JP3310412B2 - Fuel cell cooling device and control method thereof - Google Patents

Fuel cell cooling device and control method thereof

Info

Publication number
JP3310412B2
JP3310412B2 JP24076093A JP24076093A JP3310412B2 JP 3310412 B2 JP3310412 B2 JP 3310412B2 JP 24076093 A JP24076093 A JP 24076093A JP 24076093 A JP24076093 A JP 24076093A JP 3310412 B2 JP3310412 B2 JP 3310412B2
Authority
JP
Japan
Prior art keywords
fuel cell
cooling water
heat exchanger
cooling
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24076093A
Other languages
Japanese (ja)
Other versions
JPH0794201A (en
Inventor
信弘 岩佐
雄治 澤田
規寿 神家
俊輔 大賀
康幹 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Original Assignee
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Osaka Gas Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24076093A priority Critical patent/JP3310412B2/en
Publication of JPH0794201A publication Critical patent/JPH0794201A/en
Application granted granted Critical
Publication of JP3310412B2 publication Critical patent/JP3310412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、燃料電池スタックの
冷却を三方切換え弁の切換えによって水蒸気分離器また
は熱交換器で行う燃料電池用冷却装置、および熱交換器
への二次冷却水の通流制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling system for a fuel cell in which a fuel cell stack is cooled by switching a three-way switching valve by a steam separator or a heat exchanger, and the passage of secondary cooling water to the heat exchanger. It relates to a flow control method.

【0002】[0002]

【従来の技術】図5は水冷式りん酸型燃料電池発電装置
を例に示す従来の冷却装置の概略系統図であり、単位セ
ルの積層体からなる燃料電池スタック1は複数の単位セ
ル毎に積層された水冷パイプを有する冷却板7を備え、
この水冷パイプとの間に三方切換え弁8,電池冷却水循
環ポンプ5,および電気ヒ−タ6を有する水蒸気分離器
4からなる電池冷却水1Wの循環系が形成される。さら
に三方切換え弁8のC−B間を通して循環系に切換え接
続可能に連結された熱交換器9が設けられ、例えば遮断
弁11を有する二次冷却水系10に低温の二次冷却水1
0Wを流すことにより高温の電池冷却水1Wを冷却する
よう構成される。
2. Description of the Related Art FIG. 5 is a schematic system diagram of a conventional cooling device showing a water-cooled phosphoric acid type fuel cell power generation device as an example. A fuel cell stack 1 composed of a stack of unit cells is provided for each of a plurality of unit cells. A cooling plate 7 having laminated water cooling pipes,
Between the water cooling pipe and the water cooling pipe, a circulating system for the battery cooling water 1W comprising a steam separator 4 having a three-way switching valve 8, a battery cooling water circulating pump 5, and an electric heater 6 is formed. Further, a heat exchanger 9 is provided which is switchably connected to the circulation system through the line C-B of the three-way switching valve 8. For example, a secondary cooling water system 10 having a shut-off valve 11 is connected to a low-temperature secondary cooling water 1.
It is configured to cool the high-temperature battery cooling water 1W by flowing 0W.

【0003】このように構成された水冷式りん酸型燃料
電池発電装置の運転は、その始動に際し、三方切換え弁
8をA側として循環ポンプ5により電池冷却水1Wを冷
却板7の水冷パイプおよび水蒸気分離器4間で循環し、
この状態で電気ヒ−タ6によって水蒸気分離器4内の電
池冷却水1Wを燃料電池の運転温度(例えば190〜2
00°C )近傍に予熱することにより、燃料電池スタッ
ク1をその運転温度近くに加熱昇温させる。燃料電池温
度が運転可能な温度に到達した時点で電気ヒ−タ6を切
り、反応空気供給装置3から反応空気を,燃料改質装置
2から燃料ガスを燃料電池の酸化剤極および燃料極にそ
れぞれ供給することにより電気化学反応に基づく発電運
転が開始される。また、電気化学反応は発熱反応であ
り、燃料電池スタック1から発電生成熱を奪って昇温し
た電池冷却水1Wは水蒸気分離器4内で水蒸気を分離す
ることによって冷却され、冷却した電池冷却水が冷却板
7に還流されることによって燃料電池スタック1を運転
温度に維持する冷却が行われる。さらに、水蒸気分離器
4内で分離されたスチ−ムは原燃料と混合されて燃料改
質装置2に供給され、水蒸気改質反応に利用されるとと
もに、熱回収用蒸気として図示しない排熱回収系に供給
され、その供給量の制御によって電池冷却水1Wの温度
が燃料電池の運転温度より低い一定温度に制御される。
In operation of the water-cooled phosphoric acid fuel cell power generator constructed as described above, the battery cooling water 1W is supplied to the water-cooled pipe of the cooling plate 7 by the circulation pump 5 with the three-way switching valve 8 set to the A side. Circulating between the steam separators 4,
In this state, 1 W of the battery cooling water in the steam separator 4 is changed by the electric heater 6 to the operating temperature of the fuel cell (for example, 190 to 2).
The fuel cell stack 1 is preheated to around (00 ° C) to heat and raise the temperature of the fuel cell stack 1 to near its operating temperature. When the temperature of the fuel cell reaches an operable temperature, the electric heater 6 is turned off, the reaction air is supplied from the reaction air supply device 3 and the fuel gas is supplied from the fuel reformer 2 to the oxidizer electrode and the fuel electrode of the fuel cell. By supplying each of them, a power generation operation based on an electrochemical reaction is started. In addition, the electrochemical reaction is an exothermic reaction, and the cell cooling water 1W, which is heated by depriving the fuel cell stack 1 of power generation heat, is cooled by separating steam in the steam separator 4, and the cooled cell cooling water is cooled. Is returned to the cooling plate 7 to cool the fuel cell stack 1 at the operating temperature. Further, the steam separated in the steam separator 4 is mixed with the raw fuel and supplied to the fuel reforming apparatus 2 to be used for a steam reforming reaction, and also to collect waste heat (not shown) as heat recovery steam. The temperature of the battery cooling water 1W is controlled to a constant temperature lower than the operating temperature of the fuel cell by controlling the supply amount.

【0004】一方、発電運転の停止時には、燃料電池の
出力を絞った状態で三方切換え弁8をB側に切り換えて
熱交換器9を電池冷却水1Wの循環通路に組み込み、二
次冷却水系10の遮断弁11を開いて二次冷却水10W
を熱交換器に通流し、電池冷却水1Wを冷却する運転モ
−ド(発電冷却運転)を行い、燃料電池温度があらかじ
め定まる運転停止温度にまで低下した時点で初めて電流
を遮断し、かつ反応空気および燃料ガスの供給を停止し
て燃料電池発電装置としての運転操作を終了する。すな
わち、燃料電池の出力電流をその運転温度で遮断する
と、単位セルの電極間電位差が開回路電圧に上昇し、燃
料電池の電極触媒が高温開回路電圧に曝されて劣化する
現象を示すことが知られており、発電冷却運転を行って
燃料電池温度を開回路電圧による触媒の劣化が問題にな
らない温度まで下げた後、電流の遮断および反応空気お
よび燃料ガスの供給を停止することにより、燃料電池の
劣化を防止することができる。
On the other hand, when the power generation operation is stopped, the three-way switching valve 8 is switched to the B side while the output of the fuel cell is reduced, and the heat exchanger 9 is installed in the circulation passage of the battery cooling water 1W, and the secondary cooling water system 10 is stopped. Open the shutoff valve 11 of the secondary cooling water 10W
Is passed through the heat exchanger to perform an operation mode (power generation cooling operation) for cooling the cell cooling water 1W. When the fuel cell temperature falls to a predetermined operation stop temperature, the current is cut off and the reaction is performed for the first time. The supply of the air and the fuel gas is stopped, and the operation as the fuel cell power generator ends. That is, when the output current of the fuel cell is cut off at the operating temperature, the potential difference between the electrodes of the unit cell rises to the open circuit voltage, and the electrode catalyst of the fuel cell is exposed to the high temperature open circuit voltage and shows a phenomenon of deterioration. It is known that after the power generation cooling operation is performed to lower the temperature of the fuel cell to a temperature at which the deterioration of the catalyst due to the open-circuit voltage does not become a problem, the current is cut off, and the supply of the reaction air and the fuel gas is stopped to thereby reduce the fuel. Battery deterioration can be prevented.

【0005】[0005]

【発明が解決しようとする課題】上述の運転方法によれ
ば、熱交換器9は発電冷却運転時に電池冷却水の冷却器
として利用されるのみであり、定常運転中は三方切換え
弁8はA側に切り換えられて電池冷却水1Wの循環が停
止するとともに、遮断弁11も遮断されて二次冷却水1
0Wの通流も停止され、熱交換器内には電池冷却水およ
び二次冷却水が滞留した状態となる。この状態で水蒸気
分離器4で燃料電池スタック1を冷却する定常的な発電
運転を継続して行うと、三方切換え弁8と熱交換器9が
比較的近い位置にあって短い配管で連結されている場
合、三方切換え弁から熱交換器への熱伝導によって熱交
換器が加熱され、熱交換器9内に滞留した電池冷却水1
Wの温度が130〜150°Cに昇温し、この時点で熱
交換器内に滞留している二次冷却水10Wが沸騰し、突
沸現象により熱交換器9に機械的衝撃が加わるととも
に、衝撃音が発生し、かつ時間の経過に伴って滞留した
二次冷却水が蒸発して不純物が濃縮され、スケ−ルとし
て熱交換面に付着するため、熱交換器の熱交換能力の低
下や応力腐食割れを招くという問題が発生する。
According to the above-described operation method, the heat exchanger 9 is used only as a cooler for the battery cooling water during the power generation cooling operation, and the three-way switching valve 8 is set to the A during the steady operation. Side, the circulation of the battery cooling water 1W is stopped, and the shutoff valve 11 is also shut off so that the secondary cooling water 1W is shut off.
The flow of 0 W is also stopped, and the battery cooling water and the secondary cooling water stay in the heat exchanger. In this state, when the stationary power generation operation for cooling the fuel cell stack 1 by the steam separator 4 is continuously performed, the three-way switching valve 8 and the heat exchanger 9 are relatively close to each other and are connected by short piping. The heat exchanger is heated by heat conduction from the three-way switching valve to the heat exchanger, and the battery cooling water 1 retained in the heat exchanger 9
The temperature of W rises to 130 to 150 ° C., and at this time, the secondary cooling water 10W staying in the heat exchanger boils, and a mechanical shock is applied to the heat exchanger 9 by a bumping phenomenon, Impact sound is generated, and the accumulated secondary cooling water evaporates over time, and the impurities are concentrated and adhere to the heat exchange surface as a scale. The problem of causing stress corrosion cracking occurs.

