JP2564896B2 - X-ray spectroscopic mapping device - Google Patents

X-ray spectroscopic mapping device

Info

Publication number
JP2564896B2
JP2564896B2 JP63161281A JP16128188A JP2564896B2 JP 2564896 B2 JP2564896 B2 JP 2564896B2 JP 63161281 A JP63161281 A JP 63161281A JP 16128188 A JP16128188 A JP 16128188A JP 2564896 B2 JP2564896 B2 JP 2564896B2
Authority
JP
Japan
Prior art keywords
ray
sample
wavelength
spectroscope
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63161281A
Other languages
Japanese (ja)
Other versions
JPH0210639A (en
Inventor
清弘 小原
暁 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63161281A priority Critical patent/JP2564896B2/en
Publication of JPH0210639A publication Critical patent/JPH0210639A/en
Application granted granted Critical
Publication of JP2564896B2 publication Critical patent/JP2564896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はX線分光分析によって試料面の元素分布を測
定する装置に関する。
TECHNICAL FIELD The present invention relates to an apparatus for measuring element distribution on a sample surface by X-ray spectroscopy.

(従来の技術) 電子線マイクロアナライザを用いX線分光法によって
試料面の元素分布を測定し、元素濃度を色分けして可視
表示する試料面マッピング分析が行われている。この場
合一元素に一X線分光器を用い、そのX線分光器を測定
しようとする一元素の一つの特性X線の波長に合せて試
料面を走査している。他方試料面の一個所に励起線を照
射して試料から放射されるX線のスペクトルを測定して
みると、試料を成分元素の夫々の特性X線のピークは装
置特性,試料励起条件および試料組成によって決まるバ
ックグラウンドの上に乗っていることが分かる。しかし
上述したように従来は一元素一X線分光器でマッピング
測定を行っていたので、リアルタイムでバックグラウン
ド補正をすることができず、事前或は事後に試料面全体
にわたってバックグラウンド測定を行って、バックグラ
ウンド補正を行うとか、試料面の幾つかの点でバックグ
ラウンド測定を行って、試料面全体のバックグラウンド
を推定し補正を行うと云うような方法が用いられてい
た。前者の試料面全面にわたってバックグラウンド測定
を行う方法は試料面を2回走査することになるので全体
としての分析所要時間が非常に長くなり、後者の幾つか
の点でバックグラウンド測定をする方法は時間的には余
り不利ではないが、バックグラウンドは装置特性とか試
料励起条件だけでなく、測定点の元素組成の影響も受け
ているので正確なバックグラウンド補正ができない。
(Prior Art) A sample surface mapping analysis is performed in which the element distribution on the sample surface is measured by X-ray spectroscopy using an electron microanalyzer, and the element concentrations are color-coded and visually displayed. In this case, one X-ray spectroscope is used for one element, and the sample surface is scanned in accordance with the wavelength of one characteristic X-ray of one element to be measured by the X-ray spectroscope. On the other hand, when one site of the sample surface is irradiated with an excitation ray and the spectrum of the X-rays emitted from the sample is measured, the characteristic X-ray peaks of the constituent elements of the sample are found to be the device characteristic, the sample excitation condition and the sample. You can see that you are riding on the background determined by the composition. However, as described above, since the mapping measurement was conventionally performed by the one element one X-ray spectroscope, the background correction cannot be performed in real time, and the background measurement is performed over the entire sample surface before or after the fact. A method has been used in which background correction is performed, or background measurement is performed at several points on the sample surface to estimate the background of the entire sample surface for correction. In the former method of performing background measurement over the entire sample surface, the sample surface is scanned twice, so the overall analysis time becomes very long, and in the latter several points the background measurement method is Although not very disadvantageous in terms of time, accurate background correction cannot be performed because the background is affected not only by the device characteristics and sample excitation conditions, but also by the elemental composition at the measurement point.

(発明が解決しようとする課題) 本発明は全体としての分析所要時間の増大なしにしか
も正確にバックグラウンド補正ができるX線分光マッピ
ング装置を提供しようとするものである。
(Problem to be Solved by the Invention) The present invention is to provide an X-ray spectroscopic mapping device capable of accurately performing background correction without increasing the time required for analysis as a whole.

