JPH0785064B2 - Element concentration distribution measurement method - Google Patents

Element concentration distribution measurement method

Info

Publication number
JPH0785064B2
JPH0785064B2 JP61128763A JP12876386A JPH0785064B2 JP H0785064 B2 JPH0785064 B2 JP H0785064B2 JP 61128763 A JP61128763 A JP 61128763A JP 12876386 A JP12876386 A JP 12876386A JP H0785064 B2 JPH0785064 B2 JP H0785064B2
Authority
JP
Japan
Prior art keywords
sample
ray
wavelength
intensity
background
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61128763A
Other languages
Japanese (ja)
Other versions
JPS62285048A (en
Inventor
暉士 平居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61128763A priority Critical patent/JPH0785064B2/en
Publication of JPS62285048A publication Critical patent/JPS62285048A/en
Publication of JPH0785064B2 publication Critical patent/JPH0785064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 イ.産業上の利用分野 本発明は、EPMA等、試料を荷電粒子線等で励起させて、
試料より発生する特性X線を検出して試料の元素濃度分
布を求める方法に関する。
Detailed Description of the Invention a. Industrial field of the present invention, such as EPMA, by exciting the sample with a charged particle beam,
The present invention relates to a method of detecting a characteristic X-ray generated from a sample and obtaining an element concentration distribution of the sample.

ロ.従来の技術 EPMA等、試料を荷電粒子等で励起させて、試料より発生
する特性X線を検出して試料の元素濃度分布を求める装
置において、濃度分布分析として線分析,面分析を行う
場合、従来はX線分光器を目的元素の特性X線の波長に
合わせて、試料面を走査し、特性X線信号のピーク強度
のみを検出し、これを目的元素の濃度指示データとして
表示している。しかし、試料の組成や形態が試料の部位
によって、大きく変化する場合X線のバックグランド強
度が試料の場所によって異なり、目的元素濃度が低い場
合或は濃度変化が微細な場合には、検出信号強度をその
まま元素濃度として表示した場合、バックグランドの変
化が相対的に大きくて、実際の濃度分布とは異なった結
果を表示すると云う問題がある。このため、定量的な判
定はもとよりチャート上や試料面のX線像に目的元素の
表示が表れているからと言って、その元素が真に存在し
ているか否かの判定さえもあいまいな場合が多い。測定
元素から発生する特性X線以外のX線強度(バックグラ
ンド強度)を検出している可能性があるためである。従
って、これらの線分析や面分析のデータのみが単独で示
された場合等は、特に解析が非常に困難であった。
B. Conventional techniques such as EPMA, where the sample is excited by charged particles and the characteristic X-rays generated from the sample are detected to obtain the elemental concentration distribution of the sample, when performing line analysis or area analysis as concentration distribution analysis, Conventionally, the X-ray spectroscope is adjusted to the wavelength of the characteristic X-ray of the target element, the sample surface is scanned, only the peak intensity of the characteristic X-ray signal is detected, and this is displayed as concentration instruction data of the target element. . However, when the composition or morphology of the sample changes significantly depending on the site of the sample, the background intensity of X-rays differs depending on the place of the sample, and when the target element concentration is low or the concentration change is minute, the detected signal intensity When is directly displayed as the elemental concentration, there is a problem that the background changes relatively large and the result different from the actual concentration distribution is displayed. For this reason, if the target element is displayed on the X-ray image on the chart or on the sample surface, not only the quantitative judgment but also the judgment as to whether the element really exists or not is ambiguous. There are many. This is because there is a possibility that the X-ray intensity (background intensity) other than the characteristic X-ray generated from the measurement element may be detected. Therefore, when only the data of these line analysis and area analysis are shown alone, the analysis is very difficult.

ハ.発明が解決しようとする問題点 本発明は、測定元素から発生する特性X線以外のX線強
度(バックグランド強度)を測定元素の特性X線波長の
X線検出信号強度から除去して、正確な元素濃度分布デ
ータが提供できるようにすることを目的とする。
C. Problems to be Solved by the Invention The present invention eliminates X-ray intensity (background intensity) other than the characteristic X-rays generated from the measurement element from the X-ray detection signal intensity of the characteristic X-ray wavelength of the measurement element, and The purpose is to be able to provide various element concentration distribution data.

ニ.問題点解決のための手段 試料を荷電粒子等で走査励起させて、試料より発生する
X線を分光結晶を用いたX線分光器で分光する装置を用
い、予め試料面の分析領域全体を走査してX線像を撮像
し、その像によって分析領域を同一組成域即ち相によっ
て区分し、相毎に1〜数点で定量目的元素の特性X線ピ
ーク波長に近接したバックグラウンド域の波長でバック
グラウンドX線強度を測定して記憶させておき、その後
試料の分析領域全面を走査して上記特性X線の強度測定
を行い、各相毎に予め測定しておいたバックグラウンド
強度を引算して目的元素の濃度として表示するようにし
た。
D. Means for Solving Problems Using a device that scans and excites a sample with charged particles and separates the X-ray generated from the sample with an X-ray spectrometer using a dispersive crystal, the entire analysis area of the sample surface is scanned in advance. Then, an X-ray image is taken, and the analysis region is divided by the same composition region, that is, the phase by the image, and at a wavelength in the background region close to the characteristic X-ray peak wavelength of the quantitative target element at one to several points for each phase. The background X-ray intensity is measured and stored, and then the entire analysis area of the sample is scanned to perform the characteristic X-ray intensity measurement, and the background intensity previously measured for each phase is subtracted. Then, it is displayed as the concentration of the target element.

ホ.作用 本発明によれば、試料面の各々の測定点においてX線分
光器により、第2図に示すように、バックグランド強度
BGと特性X線のピーク強度PKを測定してメモリに記憶さ
せ、CPUによりその差I=[PK−BG]を算出させる。例
えば、第3図aに示すように測定領域が3つの相ア,
イ,ウによりなっている場合、各々の相におけるバック
グランド強度は第3図bのようになっており、実際の目
的元素の濃度分布は第3図dのようであるが、従来は第
3図bとdを重ねた形の第3図cを濃度分布として表示
していたのを、本発明では第3図bからcを引いた形を
表示するので正しい濃度表示が得られる。こゝで本発明
ではバックグラウンド強度のデータを得るのに、試料面
の分析領域全体をバックグラウンド波長で測定するので
はなく、試料面の各相毎に少数の点で測定するようにし
たから、試料面の一画素毎に特性X線とバックグラウン
ドを測定するのに比し、測定に要する時間が短縮され
る。
E. Action According to the present invention, the background intensity is measured by the X-ray spectroscope at each measurement point on the sample surface, as shown in FIG.
B G and the peak intensity P K of the characteristic X-ray are measured and stored in a memory, and the CPU calculates the difference I = [P K −B G ]. For example, as shown in FIG.
3b, the background intensity in each phase is as shown in FIG. 3b, and the actual concentration distribution of the target element is as shown in FIG. 3d. In contrast to the density distribution shown in FIG. 3c in the form of overlapping FIGS. 3b and 3d, the present invention displays the density subtracted from FIG. Here, in the present invention, the background intensity data is obtained by measuring a small number of points for each phase of the sample surface rather than measuring the entire analysis area of the sample surface at the background wavelength. In comparison with measuring the characteristic X-ray and the background for each pixel of the sample surface, the time required for the measurement is shortened.

ヘ.実施例 第1図に本発明の一実施例を示す。第1図において、S
は試料、Eは試料Sを励起させて電子線及びX線を放出
させる荷電粒子ビーム、1はX線分光器で駆動制御装置
6で駆動部5を駆動させて、波長走査出来る機構を備え
ており、試料Sから放出されたX線を分光する。X線検
出器2はX線分光器1で分光されたX線を検出する。3
はX線検出器2で検出された検出パルスを計数し記憶す
る信号処理装置。4はCPUで第4図のフローチャート図
に示す処理を行う。7は試料ステージで試料Sを駆動装
置8によって移動させ電子ビームによる試料面の走査を
行わせる。9は記録装置でCPU4で求められた各種データ
を記録する。10は表示装置でCPU4で求められた各種デー
タを表示する。
F. Embodiment FIG. 1 shows an embodiment of the present invention. In FIG. 1, S
Is a sample, E is a charged particle beam that excites the sample S to emit an electron beam and X-rays, 1 is an X-ray spectroscope, and a drive controller 5 drives a drive unit 5 to provide a mechanism for wavelength scanning. X-rays emitted from the sample S are separated. The X-ray detector 2 detects the X-rays dispersed by the X-ray spectroscope 1. Three
Is a signal processing device that counts and stores the detection pulses detected by the X-ray detector 2. A CPU 4 executes the processing shown in the flowchart of FIG. A sample stage 7 moves the sample S by a driving device 8 to scan the sample surface with an electron beam. A recording device 9 records various data obtained by the CPU 4. A display device 10 displays various data obtained by the CPU 4.

以上の構成でCPU4の動作を第4図のフローチャートで説
明する。面分析は線分析を走査線をワンピッチづつずら
して繰り返して行うことによって出来るから、線分析場
合について説明を行う。まず分光器を一つの波長位置に
合わせ試料の分析領域全体を電子ビームで走査し、X線
強度データを採取する(イ)。こゝで設定する波長は任
意であるが強いX線が放射される波長例えば試料中の主
成分(最も多量に含まれる元素)の特性X線波長に設定
するのが良い。次に採取されたデータを画像表示(ロ)
する。この画像を見て試料面の相を識別し、相境界のデ
ータを相の識別符号と共に信号装理装置に入力し
(ハ)、相毎に測定点を指定し、分光器をバックグラウ
ンド波長に設定して測定をスタートさせ、各点毎の測定
データを記憶させる(ニ)。全指定点の測定が終った
ら、分光波長を定量しようとする元素の特性X線波長に
合わせ分析領域全体の分析を開始させ、測定データを記
憶させる(ホ)。この測定終了後(ホ)のステップで得
られたX線強度データから対応する相について(ニ)の
ステップで記憶させたバックグラウンド強度のデータを
引算して、目的元素の濃度値Iに変換して表示装置10で
記録或は表示させ(ヘ)、動作を終了する。こゝで
(ホ)のステップのデータから対応相のバックグラウン
ドを引算する場合、相の境界データと相の識別符号があ
るから、これを用いて上の計算を行う。
The operation of the CPU 4 having the above configuration will be described with reference to the flowchart of FIG. Since the surface analysis can be performed by repeating the line analysis by shifting the scanning lines by one pitch, the case of the line analysis will be described. First, the spectroscope is aligned with one wavelength position, and the entire analysis region of the sample is scanned with an electron beam to collect X-ray intensity data (a). The wavelength set here is arbitrary, but it is preferable to set the wavelength at which strong X-rays are radiated, for example, the characteristic X-ray wavelength of the main component (element contained in the largest amount) in the sample. Image display of the next collected data (b)
To do. This image is used to identify the phase on the sample surface, the phase boundary data is input to the signal processing device together with the phase identification code (c), the measurement point is specified for each phase, and the spectroscope is set to the background wavelength. Set and start the measurement, and store the measurement data for each point (D). When the measurement of all designated points is completed, the spectral wavelength is adjusted to the characteristic X-ray wavelength of the element to be quantified, the analysis of the entire analysis region is started, and the measurement data is stored (e). After this measurement, the background intensity data stored in step (d) for the corresponding phase is subtracted from the X-ray intensity data obtained in step (e) to convert it to the concentration value I of the target element. Then, the display device 10 records or displays (f), and the operation ends. When subtracting the background of the corresponding phase from the data of the step (e), the boundary calculation data of the phase and the phase identification code are used, and the above calculation is performed using them.

ト.効果 本発明によればX線分光法による試料面の線分析或は面
分析でバックグラウンド補正した結果が得られるので、
分析結果の記録の解析が容易となり、分析精度が向上
し、かつ目的元素の特性X線の測定とバックグラウンド
の測定とを分析領域の全体について測定するとか、各画
素毎に特性X線波長とバックグラウンド波長との間でX
線分光器を動かすのに比し、バックグラウンド測定点の
数が少なくなって分析所要時間が少なくてすみ、X線分
光器の駆動量も減って分光器の保守上も有利となる。
G. Effect According to the present invention, the result of background correction is obtained by line analysis or surface analysis of the sample surface by X-ray spectroscopy.
The analysis of the record of the analysis result becomes easy, the analysis accuracy is improved, and the characteristic X-ray measurement of the target element and the background measurement are performed for the entire analysis region, or the characteristic X-ray wavelength is measured for each pixel. X to background wavelength
Compared to moving the line spectroscope, the number of background measurement points is smaller, the time required for analysis is shorter, and the driving amount of the X-ray spectroscope is also reduced, which is advantageous in maintenance of the spectroscope.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のブロック図、第2図は測定
点を波長走査して得られる信号強度図、第3図は線分析
を行った時の各相における信号図、第4図はCPUのフロ
ーチャート図である。 S……試料,E……荷電粒子ビーム, 1……X線分光器,2……X線検出器, 3……信号処理装置,4……CPU, 5……駆動部,6……駆動制御装置, 7……ステージ,8……駆動装置, 9……記録装置,10……表示装置。
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a signal intensity diagram obtained by wavelength-scanning a measurement point, FIG. 3 is a signal diagram in each phase when line analysis is performed, and FIG. The figure is a flow chart of the CPU. S ... Sample, E ... Charged particle beam, 1 ... X-ray spectrometer, 2 ... X-ray detector, 3 ... Signal processor, 4 ... CPU, 5 ... Driving unit, 6 ... Driving Controller, 7 ... Stage, 8 ... Driving device, 9 ... Recording device, 10 ... Display device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料を荷電粒子等で走査励起させて、試料
より発生するX線を分光結晶用いて分光する装置を用
い、予め試料面の分析領域全体を走査して適宜波長のX
線像を撮像し、その像によって試料の分析領域を相に区
分し、各相毎に1乃至数点を指定して定量目的元素の特
性X線波長に近接したバックグラウンド域の波長でバッ
クグラウンド強度を測定して記憶させ、その後試料の分
析領域全体を走査して上記特性X線の強度測定を行い、
そのデータから各相毎に上記予め測定したバックグラウ
ンド強度を引算して目的元素の濃度として記録或は表示
するようにしたことを特徴とする元素濃度分布測定方
法。
1. An X-ray having an appropriate wavelength is preliminarily scanned by scanning an entire analysis area of a sample surface by using an apparatus for scanning and exciting the sample with charged particles or the like and dispersing X-rays generated from the sample using a dispersive crystal.
A line image is taken, and the analysis area of the sample is divided into phases according to the image, and one to several points are specified for each phase, and the background is at a wavelength in the background region close to the characteristic X-ray wavelength of the quantitative target element. The intensity is measured and stored, and then the entire analysis area of the sample is scanned to measure the intensity of the characteristic X-ray,
A method for measuring element concentration distribution, characterized in that the background intensity measured in advance for each phase is subtracted from the data and recorded or displayed as the concentration of the target element.
JP61128763A 1986-06-03 1986-06-03 Element concentration distribution measurement method Expired - Lifetime JPH0785064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61128763A JPH0785064B2 (en) 1986-06-03 1986-06-03 Element concentration distribution measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61128763A JPH0785064B2 (en) 1986-06-03 1986-06-03 Element concentration distribution measurement method

Publications (2)

Publication Number Publication Date
JPS62285048A JPS62285048A (en) 1987-12-10
JPH0785064B2 true JPH0785064B2 (en) 1995-09-13

Family

ID=14992864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61128763A Expired - Lifetime JPH0785064B2 (en) 1986-06-03 1986-06-03 Element concentration distribution measurement method

Country Status (1)

Country Link
JP (1) JPH0785064B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692538B2 (en) * 1993-07-31 1997-12-17 株式会社島津製作所 Background correction method in X-ray spectroscopic analysis
JP4952369B2 (en) * 2007-05-18 2012-06-13 トヨタ自動車株式会社 Trace metal analysis method
JP2010271144A (en) * 2009-05-20 2010-12-02 Toyota Motor Corp Background correction method in epma analysis
WO2018061608A1 (en) * 2016-09-30 2018-04-05 株式会社リガク Wavelength-dispersive x-ray fluorescence analysis device and x-ray fluorescence analysis method using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163094A (en) * 1978-06-14 1979-12-25 Fukuoka Houshiyasen Kk Method of counting signals in fluorescent xxray analysis

Also Published As

Publication number Publication date
JPS62285048A (en) 1987-12-10

Similar Documents

Publication Publication Date Title
JPS6231288B2 (en)
JP2011232106A (en) Icp optical emission spectrometer
KR960012331B1 (en) Method and apparatus for background correction in analysis of a specimen surface
JPH0785064B2 (en) Element concentration distribution measurement method
JP6010547B2 (en) X-ray analyzer
JP2008089325A (en) Geological age measuring method by electron probe microanalyzer
JP2564896B2 (en) X-ray spectroscopic mapping device
JP3950619B2 (en) Surface analysis data display method in surface analyzer using electron beam
JP2787924B2 (en) Electron beam micro analyzer
JP2995841B2 (en) Gas chromatograph mass spectrometer data processor
JPH03144347A (en) Fluorescence spectrophotometry and apparatus therefor
JPS58196446A (en) Analysis employing x-rays microanalyzer
JP3236838B2 (en) X-ray fluorescence analysis method and apparatus
JP2524256Y2 (en) Electron beam micro analyzer
JP3389161B2 (en) X-ray fluorescence analyzer and recording medium used therein
JPH01319238A (en) X-ray spectrum analyzer
JP2926857B2 (en) X-ray qualitative analyzer
JPS6388434A (en) Characteristic x ray analysis
JP2611200B2 (en) Particle beam mapping equipment
JPH0760140B2 (en) X-ray analyzer
JP3214038B2 (en) X-ray imaging device
JP2560730B2 (en) Spectrofluorometer for calculating calcium ion concentration
JP2001176439A (en) Analytical measurement method with surface analysis equipment
JPS61155917A (en) Method for displaying output of measuring apparatus
JPS60135847A (en) Surface analyzer