【0006】また、三方切換え弁8と熱交換器9とが比
較的遠い位置にある場合には突沸現象は生じないもの
の、滞留した二次冷却水が蒸発して不純物が濃縮され、
スケ−ルとして熱交換面に付着する現象が発生し、熱交
換器の熱交換能力の低下を招くという問題が発生する。
そこで、上記問題点を回避するために、燃料電池が定常
運転中も熱交換器9に二次冷却水を持続して通流し、熱
交換器の温度上昇を阻止する方法も考えられるが、この
とき二次冷却水の温度上昇は少なくその熱利用が困難な
ため、付加価値の低い二次冷却水を循環し続けるという
不合理を生ずる。
When the three-way switching valve 8 and the heat exchanger 9 are relatively far apart, no bumping phenomenon occurs, but the accumulated secondary cooling water evaporates to concentrate impurities.
The phenomenon of sticking to the heat exchange surface as a scale occurs, causing a problem that the heat exchange capacity of the heat exchanger is reduced.
Therefore, in order to avoid the above problem, a method of continuously flowing secondary cooling water through the heat exchanger 9 even during the steady operation of the fuel cell to prevent the temperature of the heat exchanger from rising can be considered. At this time, since the temperature rise of the secondary cooling water is small and its heat utilization is difficult, there arises an irrationality of continuing to circulate the secondary cooling water of low added value.

【0007】この発明の目的は、熱交換器の停止中に発
生する二次冷却水の突沸現象やスケ−ルの発生を阻止
し、これらに起因する障害を防止することにある。
An object of the present invention is to prevent a bumping phenomenon and a scale of secondary cooling water which are generated when the heat exchanger is stopped, and to prevent a trouble caused by these.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、燃料電池スタックに複数の単位
セル毎に積層された水冷パイプを有する冷却板と、前記
水冷パイプとの間に三方切換え弁を介して電池冷却水の
循環系を形成する循環ポンプおよび水蒸気分離器と、前
記三方切換え弁により循環系に切換え可能に連結されて
高温の前記電池冷却水と低温の二次冷却水との間で熱交
換を行う熱交換器とを備え、前記燃料電池スタックの冷
却を前記水蒸気分離器または熱交換器のいずれかに切り
換えて行うものにおいて、前記二次冷却水の流量を大小
二段階に制御する二段階式流量制御機構を二次冷却水系
に備えてなるものとする。
According to the present invention, there is provided a fuel cell stack comprising: a cooling plate having a water cooling pipe laminated on a fuel cell stack for each of a plurality of unit cells; A circulating pump and a steam separator forming a circulating system for the battery cooling water through a three-way switching valve, and a high-temperature battery cooling water and a low-temperature secondary cooling which are switchably connected to the circulating system by the three-way switching valve. A heat exchanger that exchanges heat with water, wherein the cooling of the fuel cell stack is performed by switching to either the steam separator or the heat exchanger. It is assumed that a two-stage flow control mechanism for controlling in two stages is provided in the secondary cooling water system.

【0009】二段階式流量制御機構が遮断弁と、これに
並列に連結された絞り機構とからなるものとする。二段
階式流量制御機構が互いに並列に連結され,かつ互いに
流量が異なる一対の遮断弁からなるものとする。二段階
式流量制御機構が流量を二段階に制御する制御機構を有
する一つの流量制御弁からなるものとする。
It is assumed that the two-stage flow control mechanism comprises a shut-off valve and a throttle mechanism connected in parallel to the shut-off valve. It is assumed that a two-stage flow control mechanism is composed of a pair of shut-off valves connected in parallel with each other and having different flow rates from each other. It is assumed that the two-stage flow control mechanism comprises one flow control valve having a control mechanism for controlling the flow in two stages.

【0010】燃料電池スタックに複数の単位セル毎に積
層された水冷パイプを有する冷却板と、前記水冷パイプ
との間に三方切換え弁を介して電池冷却水の循環系を形
成する循環ポンプおよび水蒸気分離器と、前記三方切換
え弁により循環系に切換え可能に連結されて高温の前記
電池冷却水と低温の二次冷却水との間で熱交換を行う熱
交換器とを備え、前記燃料電池スタックの冷却を前記水
蒸気分離器または熱交換器のいずれかに切り換えて行う
燃料電池用冷却装置において、燃料電池スタックの冷却
を熱交換器で行うよう前記三方切換え弁を操作したとき
には二次冷却水流量を大流量側に制御して熱交換を行
い、燃料電池スタックの冷却を水蒸気分離器で行うよう
前記三方切換え弁を操作したときには二次冷却水流量を
小流量側に絞って前記循環系からの伝導熱による熱交換
器の過熱を防止することとする。
A cooling plate having a water-cooled pipe laminated on a fuel cell stack for each of a plurality of unit cells; a circulating pump for forming a circulating system of battery cooling water between the water-cooled pipe and a three-way switching valve; The fuel cell stack, comprising: a separator; and a heat exchanger that is switchably connected to the circulation system by the three-way switching valve and exchanges heat between the high-temperature battery cooling water and the low-temperature secondary cooling water. In the cooling device for a fuel cell which switches the cooling of the fuel cell to either the steam separator or the heat exchanger, when the three-way switching valve is operated so that the cooling of the fuel cell stack is performed by the heat exchanger, the flow rate of the secondary cooling water is reduced. When the three-way switching valve is operated so as to perform heat exchange by controlling the flow rate to the large flow rate side and to cool the fuel cell stack by the steam separator, the secondary cooling water flow rate is reduced to the small flow rate side, and And to prevent overheating of the heat exchanger by conduction heat from the circulatory system.

【0011】[0011]

【作用】この発明において、二次冷却水の流量を大小二
段階に制御する二段階式流量制御機構を二次冷却水系に
設けるよう構成したことにより、発電冷却運転時には燃
料電池の冷却に必要な大きな流量の二次冷却水を熱交換
器に通流して電池冷却水を冷却し、熱交換器を必要とし
ない定常運転時には二次冷却水流量を少量に絞って三方
切換え弁からの伝導熱による熱交換器の過熱を防止し、
熱交換器内に滞留する二次冷却水の沸騰を阻止できるの
で、二次冷却水の無駄な循環を排除した状態で二次冷却
水の突沸現象に基づく機械的衝撃や衝撃音の発生、二次
冷却水の蒸発によるスケ−ルの発生を阻止し、熱交換効
率の低下や熱交換器の応力腐食割れなどの障害を防止す
る機能が得られる。
According to the present invention, a two-stage flow control mechanism for controlling the flow rate of the secondary cooling water in two stages, large and small, is provided in the secondary cooling water system. A large flow of secondary cooling water is passed through the heat exchanger to cool the battery cooling water, and during steady-state operation that does not require a heat exchanger, the secondary cooling water flow rate is reduced to a small amount and the conduction heat from the three-way switching valve is used. Prevent overheating of the heat exchanger,
Since the boiling of the secondary cooling water staying in the heat exchanger can be prevented, the occurrence of mechanical shock and impact noise based on the bumping phenomenon of the secondary cooling water without wasteful circulation of the secondary cooling water is eliminated. The function of preventing the generation of scale due to the evaporation of the next cooling water and the prevention of problems such as a reduction in heat exchange efficiency and stress corrosion cracking of the heat exchanger can be obtained.

【0012】また、二段階式流量制御機構を遮断弁と、
これに並列に連結された絞り機構とで構成すれば、三方
切換え弁の切換えに同期して遮断弁を開閉制御する簡単
な操作で、熱交換器に通流する二次冷却水の流量を大小
二段階に容易に制御できるとともに、微量な二次冷却水
の流量を絞り機構により特別の制御を必要とせずに安定
して保持する機能が得られる。さらに、二段階式流量制
御機構を互いに並列に連結され,かつ互いに流量が異な
る一対の遮断弁で構成するか、あるいは流量を二段階に
制御する制御機構を有する一つの流量制御弁で構成して
も、上記と同様な機能を得ることができる。
Further, the two-stage flow control mechanism is provided with a shut-off valve,
If a throttle mechanism connected in parallel with this is used, the flow rate of the secondary cooling water flowing through the heat exchanger can be increased or decreased by a simple operation of opening and closing the shut-off valve in synchronization with the switching of the three-way switching valve. In addition to being able to easily control in two stages, a function of stably holding the flow rate of the small amount of secondary cooling water without requiring special control by the throttle mechanism is obtained. Further, the two-stage flow control mechanism is constituted by a pair of shut-off valves connected in parallel with each other and having different flow rates from each other, or is constituted by one flow control valve having a control mechanism for controlling the flow in two stages. Can also obtain the same function as described above.

【0013】一方、燃料電池用冷却装置の制御方法とし
て、燃料電池スタックの冷却を熱交換器で行うよう三方
切換え弁を操作したときには二次冷却水流量を大流量側
に制御して熱交換を行うよう構成することにより、燃料
電池スタックの温度をあらかじめ定まる一定温度以下に
冷却する発電冷却運転を経由した後、燃料電池の出力電
流を遮断し、反応ガスの供給を停止して運転を停止でき
るので、燃料電池に高温開回路電圧による障害を及ぼす
ことなく運転を停止する機能が得られる。また、燃料電
池スタックの冷却を水蒸気分離器で行うよう三方切換え
弁を操作したとき、二次冷却水流量を小流量側に絞って
循環系からの伝導熱による熱交換器の過熱を防止するよ
う構成すれば、三方切換え弁からの伝導熱によって熱交
換器内に滞留した二次冷却水が沸騰することを阻止でき
るので、二次冷却水の無駄な循環を排除した状態で二次
冷却水の突沸現象に基づく機械的衝撃や衝撃音の発生、
二次冷却水の蒸発によるスケ−ルの発生を阻止し、熱交
換効率の低下や熱交換器の応力腐食割れなどの障害を防
止する機能が得られる。
On the other hand, as a method of controlling the fuel cell cooling device, when the three-way switching valve is operated so that the fuel cell stack is cooled by the heat exchanger, the secondary cooling water flow rate is controlled to the large flow rate side to perform heat exchange. With this configuration, after the power generation cooling operation that cools the temperature of the fuel cell stack to a predetermined temperature or less, the output current of the fuel cell is cut off, the supply of the reaction gas is stopped, and the operation can be stopped. Therefore, the function of stopping the operation of the fuel cell without causing an obstacle due to the high-temperature open circuit voltage is obtained. When the three-way switching valve is operated so that the fuel cell stack is cooled by the steam separator, the flow rate of the secondary cooling water is reduced to a small flow rate so as to prevent the heat exchanger from being overheated due to the heat transferred from the circulation system. With this configuration, it is possible to prevent the secondary cooling water retained in the heat exchanger from boiling due to the conduction heat from the three-way switching valve. Generation of mechanical shock and impact noise based on bumping phenomenon,
The function of preventing the generation of scale due to the evaporation of the secondary cooling water and the prevention of problems such as a decrease in heat exchange efficiency and stress corrosion cracking of the heat exchanger is obtained.

【0014】なお、燃料電池スタックの冷却を熱交換器
で行うよう三方切換え弁を操作したとき、熱交換によっ
て昇温した二次冷却水を排熱利用装置に供給することに
より、熱交換器を熱回収用熱交換器として兼用して熱回
収を行う機能が得られる。
When the three-way switching valve is operated so that the fuel cell stack is cooled by the heat exchanger, the secondary cooling water whose temperature is increased by the heat exchange is supplied to the exhaust heat utilization device, so that the heat exchanger is cooled. The function of performing heat recovery by also using as a heat exchanger for heat recovery is obtained.

【0015】[0015]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる燃料電池用冷却装置
を示す概略系統図であり、従来技術と同じ構成部分には
同一参照符号を付すことにより、重複した説明を省略す
る。図において、電池冷却水冷却器として構成される熱
交換器9の二次冷却水系10には、2段式流量制御機構
20として流量の大きい遮断弁11と、絞り機構12と
が互いに並列に設けられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a schematic system diagram showing a fuel cell cooling device according to an embodiment of the present invention. The same components as those of the prior art are denoted by the same reference numerals, and redundant description will be omitted. In the figure, in a secondary cooling water system 10 of a heat exchanger 9 configured as a battery cooling water cooler, a shutoff valve 11 having a large flow rate as a two-stage flow control mechanism 20 and a throttle mechanism 12 are provided in parallel with each other. Can be

【0016】このように構成された二段式流量制御機構
20を有する燃料電池用冷却装置において、その始動操
作および定常運転は三方切換え弁8をA側とし、水蒸気
分離器4内の電池冷却水1Wの温度をヒ−タ6で調整す
るか、あるいは燃料電池スタック1の冷却を水蒸気分離
器内でのスチ−ムの発生量により調節し、燃料電池を運
転温度に保持することによって行われる。このとき、2
段式流量制御機構20の遮断弁11は閉じられ、絞り機
構12によって流量が絞られた少量の二次冷却水10W
が二次冷却水系10を流れることにより、三方切換え弁
8から熱交換器9への伝導熱の排熱が行われ、熱交換器
内に滞留した二次冷却水10Wが沸騰することを阻止で
きるので、二次冷却水の無駄な循環を排除した状態で二
次冷却水の突沸現象に基づく機械的衝撃や衝撃音の発
生、二次冷却水の蒸発によるスケ−ルの発生を阻止し、
熱交換効率の低下や熱交換器の応力腐食割れなどの障害
を防止することができる。
In the cooling device for a fuel cell having the two-stage flow rate control mechanism 20 configured as described above, the start-up operation and the steady operation are performed by setting the three-way switching valve 8 to the A side and the battery cooling water in the steam separator 4. The temperature of 1 W is adjusted by the heater 6 or the cooling of the fuel cell stack 1 is adjusted by the amount of steam generated in the steam separator, and the fuel cell is maintained at the operating temperature. At this time, 2
The shutoff valve 11 of the stepped flow control mechanism 20 is closed, and the small amount of the secondary cooling water 10W whose flow rate is reduced by the throttle mechanism 12 is reduced.
Flows through the secondary cooling water system 10, the conduction heat is discharged from the three-way switching valve 8 to the heat exchanger 9, and the secondary cooling water 10 </ b> W accumulated in the heat exchanger can be prevented from boiling. Therefore, while avoiding unnecessary circulation of the secondary cooling water, the occurrence of mechanical shock and impact noise based on the bumping phenomenon of the secondary cooling water and the generation of scale due to the evaporation of the secondary cooling water are prevented.
Obstacles such as a decrease in heat exchange efficiency and stress corrosion cracking of the heat exchanger can be prevented.

【0017】また、燃料電池発電装置の運転を停止する
場合、発電冷却運転は三方切換え弁8をB側に切換える
と同時に、二段式流量制御機構20の遮断弁11を開く
ことによって行われ、2次冷却水系に流れる多量の二次
冷却水10Wによって電池冷却水1Wが冷却され、燃料
電池スタック1の温度があらかじめ定まる一定温度以下
に冷却冷却された時点で、燃料電池の出力電流を遮断
し、反応ガスの供給を停止して運転を停止することによ
り、燃料電池スタック1の各単位セルが高温開回路電圧
に曝されることを回避できるので、高温開回路電圧に曝
されることによって燃料電池スタックに生ずる電極触媒
の劣化を防止することができる。
When the operation of the fuel cell power generator is stopped, the power generation cooling operation is performed by switching the three-way switching valve 8 to the B side and opening the shut-off valve 11 of the two-stage flow control mechanism 20 at the same time. When the battery cooling water 1W is cooled by a large amount of the secondary cooling water 10W flowing in the secondary cooling water system and the temperature of the fuel cell stack 1 is cooled and cooled to a predetermined temperature or less, the output current of the fuel cell is cut off. By stopping the supply of the reaction gas and stopping the operation, each unit cell of the fuel cell stack 1 can be prevented from being exposed to the high-temperature open circuit voltage. It is possible to prevent the deterioration of the electrode catalyst occurring in the battery stack.

【0018】図2はこの発明の異なる実施例を簡略化し
て示す系統図であり、熱回収用熱交換器19の二次冷却
水系21に遮断弁11および絞り機構12からなる2段
式流量制御機構20を設けた点が前述の実施例と異なっ
ている。このように構成された燃料電池用冷却装置にお
いては、燃料電池スタック1の発電生成熱を熱回収用熱
交換器19が回収し、昇温した二次冷却水21Wを図示
しない熱利用系に供給して排熱の利用を行うことができ
る。このとき、三方切換え弁8をB側に切り換えて熱回
収用熱交換器19を電池冷却水1Wの循環系に組み込
み、遮断弁11を開いて二次冷却水21Wを熱回収用熱
交換器19に通流することによって熱交換が行われる。
FIG. 2 is a simplified system diagram showing a different embodiment of the present invention. A two-stage flow control comprising a shut-off valve 11 and a throttle mechanism 12 in a secondary cooling water system 21 of a heat recovery heat exchanger 19 is shown. The point that the mechanism 20 is provided is different from the above-described embodiment. In the fuel cell cooling device configured as described above, the heat generated by the power generation of the fuel cell stack 1 is recovered by the heat recovery heat exchanger 19, and the heated secondary cooling water 21W is supplied to a heat utilization system (not shown). Thus, waste heat can be used. At this time, the three-way switching valve 8 is switched to the B side to incorporate the heat recovery heat exchanger 19 into the circulation system of the battery cooling water 1W, and the shutoff valve 11 is opened to discharge the secondary cooling water 21W to the heat recovery heat exchanger 19. The heat exchange is performed by flowing the gas through the heat exchanger.

【0019】また、熱回収を停止する場合には三方切換
え弁8をA側に切り換えて熱回収用熱交換器19を電池
冷却水1Wの循環系から切り離し、遮断弁11を閉じて
絞り機構12で絞られた少量の二次冷却水21Wを熱回
収用熱交換器19に通流することにより、三方切換え弁
8からの伝導熱による熱回収用熱交換器19の過熱を防
ぎ、二次冷却水21Wの沸騰や蒸発によって生ずる障害
を排除することができる。さらに、発電冷却運転時に
は、三方切換え弁8をB側に切り換えて熱回収用熱交換
器19を電池冷却水1Wの循環系に組み込み、遮断弁1
1を開いて低温の二次冷却水21Wを熱回収用熱交換器
19に通流することによって電池冷却水を冷却し、高温
開回路電圧による電極触媒の劣化を防止することができ
る。
When the heat recovery is stopped, the three-way switching valve 8 is switched to the A side to disconnect the heat recovery heat exchanger 19 from the circulation system of the battery cooling water 1W, close the shutoff valve 11 and close the throttle mechanism 12 A small amount of secondary cooling water 21W squeezed by the above is passed through the heat recovery heat exchanger 19 to prevent overheating of the heat recovery heat exchanger 19 due to conduction heat from the three-way switching valve 8, and secondary cooling is performed. Obstacles caused by boiling and evaporation of the water 21W can be eliminated. Further, during the power generation cooling operation, the three-way switching valve 8 is switched to the B side to incorporate the heat recovery heat exchanger 19 into the circulation system of the battery cooling water 1W,
By opening 1, the low-temperature secondary cooling water 21W flows through the heat recovery heat exchanger 19, thereby cooling the battery cooling water and preventing the deterioration of the electrode catalyst due to the high-temperature open circuit voltage.

【0020】図3はこの発明の他の実施例を示す要部の
構成図であり、二段式流量制御機構30として流量の大
きい遮断弁31と流量の小さい遮断弁32とを互いに並
列にして熱交換器の二次冷却水系に連結した点が前述の
実施例と異なっており、三方切換え弁8をA側にしたと
きには流量の小さい遮断弁32を開いて少量の二次冷却
水を熱交換器に通流し、三方切換え弁8をB側にしたと
きには流量の大きい遮断弁31を開いて多量の二次冷却
水を熱交換器に通流することにより、前述の実施例と同
様な作用効果が得られる。
FIG. 3 is a structural view of a main part showing another embodiment of the present invention. As a two-stage flow control mechanism 30, a shutoff valve 31 having a large flow rate and a shutoff valve 32 having a small flow rate are arranged in parallel with each other. This embodiment is different from the previous embodiment in that it is connected to the secondary cooling water system of the heat exchanger. When the three-way switching valve 8 is set to the A side, the shut-off valve 32 with a small flow rate is opened to exchange a small amount of secondary cooling water. When the three-way switching valve 8 is set to the B side when the three-way switching valve 8 is set to the B side, the shutoff valve 31 having a large flow rate is opened to allow a large amount of secondary cooling water to flow through the heat exchanger. Is obtained.

【0021】図4はこの発明の異なる他の実施例を示す
要部の構成図であり、二段式流量制御機構40を流量制
御弁41と、この流量制御弁の流量を二段階に制御する
制御機構42とで構成し、熱交換器の二次冷却水系に連
結した点が前述の実施例と異なっており、三方切換え弁
8の切換えに対応して流量を二段階に切り換えることに
より、前述の実施例におけると同様な作用効果が得られ
る。
FIG. 4 is a block diagram of a main part showing another embodiment of the present invention. The two-stage flow control mechanism 40 controls a flow control valve 41 and the flow rate of the flow control valve in two stages. This embodiment is different from the above-described embodiment in that it is constituted by the control mechanism 42 and is connected to the secondary cooling water system of the heat exchanger. By switching the flow rate in two stages corresponding to the switching of the three-way switching valve 8, The same operation and effect as in the embodiment can be obtained.

【0022】[0022]

【発明の効果】この発明は前述のように、三方切換え弁
を介して電池冷却水の循環系に連結される電池冷却水冷
却器または熱回収用熱交換器として構成される熱交換器
の二次冷却水系に、二次冷却水の流量を大小二段階に制
御する二段階式流量制御機構を設け、熱交換器への電池
冷却水を三方切換え弁によって遮断したときにも少量の
二次冷却水を通流するよう構成した。その結果、三方切
換え弁からの伝導熱によって熱交換器が過熱されて熱交
換器内に滞留した二次冷却水が沸騰または蒸発するとい
う従来技術の問題点が排除され、二次冷却水の突沸現象
による機械的衝撃および衝撃音がなく、また不純物の濃
縮によるスケ−ルの発生も回避できるので、低騒音で熱
交換能力を安定して保持でき、かつ応力腐食割れなどの
障害も生じにくい信頼性の高い冷却装置を備えた燃料電
池発電装置を提供することができる。
As described above, the present invention relates to a heat exchanger for use as a battery cooling water cooler or a heat recovery heat exchanger connected to a battery cooling water circulation system via a three-way switching valve. The secondary cooling water system is equipped with a two-stage flow control mechanism that controls the secondary cooling water flow in two stages, large and small, and a small amount of secondary cooling is used even when the battery cooling water to the heat exchanger is shut off by a three-way switching valve. It was configured to flow water. As a result, the problem of the prior art in which the heat exchanger is overheated by the conduction heat from the three-way switching valve and the secondary cooling water accumulated in the heat exchanger boils or evaporates is eliminated, and the bumping of the secondary cooling water is eliminated. There is no mechanical shock or impact noise due to the phenomenon, and scale generation due to concentration of impurities can be avoided, so that the heat exchange capacity can be maintained stably with low noise, and reliability such as stress corrosion cracking does not easily occur. It is possible to provide a fuel cell power generation device provided with a high-performance cooling device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例になる燃料電池用冷却装置を
示す概略系統図
FIG. 1 is a schematic system diagram showing a cooling device for a fuel cell according to an embodiment of the present invention.

【図2】この発明の異なる実施例を簡略化して示す系統
FIG. 2 is a simplified system diagram showing different embodiments of the present invention.

【図3】この発明の他の実施例を示す要部の構成図FIG. 3 is a configuration diagram of a main part showing another embodiment of the present invention.

【図4】この発明の異なる他の実施例を示す要部の構成
FIG. 4 is a configuration diagram of a main part showing another embodiment different from the present invention.

【図5】水冷式りん酸型燃料電池発電装置を例に示す従
来の冷却装置の概略系統図
FIG. 5 is a schematic system diagram of a conventional cooling device illustrating a water-cooled phosphoric acid fuel cell power generation device as an example.

【符号の説明】[Explanation of symbols]

1 燃料電池スタック 1W 電池冷却水 2 燃料改質装置 3 反応空気供給装置 4 水蒸気分離器 5 電池冷却水循環ポンプ 6 電気ヒ−タ 7 冷却板 8 三方切換え弁 9 熱交換器(電池冷却水冷却器) 10 二次冷却水系 10W 二次冷却水 11 遮断弁 12 絞り機構 19 熱交換器(熱回収用熱交換器) 20 二段式流量制御機構 21 二次冷却水系(熱利用系に連結) 21W 二次冷却水 30 二段式流量制御機構 31 遮断弁(大型) 32 遮断弁(小型) 40 二段式流量制御機構 41 流量制御弁 42 二段階切換え制御機構 DESCRIPTION OF SYMBOLS 1 Fuel cell stack 1W Battery cooling water 2 Fuel reformer 3 Reaction air supply device 4 Steam separator 5 Battery cooling water circulation pump 6 Electric heater 7 Cooling plate 8 Three-way switching valve 9 Heat exchanger (Battery cooling water cooler) Reference Signs List 10 secondary cooling water system 10W secondary cooling water 11 shut-off valve 12 throttle mechanism 19 heat exchanger (heat exchanger for heat recovery) 20 two-stage flow control mechanism 21 secondary cooling water system (connected to heat utilization system) 21W secondary Cooling water 30 Two-stage flow control mechanism 31 Shut-off valve (large) 32 Shut-off valve (small) 40 Two-stage flow control mechanism 41 Flow control valve 42 Two-stage switching control mechanism

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大賀 俊輔 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 久保田 康幹 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 昭59−176406(JP,A) 特開 昭61−10875(JP,A) 特開 平5−41229(JP,A) 特開 平5−41232(JP,A) 特開 平7−83581(JP,A) 実開 昭58−92556(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01M 8/04 H01M 8/06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shunsuke Oga 1-1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. No. 1 Fuji Electric Co., Ltd. (56) References JP-A-59-176406 (JP, A) JP-A-61-10875 (JP, A) JP-A-5-41229 (JP, A) 41232 (JP, A) JP-A-7-83581 (JP, A) JP-A-58-92556 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 8/04 H01M 8 / 06

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料電池スタックに複数の単位セル毎に積
層された水冷パイプを有する冷却板と、前記水冷パイプ
との間に三方切換え弁を介して電池冷却水の循環系を形
成する循環ポンプおよび水蒸気分離器と、前記三方切換
え弁により循環系に切換え可能に連結されて高温の前記
電池冷却水と低温の二次冷却水との間で熱交換を行う熱
交換器とを備え、前記燃料電池スタックの冷却を前記水
蒸気分離器または熱交換器のいずれかに切り換えて行う
ものにおいて、前記二次冷却水の流量を大小二段階に制
御する二段階式流量制御機構を二次冷却水系に備えてな
ることを特徴とする燃料電池用冷却装置。
A circulating pump for forming a circulating system of battery cooling water between a cooling plate having a water cooling pipe laminated on a fuel cell stack for each of a plurality of unit cells and a water cooling pipe via a three-way switching valve. And a steam separator, and a heat exchanger that is switchably connected to the circulation system by the three-way switching valve and that performs heat exchange between the high-temperature battery cooling water and the low-temperature secondary cooling water. In the one in which the cooling of the battery stack is switched to either the steam separator or the heat exchanger, a secondary cooling water system is provided with a two-stage flow control mechanism for controlling the secondary cooling water flow in two stages, large and small. A cooling device for a fuel cell, comprising:
【請求項2】二段階式流量制御機構が遮断弁と、これに
並列に連結された絞り機構とからなることを特徴とする
請求項1記載の燃料電池用冷却装置。
2. The fuel cell cooling device according to claim 1, wherein the two-stage flow control mechanism comprises a shutoff valve and a throttle mechanism connected in parallel to the shutoff valve.
【請求項3】二段階式流量制御機構が互いに並列に連結
され,かつ互いに流量が異なる一対の遮断弁からなるこ
とを特徴とする請求項1記載の燃料電池用冷却装置。
3. The cooling device for a fuel cell according to claim 1, wherein the two-stage flow control mechanism comprises a pair of shut-off valves connected in parallel with each other and having different flow rates from each other.
【請求項4】二段階式流量制御機構が流量を二段階に制
御する制御機構を有する一つの流量制御弁からなること
を特徴とする請求項1記載の燃料電池用冷却装置。
4. The cooling device for a fuel cell according to claim 1, wherein the two-stage flow control mechanism comprises one flow control valve having a control mechanism for controlling the flow in two stages.
【請求項5】燃料電池スタックに複数の単位セル毎に積
層された水冷パイプを有する冷却板と、前記水冷パイプ
との間に三方切換え弁を介して電池冷却水の循環系を形
成する循環ポンプおよび水蒸気分離器と、前記三方切換
え弁により循環系に切換え可能に連結されて高温の前記
電池冷却水と低温の二次冷却水との間で熱交換を行う熱
交換器とを備え、前記燃料電池スタックの冷却を前記水
蒸気分離器または熱交換器のいずれかに切り換えて行う
燃料電池用冷却装置において、燃料電池スタックの冷却
を熱交換器で行うよう前記三方切換え弁を操作したとき
には二次冷却水流量を大流量側に制御して熱交換を行
い、燃料電池スタックの冷却を水蒸気分離器で行うよう
前記三方切換え弁を操作したときには二次冷却水流量を
小流量側に絞って前記循環系からの伝導熱による熱交換
器の過熱を防止することを特徴とする燃料電池用冷却装
置の制御方法。
5. A circulating pump for forming a battery cooling water circulation system between a cooling plate having a water cooling pipe laminated on a fuel cell stack for each of a plurality of unit cells and the water cooling pipe via a three-way switching valve. And a steam separator, and a heat exchanger that is switchably connected to the circulation system by the three-way switching valve and that performs heat exchange between the high-temperature battery cooling water and the low-temperature secondary cooling water. In the cooling device for a fuel cell which switches the cooling of the cell stack to either the steam separator or the heat exchanger, when the three-way switching valve is operated so that the cooling of the fuel cell stack is performed by the heat exchanger, the secondary cooling is performed. When the water flow rate is controlled to the large flow rate side to perform heat exchange and the three-way switching valve is operated so that the fuel cell stack is cooled by the steam separator, the secondary cooling water flow rate is reduced to the small flow rate side, and Control method of the fuel cell cooling device, characterized in that to prevent overheating of the heat exchanger by conduction heat from the circulatory system.
JP24076093A 1993-09-28 1993-09-28 Fuel cell cooling device and control method thereof Expired - Fee Related JP3310412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24076093A JP3310412B2 (en) 1993-09-28 1993-09-28 Fuel cell cooling device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24076093A JP3310412B2 (en) 1993-09-28 1993-09-28 Fuel cell cooling device and control method thereof

Publications (2)

Publication Number Publication Date
JPH0794201A JPH0794201A (en) 1995-04-07
JP3310412B2 true JP3310412B2 (en) 2002-08-05

Family

ID=17064313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24076093A Expired - Fee Related JP3310412B2 (en) 1993-09-28 1993-09-28 Fuel cell cooling device and control method thereof

Country Status (1)

Country Link
JP (1) JP3310412B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5287292B2 (en) * 2009-01-27 2013-09-11 東芝ホームテクノ株式会社 Fuel cell inspection device

Also Published As

Publication number Publication date
JPH0794201A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
US5316870A (en) Heat supply and electric power-generating fuel cell
JP4994731B2 (en) Fuel cell power generation system
JP2007522623A (en) Subdivided cooling circuit for fuel cell system
JP3575932B2 (en) Cooling system for fuel cell stack
JP3310412B2 (en) Fuel cell cooling device and control method thereof
JP3966839B2 (en) Waste heat utilization heat source device
JPS62198058A (en) Electric heat supply system of liquid cooling type fuel cell
CN110739470B (en) Fuel cell auxiliary system
JP4322040B2 (en) Fuel cell system and control method thereof
JP2000030726A5 (en)
JP2003331886A (en) Fuel cell system
JPH01265460A (en) Fuel cell operating method
JP2002175823A (en) Cooling equipment for fuel cell
JP2002025590A (en) Fuel cell power generating device and its control method
JP2004103457A (en) Fuel cell system
CN113690460A (en) Fuel cell thermoelectric exchange cold start preheating and waste heat energy recovery system and method
JP2010205654A (en) Fuel cell system
JPH06140066A (en) Fuel cell power generating system
CN213184364U (en) Cold start preheating and waste heat energy recovery system for fuel cell
DK180671B1 (en) Fuel cell system, use of it, and method of its operation
EP4109604A1 (en) Exhaust heat recovery system
JPH09320626A (en) Phosphoric acid fuel cell generating system
JP2007200581A (en) Fuel cell system
JP4440676B2 (en) Fuel cell power generation hot water supply system
JP2002313392A (en) Fuel cell

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees