JPS58196446A - Analysis employing x-rays microanalyzer - Google Patents

Analysis employing x-rays microanalyzer

Info

Publication number
JPS58196446A
JPS58196446A JP57079012A JP7901282A JPS58196446A JP S58196446 A JPS58196446 A JP S58196446A JP 57079012 A JP57079012 A JP 57079012A JP 7901282 A JP7901282 A JP 7901282A JP S58196446 A JPS58196446 A JP S58196446A
Authority
JP
Japan
Prior art keywords
sample
intensity
rays
ray
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57079012A
Other languages
Japanese (ja)
Inventor
Yoshiaki Ono
小野 芳章
Hitoshi Hirata
平田 衡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP57079012A priority Critical patent/JPS58196446A/en
Publication of JPS58196446A publication Critical patent/JPS58196446A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To find the existing quantity of elements without the necessity of experienced skill simply by calculating and indicating a concentration value of elements contained in a sample from the ratio between a measured value of intensity of X-rays generated from the sample and the intensity value in the same wavelength derived from a function. CONSTITUTION:When rays 2 irradiates at the specified position on a sample 5, X-rays are generated from the sample 5. But as drive mechanisms 12a, 12b and 12c are controlled under the control of a computer 11, spectral crystals 8a, 8b and 8c scan at a low speed only near the spectrain peak wavelength of a number of elements having individual spectrum peaks within the range of wavelengths which they handle while at a high speed in other wavelengths to measure the intensity of X-rays on a net bases excluding background components in spectrum peak wavelengths of many elements and a detection signal is fed to the computer 11. When the intensity signal of X-rays measured in the spectrum peak wavelength of a certain element is fed thereto, the computer 11 calculates the ratio with the intensity value in the spectrum peak wavelength of an element of 100% concentration derived from a function representing the sensitivity in the detection system used for measurement. This ratio indicates the existing concentration of elements.

Description

【発明の詳細な説明】 本発明はX線マイクロアナライザーによって試料中に含
まれる元素の存在を分析する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for analyzing the presence of elements contained in a sample using an X-ray microanalyzer.

分光範囲を互いに分担し合う複数の分光結晶を備えたX
線マイクロアナライザーを用い、多数の元素のスペクト
ル位置に合わせて前記分光結晶による低速掃引角度範囲
を予めセットしておき、プリセット位置以外は高速でス
キップしながら前記分光器をコンピユー゛夕制御により
掃引し、試料に電子線を照射した際に発生するX線を高
速で波長掃引して電子線照射点の試料中に含まれる元素
を分析する方法が行なわれている。このような従来の方
法においては、各元素のスペクトルピーク位置において
、分光結晶を介してX線検出器に導かれて検出されたX
線強度と、このピーク位置近傍のバックグラウンド強度
をそのままプリントアウトしていた。
X equipped with multiple spectroscopic crystals that share the spectral range with each other
Using a line microanalyzer, the low-speed sweep angle range of the spectroscopic crystal is set in advance according to the spectral positions of a large number of elements, and the spectrometer is swept under computer control while skipping at high speed except for the preset positions. A method has been used in which the wavelength of X-rays generated when a sample is irradiated with an electron beam is swept at high speed to analyze the elements contained in the sample at the point irradiated with the electron beam. In such conventional methods, X-rays are detected at the spectral peak position of each element by being led to an X-ray detector via a spectroscopic crystal.
The line intensity and the background intensity near this peak position were printed out as they were.

そのため、このような従来の方法においては、極めて速
い測定が一応行ない得るにもかかわらず分光結晶及びX
線検出器からなる各検出系が各元素に対応した波長にお
いて、どの程度の検出強度が得られた際にはどの程度の
元素が含まれていることを示しているかという感度に関
する特性の概略を知っている熟練した操作者でない限り
、表示されたデータから、各元素の存在濃度の概略を把
握することはできなかった。
Therefore, in such conventional methods, although extremely fast measurements can be made, the spectroscopic crystal and
A summary of the sensitivity characteristics of each detection system consisting of a line detector, which indicates how much of the element is contained when the detection intensity obtained at the wavelength corresponding to each element. Unless one is a knowledgeable and skilled operator, it is not possible to grasp the approximate concentration of each element from the displayed data.

本発明はこのような従来の問題を解決すべくなされたも
ので、分光結晶とX線検出器から成るX線検出系を互い
に分光波長範囲を分担し合うように複数有するxiマイ
クロアナライザーを用い、多数の元素のスペクトルピー
クに合わせて前記各分光結晶の低速掃引角度範囲を予め
セットしておき、このセットされた角度範囲以外は高速
でスキップしながら前記分光結晶をコンピュータ制御に
より掃引し、電子線照射により発生したX線から□ 試
料に含まれる元素を分析する方法において、前記X線検
出系の各々についてその分担する波長範囲内にスペクト
ルピークを有する元素を既知濃度の標準試料に電子線を
照射し、その際発生したX線の該スペクトルピークにお
ける強度を各X線検出系毎に測定し、この測定された結
果を用いて前記X線検出系の各々について分担する波長
範囲内の各波長における標準検出強度を表わす関数を求
めて記憶させ、試料より発生したX線強度の測定値と前
記関数から導き出された同一波長における強度値との比
から、該試料に含まれる各元素の濃度値を算出して表示
するようにしたことを特徴とするものである。
The present invention was made to solve such conventional problems, and uses an xi microanalyzer that has a plurality of X-ray detection systems each consisting of a spectroscopic crystal and an X-ray detector so that they share the spectral wavelength range. The low-speed sweep angle range of each spectroscopic crystal is set in advance to match the spectral peaks of a large number of elements, and the spectroscopic crystal is swept under computer control while skipping angles other than the set angle range at high speed. □ In a method of analyzing elements contained in a sample from X-rays generated by irradiation, each of the X-ray detection systems irradiates a standard sample with a known concentration with an element that has a spectral peak within its assigned wavelength range. Then, the intensity at the spectral peak of the X-rays generated at that time is measured for each X-ray detection system, and the measured results are used to determine the intensity at each wavelength within the wavelength range shared by each of the X-ray detection systems. A function representing the standard detection intensity is determined and stored, and the concentration value of each element contained in the sample is determined from the ratio of the measured value of the X-ray intensity generated by the sample and the intensity value at the same wavelength derived from the function. This feature is characterized in that it is calculated and displayed.

以下図面に基づき本発明の一実施例を詳述する。An embodiment of the present invention will be described in detail below based on the drawings.

いま、第1図に示すように分光範囲を分担し合う検出系
をたとえば3組備えたX線マイクロアナライザーを用い
て試料の分析を行うものとする。
Assume that a sample is analyzed using an X-ray microanalyzer equipped with, for example, three detection systems that share the spectral range, as shown in FIG.

即ち、第1図において1は電子銃であり、この電子銃よ
りの電子線2は集束レンズ4によって試料5上に細い電
子線として集束される。6X、6Yは電子線の試料面上
における照射位置を制御するための偏向コイルであり、
これら偏向コイルには各々増幅器7X、7Yを介して偏
向信号が供給され、電子線2はこの偏向信号によって指
定された位置に照射される。8a 、8b 、8cは試
料より発生したX線を分光するため、分光範囲を互いに
分担して設けられた分光結晶であり、これら分光結晶の
各々を介して導かれたX線は検出器9a。
That is, in FIG. 1, reference numeral 1 denotes an electron gun, and an electron beam 2 from this electron gun is focused by a focusing lens 4 onto a sample 5 as a thin electron beam. 6X and 6Y are deflection coils for controlling the irradiation position of the electron beam on the sample surface;
A deflection signal is supplied to each of these deflection coils via amplifiers 7X and 7Y, and the electron beam 2 is irradiated to a position designated by this deflection signal. 8a, 8b, and 8c are spectroscopic crystals provided to share the spectral range with each other in order to separate the X-rays generated from the sample, and the X-rays guided through each of these spectroscopic crystals are sent to the detector 9a.

+jb、9cによって検出される。これら検出器9a、
9b、9cよりの出力信号は各々増幅器10a、10b
、10cを介してコンピュータ11に供給される。この
コンピュータ11はこれら増幅器10a、10b、10
cよりの出力信号を処理すると共に、分光結晶8a 、
 8b 、 8cの各々を波長掃引のため移動するため
の駆動機構12a。
+jb, detected by 9c. These detectors 9a,
The output signals from 9b and 9c are sent to amplifiers 10a and 10b, respectively.
, 10c to the computer 11. This computer 11 has these amplifiers 10a, 10b, 10
In addition to processing the output signal from c, the spectroscopic crystal 8a,
A drive mechanism 12a for moving each of 8b and 8c for wavelength sweeping.

12b、12Cを制御するための制御信号を発生する。A control signal for controlling 12b and 12C is generated.

13はコンピュータ11によって算出された試料中に存
在する元素の濃度を表示するためのプリンタ又は表示装
置である。尚、上述した構成においてAD変換器及びD
A変換器は省略されている。
13 is a printer or display device for displaying the concentration of elements present in the sample calculated by the computer 11; In addition, in the above-mentioned configuration, the AD converter and D
A converter is omitted.

さて、分光結晶8aと検出器9a、分光結晶8bと検出
器9b、分光結晶8Cと検出器9Cとより成る3個の互
いに分光範囲を分担し合う検出系の各々について、担当
する分光波長範囲における感度の概略は経験的に知られ
ている。そこで、これら検出系の各々についてその分担
する波長範囲内にスペクトルピークを有する多数の10
0%濃度の元素からのX線を各ピーク波長において検出
した際に、どの程度の信号強度が検出されるかを表わす
例えば第2図に示す如き曲線を係数a、、b。
Now, for each of the three detection systems that share the spectral range, consisting of the spectroscopic crystal 8a and the detector 9a, the spectroscopic crystal 8b and the detector 9b, and the spectroscopic crystal 8C and the detector 9C, in the spectral wavelength range for which it is responsible. The approximate sensitivity is known empirically. Therefore, for each of these detection systems, a large number of 10
When X-rays from an element at a concentration of 0% are detected at each peak wavelength, a curve such as that shown in FIG. 2, which represents how much signal intensity is detected, is used as coefficients a, b.

Cを適切に選んで以下のような2次関数の形で表現した
ものをコンピュータのメモリーに記憶しておく。但し、
Zは、波長あるいは原子番号である。
Select C appropriately, express it in the form of a quadratic function as shown below, and store it in the computer's memory. however,
Z is the wavelength or atomic number.

az2 +bz+c このような関数は各検出系の各々について、且つ特性X
線のうちのに線、L線9M線を検出する際の各々につい
て作成し、予め記憶しておく。次に実際に、分光結晶8
aと検出器9aより成る第1の検出系について、この分
光波長範囲内にスペクトルビークを有する元素を既知濃
度(例えば100%)含む標準試料を少くとも1種用意
し、この試料に実際に電子線2を照射し、その際発生す
るX線のうちの例えばに線のスペクトルビーク波長、例
えば第2図においてλ1で示す波長における強度11を
第1の検出系によって検出する。この強II T 1を
表わす信号は]ンビュータ11に供給され、コンピュー
タ11においてはこの信号強度11と予め記憶された関
数から導き出される強度1+’ とを比較し、両者が一
致するように前記関数に修正が施される。この修正は例
えば前記関数を定数倍することによって成される。感度
を表わす関数のこのような較正は検出系の各々について
、特性X線としてに線、L線1M線の各々を検出する場
合について行なう。このような各検出系の感度特性の較
正が終わり、較正された感度特性を表わす関数をコンピ
ュータ11のメモリーに記憶した後、実際の試料の測定
を行う。即ち、偏向コイル6X、6Yに所定の偏向信号
を与え、電子 7− 線2を試料5上の所定の位置に照射する。その結果試料
5よりX線が発生するが、コンピュータ11の制御によ
って駆動機構12a、12b、12Cが制御されるため
、分光結晶8a、8b、8cは各分担する波長範囲内に
スペクトルビークを有する各元素の例えばに線のスペク
トルビーク波長の近傍においてのみ低速走査し、他の波
長をスキップして高速で走査し、多くの元素のスペクト
ルビーク波長においてバックグラウンド成分を除いた正
味のX線強度を測定し、検出信号をコンピュータ11に
供給する。コンピュータ11においては、ある元素のス
ペクトルビーク波長において測定された上記X線の強度
信号が供給されると、この測定に使用された検出系の感
度を表わす関数から導きだされる100%濃度の元素の
スペクトルビーク波長における強度値との比を算出する
。この比は濃度100%の場合の強度に対して実際に測
定された強度がどの程度の割合であるかを示しているた
め、この比は各元素の試料中における存在濃度を表わし
ており、例えば第3図のように表示される。
az2 +bz+c Such a function is calculated for each detection system and for the characteristic
It is created and stored in advance for each of the lines to be detected, the L line, and the 9M line. Next, actually analyze the spectroscopic crystal 8
For the first detection system consisting of a and a detector 9a, at least one standard sample containing a known concentration (for example, 100%) of an element having a spectral peak within this spectral wavelength range is prepared, and this sample is actually subjected to electron injection. Ray 2 is irradiated, and the intensity 11 at the spectral peak wavelength of the X-ray generated at that time, for example, the wavelength indicated by λ1 in FIG. 2, is detected by a first detection system. This signal representing the strong II T 1 is supplied to the monitor 11, and the computer 11 compares this signal strength 11 with the strength 1+' derived from a pre-stored function, and adjusts the function so that the two match. Corrections will be made. This modification is accomplished, for example, by multiplying the function by a constant. Such a calibration of the function representing sensitivity is performed for each detection system when detecting the line, L line, and 1M line as characteristic X-rays. After such calibration of the sensitivity characteristics of each detection system is completed and the function representing the calibrated sensitivity characteristics is stored in the memory of the computer 11, actual measurement of the sample is performed. That is, a predetermined deflection signal is given to the deflection coils 6X and 6Y, and the electron beam 2 is irradiated to a predetermined position on the sample 5. As a result, X-rays are generated from the sample 5, but since the drive mechanisms 12a, 12b, and 12C are controlled by the computer 11, the spectroscopic crystals 8a, 8b, and 8c each have a spectral peak within their assigned wavelength range. Measure the net X-ray intensity excluding background components at the spectral peak wavelengths of many elements by scanning at low speed only in the vicinity of the spectral peak wavelength of the element, for example, and scanning at high speed while skipping other wavelengths. and supplies the detection signal to the computer 11. When the computer 11 is supplied with the X-ray intensity signal measured at the spectral peak wavelength of a certain element, the computer 11 calculates the 100% concentration of the element derived from a function representing the sensitivity of the detection system used for this measurement. The ratio between the intensity value and the intensity value at the spectral peak wavelength is calculated. This ratio indicates the ratio of the actually measured intensity to the intensity at 100% concentration, so this ratio represents the concentration of each element in the sample. For example, It will be displayed as shown in Figure 3.

上述したように本発明によれば試料に含まれる各元素の
濃度の概略を高速で表示することができるため、熟練し
た操作者でなくても各元素の存在量を簡単に知ることが
できる。
As described above, according to the present invention, an outline of the concentration of each element contained in a sample can be displayed at high speed, so even an unskilled operator can easily know the abundance of each element.

尚、上述した実施例においては各検出系の感度を表わす
標準関数を求めるため、予め概略の特性を表わす関数を
作成して記憶しておき、各検出系の関数につき少くとも
1種の標準試料を実際に測定し、その結果を用いて上記
関数を較正したが、各検出系の関数について、3種ある
いはそれ以上の標準試料について実際に測定した結果を
用い、最小2乗法等を用いて前記関数を導き出して、記
憶するようにしても良い。
In the above-described embodiment, in order to obtain a standard function representing the sensitivity of each detection system, functions representing rough characteristics are created and stored in advance, and at least one type of standard sample is prepared for each function of each detection system. were actually measured and the above functions were calibrated using the results. However, for each detection system function, the results of actual measurements on three or more standard samples were used to calibrate the above functions using the method of least squares, etc. The function may be derived and stored.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための装置の一例を示すため
の図、第2図は検出系の感度特性を表わす関数を例示す
るための図、第3図はプリンタの表示例を示すための図
である。 1;電子銃、2;電子線、3;集束レンズ、4:b  
一 対物レンズ、5;試料、6X、6Y:偏向コイル、8a
、8b、80:分光結晶、9a、9b、9c :検出1
.11 : コ>ヒュg、12a、12b。 12C:駆動機構、13;プリンタ。 特許出願人 日本電子株式会社 代表者 加勢忠雄 第2図 yt、f5gi’<   6&、1tLi(%)3 RE       O LU、      O YB       15 AL       O ER0
Fig. 1 is a diagram showing an example of a device for carrying out the present invention, Fig. 2 is a diagram showing an example of a function representing the sensitivity characteristics of the detection system, and Fig. 3 is a diagram showing an example of a display on a printer. This is a diagram. 1; electron gun, 2; electron beam, 3; focusing lens, 4: b
1 objective lens, 5; sample, 6X, 6Y: deflection coil, 8a
, 8b, 80: spectroscopic crystal, 9a, 9b, 9c: detection 1
.. 11: Ko>Hyug, 12a, 12b. 12C: Drive mechanism, 13; Printer. Patent applicant JEOL Ltd. Representative Tadao Kase Figure 2 yt, f5gi'<6&, 1tLi (%) 3 RE O LU, O YB 15 AL O ER0

Claims (1)

【特許請求の範囲】[Claims] 分光結晶とX線検出器から成るX線検出系を互いに分光
波長範囲を分担し合うように複数有するX線マイクロア
ナライザーを用い、多数の元素のスペクトルピークに合
わせて前記各分光結晶低速掃引角度範囲を予めセットし
ておき、このセットされた角度範囲以外は高速でスキッ
プしながら前記分光結晶をコンピュータ制御により掃引
し、電子線照射により発生したX線から試料に含まれる
元素を分析する方法において、前記X線検出系の各々に
ついてその分担する波長範囲内にスペクトルピークを有
する元素を既知濃度の標準試料に電子線を照射し、その
際発生したX線の該スペクトルピークにおける強度を各
X線検出系毎に測定し、この測定された結果を用いて前
記X線検出系の各々について分担する波長範囲内の各波
長における標準検出強度を表わす関数を求めて記憶させ
、試料より発生したX線強度の測定値と前記関数から導
き出された同一波長における強度値との比から、該試料
に含まれる各元素の濃度値を算出して表示するようにし
たX線マイクロアナライザーを用いた分析方法。
Using an X-ray microanalyzer, which has a plurality of X-ray detection systems consisting of a spectroscopic crystal and an X-ray detector so as to share the spectral wavelength range with each other, the low-speed sweep angle range of each of the spectroscopic crystals is adjusted according to the spectral peaks of a large number of elements. is set in advance, and the spectroscopic crystal is swept under computer control while skipping at a high speed except for the set angle range, and the elements contained in the sample are analyzed from the X-rays generated by electron beam irradiation. For each of the X-ray detection systems, a standard sample with a known concentration of an element having a spectral peak within its assigned wavelength range is irradiated with an electron beam, and the intensity of the generated X-ray at the spectral peak is detected by each X-ray detection system. Measurements are made for each system, and the measured results are used to determine and store a function representing the standard detection intensity at each wavelength within the wavelength range shared by each of the X-ray detection systems, and the X-ray intensity generated from the sample is calculated. An analysis method using an X-ray microanalyzer that calculates and displays the concentration value of each element contained in the sample from the ratio of the measured value of and the intensity value at the same wavelength derived from the function.
JP57079012A 1982-05-11 1982-05-11 Analysis employing x-rays microanalyzer Pending JPS58196446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57079012A JPS58196446A (en) 1982-05-11 1982-05-11 Analysis employing x-rays microanalyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57079012A JPS58196446A (en) 1982-05-11 1982-05-11 Analysis employing x-rays microanalyzer

Publications (1)

Publication Number Publication Date
JPS58196446A true JPS58196446A (en) 1983-11-15

Family

ID=13678028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57079012A Pending JPS58196446A (en) 1982-05-11 1982-05-11 Analysis employing x-rays microanalyzer

Country Status (1)

Country Link
JP (1) JPS58196446A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135848A (en) * 1983-12-26 1985-07-19 Shimadzu Corp Qualitative analysis with electron probe microanalyzer
JPS63172947A (en) * 1987-01-10 1988-07-16 Jeol Ltd Method for automatic selection of spectral crystal for x-ray microanalyzer
JPS63259949A (en) * 1987-04-17 1988-10-27 Jeol Ltd Sample analyzing device
JP2003536084A (en) * 2000-06-07 2003-12-02 ケーエルエー−テンカー・コーポレーション Thin film thickness measurement using electron beam induced X-ray microanalysis
US9523444B2 (en) 2012-06-14 2016-12-20 Smc Kabushiki Kaisha Flow rate control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147488A (en) * 1976-06-02 1977-12-07 Hitachi Ltd X ray spectroscope
JPS54163095A (en) * 1978-06-15 1979-12-25 Nippon Electron Optics Lab Xxrays spectral diffraction device
JPS56107347A (en) * 1980-01-30 1981-08-26 Fujitsu Ten Ltd Rewinding device for tape recorder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147488A (en) * 1976-06-02 1977-12-07 Hitachi Ltd X ray spectroscope
JPS54163095A (en) * 1978-06-15 1979-12-25 Nippon Electron Optics Lab Xxrays spectral diffraction device
JPS56107347A (en) * 1980-01-30 1981-08-26 Fujitsu Ten Ltd Rewinding device for tape recorder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135848A (en) * 1983-12-26 1985-07-19 Shimadzu Corp Qualitative analysis with electron probe microanalyzer
JPS63172947A (en) * 1987-01-10 1988-07-16 Jeol Ltd Method for automatic selection of spectral crystal for x-ray microanalyzer
JPS63259949A (en) * 1987-04-17 1988-10-27 Jeol Ltd Sample analyzing device
JP2003536084A (en) * 2000-06-07 2003-12-02 ケーエルエー−テンカー・コーポレーション Thin film thickness measurement using electron beam induced X-ray microanalysis
US9523444B2 (en) 2012-06-14 2016-12-20 Smc Kabushiki Kaisha Flow rate control device

Similar Documents

Publication Publication Date Title
US6292532B1 (en) Fluorescent X-ray analyzer useable as wavelength dispersive type and energy dispersive type
JP2527540B2 (en) Device for fluorescence signal analysis and image display
US4037101A (en) Method and apparatus for analyzing fine grained substances
CN110873725B (en) X-ray analysis apparatus
US4569592A (en) Plasma monitor
US10410825B2 (en) Electron probe microanalyzer and storage medium
US4885465A (en) Spectrum display device for x-ray microanalyzer or the like
KR960012331B1 (en) Method and apparatus for background correction in analysis of a specimen surface
JPS58196446A (en) Analysis employing x-rays microanalyzer
JP3610256B2 (en) X-ray fluorescence analyzer
JP3655778B2 (en) X-ray analyzer
CN114641687B (en) Fluorescent X-ray analyzer
JP2564896B2 (en) X-ray spectroscopic mapping device
JP7153324B2 (en) Elemental analysis method
JP5248759B2 (en) Particle beam analyzer
JP2001099795A (en) Element mapping device
JPS62285048A (en) Element density distribution measurement
JP3790643B2 (en) Surface analyzer with energy dispersive X-ray detector
JP2544428B2 (en) Stress measuring method and stress measuring device
JP3236838B2 (en) X-ray fluorescence analysis method and apparatus
JPH09178680A (en) Spectrum display device for x-ray micro-analyzer, etc.
JPH0431054B2 (en)
WO2018100873A1 (en) X-ray fluorescence analyzer
JPS63243855A (en) Charge particle analysis instrument
WO2023223777A1 (en) Correction method, analyzer, and program