat recovery cooling water circulation path, A heating operation by heat pump + heat recovery is performed in the circulation path of the refrigeration cycle and the cold / hot water circulation paths of the first and second circulation circuits, and the cold / hot water temperature ThS detected by the third temperature detecting means is a predetermined set temperature. When it is higher, the heating and radiator operation by heat recovery are performed in the cooling water circulation path, the heat recovery cooling water circulation path and the cold / hot water circulation path of the second circulation circuit. In which was to so that.

【0008】[0008]

【発明の実施の形態】実施の形態1.図1は、この発明
の実施の形態1における燃料電池熱利用空気調和機の構
成を示す図である。尚、図1において、上記従来例図1
1と同一または相当部分には同一符号を付し説明を省略
する。本実施の形態における燃料電池熱利用空気調和機
は、ヒートポンプ式の冷凍サイクル系、熱回収の冷却水
系、利用側の冷温水系から構成される。尚、図中の矢印
は冷却水の流れ方向を示している。図1において、ま
ず、ヒートポンプ式の冷凍サイクル系において、20は
圧縮機、21は冷房時と暖房時とで冷媒の流れ方向を切
換える四方弁、22は利用側水熱交換器、23は膨張
弁、24は室外空気熱交換器であり、これらにより冷凍
サイクルを構成している。尚、この冷凍サイクルの冷媒
の流れ及び作用は周知の通りであるので、ここでの説明
を省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. 1 is a diagram showing the configuration of a fuel cell heat-utilizing air conditioner according to Embodiment 1 of the present invention. Incidentally, in FIG. 1, the conventional example shown in FIG.
The same or corresponding parts as 1 are designated by the same reference numerals and the description thereof will be omitted. The fuel cell heat utilization air conditioner according to the present embodiment includes a heat pump type refrigeration cycle system, a heat recovery cooling water system, and a user side cold / hot water system. The arrows in the figure indicate the flow direction of the cooling water. In FIG. 1, first, in a heat pump type refrigeration cycle system, 20 is a compressor, 21 is a four-way valve that switches the flow direction of the refrigerant between cooling and heating, 22 is a water heat exchanger on the use side, and 23 is an expansion valve. 24 are outdoor air heat exchangers, which constitute a refrigeration cycle. Since the flow and action of the refrigerant in this refrigeration cycle are well known, description thereof will be omitted here.

【0009】次に、熱回収の冷却水系において、30は
熱回収用の冷却水流量調整弁、31は熱回収用水熱交換
器である。32は前記冷却水循環用ポンプ14と前記放
熱器10へ流れる冷却水の流量を調整する冷却水流量調
整弁33との間の前記冷却水行き配管12の中途と、前
記放熱器10と前記電池スタック4との間の前記冷却水
戻り配管13の中途でそれぞれ分岐し、前記熱回収用冷
却水流量調整弁30と前記熱回収用水熱交換器31を介
して接続した熱回収用水配管である。そして、前記冷却
水行き配管12、冷却水戻り配管13および前記熱回収
用水配管32で接続される前記電池スタック4、冷却水
循環用ポンプ14、前記熱回収用冷却水流量調整弁3
0、前記熱回収用水熱交換器31で形成される回路系統
で前記熱回収の冷却水系が構成される。
Next, in the heat recovery cooling water system, 30 is a heat recovery cooling water flow rate adjusting valve, and 31 is a heat recovery water heat exchanger. Reference numeral 32 denotes the middle of the cooling water going pipe 12 between the cooling water circulation pump 14 and the cooling water flow rate adjusting valve 33 for adjusting the flow rate of the cooling water flowing to the radiator 10, and the radiator 10 and the battery stack. 4 is a middle part of the cooling water return pipe 13 between them, and is connected to the heat recovery cooling water flow rate adjusting valve 30 and the heat recovery water heat exchanger 31 through the heat recovery water pipe. Then, the battery stack 4, the cooling water circulation pump 14, and the heat recovery cooling water flow rate adjusting valve 3 which are connected by the cooling water going pipe 12, the cooling water return pipe 13 and the heat collecting water pipe 32.
0, the circuit system formed by the heat recovery water heat exchanger 31 constitutes the heat recovery cooling water system.

【0010】続いて、利用側の冷温水系において、40
は例えば室内に設置されるファンコイル、41は冷温水
循環用ポンプ、42は前記冷凍サイクルの利用側水熱交
換器22と前記冷温水循環用ポンプ41との間に設けら
れた第1の冷温水流量調整弁である。43は前記ファン
コイル40、前記冷温水循環用ポンプ41、前記第1の
冷温水流量調整弁42、前記冷凍サイクルの利用側水熱
交換器22とを順次接続した冷温水配管である。
Next, in the cold / hot water system on the user side, 40
Is a fan coil installed in the room, 41 is a cold / hot water circulation pump, 42 is a first cold / hot water flow rate provided between the user side water heat exchanger 22 of the refrigeration cycle and the cold / hot water circulation pump 41. It is a regulating valve. Reference numeral 43 is a cold / hot water pipe in which the fan coil 40, the cold / hot water circulation pump 41, the first cold / hot water flow rate adjusting valve 42, and the use side water heat exchanger 22 of the refrigeration cycle are sequentially connected.

【0011】また、50は前記熱回収用水熱交換器31
へ流れる冷温水の流量を調整する第2の冷温水流量調整
弁で、51は前記冷温水循環用ポンプ41と前記第1の
冷温水流量調整弁42との間の前記冷温水配管43の中
途と、前記利用側水熱交換器22とファンコイル40と
の間の前記冷温水配管43の中途でそれぞれ分岐し、前
記第2の冷温水流量調整弁50と前記熱回収用水熱交換
器31を介して接続したバイパス配管である。そして、
前記冷温水配管43で接続される前記ファンコイル4
0、冷温水循環用ポンプ41、前記第1の冷温水流量調
整弁42、利用側水熱交換器22で形成される回路系統
と、前記冷温水配管43及び前記バイパス配管51で接
続される前記ファンコイル40、冷温水循環用ポンプ4
1、前記第2の冷温水流量調整弁50、前記熱回収用水
熱交換器31で形成される回路系統とで利用側の冷温水
系が構成される。
Reference numeral 50 denotes the heat recovery water heat exchanger 31.
A second cold / hot water flow rate adjusting valve that adjusts the flow rate of the cold / hot water flowing into the hot / cold water pipe 43 between the cold / hot water circulation pump 41 and the first cold / hot water flow adjusting valve 42. , Branching in the middle of the cold / hot water pipe 43 between the use side water heat exchanger 22 and the fan coil 40, and via the second cold / hot water flow rate adjusting valve 50 and the heat recovery water heat exchanger 31. It is a bypass pipe connected by. And
The fan coil 4 connected by the cold / hot water pipe 43
0, the cold / hot water circulation pump 41, the first cold / hot water flow rate adjusting valve 42, the circuit system formed by the use side water heat exchanger 22, and the fan connected by the cold / hot water pipe 43 and the bypass pipe 51 Coil 40, cold / hot water circulation pump 4
1, a circuit system formed by the second cold / hot water flow rate adjusting valve 50 and the heat recovery water heat exchanger 31 constitutes a cold / hot water system on the use side.

【0012】60、61は前記冷却水行き配管12及び
前記冷却水戻り配管13のそれぞれ中途で分岐した付近
の、前記冷却水循環用ポンプ14が配置された側の前記
冷却水行き配管12と前記冷却水戻り配管13にそれぞ
れ設けられ、前記燃料電池本体1の電池スタック4を通
して循環される冷却水の行き温度TcSと冷却水の戻り
温度TcRをそれぞれ検出する、例えばサーミスタなど
の第1の温度検出手段と第2の温度検出手段である。6
2は前記利用側水熱交換器22と前記ファンコイル40
とを接続する前記冷温水配管43のファンコイル40の
流入側に設けられ、前記ファンコイル40に流入する冷
温水温度ThSを検出する例えばサーミスタなどの第3
の温度検出手段である。
Reference numerals 60 and 61 denote the cooling water going pipe 12 and the cooling pipe on the side where the cooling water circulating pump 14 is arranged, near the branches of the cooling water going pipe 12 and the cooling water return pipe 13, respectively. A first temperature detecting means, such as a thermistor, for detecting the going temperature TcS of the cooling water and the returning temperature TcR of the cooling water which are respectively provided in the water return pipes 13 and circulate through the cell stack 4 of the fuel cell body 1. And second temperature detecting means. 6
2 is the use side water heat exchanger 22 and the fan coil 40
A third, such as a thermistor, which is provided on the inflow side of the fan coil 40 of the cold / hot water pipe 43 for connecting to and detects the cold / hot water temperature ThS flowing into the fan coil 40
Is a temperature detecting means.

【0013】70は前記第1、第2の温度検出手段6
0、61及び前記第3の温度検出手段62の検出信号を
入力し、前記熱回収用冷却水流量調整弁30、前記冷却
水流量調整弁33、前記第1、第2冷温水流量調整弁4
2、50、前記放熱器10の送風機11及び前記圧縮機
20に制御信号を出力する制御器である。
Reference numeral 70 denotes the first and second temperature detecting means 6
0, 61 and the detection signals of the third temperature detecting means 62 are input, and the heat recovery cooling water flow rate adjusting valve 30, the cooling water flow rate adjusting valve 33, the first and second cold / hot water flow rate adjusting valves 4 are input.
2, 50, a controller that outputs a control signal to the blower 11 of the radiator 10 and the compressor 20.

【0014】図2は、前記冷却水戻り配管13に設けら
れ前記第2の温度検出手段61により検出される前記冷
却水戻り温度TcRの温度制御範囲を示したものであ
る。図2中、TCLは前記冷却水戻り温度TcRの設定
温度を、DTcは前記設定温度TCLに対する許容幅を
示し、例えば冷却水戻り温度TcRが60〜65℃程度
の範囲に制御される。前記冷却水戻り温度TcRを制御
することによって、前記燃料電池本体1の電池スタック
4の温度を正常に保つようにする。
FIG. 2 shows the temperature control range of the cooling water return temperature TcR provided in the cooling water return pipe 13 and detected by the second temperature detecting means 61. In FIG. 2, TCL indicates a set temperature of the cooling water return temperature TcR, and DTc indicates an allowable range with respect to the set temperature TCL. For example, the cooling water return temperature TcR is controlled within a range of about 60 to 65 ° C. By controlling the cooling water return temperature TcR, the temperature of the cell stack 4 of the fuel cell body 1 is kept normal.

【0015】図3は、前記冷凍サイクルの利用側水熱交
換器22と前記ファンコイル40とを接続する前記冷温
水配管43のファンコイル40の流入側に設けられ、前
記第3の温度検出手段62により検出される前記ファン
コイル40に流入する前記冷温水温度ThSの温度制御
範囲を示したものである。図3中、THSは前記冷温水
温度ThSの設定温度を、DThは前記設定温度THS
に対する許容幅を示し、例えば前記ファンコイル40が
必要な暖房能力が得られるよう、冷温水温度ThSが4
5〜50℃程度の範囲に制御される。
FIG. 3 is provided on the inflow side of the fan coil 40 of the cold / hot water pipe 43 connecting the use side water heat exchanger 22 of the refrigeration cycle and the fan coil 40, and the third temperature detecting means. 6 shows a temperature control range of the cold / hot water temperature ThS flowing into the fan coil 40 detected by 62. In FIG. 3, THS is the set temperature of the cold / hot water temperature ThS, and DTh is the set temperature THS.
For example, the cold water temperature ThS is 4 so that the fan coil 40 can obtain a required heating capacity.
It is controlled in the range of about 5 to 50 ° C.

【0016】上記の構成において、暖房運転の運転モー
ドとしては、大きく分けてヒートポンプ暖房運転によ
るもの、ヒートポンプ+熱回収暖房運転によるもの、
熱回収暖房運転+放熱器運転によるものの3つの運転
モードがあり、以下にその運転動作について説明する。
In the above-mentioned structure, the operation modes of the heating operation are roughly classified into the heat pump heating operation, the heat pump + heat recovery heating operation,
There are three operation modes, namely, heat recovery heating operation + radiator operation, and the operation operation will be described below.

【0017】図4は、上記ヒートポンプ暖房運転におけ
る運転系統図を表したものである。尚、図4において、
上記図1と同一または相当部分には同一符号を付し説明
を省略する。また、図4中、実線矢印が前記電池スタッ
ク4を通して前記放熱器10との間で、冷却水循環用ポ
ンプ14により循環される冷却水の循環経路を、破線矢
印が冷温水循環用ポンプ41により循環される利用側の
冷温水系の循環経路を、一点鎖線矢印がヒートポンプ冷
凍サイクル暖房の冷媒の循環経路をそれぞれ示す。
FIG. 4 shows an operation system diagram in the heat pump heating operation. In addition, in FIG.
The same or corresponding parts as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. Further, in FIG. 4, a solid line arrow circulates a cooling water circulation path circulated by the cooling water circulation pump 14 between the radiator 10 and the battery stack 4, and a broken line arrow circulates by the cold / hot water circulation pump 41. The circulation route of the cold / hot water system on the utilization side is indicated by the one-dot chain line arrow, which indicates the circulation route of the refrigerant for the heat pump refrigeration cycle heating.

【0018】まず、前記制御器70により前記熱回収冷
却水流量調整弁30が全閉に、前記冷却水流量調整弁3
3が全開に、そして前記放熱器10の送風機11がOF
Fされた状態で、前記電池スタック4と前記放熱器10
との間の前記冷却水行き配管12と冷却水戻り配管13
で形成される冷却水循環経路で、冷却水循環用ポンプ1
4により冷却水が上記図4の実線矢印のように循環され
る。これにより、前記燃料電池本体1の電池スタック4
で熱交換され、前記冷却水行き配管12を流れる冷却水
の前記冷却水行き温度TcSが次第に上昇する。そし
て、前記ファンコイル40がONされて暖房運転が開始
され、前記冷却水行き配管12に設けられた前記第1の
温度検出手段60により検出される冷却水行き温度Tc
Sが、設定温度TCHにまだ達していないときは、前記
制御器70により前記ヒートポンプ冷凍サイクルの圧縮
機20に制御信号が出力され、ヒートポンプによる暖房
運転が開始される。
First, the heat recovery cooling water flow rate adjusting valve 30 is fully closed by the controller 70, and the cooling water flow rate adjusting valve 3 is closed.
3 is fully opened, and the blower 11 of the radiator 10 is OF
In the state of F, the battery stack 4 and the radiator 10
Between the cooling water going pipe 12 and the cooling water return pipe 13
In the cooling water circulation path formed by, the cooling water circulation pump 1
4, the cooling water is circulated as indicated by the solid arrow in FIG. Thereby, the cell stack 4 of the fuel cell body 1
The temperature TcS of the cooling water flowing through the pipe 12 for cooling water is gradually increased. Then, the fan coil 40 is turned ON to start the heating operation, and the cooling water going temperature Tc detected by the first temperature detecting means 60 provided in the cooling water going pipe 12 is detected.
When S has not yet reached the set temperature TCH, the controller 70 outputs a control signal to the compressor 20 of the heat pump refrigeration cycle to start the heating operation by the heat pump.

【0019】このヒートポンプによる暖房運転において
は、上記図4の一点鎖線矢印で示される冷凍サイクルの
冷媒の循環経路と、破線矢印で示される冷温水循環用ポ
ンプ41により循環される利用側の冷温水循環経路で行
われる。そして、上記冷凍サイクルの循環経路において
前記利用側水熱交換器22の冷媒側は凝縮器として作用
し、この凝縮器として作用する冷媒側と、前記冷温水循
環経路で冷温水循環用ポンプ41により循環される熱媒
体としての冷温水と熱交換させて加熱して、前記ファン
コイル40へ供給し、室内に放熱して暖房を行う。尚、
前記冷凍サイクルの冷媒の流れ及び作用等については、
周知の通りであるので説明を省略する。
In the heating operation by this heat pump, the refrigerant circulation path of the refrigeration cycle shown by the one-dot chain line arrow in FIG. 4 and the cold-hot water circulation path on the use side circulated by the cold-hot water circulation pump 41 shown by the broken line arrow. Done in. In the circulation path of the refrigeration cycle, the refrigerant side of the use-side water heat exchanger 22 acts as a condenser, and the refrigerant side that acts as this condenser is circulated by the cold / hot water circulation pump 41 in the cold / hot water circulation path. It is heated by exchanging heat with cold / hot water as a heat medium for heating and is supplied to the fan coil 40 to radiate heat into the room for heating. still,
Regarding the flow and action of the refrigerant in the refrigeration cycle,
The description is omitted because it is well known.

【0020】以下に、ヒートポンプによる暖房運転につ
いて図5のフローチャートをもとに説明する。まず、フ
ァンコイル40がONされ、S1において、冷却水行き
配管12に設けられた第1の温度検出手段60により検
出される冷却水行き温度TcSが、設定温度TCHより
大きいか否か判断され、もし、Noであれば、S2で上
記冷凍サイクルの循環経路と利用側の冷温水循環経路に
よるヒートポンプによる暖房運転が行われる。その際、
前記制御器70によりバイバス配管51側の第2の冷温
水流量調整弁50を全閉に、前記冷温水配管43側の第
1の冷温水流量調整弁42を全開にする。
The heating operation by the heat pump will be described below with reference to the flowchart of FIG. First, the fan coil 40 is turned on, and in S1, it is determined whether the cooling water going temperature TcS detected by the first temperature detecting means 60 provided in the cooling water going pipe 12 is higher than the set temperature TCH, If No, in S2, the heating operation by the heat pump is performed by the circulation path of the refrigeration cycle and the cold / hot water circulation path on the use side. that time,
The controller 70 fully closes the second cold / hot water flow rate adjusting valve 50 on the bypass pipe 51 side, and fully opens the first cold / hot water flow rate adjusting valve 42 on the cold / hot water pipe 43 side.

【0021】そして、S3において、前記冷温水循環経
路の前記冷凍サイクルの利用側水熱交換器22とファン
コイル40とを接続する冷温水配管43の前記ファンコ
イル40の流入側に設けられた第3の温度検出手段62
により検出される前記ファンコイル40へ流入する冷温
水温度ThSが、設定された温度制御範囲の(THS−
DTh)より小さいか否か判断され、もし、Yesであ
ればS4において、圧縮機20の運転周波数を増加さ
せ、前記冷凍サイクルの利用側水熱交換器22に循環さ
れる熱媒体としての冷温水への熱交換量を増加させる。
NoであればS5において、冷温水温度ThSが、設定
された温度制御範囲の(THS+DTh)より小さいか
否か判断され、Yesであれば上記図3の設定された温
度制御範囲内にあるので、圧縮機20の運転周波数が維
持され、NoであればS6において、圧縮機20の運転
周波数を減少させ、前記冷凍サイクルの利用側水熱交換
器22における冷温水への熱交換量を減少させる。前記
S1において、Yesであればヒートポンプ+熱回収暖
房運転に移行する。
Then, in S3, a third hot / cold water pipe 43 connecting the user side water heat exchanger 22 of the refrigeration cycle and the fan coil 40 of the cold / hot water circulation path is provided on the inflow side of the fan coil 40. Temperature detecting means 62
The cold / hot water temperature ThS flowing into the fan coil 40, which is detected by, is within the set temperature control range (THS-
DTh), and if Yes, in S4, the operating frequency of the compressor 20 is increased, and cold / hot water as a heat medium circulated to the use side water heat exchanger 22 of the refrigeration cycle is determined. Increase the amount of heat exchange to.
If No, in S5, it is determined whether the cold / hot water temperature ThS is smaller than (THS + DTh) of the set temperature control range. If Yes, it is within the set temperature control range of FIG. If the operating frequency of the compressor 20 is maintained, and if No, the operating frequency of the compressor 20 is decreased in S6, and the amount of heat exchange with cold / hot water in the use side water heat exchanger 22 of the refrigeration cycle is decreased. If Yes in S1, the process proceeds to the heat pump + heat recovery heating operation.

【0022】このように、前記ファンコイル40で必要
な暖房能力が得られるよう、冷温水温度ThSが、設定
された温度制御範囲の(THS−DTh<ThS<THS
+DTh)となるように、前記制御器70により前記圧
縮機20の運転周波数を制御し、冷凍サイクルの前記利
用側水熱交換器22での熱交換量を制御する。
In this way, the cold / hot water temperature ThS is set to (THS-DTh <ThS <THS within the set temperature control range so that the fan coil 40 can obtain the required heating capacity.
+ DTh), the operating frequency of the compressor 20 is controlled by the controller 70, and the heat exchange amount in the utilization side water heat exchanger 22 in the refrigeration cycle is controlled.

【0023】次に図6は、上記ヒートポンプ+熱回収暖
房運転における運転系統図を表したものである。尚、図
6において、上記図1と同一または相当部分には同一符
号を付し説明を省略する。また、図6中、実線矢印が前
記電池スタック4と前記熱回収用水熱交換器31との間
で形成される回路系統で冷却水循環用ポンプ14により
循環される冷却水の循環経路を、一点鎖線矢印がヒート
ポンプ冷凍サイクル暖房の冷媒の循環経路を、破線矢印
が前記冷凍サイクルの利用側水熱交換器22を介して循
環させる循環経路とバイパス配管51を通して前記熱回
収用水熱交換器31で熱交換して循環させる循環経路を
それぞれ示す。
Next, FIG. 6 shows an operation system diagram in the heat pump + heat recovery heating operation. Incidentally, in FIG. 6, the same or corresponding parts as those in FIG. Further, in FIG. 6, a solid line arrow indicates a circulation path of the cooling water circulated by the cooling water circulation pump 14 in a circuit system formed between the battery stack 4 and the heat recovery water heat exchanger 31 by a chain line. An arrow indicates a circulation path of the refrigerant for heating the heat pump refrigeration cycle, and a dashed arrow indicates a circulation path for circulating the refrigerant through the utilization side water heat exchanger 22 of the refrigeration cycle and the heat exchange water heat exchanger 31 through the bypass pipe 51. Each of the circulation paths is shown.

【0024】上記図4に示したヒートポンプ暖房運転系
統図の実線矢印で示される前記電池スタック4と前記放
熱器10との間で循環される冷却水の循環経路におい
て、前記冷却水行き配管12に設けられた第1の温度検
出手段60により検出される冷却水行き温度TcSが、
設定温度TCHより大きくなったら、熱回収による暖房
が可能と判断し、前記制御器70により前記冷却水流量
調整弁33が全閉状態に、前記熱回収冷却水流量調整弁
30が全開状態となり、実線矢印で示す前記電池スタッ
ク4と前記熱回収用水熱交換器31との間で形成される
回路系統で冷却水循環用ポンプ14により循環される冷
却水の循環経路が形成され、ヒートポンプ+熱回収暖房
運転が行われる。
In the cooling water circulation path between the battery stack 4 and the radiator 10 indicated by the solid line arrow in the heat pump heating operation system diagram shown in FIG. The cooling water going temperature TcS detected by the provided first temperature detecting means 60 is
When the temperature becomes higher than the set temperature TCH, it is determined that heating by heat recovery is possible, and the controller 70 fully closes the cooling water flow rate adjustment valve 33 and fully opens the heat recovery cooling water flow rate adjustment valve 30, A circuit system formed between the battery stack 4 and the heat recovery water heat exchanger 31 shown by a solid arrow forms a circulation path of the cooling water circulated by the cooling water circulation pump 14, and a heat pump + heat recovery heating Driving is performed.

【0025】このヒートポンプ+熱回収暖房運転におい
ては、上記図6の実線矢印で示される電池スタック4と
熱回収用水熱交換器31との間で形成される回路で循環
される冷却水の循環経路と、一点鎖線矢印で示される冷
凍サイクルの循環経路と、破線で示される利用側のバイ
パス配管51を通して前記熱回収用水熱交換器31で熱
交換してファンコイル40へ循環させる経路と前記冷凍
サイクルの利用側水熱交換器22を介してファンコイル
40へ循環させる経路で行われる。
In this heat pump + heat recovery heating operation, the circulation path of the cooling water circulated in the circuit formed between the battery stack 4 and the heat recovery water heat exchanger 31 shown by the solid arrow in FIG. And a circulation path of the refrigeration cycle indicated by a one-dot chain line arrow, and a path for circulating heat to the fan coil 40 by the heat recovery water heat exchanger 31 through the utilization side bypass pipe 51 indicated by a broken line and the refrigeration cycle. It is performed in a route of circulating to the fan coil 40 via the use side water heat exchanger 22.

【0026】上記バイパス配管51を通して前記熱回収
用水熱交換器31で熱交換する熱量は、前記第2の温度
検出手段61により検出される冷却水戻り温度TcR
が、上記図2に示す温度制御範囲になるように、前記バ
イパス配管51に設けられた第2の冷温水流量調整弁5
0の開度により制御される。尚、前記熱回収用水熱交換
器31で熱交換する熱量は、前記冷却水戻り温度TcR
が図2に示す温度制御範囲になるように、前記熱回収用
冷却水流量調整弁30の開度により制御するようにして
もよい。その場合、前記第2の冷温水流量調整弁50は
全開にする。
The amount of heat exchanged in the heat recovery water heat exchanger 31 through the bypass pipe 51 is the cooling water return temperature TcR detected by the second temperature detecting means 61.
However, the second cold / hot water flow rate adjusting valve 5 provided in the bypass pipe 51 is controlled so as to fall within the temperature control range shown in FIG.
It is controlled by the opening degree of 0. The amount of heat exchanged in the heat recovery water heat exchanger 31 is the cooling water return temperature TcR.
May be controlled by the opening degree of the heat recovery cooling water flow rate adjusting valve 30 so that the temperature control range shown in FIG. In that case, the second cold / hot water flow rate adjusting valve 50 is fully opened.

【0027】以下に、ヒートポンプ+熱回収暖房運転に
ついて図7のフローチャートをもとに説明する。上記図
5のヒートポンプ暖房運転フローチャートのS1におい
て、冷却水行き温度TcSが設定温度TCHより大きい
と判断された場合(Yes)は、熱回収による暖房が可
能と判断し、S7で上記冷却水の循環経路と、冷凍サイ
クルの循環経路と、前記熱回収用水熱交換器31及び前
記利用側水熱交換器22を介してファンコイル40へ循
環させる経路によるヒートポンプ+熱回収暖房運転が行
われる。その際、前記制御器70により前記冷温水配管
43側の第1の冷温水流量調整弁42は全開状態であ
る。
The heat pump + heat recovery heating operation will be described below with reference to the flowchart of FIG. In S1 of the heat pump heating operation flowchart of FIG. 5, when it is determined that the cooling water going temperature TcS is higher than the set temperature TCH (Yes), it is determined that heating by heat recovery is possible, and the cooling water circulation is performed in S7. The heat pump + heat recovery heating operation is performed by the route, the circulation route of the refrigeration cycle, and the route of circulating the heat to the heat recovery water heat exchanger 31 and the utilization side water heat exchanger 22 to the fan coil 40. At that time, the first cold / hot water flow rate adjusting valve 42 on the cold / hot water pipe 43 side is fully opened by the controller 70.

【0028】そして、S8において、冷却水戻り配管1
3に設けられた第2の温度検出手段61により検出され
る冷却水戻り温度TcRが、設定された温度制御範囲の
(TCL+DTc)より大きいか否か判断され、もし、
YesであればS9において前記第2の冷温水流量調整
弁50の開度を増加させ、循環される冷温水の流量を増
やし、前記熱回収用水熱交換器31での熱交換量を増加
させる。Noであれば、S10において冷却水戻り温度
TcRが、設定された温度制御範囲の(TCL−DT
c)より小さいか否か判断され、YesであればS11
において前記第2の冷温水流量調整弁50の開度を減少
させ、循環される冷温水の流量を減らし、前記熱回収用
水熱交換器31での熱交換量を減少させる。上記S10
でNoであれば、前記冷却水戻り温度TcRが設定され
た温度制御範囲内にあるので、前記第2の冷温水流量調
整弁50の開度を維持させる。
Then, in S8, the cooling water return pipe 1
It is determined whether or not the cooling water return temperature TcR detected by the second temperature detection means 61 provided in No. 3 is larger than (TCL + DTc) of the set temperature control range.
If Yes, in S9, the opening degree of the second cold / hot water flow rate adjusting valve 50 is increased, the flow rate of the cold / hot water circulated is increased, and the heat exchange amount in the heat recovery water heat exchanger 31 is increased. If No, the cooling water return temperature TcR in S10 falls within the set temperature control range (TCL-DT).
c) It is determined whether or not it is smaller, and if Yes, S11
In, the opening degree of the second cold / hot water flow rate adjusting valve 50 is decreased, the flow rate of the cold / hot water circulated is decreased, and the heat exchange amount in the heat recovery water heat exchanger 31 is decreased. Above S10
If No, the cooling water return temperature TcR is within the set temperature control range, and therefore the opening degree of the second cold / hot water flow rate adjusting valve 50 is maintained.

【0029】続いてS12において、利用側の冷温水循
環経路のファンコイル40の流入側の冷温水配管43に
設けられた第3の温度検出手段62により検出される前
記ファンコイル40へ流入する冷温水温度ThSが、設
定された温度制御範囲の(THS−DTh)より小さい
か否か判断され、YesであればS13において、前記
圧縮機20の運転周波数を増加させ、前記冷凍サイクル
の利用側水熱交換器22における循環される冷温水への
熱交換量を増加させる。NoであればS14において、
前記冷温水温度ThSが、設定された温度制御範囲の
(THS+DTh)より小さいか否か判断され、Yes
であれば、冷温水温度ThSが設定された温度制御範囲
内にあるので、圧縮機20の運転周波数を維持させる。
NoであればS15において、圧縮機20の運転周波数
を減少させ、前記冷凍サイクルの利用側水熱交換器22
における冷温水への熱交換量を減少させる。
Subsequently, in S12, the cold / hot water flowing into the fan coil 40 detected by the third temperature detecting means 62 provided in the cold / hot water pipe 43 on the inflow side of the fan coil 40 in the cold / hot water circulation path on the use side. It is determined whether or not the temperature ThS is smaller than (THS-DTh) of the set temperature control range. If Yes, in S13, the operating frequency of the compressor 20 is increased to increase the utilization side water heat of the refrigeration cycle. The amount of heat exchange with the circulating cold / hot water in the exchanger 22 is increased. If No, in S14,
It is determined whether or not the cold / hot water temperature ThS is smaller than (THS + DTh) in the set temperature control range, and Yes.
If so, since the cold / hot water temperature ThS is within the set temperature control range, the operating frequency of the compressor 20 is maintained.
If No, in S15, the operating frequency of the compressor 20 is decreased, and the utilization side water heat exchanger 22 of the refrigeration cycle is
Reduce the amount of heat exchange to cold / hot water at.

【0030】そして、S16で圧縮機20の運転周波数
が最小周波数か否か判断され、Noであれば上記図5に
示すフローチャートのS1に戻る。もし、Yesの場合
は、圧縮機20の運転周波数が最小周波数になっても冷
温水温度ThSが、設定された温度制御範囲の(THS
+DTh)より高いと判断し、S17で圧縮機20を停
止させ、熱回収のみによる暖房運転+放熱器運転に移行
する。
Then, in S16, it is judged whether or not the operating frequency of the compressor 20 is the minimum frequency, and if No, the process returns to S1 of the flowchart shown in FIG. If Yes, even if the operating frequency of the compressor 20 becomes the minimum frequency, the cold / hot water temperature ThS is within the set temperature control range (THS).
+ DTh), the compressor 20 is stopped in S17, and the heating operation only by heat recovery + radiator operation is performed.

【0031】このように、前記ファンコイル40で必要
な暖房能力が得られるよう、ファンコイル40へ流入す
る冷温水温度ThSが、設定された温度制御範囲の(T
HS−DTh<ThS<THS+DTh)となるように、
前記制御器70により前記圧縮機20の運転周波数を制
御する。
In this way, the cold / hot water temperature ThS flowing into the fan coil 40 is set to (T) within the set temperature control range so that the fan coil 40 can obtain the required heating capacity.
So that HS-DTh <ThS <THS + DTh),
The controller 70 controls the operating frequency of the compressor 20.

【0032】続いて図8は、上記熱回収のみによる暖房
運転+放熱器運転における運転系統図を表したものであ
る。尚、図8において、上記図1と同一または相当部分
には同一符号を付し説明を省略する。また、図8中、実
線矢印が前記電池スタック4を通して、前記放熱器10
及び前記熱回収用水熱交換器31との間で、冷却水循環
用ポンプ14により循環される冷却水の循環経路を、破
線矢印が利用側のバイパス配管51を通して前記熱回収
用水熱交換器31で熱交換してファンコイル40へ循環
される冷温水の循環経路をそれぞれ示す。
Subsequently, FIG. 8 shows an operation system diagram in the heating operation + radiator operation only by the heat recovery. In FIG. 8, parts that are the same as or correspond to those in FIG. Further, in FIG. 8, the solid line arrow passes through the battery stack 4, and the radiator 10
And the heat recovery water heat exchanger 31, the circulation path of the cooling water circulated by the cooling water circulation pump 14, the broken line arrow passes through the bypass pipe 51 on the utilization side, and the heat recovery water heat exchanger 31 generates heat. The circulation paths of the cold and warm water which are exchanged and circulated to the fan coil 40 are respectively shown.

【0033】この熱回収による暖房運転+放熱器運転に
おいては、上記図8の実線矢印で示される電池スタック
4を通して放熱器10及び熱回収用水熱交換器31との
間の冷却水の循環経路と、破線で示される利用側のバイ
パス配管51を通して熱回収用水熱交換器31で熱交換
してファンコイル40へ循環させる経路で行われる。
In this heating operation and heat radiator operation by heat recovery, a cooling water circulation path between the radiator 10 and the heat recovery water heat exchanger 31 is provided through the battery stack 4 indicated by the solid arrow in FIG. The heat recovery water heat exchanger 31 exchanges heat with the bypass coil 51 on the utilization side, which is indicated by a broken line, and is circulated to the fan coil 40.

【0034】以下に、熱回収による暖房運転+放熱器運
転について図9のフローチャートをもとに説明する。上
記ヒートポンプ+熱回収暖房運転において、圧縮機20
の運転周波数を最小周波数にしても、ファンコイル40
に流入する冷温水温度ThSが設定された温度制御範囲
の(THS+DTh)より高い場合は、熱回収のみによ
る暖房が可能と判断し、S18で上記冷却水の循環経路
と、利用側のバイパス配管51を通して熱回収用水熱交
換器31で熱交換してファンコイル40へ循環させる経
路による熱回収暖房運転+放熱器運転が行われる。その
際、前記制御器70により前記バイパス配管51側の第
2の冷温水流量調整弁50を全開に、前記冷温水配管4
3側の第1の冷温水流量調整弁42を全閉に、そして前
記放熱器10の送風機11をONする。
The heating operation and the radiator operation by heat recovery will be described below with reference to the flowchart of FIG. In the heat pump + heat recovery heating operation, the compressor 20
Even if the operating frequency of the fan coil is set to the minimum frequency, the fan coil 40
If the cold / hot water temperature ThS flowing into is higher than the set temperature control range (THS + DTh), it is determined that heating by only heat recovery is possible, and in S18, the cooling water circulation path and the bypass pipe 51 on the use side. A heat recovery heating operation + radiator operation is performed through a path in which heat is exchanged in the heat recovery water heat exchanger 31 and circulated to the fan coil 40. At that time, the controller 70 fully opens the second cold / hot water flow rate adjusting valve 50 on the bypass pipe 51 side, and the cold / hot water pipe 4
The first cold / hot water flow rate adjusting valve 42 on the third side is fully closed, and the blower 11 of the radiator 10 is turned on.

【0035】そして、S19において、破線矢印で示さ
れる前記熱回収用水熱交換器31で熱交換してファンコ
イル40へ循環させる経路の前記ファンコイル40の流
入側の冷温水配管43に設けられた第3の温度検出手段
62により検出される、前記ファンコイル40へ流入す
る冷温水温度ThSが、設定された温度制御範囲の(T
HS−DTh)より小さいか否か判断され、Yesであ
ればS20において、前記熱回収用冷却水流量調整弁3
0の開度を増加させ、前記熱回収用水熱交換器31への
流量を増やし、熱回収用水熱交換器31におけるバイパ
ス配管51を通り循環される冷温水への熱交換量を増加
させる。NoであればS21において、前記冷温水温度
ThSが、設定された温度制御範囲の(THS+DT
h)より大きいか否か判断され、YesであればS22
において前記熱回収用冷却水流量調整弁30の開度を減
少させ、前記熱回収用水熱交換器31への流量を減ら
し、熱回収用水熱交換器31における冷温水への熱交換
量を減少させる。Noであれば前記冷温水温度ThSが
温度制御範囲内にあるので、前記熱回収用冷却水流量調
整弁30の開度を維持する。
Then, in S19, the hot and cold water pipe 43 is provided on the inflow side of the fan coil 40 in the path for circulating heat to the fan coil 40 by exchanging heat with the heat recovery water heat exchanger 31 indicated by the dashed arrow. The cold / hot water temperature ThS flowing into the fan coil 40, which is detected by the third temperature detecting means 62, falls within the set temperature control range (T
HS-DTh), and if Yes, in S20, the heat recovery cooling water flow rate adjustment valve 3
The opening degree of 0 is increased, the flow rate to the heat recovery water heat exchanger 31 is increased, and the heat exchange amount to the cold / hot water circulated through the bypass pipe 51 in the heat recovery water heat exchanger 31 is increased. If No, in S21, the cold / hot water temperature ThS is (THS + DT) within the set temperature control range.
h) It is determined whether or not it is larger, and if Yes, S22
In, the opening degree of the heat recovery cooling water flow rate adjustment valve 30 is reduced, the flow rate to the heat recovery water heat exchanger 31 is reduced, and the heat exchange amount to cold / hot water in the heat recovery water heat exchanger 31 is reduced. . If No, the cold / hot water temperature ThS is within the temperature control range, and therefore the opening degree of the heat recovery cooling water flow rate adjustment valve 30 is maintained.

【0036】続いてS23において、上記冷却水循環経
路の冷却水戻り配管13に設けられた第2の温度検出手
段61により検出される冷却水戻り温度TcRが、設定
された温度制御範囲の(TCL−DTc)より小さいか
否か判断され、YesであればS24において、前記冷
却水流量調整弁33の開度を減少させ、前記放熱器10
への流量を減らし送風機11による放出量を減少させ
る。NoであればS25において、前記冷却水戻り温度
TcRが、設定された温度制御範囲(TCL+DTc)
より大きいか否か判断され、YesであればS26にお
いて、前記冷却水流量調整弁33の開度を増加させ、前
記放熱器10への流量を増やし送風機11による放出量
を増加させる。Noであれば前記冷却水戻り温度TcR
が温度制御範囲内にあるので、前記冷却水流量調整弁3
3の開度を維持する。
Then, in S23, the cooling water return temperature TcR detected by the second temperature detecting means 61 provided in the cooling water return pipe 13 of the cooling water circulation path is within the set temperature control range (TCL- DTc) is determined, and if Yes, the opening degree of the cooling water flow rate adjusting valve 33 is decreased in S24, and the radiator 10
The amount of discharge to the blower 11 is reduced. If No, in S25, the cooling water return temperature TcR is set to the set temperature control range (TCL + DTc).
If it is larger than Yes, and if Yes, in S26, the opening degree of the cooling water flow rate adjusting valve 33 is increased, the flow rate to the radiator 10 is increased, and the discharge amount by the blower 11 is increased. If No, the cooling water return temperature TcR
Is within the temperature control range, the cooling water flow rate adjusting valve 3
Maintain an opening of 3.

【0037】このように、前記ファンコイル40で必要
な暖房能力が得られるよう、ファンコイル40へ流入す
る冷温水温度ThSが、設定された温度制御範囲の(T
HS−DTh<ThS<THS+DTh)となるように、
前記制御器70により前記熱回収用冷却水流量調整弁3
0の開度を制御し、前記冷却水循環経路の冷却水戻り温
度TcRが設定された温度制御範囲の(TCL−DTc
<TcR<TCL+DTc)となるように、前記制御器7
0により前記冷却水流量調整弁33の開度を制御して前
記燃料電池本体1の電池スタック4の温度を正常に保つ
ようにする。
As described above, the cold / hot water temperature ThS flowing into the fan coil 40 is within the set temperature control range (T) so that the fan coil 40 can obtain the required heating capacity.
So that HS-DTh <ThS <THS + DTh),
The heat recovery cooling water flow rate adjusting valve 3 is controlled by the controller 70.
The opening degree of 0 is controlled, and the cooling water return temperature TcR of the cooling water circulation path is set to (TCL-DTc
<TcR <TCL + DTc) so that the controller 7
0 controls the opening degree of the cooling water flow rate adjusting valve 33 to keep the temperature of the cell stack 4 of the fuel cell main body 1 normal.

【0038】図10はヒートポンプによる冷房運転+放
熱器運転における運転系統図を表したものである。尚、
図10において、上記図1と同一または相当部分には同
一符号を付し説明を省略する。また、図10中、実線矢
印が前記電池スタック4を通して放熱器10との間で、
冷却水循環用ポンプ14により循環される冷却水の循環
経路を、一点鎖線矢印がヒートポンプ冷凍サイクル冷房
の冷媒循環経路を、破線矢印が前記冷凍サイクルの利用
側水熱交換器22を介して循環される利用側の循環経路
をそれぞれ示す。上記ヒートポンプ冷房運転+放熱器運
転においては、前記電池スタック4の熱を利用しないた
め、上記実線矢印で示される冷却水の循環経路において
前記放熱器10で送風機11により大気中に放出する。
その際、前記冷却水戻り配管13に設けられた第2の温
度検出手段61により検出される冷却水戻り温度TcR
が、設定された温度制御範囲になるように、制御器70
により前記冷却水流量調整弁33の開度を制御して、前
記放熱器10への流量を制御して放出量を調整する。
尚、制御器70により熱回収用冷却水流量調整弁30は
全閉にする。
FIG. 10 shows an operation system diagram in the cooling operation and the radiator operation by the heat pump. still,
10, parts that are the same as or correspond to those in FIG. 1 above are given the same reference numerals, and descriptions thereof will be omitted. Further, in FIG. 10, a solid arrow indicates between the radiator 10 through the battery stack 4,
In the circulation path of the cooling water circulated by the cooling water circulation pump 14, the one-dot chain line arrow circulates the refrigerant circulation path of the heat pump refrigeration cycle cooling system, and the broken line arrow circulates through the use side water heat exchanger 22 of the refrigeration cycle. The circulation routes on the use side are shown respectively. In the heat pump cooling operation + radiator operation, since the heat of the battery stack 4 is not used, the radiator 10 discharges it into the atmosphere in the cooling water circulation path indicated by the solid arrow.
At that time, the cooling water return temperature TcR detected by the second temperature detecting means 61 provided in the cooling water return pipe 13
So that the temperature is within the set temperature control range.
Thus, the opening of the cooling water flow rate adjusting valve 33 is controlled to control the flow rate to the radiator 10 to adjust the discharge amount.
The controller 70 fully closes the heat recovery cooling water flow rate adjusting valve 30.

【0039】一方、ヒートポンプによる冷房運転におい
ては、上記一点鎖線矢印で示される冷凍サイクルの四方
弁21を冷房サイクル側に切換えた冷媒の循環経路と、
破線矢印で示される前記冷凍サイクルの利用側水熱交換
器22を介して循環される循環経路で行われる。そし
て、上記冷凍サイクルの循環経路において前記利用側水
熱交換器22の冷媒側は蒸発器として作用し、この蒸発
器として作用する冷媒側と前記利用側水熱交換器22を
介して循環される循環経路の冷温水循環用ポンプ41に
より循環される熱媒体としての冷温水を熱交換させて、
冷やされた冷水を前記ファンコイル40へ供給して室内
の冷房を行う。その際、破線矢印で示される前記利用側
水熱交換器22を介して循環される循環経路の前記ファ
ンコイル40の流入側の冷温水配管43に設けられた第
3の温度検出手段62により検出される冷温水温度が、
例えば10〜15℃程度の温度制御範囲になるように、
制御器70により前記冷凍サイクルの圧縮機20の運転
周波数を制御して、利用側水熱交換器22における冷温
水循環経路で循環される熱媒体としての冷温水への熱交
換量を調整する。
On the other hand, in the cooling operation by the heat pump, the refrigerant circulation path in which the four-way valve 21 of the refrigeration cycle indicated by the one-dot chain line arrow is switched to the cooling cycle side,
This is performed in a circulation path that is circulated through the water heat exchanger 22 on the use side of the refrigeration cycle indicated by a dashed arrow. In the circulation path of the refrigeration cycle, the refrigerant side of the use side water heat exchanger 22 acts as an evaporator, and is circulated through the refrigerant side acting as the evaporator and the use side water heat exchanger 22. The cold / hot water as a heat medium circulated by the cold / hot water circulation pump 41 in the circulation path is heat-exchanged,
Cooled cold water is supplied to the fan coil 40 to cool the room. At that time, the temperature is detected by the third temperature detecting means 62 provided in the cold / hot water pipe 43 on the inflow side of the fan coil 40 in the circulation path circulated through the utilization side water heat exchanger 22 indicated by the dashed arrow. The cold and hot water temperature is
For example, so that the temperature control range is about 10 to 15 ° C,
The controller 70 controls the operating frequency of the compressor 20 in the refrigeration cycle to adjust the amount of heat exchange with cold / hot water as a heat medium circulated in the cold / hot water circulation path of the use side water heat exchanger 22.

【0040】[0040]

【発明の効果】以上のように本発明に係る請求項1、2
の燃料電池熱利用空気調和機は、燃料電池本体と放熱器
との間が冷却水行き用配管と戻り用の配管で接続され、
前記冷却水行き用配管に冷却水循環用ポンプと冷却水流
量調整弁を配設して形成される冷却水循環経路と、圧縮
機と四方弁と利用側水熱交換器および室外空気熱交換器
が順次接続されて形成されるヒートポンプ冷凍サイクル
の循環経路と、前記冷却水循環経路の前記冷却水循環ポ
ンプと前記冷却水流量調整弁との間の前記冷却水行き用
配管と、前記冷却水戻り用配管とに跨って接続され、途
中に熱回収用冷却水流量調整弁と熱回収用水熱交換器を
接続した熱回収冷却水循環経路とを備え、前記冷凍サイ
クルの利用側水熱交換器にファンコイル、冷温水循環用
ポンプおよび第1の冷温水流量調整弁を配管で順次接続
して形成される第1の循環回路と、前記冷温水循環用ポ
ンプと前記第1の冷温水流量調整弁との間の配管と、前
記利用側水熱交換器と前記ファンコイルとの間の配管と
に跨って接続され、途中に第2の冷温水流量調整弁と前
記熱回収用水熱交換器を接続した第2の循環回路とで冷
温水循環経路が形成され、前記冷却水循環経路の前記冷
却水行き用配管および戻り用配管に、前記燃料電池本体
を通して循環される冷却水の行き温度TcSと、冷却水
の戻り温度TcRとをそれぞれ検出する第1の温度検出
手段と第2の温度検出手段を設け、前記冷温水循環経路
の配管のファンコイル流入側に、ファンコイルへ流入す
る冷温水温度ThSを検出する第3の温度検出手段を設
け、前記第1、第2の温度検出手段および前記第3の温
度検出手段の検出信号を入力し、前記冷却水流量調整
弁、前記熱回収用冷却水流量調整弁、前記第1、第2の
冷温水流量調整弁、前記放熱器の送風機および前記圧縮
機に制御信号を出力する制御器を設けた構成とし、そし
て、前記第1の温度検出手段により検出された冷却水行
き温度TcSが、所定の設定温度より小さい場合は、前
記冷凍サイクルの循環経路と、前記第1の循環回路の冷
温水循環経路とでヒートポンプによる暖房運転を、前記
冷却水行き温度TcSが、所定の設定温度より高い場合
は、前記熱回収冷却水循環経路と、前記冷凍サイクルの
循環経路及び前記第1、第2循環回路の冷温水循環経路
とでヒートポンプ+熱回収による暖房運転を、前記第3
の温度検出手段により検出された冷温水温度ThSが、
所定の設定温度より高い場合は、前記冷却水循環経路
と、前記熱回収冷却水循環経路及び前記第2循環回路の
冷温水循環経路とで熱回収による暖房および放熱器運転
をするようにしたので、燃料電池本体で電気化学反応の
際に発生する熱を上記運転モードで空調の暖房に有効に
利用することができ、また、利用側のファンコイルへ供
給する冷温水を熱回収用水熱交換器で加熱して、不足分
の加熱を圧縮機の運転で補助するようにしたので、圧縮
機の低入力化が図れる燃料電池熱利用空気調和機が得ら
れる。
As described above, the first and second aspects of the present invention are described.
In the fuel cell heat utilization air conditioner of, the fuel cell main body and the radiator are connected by a pipe for returning cooling water and a pipe for returning.
A cooling water circulation path formed by disposing a cooling water circulation pump and a cooling water flow rate adjusting valve in the cooling water delivery pipe, a compressor, a four-way valve, a water heat exchanger on the use side, and an outdoor air heat exchanger in sequence. A circulation path of a heat pump refrigeration cycle that is formed by being connected, to the cooling water going pipe between the cooling water circulation pump and the cooling water flow rate adjusting valve of the cooling water circulation path, and to the cooling water returning pipe. It has a heat recovery cooling water circulation path that is connected across and has a heat recovery cooling water flow rate adjustment valve and a heat recovery water heat exchanger connected in the middle, and a fan coil and cold / hot water circulation in the water heat exchanger on the use side of the refrigeration cycle. A first circulation circuit formed by sequentially connecting the pump and the first cold / hot water flow rate adjusting valve with piping, and the pipe between the cold / hot water circulating pump and the first cold / hot water flow rate adjusting valve, With the use side water heat exchanger A hot / cold water circulation path is formed across the piping between the fan coil and the second cold / hot water flow control valve and a second circulation circuit to which the heat recovery water heat exchanger is connected. First temperature detecting means for detecting a going temperature TcS of the cooling water circulated through the fuel cell main body and a returning temperature TcR of the cooling water, which are circulated in the cooling water going pipe and the returning pipe of the cooling water circulation path, respectively. And second temperature detecting means are provided, and third temperature detecting means for detecting the cold / hot water temperature ThS flowing into the fan coil is provided on the fan coil inflow side of the pipe of the cold / hot water circulation path, and the first and second temperature detecting means are provided. Inputting the detection signals of the temperature detecting means and the third temperature detecting means, the cooling water flow rate adjusting valve, the heat recovery cooling water flow rate adjusting valve, the first and second cold / hot water flow rate adjusting valves, and Radiator fan And a compressor for outputting a control signal to the compressor, and when the cooling water going temperature TcS detected by the first temperature detecting means is smaller than a predetermined set temperature, the refrigeration cycle Heating operation by the heat pump in the circulation path of the first circulation circuit and the cold / hot water circulation path of the first circulation circuit, when the cooling water going temperature TcS is higher than a predetermined set temperature, the heat recovery cooling water circulation path and the refrigeration The heating operation by heat pump + heat recovery is performed by the circulation path of the cycle and the cold / hot water circulation paths of the first and second circulation circuits,
The cold / hot water temperature ThS detected by the temperature detecting means of
When the temperature is higher than a predetermined set temperature, the cooling water circulation path, the heat recovery cooling water circulation path, and the cold / hot water circulation path of the second circulation circuit perform heating and radiator operation by heat recovery. The heat generated during the electrochemical reaction in the main unit can be effectively used for heating the air conditioner in the above operation mode, and the cold / hot water supplied to the fan coil on the user side is heated by the heat recovery water heat exchanger. Since the heating of the shortage is assisted by the operation of the compressor, a fuel cell heat utilization air conditioner in which the input of the compressor can be reduced can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1における燃料電池熱
利用空気調和機の構成図である。
FIG. 1 is a configuration diagram of a fuel cell heat-utilizing air conditioner according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1に係る冷却水温度の
制御範囲を示す図である。
FIG. 2 is a diagram showing a control range of a cooling water temperature according to the first embodiment of the present invention.

【図3】 この発明の実施の形態1に係る利用側の冷温
水温度の制御範囲を示す図である。
FIG. 3 is a diagram showing a control range of cold / hot water temperature on the user side according to the first embodiment of the present invention.

【図4】 この発明の実施の形態1に係るヒートポンプ
による暖房運転の運転系統図である。
FIG. 4 is an operation system diagram of heating operation by the heat pump according to the first embodiment of the present invention.

【図5】 ヒートポンプによる暖房運転のフローチャー
ト図である。
FIG. 5 is a flowchart of a heating operation using a heat pump.

【図6】 この発明の実施の形態1に係るヒートポンプ
+熱回収による暖房運転の運転系統図である。
FIG. 6 is an operation system diagram of heating operation by heat pump + heat recovery according to the first embodiment of the present invention.

【図7】 ヒートポンプ+熱回収による暖房運転のフロ
ーチャート図である。
FIG. 7 is a flowchart of a heating operation by a heat pump and heat recovery.

【図8】 この発明の実施の形態1に係る熱回収による
暖房運転+放熱器運転の運転系統図である。
FIG. 8 is an operation system diagram of heating operation + radiator operation by heat recovery according to the first embodiment of the present invention.

【図9】 熱回収による暖房運転のフローチャート図で
ある。
FIG. 9 is a flowchart of a heating operation by heat recovery.

【図10】 この発明の実施の形態1に係るヒートポン
プによる冷房運転+放熱器運転の運転系統図である。
FIG. 10 is an operation system diagram of cooling operation + radiator operation by the heat pump according to the first embodiment of the present invention.

【図11】 従来の燃料電池システムの概略構成図であ
る。
FIG. 11 is a schematic configuration diagram of a conventional fuel cell system.

【符号の説明】[Explanation of symbols]

1 燃料電池本体、 4 電池スタック、 10 放熱
器、 12 冷却水行き配管、 13 冷却水戻り配
管、 14 冷却水循環用ポンプ、 20 圧縮機、
22 利用側水熱交換器、 30 熱回収用冷却水流量
調整弁、 31熱回収用水熱交換器、 32 熱回収用
水配管、 33 冷却水流量調整弁、40 ファンコイ
ル、 41 冷温水循環用ポンプ、 42 第1の冷温
水流量調整弁、 43 冷温水配管、 50 第2の冷
温水流量調整弁、 51 バイパス配管、 60 第1
の温度検出手段、 61 第2の温度検出手段、 62
第3の温度検出手段、 70 制御器。
1 Fuel Cell Main Body, 4 Battery Stack, 10 Radiator, 12 Cooling Water Going Pipe, 13 Cooling Water Return Pipe, 14 Cooling Water Circulation Pump, 20 Compressor,
22 use side water heat exchanger, 30 heat recovery cooling water flow rate adjusting valve, 31 heat recovery water heat exchanger, 32 heat recovery water pipe, 33 cooling water flow rate adjusting valve, 40 fan coil, 41 cold / hot water circulation pump, 42 1st cold / hot water flow control valve, 43 cold / hot water piping, 50 2nd cold / hot water flow control valve, 51 bypass piping, 60 1st
Temperature detecting means, 61 second temperature detecting means, 62
Third temperature detecting means, 70 Controller.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/04 H01M 8/04 N T 8/10 8/10 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01M 8/04 H01M 8/04 NT 8/10 8/10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池本体と放熱器との間が冷却水行
き用配管と戻り用の配管で接続され、前記冷却水行き用
配管に冷却水循環用ポンプと冷却水流量調整弁を配設し
て形成される冷却水循環経路と、圧縮機と四方弁と利用
側水熱交換器および室外空気熱交換器が順次接続されて
形成されるヒートポンプ冷凍サイクルの循環経路と、前
記冷却水循環経路の前記冷却水循環ポンプと前記冷却水
流量調整弁との間の前記冷却水行き用配管と、前記冷却
水戻り用配管とに跨って接続され、途中に熱回収用冷却
水流量調整弁と熱回収用水熱交換器を接続した熱回収冷
却水循環経路とを備え、前記冷凍サイクルの利用側水熱
交換器にファンコイル、冷温水循環用ポンプおよび第1
の冷温水流量調整弁を配管で順次接続して形成される第
1の循環回路と、前記冷温水循環用ポンプと前記第1の冷
温水流量調整弁との間の配管と、前記利用側水熱交換器
と前記ファンコイルとの間の配管とに跨って接続され、
途中に第2の冷温水流量調整弁と前記熱回収用水熱交換
器を接続した第2の循環回路とで冷温水循環経路が形成
され、前記冷却水循環経路の前記冷却水行き用配管およ
び戻り用配管に、前記燃料電池本体を通して循環される
冷却水の行き温度TcSと、冷却水の戻り温度TcRと
をそれぞれ検出する第1の温度検出手段と第2の温度検
出手段を設け、前記冷温水循環経路の配管のファンコイ
ル流入側に、ファンコイルへ流入する冷温水温度ThS
を検出する第3の温度検出手段を設け、前記第1、第2
の温度検出手段および前記第3の温度検出手段の検出信
号を入力し、前記冷却水流量調整弁、前記熱回収用冷却
水流量調整弁、前記第1、第2の冷温水流量調整弁、前
記放熱器の送風機および前記圧縮機に制御信号を出力す
る制御器を設けたことを特徴とする燃料電池熱利用空気
調和機。
1. A fuel cell main body and a radiator are connected by a cooling water going pipe and a returning pipe, and a cooling water circulating pump and a cooling water flow rate adjusting valve are arranged in the cooling water going pipe. And a cooling water circulation path formed by sequentially connecting a compressor, a four-way valve, a use side water heat exchanger and an outdoor air heat exchanger, and the cooling of the cooling water circulation path. The cooling water going pipe between the water circulation pump and the cooling water flow rate adjusting valve and the cooling water returning pipe are connected to each other, and the cooling water flow rate adjusting valve for heat recovery and the heat water exchange for heat recovery are provided on the way. And a heat recovery cooling water circulation path to which a cooling device is connected, and a fan coil, a pump for circulating hot and cold water, and a first heat exchanger for the side water heat exchanger of the refrigeration cycle
The cold and hot water flow rate control valve of
1 circulation circuit, the pipe between the cold / hot water circulation pump and the first cold / hot water flow rate adjusting valve, and is connected across the pipe between the utilization side water heat exchanger and the fan coil. ,
A cold / hot water circulation path is formed on the way by a second cold / hot water flow rate adjusting valve and a second circulation circuit connecting the heat recovery water heat exchanger, and the cooling water going pipe and the return pipe of the cooling water circulation route are formed. Are provided with a first temperature detecting means and a second temperature detecting means for respectively detecting a going temperature TcS of the cooling water circulated through the fuel cell main body and a returning temperature TcR of the cooling water. On the fan coil inflow side of the pipe, the cold / hot water temperature ThS flowing into the fan coil
A third temperature detecting means for detecting
Inputting the detection signals of the temperature detecting means and the third temperature detecting means, the cooling water flow rate adjusting valve, the heat recovery cooling water flow rate adjusting valve, the first and second cold / hot water flow rate adjusting valves, and An air conditioner utilizing heat from a fuel cell, comprising a fan for a radiator and a controller for outputting a control signal to the compressor.
【請求項2】 前記第1の温度検出手段により検出され
た冷却水の行き温度TcSが、所定の設定温度より小さ
い場合は、前記冷凍サイクルの循環経路と、前記第1の
循環回路の冷温水循環経路とでヒートポンプによる暖房
運転を、前記冷却水の行き温度TcSが、所定の設定温
度より高い場合は、前記熱回収冷却水循環経路と、前記
冷凍サイクルの循環経路および前記第1、第2循環回路
の冷温水循環経路とでヒートポンプ+熱回収による暖房
運転を、前記第3の温度検出手段により検出された冷温
水温度ThSが、所定の設定温度より高い場合は、前記
冷却水循環経路と、前記熱回収冷却水循環経路および前
記第2の循環回路の冷温水循環経路とで熱回収による暖
房および放熱器運転をするようにしたことを特徴とする
請求項1記載の燃料電池熱利用空気調和機。
2. When the going temperature TcS of the cooling water detected by the first temperature detecting means is smaller than a predetermined set temperature, the circulation route of the refrigeration cycle and the cold / hot water circulation of the first circulation circuit. When the cooling water going temperature TcS is higher than a predetermined set temperature, the heat recovery cooling water circulation path, the refrigeration cycle circulation path, and the first and second circulation circuits When the cold / hot water temperature ThS detected by the third temperature detecting means is higher than a predetermined set temperature, the cooling water circulation path and the heat recovery 2. The fuel according to claim 1, wherein heating and radiator operation by heat recovery are performed in the cooling water circulation path and the cold / hot water circulation path of the second circulation circuit. Air conditioner using battery heat.
JP2002041908A 2002-02-19 2002-02-19 Fuel cell thermal air conditioner Expired - Fee Related JP4186473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002041908A JP4186473B2 (en) 2002-02-19 2002-02-19 Fuel cell thermal air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002041908A JP4186473B2 (en) 2002-02-19 2002-02-19 Fuel cell thermal air conditioner

Publications (2)

Publication Number Publication Date
JP2003242993A true JP2003242993A (en) 2003-08-29
JP4186473B2 JP4186473B2 (en) 2008-11-26

Family

ID=27782185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002041908A Expired - Fee Related JP4186473B2 (en) 2002-02-19 2002-02-19 Fuel cell thermal air conditioner

Country Status (1)

Country Link
JP (1) JP4186473B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100652605B1 (en) 2005-09-05 2006-12-01 엘지전자 주식회사 Fuel cell having temperature and humidity control part
JP2010144948A (en) * 2008-12-16 2010-07-01 Mitsubishi Electric Corp Water heat exchange device
CN102035002A (en) * 2010-11-30 2011-04-27 新源动力股份有限公司 Fuel cell module with water and thermal management capability
WO2011132229A1 (en) * 2010-04-22 2011-10-27 トヨタ自動車株式会社 Fuel cell system and method for suppressing decrease in power generation efficiency of fuel cell
JP2015094474A (en) * 2013-11-08 2015-05-18 株式会社東芝 Air conditioning system
GB2524611A (en) * 2014-03-26 2015-09-30 Noo2 Ltd Atmosphere modifier
CN106839426A (en) * 2017-01-24 2017-06-13 武汉地质资源环境工业技术研究院有限公司 The high-temperature heat-pump water-heater that one proton exchanging film fuel battery drives
CN109799457A (en) * 2018-12-29 2019-05-24 北京建筑大学 A kind of fuel cell water management monitoring system and its working method
CN113067010A (en) * 2021-03-22 2021-07-02 电子科技大学 Fuel cell supported by nanowires driven by biological gas production

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100652605B1 (en) 2005-09-05 2006-12-01 엘지전자 주식회사 Fuel cell having temperature and humidity control part
JP2010144948A (en) * 2008-12-16 2010-07-01 Mitsubishi Electric Corp Water heat exchange device
WO2011132229A1 (en) * 2010-04-22 2011-10-27 トヨタ自動車株式会社 Fuel cell system and method for suppressing decrease in power generation efficiency of fuel cell
US8507143B2 (en) 2010-04-22 2013-08-13 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method of reducing decrease in power generation efficiency of fuel cell
JP5338975B2 (en) * 2010-04-22 2013-11-13 トヨタ自動車株式会社 Fuel cell system and method for suppressing reduction in power generation efficiency of fuel cell
CN102035002A (en) * 2010-11-30 2011-04-27 新源动力股份有限公司 Fuel cell module with water and thermal management capability
JP2015094474A (en) * 2013-11-08 2015-05-18 株式会社東芝 Air conditioning system
GB2524611A (en) * 2014-03-26 2015-09-30 Noo2 Ltd Atmosphere modifier
CN106839426A (en) * 2017-01-24 2017-06-13 武汉地质资源环境工业技术研究院有限公司 The high-temperature heat-pump water-heater that one proton exchanging film fuel battery drives
CN109799457A (en) * 2018-12-29 2019-05-24 北京建筑大学 A kind of fuel cell water management monitoring system and its working method
CN109799457B (en) * 2018-12-29 2021-12-14 北京建筑大学 Fuel cell water management monitoring system and working method thereof
CN113067010A (en) * 2021-03-22 2021-07-02 电子科技大学 Fuel cell supported by nanowires driven by biological gas production

Also Published As

Publication number Publication date
JP4186473B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
JP4940877B2 (en) Air conditioning control system
KR100802571B1 (en) Air-conditioner using waste-heat from fuel cell
KR100640137B1 (en) Heat pumped water heating and heating apparaturs
CN111231655B (en) Vehicle thermal management system, control method thereof and vehicle
JP2003214705A (en) Cogeneration system
JP5980025B2 (en) Fuel cell cogeneration system
JP4186473B2 (en) Fuel cell thermal air conditioner
JP2007038950A (en) Air conditioner of vehicle mounted with fuel cell
JP3775933B2 (en) Solar heat pump air conditioning water heater
JP4984808B2 (en) Air conditioning control system
JP4934413B2 (en) Air conditioner
JP2001194012A (en) Solar heat utilization hot water supply/heating apparatus
JP3966839B2 (en) Waste heat utilization heat source device
JP2007024458A (en) Hot-water supplier
JP2004127841A (en) Fuel battery cogeneration system
JP2009281639A (en) Air-conditioning and hot water supplying system
JP2018006016A (en) Fuel cell system
JP2009051475A (en) Vehicular air conditioner
JPH085190A (en) Fuel battery-driven air conditioner
JP2006216302A (en) Cooling system of fuel cell and cooling method
JP4091046B2 (en) Cogeneration system
JP2008045843A (en) Hot water supply heating system
JP2004100990A (en) Cogeneration system
JP4660933B2 (en) Fuel cell driven heat pump device
JP4169453B2 (en) Hot water storage hot water source

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R151 Written notification of patent or utility model registration

Ref document number: 4186473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees