JP2010271144A - Background correction method in epma analysis - Google Patents

Background correction method in epma analysis Download PDF

Info

Publication number
JP2010271144A
JP2010271144A JP2009122431A JP2009122431A JP2010271144A JP 2010271144 A JP2010271144 A JP 2010271144A JP 2009122431 A JP2009122431 A JP 2009122431A JP 2009122431 A JP2009122431 A JP 2009122431A JP 2010271144 A JP2010271144 A JP 2010271144A
Authority
JP
Japan
Prior art keywords
ray
mapping
data
target element
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009122431A
Other languages
Japanese (ja)
Inventor
Atsushi Tanaka
淳 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009122431A priority Critical patent/JP2010271144A/en
Publication of JP2010271144A publication Critical patent/JP2010271144A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a background correction method in EPMA (Electron Probe Micro-Analysis) analysis causing no sample damage, measuring by once electron beam scanning. <P>SOLUTION: This method comprises the first step wherein a portion in which an object element does not exist is put into a mapping domain; the second step wherein one of two dispersive crystals of the same kind is set at a characteristic X-ray wavelength λ<SB>A</SB>of the object element, and the other is set at a background wavelength λ<SB>B</SB>in the vicinity, and X-ray count data I<SB>A</SB>, I<SB>B</SB>are acquired by performing mapping measurement; and the third step of determining a correction coefficient α from the equation: α=I<SB>A</SB>/I<SB>B</SB>from the X-ray count data I<SB>A</SB>, I<SB>B</SB>. The background correction coefficient α of the EPMA analysis is determined via the first to third steps, and a value acquired by using an expression: I<SB>A</SB>-I<SB>B</SB>×α is used as an X-ray signal of the object element, relative to the X-ray count data I<SB>A</SB>pertaining to the characteristic X-ray wavelength λ<SB>A</SB>of the object element in the whole mapping domain, and further, mapping data of a concentration of the object element are acquired by using a calibration curve measured separately, from data of the X-ray signal. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、固体表面の2次元元素分布を調べるEPMA(Electron Probe Micro-Analysis)分析におけるバックグラウンド補正方法に関する。   The present invention relates to a background correction method in EPMA (Electron Probe Micro-Analysis) analysis for examining a two-dimensional element distribution on a solid surface.

EPMA分析は、フィラメントから放出された電子プローブを細く絞って試料に照射し、入射電子によって励起されたX線を分光結晶で回折し、そのX線強度をカウンタに導いて計測することにより、そこにふくまれる元素を定性、定量する方法である。   EPMA analysis is performed by squeezing the electron probe emitted from the filament and irradiating the sample, diffracting the X-rays excited by the incident electrons with a spectroscopic crystal, and guiding the X-ray intensity to a counter for measurement. This is a method for qualitative and quantitative determination of elements contained in

EPMA分析においては、各測定点で構成元素が異なる場合、測定点ごとにバックグラウンド強度(BG強度)が変化するため、バックグラウンド補正(BG補正)をする必要がある。   In the EPMA analysis, when the constituent elements are different at each measurement point, the background intensity (BG intensity) changes at each measurement point, so it is necessary to perform background correction (BG correction).

BG補正について、特許文献1は、細く絞った電子ビームを試料に照射し、入射電子によって励起されたX線を検出して分光分析する際に、ピーク位置から分光器を適当な距離移動させてピークの両側でバックグラウンドを測定し、ピーク位置でのバックグラウンド強度(BG強度)を直線近似により求める従来の方法と、複数の標準試料により平均原子番号とバックグラウンド強度との関係を、最小二乗法を用いて求め、未知試料の測定ではピーク強度のみを測定し、補正計算に際して、該測定値から平均原子番号を求めバックグラウンドを推定する方法を提案している。   Regarding BG correction, Patent Document 1 irradiates a sample with a finely focused electron beam, detects X-rays excited by incident electrons, and performs spectroscopic analysis to move the spectroscope by an appropriate distance from the peak position. The background is measured on both sides of the peak and the background intensity (BG intensity) at the peak position is obtained by linear approximation, and the relationship between the average atomic number and the background intensity using a plurality of standard samples is measured at least two times. A method has been proposed in which only the peak intensity is measured in the measurement of an unknown sample, and the background is estimated by calculating the average atomic number from the measured value in the correction calculation.

特開昭63−313043号公報JP-A-63-313043

特許文献1に記載された従来の方法は、バックグラウンドがカーブを描いているような場合に直線近似では正確にBG強度を推定できないという問題点や、バックグラウンド位置に妨害線が存在する場合にはBGではない他のX線を計測する問題点がある上、特許文献1が提案する方法においても、複数の標準試料を必要とすることに加え、構成元素が多い場合には、多くの測定データが必要となるので、測定時間が長くなり、電子線スキャン回数の増加による試料損傷が起こり、データの信頼性が低下する問題点がある。特に目的元素が微量である場合、僅かな特性X線信号を積算してS/N比を改善する必要があるため、試料損傷は、計測の信頼性に一層深刻な影響を与えてしまう。   The conventional method described in Patent Document 1 has a problem that the BG intensity cannot be accurately estimated by linear approximation when the background is curved, or when a disturbance line exists at the background position. In addition to the problem of measuring other X-rays that are not BG, the method proposed in Patent Document 1 also requires a plurality of standard samples, and in addition, when there are many constituent elements, many measurements are performed. Since data is required, there is a problem that the measurement time becomes long, the sample is damaged due to an increase in the number of electron beam scans, and the reliability of the data is lowered. In particular, when the amount of the target element is very small, it is necessary to integrate a small amount of characteristic X-ray signals to improve the S / N ratio, so that sample damage has a more serious effect on the reliability of measurement.

これを、モノリス触媒中のPt分布を計測する例について、以下に説明する。計測のBG補正のために、担体成分であるAl、Ce、Zr等の元素の濃度分布を測定し、各点ごとのBG強度を、担体の構成元素の濃度から近似計算によりBG強度分布を求める。しかし、担体中に、La、Ba、Nd等の多くの元素が含まれている場合、BG強度分布を精度よく算出するためには、これらの元素の濃度分布も測定する必要がある。   An example of measuring the Pt distribution in the monolith catalyst will be described below. For measurement BG correction, the concentration distribution of elements such as Al, Ce, Zr, etc., which are carrier components, is measured, and the BG intensity distribution for each point is obtained by approximate calculation from the concentration of the constituent elements of the carrier. . However, when the carrier contains many elements such as La, Ba, and Nd, it is necessary to measure the concentration distribution of these elements in order to accurately calculate the BG intensity distribution.

1回の電子線スキャンで測定することができる元素数は限られているので、上記のように多数の構成元素がある場合には、スキャンを複数回に分けることとなる。触媒試料の場合、複数回のスキャンは、コート層の割れや剥がれ、担体2次粒子の位置のズレを生じるので、複数回のスキャンにより計測した元素分布からBG強度を算出すると、誤差を生じて、計測の精度を低下させるという問題点がある。   Since the number of elements that can be measured by one electron beam scan is limited, when there are many constituent elements as described above, the scan is divided into a plurality of times. In the case of a catalyst sample, multiple scans cause cracking or peeling of the coating layer and misalignment of the support secondary particles. Therefore, calculating the BG intensity from the element distribution measured by multiple scans causes an error. There is a problem that the accuracy of measurement is lowered.

本発明は、従来例の上述した問題点の解決を課題とするものである。   An object of the present invention is to solve the above-described problems of the conventional example.

上記の課題を解決するため、本発明に係るEPMA分析のバックグラウンド補正係数αを求める方法は、EPMA分析において、マッピング領域に目的元素が存在しない部位を入れる第1のステップと、二つの同種の分光結晶のうち、一方を目的元素の特性X線波長λAに、他方を近傍のバックグラウンド波長λBに設定し、マッピング測定してX線カウントデータIA,IBを得る第2のステップと、上記X線カウントデータIA及びIBから、α=IA/IBの式から補正係数αを求める第3のステップとからなり、上記第1から第3のステップを経て、EPMA分析のバックグラウンド補正係数αを求めることを特徴とする。 In order to solve the above-mentioned problem, the method for obtaining the background correction coefficient α of the EPMA analysis according to the present invention includes a first step in which a site where the target element does not exist in the mapping region is included in the EPMA analysis Second step of obtaining X-ray count data I A and I B by setting one of the spectral crystals to the characteristic X-ray wavelength λ A of the target element and the other to the nearby background wavelength λ B and performing mapping measurement. If, from the X-ray count data I a and I B, alpha = and a third step of obtaining the I formula from the correction coefficient a / I B alpha, through the third step from the first 1, EPMA analysis The background correction coefficient α is obtained.

また、本発明に係るEPMA分析のバックグラウンド補正方法は、上記の方法で求めたバックグラウンド補正係数αを用いて、全マッピング領域において、目的元素の特性X線波長λAについてのX線カウントデータIAに対して、IA−IB×αの式を用いて得られた値を目的元素のX線信号とすることを特徴とする。 In addition, the background correction method for EPMA analysis according to the present invention uses the background correction coefficient α obtained by the above method, and X-ray count data for the characteristic X-ray wavelength λ A of the target element in all mapping regions. For I A , the value obtained using the formula of I A -I B × α is used as the X-ray signal of the target element.

また、本発明に係るEPMA分析における目的元素の濃度データを得る方法は、上記の補正方法で得られた目的元素のX線信号のデータから、別に測定した検量線を用いて元素濃度のマッピングデータを算出することを特徴とする。   In addition, the method for obtaining the concentration data of the target element in the EPMA analysis according to the present invention is the mapping data of the element concentration using the calibration curve measured separately from the X-ray signal data of the target element obtained by the above correction method. Is calculated.

本発明によれば、1回の電子線スキャンにより、目的元素のX線信号とBG信号を同時に計測することができるので、計測時間を短縮できると共に、試料の損傷を防ぐことができるので、試料の損傷に基づく計測データの信頼性の低下を防止し、精度のよいデータを短時間に得られるという効果を奏する。   According to the present invention, since the X-ray signal and BG signal of the target element can be measured simultaneously by one electron beam scan, the measurement time can be shortened and the sample can be prevented from being damaged. This reduces the reliability of the measurement data based on the damage of the sensor and can provide accurate data in a short time.

本発明に係る特性X線スペクトル(例、RhLα)を示す。2 shows a characteristic X-ray spectrum (eg, RhLα) according to the present invention. 表1に示したK-11580の補正前の測定結果であり、(a)Pt−Lα、(b)Pt−BG、(c)SiKαの分光結晶を用いた際の各マッピング領域を示す。It is a measurement result before correction | amendment of K-11580 shown in Table 1, and shows each mapping area | region at the time of using the spectral crystal of (a) Pt-L (alpha), (b) Pt-BG, (c) SiK (alpha). BG補正後のPt信号マッピング画像及び線分析結果を示す。The Pt signal mapping image after BG correction and a line analysis result are shown. BG補正後のPt信号マッピング画像(20カウント未満を非表示)を示す。The Pt signal mapping image after BG correction (less than 20 counts are not displayed) is shown. BG補正後のPt信号マッピングから求めたPt濃度分布を示す。The Pt concentration distribution calculated | required from Pt signal mapping after BG correction | amendment is shown. Pt担持量の異なる試料での下層Pt平均濃度測定結果を示す。The lower layer Pt average density | concentration measurement result in the sample from which Pt carrying amount differs is shown.

目的元素を、例えばロジウム(Rh)として、マッピング領域に目的元素が存在しない部位を入れて、EPMA分析を適用すると、図1に示された特性X線スペクトルを得る。ここで、ピークとして現れた目的元素の特性X線波長(λA)のX線カウントをIAとし、近傍のBG波長(λ)のX線カウントをIとする。そして、このIA及びIから、バックグラウンド補正係数を求め、これを用いてEPMA分析のバックグラウンドを補正し、かつ、目的元素の濃度データを得るのである。以下、これを具体的な実施例により説明する。 When the target element is, for example, rhodium (Rh) and a part where the target element does not exist in the mapping region is put and EPMA analysis is applied, the characteristic X-ray spectrum shown in FIG. 1 is obtained. Here, the X-ray count of the characteristic X-ray wavelength (λ A ) of the target element that appears as a peak is I A, and the X-ray count of the nearby BG wavelength (λ B ) is I B. From this I A and I B, we obtain the background correction coefficients and used to correct the background EPMA analysis, and is to obtain a density data of interest element. Hereinafter, this will be described with reference to specific examples.

(実施例)
実施例は、モノリス触媒の微量Pt分布の測定に関するものである。
[EPMA測定(試料条件と測定条件の設定)]
試料としては、上層にロジウム(Rh)を、下層に白金(Pt)を担持した2層コートモデル触媒を切り出し、樹脂包埋した後、研磨し、琢磨する工程を経て、EPMA測定を行った。Ptの存在しない基材において、BG補正係数αを算出するため、マッピング元素を、Pt、Siとした。2層コートモデル触媒の仕様は、表1に示すとおりである。
(Example)
The examples relate to the measurement of trace Pt distribution of monolith catalysts.
[EPMA measurement (setting of sample conditions and measurement conditions)]
As a sample, a two-layer coat model catalyst carrying rhodium (Rh) in the upper layer and platinum (Pt) in the lower layer was cut out, embedded in a resin, polished, and polished, and EPMA measurement was performed. In order to calculate the BG correction coefficient α in the base material without Pt, the mapping elements were Pt and Si. The specifications of the two-layer coat model catalyst are as shown in Table 1.

また、測定条件については、次のとおりである。
・検出器(島津製作所製)の設定
LIF:PtLα、LIF:PtLαのBG波長、ADP:SiKα
・その他、分析条件
加 速 電 圧 : 20kV
電 流 : 500nA
サンプリング時間: 50msec/point
The measurement conditions are as follows.
・ Setting of detector (manufactured by Shimadzu Corporation) LIF: PtLα, LIF: BG wavelength of PtLα, ADP: SiKα
・ Other analysis conditions Acceleration voltage: 20kV
Current: 500nA
Sampling time: 50msec / point

Figure 2010271144
Figure 2010271144

[測定データの解析]
図2(a)〜(c)は、表1に示したK-11580の補正前の測定結果を示す。図2に示された各マッピング領域の左上から、基材1、Pt担持のコート層(下層)2、Rh担持のコート層(上層)3、包埋樹脂4を示している。
[Analysis of measurement data]
2A to 2C show the measurement results before correction of K-11580 shown in Table 1. FIG. From the upper left of each mapping region shown in FIG. 2, a base material 1, a Pt-supported coat layer (lower layer) 2, an Rh-supported coat layer (upper layer) 3, and an embedding resin 4 are shown.

表計算ソフト等を用いて、次の手順により、PtのBG補正係数αを求めた。
(1)各ポイントにおけるPt−Lαカウント(IPt-Lα)及び(IPt-BG)から、αを暫定的に1として、次の式1によりPt信号のみのカウント数(IPt)を求めた。
Pt=IPt-Lα−IPt-BG×α (式1)
Using a spreadsheet software or the like, the Pt BG correction coefficient α was obtained by the following procedure.
(1) From the Pt-Lα count (I Pt-Lα ) and (I Pt-BG ) at each point, α is provisionally set to 1, and the count number (I Pt ) of only the Pt signal is obtained by the following equation 1. It was.
I Pt = I Pt−Lα −I Pt−BG × α (Formula 1)

(2)Si濃度が一定値(ここでは、5wt%とした。)以上の全てのポイントについて、式1の値の合計値(又は平均値)を算出した。 (2) The total value (or average value) of the values of Formula 1 was calculated for all points where the Si concentration was a certain value (here, 5 wt%).

(3)手順(2)で求めた合計値(又は平均値)が0となるようなα値を算出する。この算出は、エクセルの場合、ソルバーを用いることにより容易に求められる。 (3) An α value is calculated such that the total value (or average value) obtained in step (2) is zero. In the case of Excel, this calculation is easily obtained by using a solver.

(4)全マッピング領域について、式1に手順(3)で求めたαを代入することにより、Pt信号のみのカウント数(IPt)を求めた。 (4) For all mapping regions, the count number (I Pt ) of only the Pt signal was obtained by substituting α obtained in step (3) into Equation 1.

上記のK-11580の測定結果から、上記の手順(3)でα値を求めると、0.899となった。   From the above measurement result of K-11580, the α value obtained by the above procedure (3) was 0.899.

図3は、手順(4)で求めたPt信号のマッピング画像と線分析結果を示す。
図3のラインプロファイルにより、Ptは、主に下層に分布し、基材、上層、樹脂では0カウントを中心として、ばらついた状態の分布を示している。
FIG. 3 shows a mapping image and a line analysis result of the Pt signal obtained in the procedure (4).
According to the line profile of FIG. 3, Pt is distributed mainly in the lower layer, and shows a distribution in a state where the base material, the upper layer, and the resin are centered on 0 count.

図4は、マッピング表示の際に、20カウント未満を表示しない設定とした場合のマッピング画像を示す。   FIG. 4 shows a mapping image in the case of setting not to display less than 20 counts during mapping display.

[濃度換算]
BG補正した上記のPt信号マッピングから、別途測定したX線カウントと元素濃度との検量線等を用いて、元素濃度のマッピングデータを算出する。
図5は、K-11580についての結果を示す。上層と下層についてPt平均濃度を算出してみると、上層が0.02wt%、下層は0.37wt%であった。
[Concentration conversion]
From the above-described Pt signal mapping corrected for BG, element concentration mapping data is calculated using a separately measured X-ray count and element concentration calibration curve or the like.
FIG. 5 shows the results for K-11580. When calculating the average Pt concentration for the upper layer and the lower layer, the upper layer was 0.02 wt% and the lower layer was 0.37 wt%.

図6は、本手法を用いて、Pt担持量の異なる触媒試料を測定して得た下層のPt平均濃度を示す。担持量と平均濃度が比例関係を示すことから、微量Ptの試料において正しくBG補正されていることがわかる。   FIG. 6 shows the average Pt concentration of the lower layer obtained by measuring catalyst samples having different Pt loadings using this method. Since the carrying amount and the average concentration show a proportional relationship, it can be understood that the BG correction is correctly performed in the sample with a small amount of Pt.

1:基材、
2:Pt担持されたコート層(下層)、
3:Rh担持されたコート層(上層)、
4:包埋樹脂
1: base material,
2: Pt-supported coat layer (lower layer),
3: Rh-supported coat layer (upper layer),
4: Embedded resin

Claims (3)

EPMA分析において、
マッピング領域に目的元素が存在しない部位を入れる第1のステップと、
二つの同種の分光結晶のうち、一方を目的元素の特性X線波長λAに、他方を近傍のバックグラウンド波長λBに設定し、マッピング測定してX線カウントデータIA,IBを得る第2のステップと、
上記X線カウントデータIA及びIBから、α=IA/IBの式から補正係数αを求める第3のステップとからなり、
上記第1から第3のステップを経て、EPMA分析のバックグラウンド補正係数αを求める方法。
In EPMA analysis,
A first step of adding a region where the target element does not exist in the mapping region;
Of the two same types of spectral crystals, one is set to the characteristic X-ray wavelength λ A of the target element and the other is set to the nearby background wavelength λ B , and mapping measurement is performed to obtain X-ray count data I A and I B. A second step;
From the X-ray count data I A and I B, and a third step of obtaining a correction coefficient alpha from the equation α = I A / I B,
A method of obtaining a background correction coefficient α of EPMA analysis through the first to third steps.
請求項1に記載された方法により求めたバックグラウンド補正係数αを用いて、
全マッピング領域において、目的元素の特性X線波長λAについてのX線カウントデータIAに対して、IA−IB×αの式を用いて得られた値を目的元素のX線信号とするEPMA分析のバックグラウンド補正方法。
Using the background correction coefficient α obtained by the method described in claim 1,
With respect to the X-ray count data I A for the characteristic X-ray wavelength λ A of the target element in all mapping regions, the value obtained using the formula I A −I B × α is used as the X-ray signal of the target element. EPMA analysis background correction method.
請求項2に記載された補正方法により得られた目的元素のX線信号のデータから、
別に測定した検量線を用いて元素濃度のマッピングデータを算出するEPMA分析における目的元素の濃度データを得る方法。
From the X-ray signal data of the target element obtained by the correction method according to claim 2,
A method of obtaining concentration data of a target element in EPMA analysis in which element concentration mapping data is calculated using a separately measured calibration curve.
JP2009122431A 2009-05-20 2009-05-20 Background correction method in epma analysis Pending JP2010271144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009122431A JP2010271144A (en) 2009-05-20 2009-05-20 Background correction method in epma analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009122431A JP2010271144A (en) 2009-05-20 2009-05-20 Background correction method in epma analysis

Publications (1)

Publication Number Publication Date
JP2010271144A true JP2010271144A (en) 2010-12-02

Family

ID=43419292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009122431A Pending JP2010271144A (en) 2009-05-20 2009-05-20 Background correction method in epma analysis

Country Status (1)

Country Link
JP (1) JP2010271144A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285048A (en) * 1986-06-03 1987-12-10 Shimadzu Corp Element density distribution measurement
JPH0210639A (en) * 1988-06-28 1990-01-16 Shimadzu Corp X-ray spectral mapping device
JPH05340897A (en) * 1992-06-11 1993-12-24 Shimadzu Corp X-ray spectrometer
JPH0743323A (en) * 1993-07-31 1995-02-14 Shimadzu Corp Background correcting method in x-ray spectral analysis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285048A (en) * 1986-06-03 1987-12-10 Shimadzu Corp Element density distribution measurement
JPH0210639A (en) * 1988-06-28 1990-01-16 Shimadzu Corp X-ray spectral mapping device
JPH05340897A (en) * 1992-06-11 1993-12-24 Shimadzu Corp X-ray spectrometer
JPH0743323A (en) * 1993-07-31 1995-02-14 Shimadzu Corp Background correcting method in x-ray spectral analysis

Similar Documents

Publication Publication Date Title
US9746433B2 (en) X-ray fluorescence spectrometer and X-ray fluorescence analyzing method
JP6501230B2 (en) Multi-element simultaneous fluorescent X-ray analyzer and multi-element simultaneous fluorescent X-ray analysis method
US9945796B2 (en) X-ray fluorescence analysis method and X-ray fluorescence analysis system
CN109216142B (en) Electron probe microanalyzer and storage medium
JP6009975B2 (en) Radiation detector and sample analyzer
JP2018205247A (en) X-ray diffraction analysis method and device
JP2010223908A (en) Fluorescent x-ray analysis method
KR102134181B1 (en) Measurement of small features using xrf
JP3889851B2 (en) Film thickness measurement method
JP5712778B2 (en) Method for measuring film thickness of SOI layer of SOI wafer
JP3610256B2 (en) X-ray fluorescence analyzer
JP2007178445A (en) Quantitative analysis method in sample analyzer
TWI807057B (en) Film thickness measuring device and correction method
KR101908807B1 (en) Apparatus and method for measuring element of metal sample
JP2010271144A (en) Background correction method in epma analysis
JP2006071311A (en) X-ray fluorescence spectrometer and program used for it
JP5874108B2 (en) X-ray fluorescence analyzer
JP2006118941A (en) Electronic probe x-ray analyzer for displaying surface analyzing data
KR101411595B1 (en) Method of measuring coating weight of iridium
JP6713110B2 (en) Background removal method and X-ray fluorescence analyzer
US20150247812A1 (en) Method for the measurement of a measurement object by means of x-ray fluorescence
JP2020067392A (en) Element analysis method, and element analyzer
TW202039928A (en) Method and system for monitoring deposition process
Walther Linear least‐squares fit evaluation of series of analytical spectra from planar defects: extension and possible implementations in scanning transmission electron microscopy
US6635869B2 (en) Step function determination of Auger peak intensity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107