(課題を解決するための手段) 一つの元素について複数のX線分光器を用い、それら
のX線分光器の試料面上の焦点位置を一致させ、一つの
X線分光器を測定しようとする元素の一つの特性X線波
長に合せ、他のX線分光器を上記波長に近い測定しよう
とする元素の上記特性X線ピークの裾に相当する波長に
合せ、上記各X線分光器によって同時に試料面の走査を
行って、測定しようとする元素のバックグラウンドを含
んだ特性X線のデータとバックグラウンドのデータを同
時に得てバックグラウンド補正を行うようにした。
(Means for Solving the Problem) A plurality of X-ray spectroscopes are used for one element, and the focal positions on the sample surface of the X-ray spectroscopes are made to coincide with each other, and one X-ray spectroscope is to be measured. Matching to one characteristic X-ray wavelength of the element, the other X-ray spectroscope is adjusted to the wavelength corresponding to the skirt of the characteristic X-ray peak of the element to be measured close to the above wavelength, and the above X-ray spectroscopes simultaneously The sample surface was scanned to obtain the characteristic X-ray data including the background of the element to be measured and the background data at the same time to perform the background correction.

(作用) 測定しようとする元素の一つの特性X線のピークの前
後のX線スペクトルを測定すると一般に第2図のように
なる。この図でPは測定しようとする元素の特性X線の
ピークであり、Bはバックグラウンドである。本考案に
おいては複数のX線分光器のうちの一つを特性X線ピー
クの中心波長λoに分せ、他のX線分光器の波長を図の
λ或はλ′に合せる。このようにして複数のX線分光器
で試料面の同一点を見ながら同時に試料面を走査するこ
とで、特性X線のデータとバックグラウンド補正データ
とが同時に得られるので、バックグラウンド補正がリア
ルタイムにでき、試料の測定領域全体にわたってバック
グラウンド補正データを求めているので、バックグラウ
ンド補正が元素分布の影響を受けず正確に行われる。
(Operation) When the X-ray spectrum before and after the characteristic X-ray peak of one of the elements to be measured is measured, it is generally as shown in FIG. In this figure, P is the characteristic X-ray peak of the element to be measured, and B is the background. In the present invention, one of the plurality of X-ray spectroscopes is divided into the central wavelength λo of the characteristic X-ray peak, and the wavelength of the other X-ray spectroscope is adjusted to λ or λ'in the figure. In this way, the characteristic X-ray data and the background correction data are simultaneously obtained by simultaneously scanning the sample surface while observing the same point on the sample surface with a plurality of X-ray spectroscopes, so that the background correction is performed in real time. Since the background correction data is obtained over the entire measurement area of the sample, the background correction can be accurately performed without being affected by the element distribution.

(実施例) 第1図に本発明の一実施例装置を示す。実施例の装置
の主体部はEPMAであって、この種の装置は一般に2〜6
台のX線分光器が試料を照射する電子ビームを形成する
電子光学係の周り配置されている。この実施例ではこれ
ら複数のX線分光器のうちの2台を一元素の分析に対応
させるもので、図にはその一元素分の装置部分が示され
ている。図でeは電子ビーム、Sは試料で1は試料をxy
二方向に移動させる試料ステージである。
(Embodiment) FIG. 1 shows an apparatus according to an embodiment of the present invention. The main part of the device of the embodiment is EPMA, and this kind of device is generally 2-6.
An X-ray spectroscope on the stage is arranged around an electron optics unit that forms an electron beam that illuminates the sample. In this embodiment, two of the plurality of X-ray spectroscopes correspond to the analysis of one element, and the device portion for that one element is shown in the drawing. In the figure, e is an electron beam, S is a sample, and 1 is a sample.
The sample stage is moved in two directions.

2,3は夫々X線分光器で、各X線分光器は分光用湾曲
結晶C,C′と夫々のX線検出器4,5と、試料S上の電子ビ
ーム照射点と、各分光結晶C,C′と各X線検出器4,5の前
面スリットが分光器2,3毎に夫々のローランド円の円周
上に位置せしめられるように分光結晶とX線検出器とを
連結する機構とにより構成されており、試料上の電子ビ
ーム照射点が両X線分光器2,3の共通の焦点となるよう
に両X線分光器2,3が配置されている。6はX線検出器
4,5の出力をA/D変換し、試料の位置情報と共にイメージ
メモリ7,8に格納せしめるデータ書込み部であり、9は
試料ステージ駆動装置で、試料ステージをx方向y方向
に駆動するパルスモータを有する。これらのパルスモー
タを駆動するパルスは中央処理装置CPUより与えられ、
それらのパルス信号はまたデータ書込み部に試料Sの位
置の情報として入力されている。10はバックグラウンド
補正演算部であり、バックグラウンド補正された試料面
の元素マッピングデータはイメージメモリ11に格納され
る。12は分光器駆動装置で、波長設定手段13によって設
定された波長位置に分光結晶C1,C2およびX線検出器4,5
を移動させる。イメージメモリ11の内容がカラーCRT14
によってカラー表示される。
Reference numerals 2 and 3 are X-ray spectroscopes, and each X-ray spectroscope includes curved crystals C and C'for spectroscopic analysis, X-ray detectors 4 and 5, an electron beam irradiation point on the sample S, and each spectroscopic crystal. A mechanism for connecting the dispersive crystal and the X-ray detector so that C, C'and the front slits of the X-ray detectors 4 and 5 are positioned on the circumference of each Roland circle for each of the spectroscopes 2 and 3. Both X-ray spectroscopes 2 and 3 are arranged such that the electron beam irradiation point on the sample becomes a common focus of both X-ray spectroscopes 2 and 3. 6 is an X-ray detector
A data writing unit for A / D converting the outputs of 4 and 5 and storing them in the image memories 7 and 8 together with the position information of the sample. Reference numeral 9 is a sample stage driving device, which is a pulse for driving the sample stage in the x direction and the y direction. It has a motor. The pulses that drive these pulse motors are given from the central processing unit CPU,
Those pulse signals are also input to the data writing section as information on the position of the sample S. Reference numeral 10 is a background correction calculation unit, and the background-corrected element mapping data of the sample surface is stored in the image memory 11. A spectroscope driving device 12 is provided at the wavelength position set by the wavelength setting means 13 and has the dispersive crystals C1 and C2 and the X-ray detectors 4,5.
To move. Image memory 11 contents are color CRT14
Are displayed in color by.

上述構成において、分光器2は分析しょうとする一つ
の元素の適当な特性X線の波長位置にセットされ、分光
器3は上記波長に近い、上記特性X線ピークの裾に位置
する波長値にセットされる。これら二つの波長は波長設
定手段13により指定される。この波長設定は測定試料に
つき、任意の点で分光器2を目的とする元素の特性X線
の波長を中心とする適宜範囲で波長走査させて、得られ
るX線スペクトル(第2図)をCRT14に表示させ、第2
図λo,λの波長を決める。二つのX線分光器2,3の波長
を設定した後、マッピング動作をスタートさせると、CP
Uは試料ステージ9を制御して試料Sをx,y方向に駆動し
て電子ビームeによる試料面の走査を行わせ、検出器4
の出力をイメージメモリ7に、検出器5の出力をイメー
ジメモリ8に格納せしめる。このときデータ書込部6は
試料ステージ駆動装置9に入力されるx方向y方向夫々
の駆動パルスを計数して試料上の電子ビーム照射点の位
置の情報とし、この情報に基いてイメージメモリ7,8の
アドレス情報を形成して、各X線検出器4,5の出力を夫
々のイメージメモリに格納する。試料面の走査が終ると
CPUはイメージメモリ7に格納されている目的元素の特
性X線検出出力のデータに対するバックグラウンド補正
をバックグラウンド補正演算部10で行わせ、その結果を
イメージメモリ11にイメージメモリ7,8と同じアドレス
情報を用いて格納し、外部からの指令により、同メモリ
の内容をCRT14に試料面の目的元素の濃度分布パターン
として表示する。
In the above-mentioned configuration, the spectroscope 2 is set to the wavelength position of the appropriate characteristic X-ray of one element to be analyzed, and the spectroscope 3 is set to the wavelength value located at the skirt of the characteristic X-ray peak close to the above wavelength. Set. These two wavelengths are designated by the wavelength setting means 13. For this wavelength setting, the X-ray spectrum (Fig. 2) obtained by scanning the spectroscope 2 at an arbitrary point with an appropriate range centered on the wavelength of the characteristic X-ray of the target element on the CRT14 Displayed on the second
The wavelengths of λo and λ are determined. When the mapping operation is started after setting the wavelengths of the two X-ray spectrometers 2 and 3, CP
U controls the sample stage 9 to drive the sample S in the x and y directions to scan the sample surface with the electron beam e, and the detector 4
The output of the detector is stored in the image memory 7, and the output of the detector 5 is stored in the image memory 8. At this time, the data writing unit 6 counts the drive pulses in the x direction and the y direction input to the sample stage drive device 9 to obtain information on the position of the electron beam irradiation point on the sample, and based on this information, the image memory 7 , 8 address information is formed and the outputs of the X-ray detectors 4 and 5 are stored in the respective image memories. After scanning the sample surface
The CPU causes the background correction calculation unit 10 to perform background correction on the characteristic X-ray detection output data of the target element stored in the image memory 7, and the result is stored in the image memory 11 at the same address as the image memories 7 and 8. It is stored using information, and the contents of the memory are displayed on the CRT 14 as a concentration distribution pattern of the target element on the sample surface in response to an external command.

バックグラウンド補正演算部10で行われるバックグラ
ウンド補正の演算はこの実施例では次のように行われ
る。イメージメモリ8に格納されているデータは第2図
の波長λにおけるX線検出出力で、これは目的元素の特
性X線ピークの裾におけるX線強度であり、バックグラ
ウンドの強さを示している。しかしこのデータはX線検
出時の統計的ゆらぎにより凹凸が激しいので、演算部10
ではイメージメモリ8のデータを一旦読出してスムージ
ング処理を行い、スムージングされたバックグラウンド
データを再度イメージメモリ8に格納した上で、イメー
ジメモリ7と8から同じアドレスのデータを読出し、イ
メージメモリ7のデータから同8のデータを引算した結
果をイメージメモリの同じアドレスに格納する。このよ
うにしてイメージメモリ11には目的元素のバックグラウ
ンド補正されたマッピングデータが格納されることにな
る。
The background correction calculation performed by the background correction calculation unit 10 is performed as follows in this embodiment. The data stored in the image memory 8 is the X-ray detection output at the wavelength λ shown in FIG. 2, which is the X-ray intensity at the tail of the characteristic X-ray peak of the target element and indicates the intensity of the background. . However, since this data is highly uneven due to statistical fluctuations during X-ray detection, the calculation unit 10
Then, the data in the image memory 8 is once read out, the smoothing process is performed, the smoothed background data is stored in the image memory 8 again, and then the data at the same address is read from the image memories 7 and 8, and the data in the image memory 7 is read. The result of subtracting the data of 8 to 8 is stored in the same address of the image memory. In this way, the background-corrected mapping data of the target element is stored in the image memory 11.

(発明の効果) 本発明によれば試料面の元素分布のマッピング測定に
おいて、バックグラウンド補正データはマッピング動作
時に同時に採取され、かつ試料面の全面にわたって分析
点と同じ点のバックグラウンド補正データが求められる
ので、全体的な分析時間の増大なしに正確なバックグラ
ウンド補正が可能となる。
(Effect of the Invention) According to the present invention, in the mapping measurement of the element distribution on the sample surface, the background correction data is simultaneously collected during the mapping operation, and the background correction data at the same point as the analysis point is obtained over the entire surface of the sample. Therefore, accurate background correction is possible without increasing the overall analysis time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例装置の要部ブロック図、第2
図は一つの特性X線のピーク近傍のX線スペクトルを示
す図である。 1……試料ステージ、2,3……X線分光器、4,5……X線
検出器、6……データ書込み部、7,8,11……イメージメ
モリ、9……試料ステージ駆動装置、10……バックグラ
ウンド補正演算部、12……分光器駆動装置、CPU……中
央処理装置。
FIG. 1 is a block diagram of a main part of an apparatus according to an embodiment of the present invention.
The figure shows the X-ray spectrum near the peak of one characteristic X-ray. 1 ... Sample stage, 2,3 ... X-ray spectroscope, 4,5 ... X-ray detector, 6 ... Data writing section, 7,8,11 ... Image memory, 9 ... Sample stage drive device , 10 …… Background correction calculation unit, 12 …… Spectrometer drive device, CPU …… Central processing unit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】試料の周囲に複数のX線分光器をその焦点
を試料面上で互いに一致させて配置し、その一つのX線
分光器の検出波長を目的元素の適宜特性X線波長に合
せ、他のX線分光器の検出波長を試料のX線スペクトル
上の上記特性X線の裾の部分の波長に合せ、同じ時間に
おける上記角X線分光器のX線検出出力を取込み、試料
上の同じ点に対する上記一つのX線分光器の出力に対
し、上記他のX線分光器の出力を用いた補正演算を行う
バックグラウンド補正演算手段を設けたことを特徴とす
るX線分光マッピング装置。
1. A plurality of X-ray spectroscopes are arranged around the sample such that their focal points coincide with each other on the sample surface, and the detection wavelength of one of the X-ray spectroscopes is set to an appropriate characteristic X-ray wavelength of the target element. In addition, the detection wavelength of the other X-ray spectroscope is adjusted to the wavelength of the tail of the characteristic X-ray on the X-ray spectrum of the sample, and the X-ray detection output of the angular X-ray spectroscope at the same time is taken in to obtain the sample. X-ray spectral mapping, characterized in that background correction calculation means for performing a correction calculation using the output of the other X-ray spectroscope for the output of the one X-ray spectroscope for the same point above is provided. apparatus.
JP63161281A 1988-06-28 1988-06-28 X-ray spectroscopic mapping device Expired - Fee Related JP2564896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63161281A JP2564896B2 (en) 1988-06-28 1988-06-28 X-ray spectroscopic mapping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63161281A JP2564896B2 (en) 1988-06-28 1988-06-28 X-ray spectroscopic mapping device

Publications (2)

Publication Number Publication Date
JPH0210639A JPH0210639A (en) 1990-01-16
JP2564896B2 true JP2564896B2 (en) 1996-12-18

Family

ID=15732124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63161281A Expired - Fee Related JP2564896B2 (en) 1988-06-28 1988-06-28 X-ray spectroscopic mapping device

Country Status (1)

Country Link
JP (1) JP2564896B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119716B2 (en) * 1990-04-19 1995-12-20 株式会社島津製作所 Surface analyzer
WO1997006430A1 (en) * 1995-08-09 1997-02-20 Asahi Kasei Kogyo Kabushiki Kaisha Method and apparatus for total reflection x-ray fluorescence spectroscopy
EP1459056A1 (en) * 2001-12-20 2004-09-22 Koninklijke Philips Electronics N.V. A method of determining the background corrected counts of radiation quanta in an x-ray energy spectrum
JP2010127874A (en) * 2008-12-01 2010-06-10 Jeol Ltd Method for setting measurement conditions for x-ray analysis and x-ray analyzer
JP2010271144A (en) * 2009-05-20 2010-12-02 Toyota Motor Corp Background correction method in epma analysis
TWI707730B (en) 2019-08-20 2020-10-21 中傳企業股份有限公司 Intelligent automatic mold changing system and method thereof

Also Published As

Publication number Publication date
JPH0210639A (en) 1990-01-16

Similar Documents

Publication Publication Date Title
JP5320807B2 (en) Wavelength dispersive X-ray spectrometer
CN110873725B (en) X-ray analysis apparatus
JPS6231288B2 (en)
JP2564896B2 (en) X-ray spectroscopic mapping device
US11131638B2 (en) Calibration method and analysis device
JPH07119716B2 (en) Surface analyzer
JP2009047586A (en) X-ray analysis device conducting chemical bonding state analysis
JP3143302B2 (en) X-ray micro analyzer
JP2968460B2 (en) X-ray analysis method
JPH0247542A (en) Quantitative analysis using x-ray spectroscope
JPS58196446A (en) Analysis employing x-rays microanalyzer
JP2001099795A (en) Element mapping device
JP3236838B2 (en) X-ray fluorescence analysis method and apparatus
US5406505A (en) Method of and apparatus for measuring energy gap of semiconductor
JP2020067392A (en) Element analysis method, and element analyzer
JPH0785064B2 (en) Element concentration distribution measurement method
JPH0515718Y2 (en)
JP3729341B2 (en) X-ray fluorescence analyzer
JPH0627718B2 (en) Area analysis method
JP3312002B2 (en) X-ray fluorescence analyzer
JPS63243855A (en) Charge particle analysis instrument
JPH0743323A (en) Background correcting method in x-ray spectral analysis
JPS6193938A (en) Analysis of sample by electron microscope for analysis or the like
JPH081424B2 (en) Analysis equipment
JPH01277745A (en) Exafs measuring apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees