JPS62285048A - Element density distribution measurement - Google Patents

Element density distribution measurement

Info

Publication number
JPS62285048A
JPS62285048A JP61128763A JP12876386A JPS62285048A JP S62285048 A JPS62285048 A JP S62285048A JP 61128763 A JP61128763 A JP 61128763A JP 12876386 A JP12876386 A JP 12876386A JP S62285048 A JPS62285048 A JP S62285048A
Authority
JP
Japan
Prior art keywords
rays
sample
ray
intensity
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61128763A
Other languages
Japanese (ja)
Other versions
JPH0785064B2 (en
Inventor
Teruji Hirai
平居 暉士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61128763A priority Critical patent/JPH0785064B2/en
Publication of JPS62285048A publication Critical patent/JPS62285048A/en
Publication of JPH0785064B2 publication Critical patent/JPH0785064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To obtain a correct element density distribution data, by removing the intensity of a background generated from an element to be measured from the intensity of an X-ray detection signal with a characteristic X-ray wavelength of the element being measured. CONSTITUTION:A charged particle beam E excites a sample S to release electron beam and X rays. An X rays spectroscope 1 has a mechanism, which can drive a driving section 5 with a drive controller 6 to scan wavelength, and spectrally analyzes X rays released from the sample S. An X rays detector 2 detects the X rays analyzed with the X rays spectroscope 1. Then, a signal processor 3 counts and store detection pulses detected with the X rays detector 2 and a sample stage 7 moves the sample S with a driver 8 to scan the surface of the sample by an electron beam. Then, at measuring points on the surface of the sample, the X rays spectroscope is used to measure the intensity BG of a background and the peak intensity PK of characteristic X-ray to be stored into a memory. A CPU calculates a difference I=[PK-BG] to record 9 and display 10 various data thus obtained.

Description

【発明の詳細な説明】 3、発明の詳細な説明 イ、産業上の利用分野 本発明は、EPMA等、試料を荷電粒子線等で励起させ
て、試料より発生する特性X線を検出して試料の元素濃
度分布を求める方法に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention A. Field of Industrial Application The present invention is directed to the detection of characteristic X-rays generated by a sample such as EPMA by exciting the sample with a charged particle beam or the like. This article relates to a method for determining the elemental concentration distribution of a sample.

口、従来の技術 EPMA等、試料を荷電粒子等で励起させて、試料より
発生する特性X線を検出して試料の元素濃度分布を求め
る装置において、濃度分布分析として線分析1面分析を
行う場合、従来はX線分光器を目的元素の特性X線の波
長に合わせて、試料面を走査し、特性X線信号のピーク
強度のみを検出し、これを目的元素の濃度指示データと
して表示している。しかし、試料の組成や形態が試料の
部位によって、大きく変化する場合X線のバックグラン
ド強度が試料の場所によって異なり、目的元素濃度が低
い場合或は濃度変化が微細な場合には、検出信号強度を
そのまま元素濃度として表示した場合、バックグランド
の変化が相対的に大きくて、実際の濃度分布とは異なっ
た結果を表示すると云う問題がある。このため、定量的
な判定はもとよりチャート上や試料面のX線像に目的元
素の表示が表れているからと言って、その元素が真に存
在しているか否かの判定さえもあいまいな場合が多い。
Conventional technology EPMA and other devices excite the sample with charged particles, etc., detect the characteristic X-rays generated by the sample, and obtain the elemental concentration distribution of the sample.One-plane line analysis is performed as a concentration distribution analysis. In conventional methods, an X-ray spectrometer was tuned to the wavelength of the characteristic X-ray of the target element, scanned the sample surface, detected only the peak intensity of the characteristic X-ray signal, and displayed this as concentration indication data of the target element. ing. However, if the composition or morphology of the sample changes significantly depending on the part of the sample, the background intensity of If the element concentration is displayed as it is, there is a problem in that the change in the background is relatively large and the result is displayed differently from the actual concentration distribution. For this reason, it is not only possible to make a quantitative judgment, but even if the target element appears on a chart or in an X-ray image of the sample surface, it is sometimes unclear whether or not the element truly exists. There are many.

測定元素から発生する特性X線以外のX線強度(バック
グランド強度)を検出している可能性があるためである
。従って、これらの線分析や面分析のデータのみが単独
で示された場合等は、特に解析が非常に困難であった。
This is because there is a possibility that X-ray intensity (background intensity) other than the characteristic X-rays generated from the measured element is being detected. Therefore, analysis is extremely difficult, especially when only data from line analysis or surface analysis is shown alone.

ハ0発明が解決しようとする問題点 本発明は、測定元素から発生する特性X線以外のX線強
度(バックグランド強度)を測定元素の特性X線波長の
X線検出信号強度から除去して、正確な元素濃度分布デ
ータが提供できるようにすることを目的とする。
Problems to be Solved by the Invention The present invention removes X-ray intensity (background intensity) other than the characteristic X-rays generated from the measurement element from the X-ray detection signal intensity of the characteristic X-ray wavelength of the measurement element. The purpose is to provide accurate elemental concentration distribution data.

二1問題点解決のための手段 試料を荷電粒子等で走査励起させて、試料より発生する
X線を分光する装置を用い、測定したい元素に対応する
特性X線と、同特性X線のピークの立上がりより少し離
れた波長のX線の両方のX線強度測定データを、試料面
の走査範囲において求め、その測定値の差を元素濃度と
して算出して表示するようにした。
21. Means for solving the problem Using a device that scans and excites the sample with charged particles, etc., and spectroscopy the X-rays generated from the sample, the characteristic X-rays corresponding to the element to be measured and the peaks of the same characteristic X-rays are used. X-ray intensity measurement data for both X-rays with wavelengths slightly apart from the rising edge of the sample were obtained in the scanning range of the sample surface, and the difference between the measured values was calculated and displayed as the element concentration.

ホ1作用 本発明によれば、試料面の各々の測定点においてX線分
光器により、第2図に示すように、バックグランド強度
BGと特性X線のビニク強度PKを測定してメモリに記
憶させ、CPUによりその差I−[PK  BG ]を
算出させる。例えば、第3図aに示すように測定領域が
3つの相ア、イ。
According to the present invention, the background intensity BG and the characteristic X-ray vinyl intensity PK are measured using an X-ray spectrometer at each measurement point on the sample surface and stored in the memory, as shown in FIG. and the CPU calculates the difference I-[PK BG ]. For example, as shown in Figure 3a, there are three measurement areas, A and B.

つによりなっている場合、各々の相におけるバックグラ
ンド強度は第3図すのようになっており、実際の目的元
素の濃度分布は第3図dのようであるが、従来は第3図
すとdを重ねた形の第3図Cを濃度分布として表示して
いたのを、本発明では第3図すからCを引いた形を表示
するので正しい濃度表示が得られる。
In this case, the background intensity in each phase is as shown in Figure 3, and the actual concentration distribution of the target element is as shown in Figure 3d. Whereas C in FIG. 3, which is a superimposition of C and d, is displayed as the concentration distribution, in the present invention, a shape obtained by subtracting C from FIG. 3 is displayed, so that a correct concentration display can be obtained.

へ、実施例 第1図に本発明の一実施例を示す。第1図において、S
は試料、Eは試料Sを励起させて電子線及びX線を放出
させる荷電粒子ビーム、1はX線分光器で駆動制御装置
6で駆動部5を駆動させて、波長走査出来る機構を備え
ており、試料Sから放出されたX線を分光する。X線検
出器2はX線分光器1で分光されたX線を検出する。3
はX線検出器2で検出された検出パルスを計数し記憶す
る信号処理装置。4はCPUで第4図のフローチャート
図に示す処理を行う。7は試料ステージで試料Sを駆動
装置8によって移動させ電子ビームによる試料面の走査
を行わせる。9は記録装置でCPU4で求められた各種
データを記録する。10は表示装置でCPU4で求めら
れた各種データを表示する。
Embodiment FIG. 1 shows an embodiment of the present invention. In Figure 1, S
1 is a sample; E is a charged particle beam that excites the sample S to emit electron beams and The X-rays emitted from the sample S are spectrally analyzed. The X-ray detector 2 detects the X-rays separated by the X-ray spectrometer 1. 3
is a signal processing device that counts and stores detection pulses detected by the X-ray detector 2; 4 is a CPU that performs the processing shown in the flowchart of FIG. Reference numeral 7 denotes a sample stage in which the sample S is moved by a drive device 8 and the sample surface is scanned by an electron beam. A recording device 9 records various data obtained by the CPU 4. A display device 10 displays various data obtained by the CPU 4.

以上の構成でCPU4の動作を第4図のフローチャート
で説明する。面分析は線分析を走査線をワンピッチづつ
ずらして繰り返して行うことによって出来るから、線分
析場合について説明を行う。先ず一つの測定点に試料を
セットしくイ)、その測定点においてX線分光器1の駆
動部5を駆動制御装置6から駆動信号を送って駆動させ
ることにより、第2図にA、Bで示す2つの指定波長点
を走査して、第2図に示すような特性X線のピーク値P
Kとピークの立上がりより少し離れた波長位置における
バックグランド値Beを測定して、位置と検出値を記憶
する(口)。記憶した特性X線のピーク値Pにからバッ
クグランド値BGを差し引いて真の濃度Iを算出し記憶
する(ハ)。ステージ7を駆動装置8で駆動させて次の
測定点に試料Sをセットする(イ)。測定が終了すると
CPU4に記憶された濃度■を表示装W10に表示する
The operation of the CPU 4 with the above configuration will be explained with reference to the flowchart shown in FIG. Since surface analysis can be performed by repeatedly performing line analysis by shifting the scanning line one pitch at a time, we will explain the case of line analysis. First, set the sample at one measurement point (b), and drive the drive unit 5 of the X-ray spectrometer 1 at that measurement point by sending a drive signal from the drive control device 6. The peak value P of the characteristic X-ray as shown in Fig. 2 is obtained by scanning the two designated wavelength points shown in Fig.
Measure K and the background value Be at a wavelength position slightly apart from the rise of the peak, and store the position and detected value (see below). The true concentration I is calculated by subtracting the background value BG from the stored peak value P of the characteristic X-ray and is stored (c). The stage 7 is driven by the drive device 8 and the sample S is set at the next measurement point (a). When the measurement is completed, the concentration ■ stored in the CPU 4 is displayed on the display W10.

本実施例は全測定点において、走査型分光器で波長走査
を行って、特性X線のピーク値Pにとバックグランド値
Beを測定しているが、測定前にX線像を観察して同一
組成域(相)を区分して、各相において測定点を1点以
上指定して、その指定測定点においてバックグランド値
Boを測定し、その測定値を記憶しておき、改めて特性
X線のピーク値pgを測定域全体にわたって測定し、各
相毎にその相のバックグランド値Baを差し引いて、真
の濃度を求めても同じ効果が得られる。
In this example, wavelength scanning is performed with a scanning spectrometer at all measurement points to measure the peak value P of characteristic X-rays and the background value Be, but before measurement, the X-ray image is observed. Divide the same compositional region (phase), specify one or more measurement points for each phase, measure the background value Bo at the specified measurement point, memorize the measured value, and recalculate the characteristic X-ray. The same effect can be obtained by measuring the peak value pg over the entire measurement range and subtracting the background value Ba of that phase for each phase to determine the true concentration.

又、2台の分光器を用いて、一台は測定元素の特性X線
波長にセットし、特性X線のピーク値PKを測定し、他
の1台は予め、調査しておいたバックグランド波長点に
波長をセットして、バックグランド値Boを測定するよ
うにし、同時に特性X線のピーク値PKとバックグラン
ド値BGを検出するようにしても、同じ効果が得られる
In addition, using two spectrometers, one is set to the characteristic X-ray wavelength of the element to be measured and measures the peak value PK of the characteristic The same effect can be obtained by setting the wavelength at the wavelength point, measuring the background value Bo, and simultaneously detecting the peak value PK of the characteristic X-ray and the background value BG.

或は特性X線のピーク波長位置で試料面走査を行ってピ
ーク値PKを検出し、次に特性X線のピーク波長位置か
ら外れた波長位置で試料面走査を行ってバックグランド
値BGを検出し、夫々のデータをメモリに格納し、後で
引算して真の濃度を求めても同じ効果が得られる。
Alternatively, scan the sample surface at the peak wavelength position of the characteristic X-ray to detect the peak value PK, and then scan the sample surface at a wavelength position away from the peak wavelength position of the characteristic X-ray to detect the background value BG. However, the same effect can be obtained by storing each data in memory and subtracting it later to find the true density.

ト、効果 本発明によれば、正確な濃度分析データが表示されるの
で、分析結果の記録の解析が容易となり、分析精度が一
段と向上した。
G. Effects According to the present invention, since accurate concentration analysis data is displayed, it becomes easy to analyze the records of analysis results, and the accuracy of analysis is further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図は測定
点を波長走査して得られる信号強度図、第3図は線分析
を行った時の各相における信号図、第4図はCPUのフ
ローチャート図である。 S・・・・試料、     E・・・・荷電粒子ビーム
。 1・・・・X線分光器、 2・・・・X線検出器。 3・・・・信号処理装置、4・・・・CPU。 5・・・・駆動部、    6・・・・駆動廟御装置。 7・・・・ステージ、  8・・・・駆動装置。 9・・・・記録装置、  10・・・・表示装置。
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a signal intensity diagram obtained by wavelength scanning a measurement point, Fig. 3 is a signal diagram at each phase when line analysis is performed, and Fig. 4 The figure is a flowchart diagram of the CPU. S: Sample, E: Charged particle beam. 1...X-ray spectrometer, 2...X-ray detector. 3...Signal processing device, 4...CPU. 5... Drive unit, 6... Drive control device. 7... Stage, 8... Drive device. 9...Recording device, 10...Display device.

Claims (1)

【特許請求の範囲】[Claims] 試料を荷電粒子等で走査励起させて、試料より発生する
X線を分光する装置を用い、測定したい元素に対応する
特性X線と、同特性X線のピークの立上がりより少し離
れた波長のX線の両方のX線強度測定データを、試料面
の走査範囲において求め、その測定値の差を元素濃度と
して算出して表示するようにしたことを特徴とする元素
濃度分布測定方法。
Using a device that scans and excites a sample with charged particles, etc., and spectroscopy the X-rays generated by the sample, it is able to detect characteristic X-rays corresponding to the element to be measured and X-rays at a wavelength slightly apart from the rise of the peak of the same characteristic X-rays. 1. A method for measuring element concentration distribution, characterized in that X-ray intensity measurement data for both lines are obtained in a scanning range of a sample surface, and the difference between the measured values is calculated and displayed as an element concentration.
JP61128763A 1986-06-03 1986-06-03 Element concentration distribution measurement method Expired - Lifetime JPH0785064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61128763A JPH0785064B2 (en) 1986-06-03 1986-06-03 Element concentration distribution measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61128763A JPH0785064B2 (en) 1986-06-03 1986-06-03 Element concentration distribution measurement method

Publications (2)

Publication Number Publication Date
JPS62285048A true JPS62285048A (en) 1987-12-10
JPH0785064B2 JPH0785064B2 (en) 1995-09-13

Family

ID=14992864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61128763A Expired - Lifetime JPH0785064B2 (en) 1986-06-03 1986-06-03 Element concentration distribution measurement method

Country Status (1)

Country Link
JP (1) JPH0785064B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743323A (en) * 1993-07-31 1995-02-14 Shimadzu Corp Background correcting method in x-ray spectral analysis
JP2008286698A (en) * 2007-05-18 2008-11-27 Toyota Motor Corp Analytical method for trace amount of metal
JP2010271144A (en) * 2009-05-20 2010-12-02 Toyota Motor Corp Background correction method in epma analysis
WO2018061608A1 (en) * 2016-09-30 2018-04-05 株式会社リガク Wavelength-dispersive x-ray fluorescence analysis device and x-ray fluorescence analysis method using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163094A (en) * 1978-06-14 1979-12-25 Fukuoka Houshiyasen Kk Method of counting signals in fluorescent xxray analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163094A (en) * 1978-06-14 1979-12-25 Fukuoka Houshiyasen Kk Method of counting signals in fluorescent xxray analysis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743323A (en) * 1993-07-31 1995-02-14 Shimadzu Corp Background correcting method in x-ray spectral analysis
JP2008286698A (en) * 2007-05-18 2008-11-27 Toyota Motor Corp Analytical method for trace amount of metal
JP2010271144A (en) * 2009-05-20 2010-12-02 Toyota Motor Corp Background correction method in epma analysis
WO2018061608A1 (en) * 2016-09-30 2018-04-05 株式会社リガク Wavelength-dispersive x-ray fluorescence analysis device and x-ray fluorescence analysis method using same
JPWO2018061608A1 (en) * 2016-09-30 2019-03-07 株式会社リガク Wavelength dispersive X-ray fluorescence analyzer and fluorescent X-ray analysis method using the same
US10768125B2 (en) 2016-09-30 2020-09-08 Rigaku Corporation Wavelength dispersive x-ray fluorescence spectrometer and x-ray fluorescence analyzing method using the same

Also Published As

Publication number Publication date
JPH0785064B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
US4037101A (en) Method and apparatus for analyzing fine grained substances
US4569592A (en) Plasma monitor
US10613043B2 (en) Method and apparatus for sample analysis
JP4517323B2 (en) Electron microanalyzer measurement data correction method
KR960012331B1 (en) Method and apparatus for background correction in analysis of a specimen surface
JPH0562638A (en) Focused ion beam device
JPS62285048A (en) Element density distribution measurement
WO2013084905A1 (en) X-ray analysis device
JP2008089325A (en) Geological age measuring method by electron probe microanalyzer
JPS58196446A (en) Analysis employing x-rays microanalyzer
JPH03144347A (en) Fluorescence spectrophotometry and apparatus therefor
JP2001099795A (en) Element mapping device
JP2002062270A (en) Method of displaying face analysis data in surface analyzer using electron beam
JP2611200B2 (en) Particle beam mapping equipment
JP2002310957A (en) X-ray analyzer by electron excitation
JPH01319238A (en) X-ray spectrum analyzer
JPH0763668A (en) Device for measuring compound component ratio
JP2006177752A (en) X-ray analyzer
JP2926857B2 (en) X-ray qualitative analyzer
JP4458985B2 (en) X-ray analyzer and X-ray analysis method
JP3123860B2 (en) Elemental analyzer using wavelength dispersive spectrometer and energy dispersive spectrometer
JPS642214B2 (en)
JPH01302142A (en) Atomic absorption photometer
JPH07146260A (en) Pollutant element concentration analyzer
JPH03148054A (en) X-ray diffraction apparatus