JPH0784620B2 - Method for producing hot-dip galvanized cold-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance - Google Patents

Method for producing hot-dip galvanized cold-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance

Info

Publication number
JPH0784620B2
JPH0784620B2 JP1286853A JP28685389A JPH0784620B2 JP H0784620 B2 JPH0784620 B2 JP H0784620B2 JP 1286853 A JP1286853 A JP 1286853A JP 28685389 A JP28685389 A JP 28685389A JP H0784620 B2 JPH0784620 B2 JP H0784620B2
Authority
JP
Japan
Prior art keywords
less
amount
steel sheet
hot
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1286853A
Other languages
Japanese (ja)
Other versions
JPH03150317A (en
Inventor
充 北村
俊一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1286853A priority Critical patent/JPH0784620B2/en
Priority to CA002022907A priority patent/CA2022907C/en
Priority to EP90115249A priority patent/EP0421087B1/en
Priority to DE69014532T priority patent/DE69014532T2/en
Priority to US07/564,756 priority patent/US5085714A/en
Priority to KR1019900012246A priority patent/KR930001519B1/en
Publication of JPH03150317A publication Critical patent/JPH03150317A/en
Publication of JPH0784620B2 publication Critical patent/JPH0784620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐2次加工脆性に優れた深絞り用溶融亜鉛メ
ッキ冷延鋼板の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a hot-dip galvanized cold-rolled steel sheet for deep drawing, which is excellent in secondary work embrittlement resistance.

(従来の技術及び解決しようとする課題) 近年、自動車部材や電気機器外板に使用される冷延鋼板
は、高いプレス成形性及び耐蝕性が要求されている。
(Prior Art and Problems to be Solved) In recent years, cold-rolled steel sheets used for automobile members and outer panels of electric devices are required to have high press formability and corrosion resistance.

従来、このような要求を満たす冷延鋼板の製造方法とし
て、極低炭素鋼にTi、Nbなどの炭窒化物形成元素を単独
又は複合添加して鋼中のC、Nを固定することにより、
深絞り性に有利な(111)面方位集合組織を発達させ、
更に亜鉛メッキを施す方法が提案されている。
Conventionally, as a method for producing a cold-rolled steel sheet satisfying such requirements, by adding carbonitride forming elements such as Ti and Nb to the ultra-low carbon steel individually or in combination, C and N in the steel are fixed,
Develops a (111) plane orientation texture advantageous for deep drawability,
Further, a method of applying galvanization has been proposed.

しかし、一方では、Ti、Nbなどの炭窒化物形成元素の添
加により鋼中のC、Nを充分固定した極低炭素鋼では、
プレス成形後の2次加工において脆性破断による割れ
(2次加工脆性)が発生するという問題がある。これ
は、鋼中の固溶Cが固定されて存在しないため、フェラ
イト粒界へのCの偏析がなくなり、粒界が脆化するため
である。特に、溶融亜鉛メッキ鋼板では、溶融亜鉛メッ
キ処理においてこの脆弱化した粒界に溶融亜鉛が侵入し
易く、更に脆化を助長するという問題がある。
However, on the other hand, in the case of ultra-low carbon steel in which C and N in steel are sufficiently fixed by adding carbonitride forming elements such as Ti and Nb,
There is a problem that cracking due to brittle fracture (secondary working brittleness) occurs in the second working after press molding. This is because the solid solution C in the steel is fixed and does not exist, so that the segregation of C in the ferrite grain boundaries disappears and the grain boundaries become brittle. In particular, in a hot-dip galvanized steel sheet, there is a problem in that hot-dip galvanizing treatment makes it easier for hot-dip zinc to enter the weakened grain boundaries and further promotes embrittlement.

この粒界脆化を解決する手段として、従来、予め鋼中の
Cが残存するようにTiやNbの添加量を制御して溶製する
ことが試みられていた。しかし、この方法では、たとえ
固溶Cが残存する成分鋼が溶製できたとしても、この固
溶Cは本質的に鋼のr値や延性を劣化させるものである
ので、プレス成形性の大幅な低下を来たさざるを得なか
った。すなわち、本質的にプレス成形性と耐2次加工脆
性は両立し得ないものであった。また、一方、このよう
な微量なCを残存させることは、製鋼技術上成り立つも
のではなかった。
As a means for solving this grain boundary embrittlement, it has been attempted in the past to control the amount of Ti or Nb added so that C in the steel remains in advance. However, in this method, even if the component steel in which the solid solution C remains can be produced, since the solid solution C essentially deteriorates the r value and the ductility of the steel, the press formability is greatly reduced. I had no choice but to come down. That is, the press formability and the secondary work embrittlement resistance were essentially incompatible. On the other hand, remaining such a small amount of C has not been established in steelmaking technology.

この点、従来より、以下のような提案がなされている
が、プレス成形性と耐2次加工脆性を共に優れたものと
することは困難である。例えば、深絞り用鋼板の耐2次
加工割れ性を改善する目的で、Ti、Nbを添加して鋼中の
Cを固定し、冷間圧延後オープンコイル焼鈍時に浸炭を
行い、鋼板表面に浸炭層を形成する方法がある(特開昭
63−38556号)。しかし、この方法の場合、長時間に及
ぶバッチ焼鈍の際に浸炭を実施するため、鋼板の表層部
と中心部でフェライト粒度に差が生じる等、板厚方向に
成分及び組織が異なる鋼板になるという問題があり、更
にこうしたバッチ焼鈍タイプでは、当然乍ら生産性が低
いと共に、板長及び板幅方向の材質が不均一になり易い
という欠点がある。
In this respect, conventionally, the following proposals have been made, but it is difficult to provide both excellent press formability and secondary work brittleness resistance. For example, in order to improve the resistance to secondary work cracking of deep drawing steel sheet, Ti and Nb are added to fix C in the steel, and carburizing is performed during open coil annealing after cold rolling to carburize the steel sheet surface. There is a method of forming a layer
63-38556). However, in the case of this method, since carburizing is performed during batch annealing for a long time, a steel sheet having a different composition and structure in the sheet thickness direction, such as a difference in ferrite grain size between the surface layer portion and the central portion of the steel sheet, is obtained. In addition, such a batch annealing type has a drawback that the productivity is naturally low and that the material in the plate length direction and the plate width direction tends to be uneven.

本発明は、上記従来技術の問題点を解決し、深絞り用冷
延鋼板としての特性を損ないことなく、耐2次加工脆性
に優れた深絞り用溶融亜鉛メッキ冷延鋼板を製造し得る
方法を提供することを目的とするものである。
The present invention is a method for solving the above-mentioned problems of the prior art and capable of producing a hot-dip galvanized cold-rolled steel sheet for deep drawing excellent in secondary work embrittlement resistance without impairing the characteristics as a cold-rolled steel sheet for deep drawing. It is intended to provide.

(課題を解決するための手段) 前述の如く、耐2次加工脆性を得るには、数ppm程度の
微量のCを粒界に存在させ、粒界を強化することが必要
であるが、一応、プレス成形性を得るにはCを充分に固
定する必要がある。この相反する要求を満たすことは従
来技術では不可能であった。
(Means for Solving the Problem) As described above, in order to obtain the secondary processing brittleness resistance, it is necessary to make a small amount of C of several ppm exist in the grain boundaries to strengthen the grain boundaries. In order to obtain press moldability, it is necessary to sufficiently fix C. Meeting these conflicting requirements has not been possible with the prior art.

そこで、本発明者らは、このような相反する要求を同時
に実現するのではなく、時間的にシフトさせて結果的に
実現できる方策について鋭意研究を重ねた。その結果、
再結晶集合組織が決定される焼鈍時の再結晶完了までは
固溶Cを零の状態にしておき、その後浸炭を行い、最終
製品段階で粒界や粒内にCを残存させるならば、プレス
成形性と耐2次加工脆性を共に確保できるとの知見を得
た。更に、この浸炭は、粒界純度の非常に高い場合、粒
内拡散の約10倍ほど拡散速度の速い粒界拡散で行われる
ので、溶融亜鉛メッキラインの焼鈍工程の短時間処理で
も充分浸炭できるとの知見を得た。そして、これを実現
するための成分調整並びに製造条件について更に検討を
重ね、ここに本発明をなしたものである。
Therefore, the inventors of the present invention have earnestly conducted research on measures that can be realized as a result by shifting in time instead of simultaneously realizing such conflicting requirements. as a result,
Until the completion of recrystallization during annealing when the recrystallization texture is determined, the solid solution C is kept in a state of zero and then carburized, and if C is left at the grain boundaries or within the grain in the final product stage, press It was found that both formability and resistance to secondary work brittleness can be ensured. Furthermore, when the carburization is very high, this carburizing is carried out by intergranular diffusion, which has a diffusion rate about 10 times faster than intragranular diffusion. I got the knowledge. The present invention has been made here by further studying component adjustment and manufacturing conditions for achieving this.

すなわち、本発明は、C:0.01%以下、Si:0.2%以下、M
n:0.05〜0.40%、P:0.10%以下、S:0.02%以下、sol.A
l:0.01〜0.08%、N:0.005%以下を含有し、更にTi及びN
bの単独又は複合添加で、下式(1)に従う有効Ti量
(以下、Ti*と表す)及びNb量とC量との関係が下式
(2) Ti*(%)=totalTi(%)−{(48/32)×S(%) +(48/14)×N(%)} …(1) 1≦(Ti*/48+Nb/93)/(C/12)≦4.5 …(2) を満足する範囲で含有し、必要に応じて更にB:0.003%
以下を含有し、残部がFe及び不可避的不純物よりなる鋼
を1000〜1250℃の範囲に加熱した後、熱間圧延を行って
(Ar3−50)〜(Ar3+100)℃の範囲で圧延を終了し、
その後500〜800℃の範囲で巻き取り、これを酸洗して冷
間圧延を行った後、浸炭雰囲気ガス中で再結晶温度以上
の温度に加熱して、固溶C量を3〜30ppmに制御し、引
き続いて連続的に溶融亜鉛メッキを施すことを特徴とす
る耐2次加工脆性に優れた深絞り用溶融亜鉛メッキ冷延
鋼板の製造方法を要旨とするものである。
That is, the present invention, C: 0.01% or less, Si: 0.2% or less, M
n: 0.05-0.40%, P: 0.10% or less, S: 0.02% or less, sol.A
l: 0.01-0.08%, N: 0.005% or less, Ti and N
With the addition of b alone or in combination, the effective Ti amount according to the following formula (1) (hereinafter referred to as Ti *) and the relationship between the Nb amount and the C amount are shown in the following formula (2) Ti * (%) = totalTi (%) -{(48/32) x S (%) + (48/14) x N (%)} ... (1) 1 ≤ (Ti * / 48 + Nb / 93) / (C / 12) ≤ 4.5 ... (2) Content in the range that satisfies the above requirement, and further B: 0.003% if necessary
A steel containing the following, the balance of which is Fe and unavoidable impurities, is heated in the range of 1000 to 1250 ° C, and then hot-rolled to roll in the range of (Ar 3 −50) to (Ar 3 +100) ° C. Exit
After that, it was wound in the range of 500 to 800 ° C, pickled and cold-rolled, and then heated to a temperature above the recrystallization temperature in a carburizing atmosphere gas to make the solid solution C amount 3 to 30 ppm. The present invention is directed to a method for producing a hot-dip galvanized cold-rolled steel sheet for deep drawing, which is excellent in secondary work embrittlement resistance, which is characterized by controlling and subsequently performing hot dip galvanizing.

以下に本発明を更に詳述する。The present invention will be described in more detail below.

(作用) まず、本発明における鋼の化学成分の限定理由について
説明する。
(Operation) First, the reason for limiting the chemical composition of steel in the present invention will be described.

C: Cは、その含有量が増大するにつれて、Cを固定するT
i、Nbの添加量が増大し、製造費用の増加につながる。
更にTiC及びNbC析出量が増大し粒成長を阻害してr値が
劣化するので、C含有量は少ないほど良く、上限値を0.
01%とする。なお、製鋼技術上の観点からC含有量の下
限値を0.001%とするのが望ましい。
C: C fixes T as C increases as its content increases
The amount of i and Nb added increases, leading to an increase in manufacturing cost.
Furthermore, since the amount of TiC and NbC precipitation increases and the grain growth is hindered and the r value deteriorates, the lower the C content, the better.
01% From the viewpoint of steelmaking technology, it is desirable to set the lower limit of the C content to 0.001%.

Si: Siは溶鋼の脱酸を主目的に添加されるが、添加量が多す
ぎると表面性状や亜鉛密着性、化成処理或いは塗装性を
劣化させるので、その含有量は0.2%以下に抑制する。
Si: Si is added mainly for deoxidation of molten steel, but if the addition amount is too large, the surface properties, zinc adhesion, chemical conversion treatment or paintability will deteriorate, so the content should be kept to 0.2% or less. .

Mn: Mnは熱間脆性の防止を主目的に添加されるが、0.05%よ
り少ないとその効果が得られず、一方、添加量が多すぎ
ると延性を劣化させるので、その含有量は0.05〜0.40%
の範囲とする。
Mn: Mn is added mainly for the purpose of preventing hot embrittlement, but if it is less than 0.05%, its effect is not obtained, while if the addition amount is too large, ductility deteriorates, so its content is 0.05- 0.40%
The range is.

P: Pは、r値の低下を伴うことなく、鋼強度を高める効果
を有するが、粒界に偏析し2次加工脆性を起こし易くす
るので、その含有値は0.10%以下に抑制する。
P: P has the effect of increasing the steel strength without lowering the r value, but segregates at the grain boundaries and easily causes secondary work embrittlement, so its content is suppressed to 0.10% or less.

S: Sは、Tiと結合してTiSを形成するので、その含有量が
増大するとC、Nを固定するのに必要なTi量が増大す
る。またMnS系の伸長した介在物が増加して局部延性を
劣化させるので、その含有量は0.02%以下に抑制する。
S: S combines with Ti to form TiS, so if the content thereof increases, the amount of Ti required to fix C and N increases. Further, the MnS-based elongated inclusions increase and deteriorate the local ductility, so the content is suppressed to 0.02% or less.

Al: Alは溶鋼の脱酸を目的に添加されるが、その含有量はso
l.Alで0.01%より少ないと、その目的が達成されず、一
方、0.08%を超えると脱酸効果は飽和すると共にAl2O3
介在物が増加して加工成形性を劣化させる。したがっ
て、その含有量はsol.Alで0.01〜0.08%の範囲とする。
Al: Al is added for the purpose of deoxidizing molten steel, but its content is
If less than 0.01% by l.Al, the purpose is not achieved, while if over 0.08%, the deoxidizing effect is saturated and Al 2 O 3
Inclusions increase and workability deteriorates. Therefore, the content is sol.Al in the range of 0.01 to 0.08%.

N: Nは、Tiと結合してTiNを形成するので、その含有量が
増大するとCを固定するのに必要なTi量が増大する。ま
たTiN析出量が増加して粒成長が阻害されr値が劣化す
る。したがって、その含有量は少ないほど好ましく、0.
005%以下に抑制する。
N: N combines with Ti to form TiN, so an increase in the content increases the amount of Ti required to fix C. Further, the TiN precipitation amount increases, grain growth is hindered, and the r value deteriorates. Therefore, the smaller the content, the better.
Control to below 005%.

Ti、Nb: Ti、NbはC、Nを固定することによってr値を高める作
用がある。この場合、前述の如くTiはS、Nと結合して
TiS、TiNを形成するので、製品におけるTi量は、次式
(1)で計算される有効Ti量(Ti*)として換算される
量にて考慮する必要がある。
Ti, Nb: Ti, Nb has the effect of increasing the r value by fixing C and N. In this case, Ti is combined with S and N as described above.
Since TiS and TiN are formed, it is necessary to consider the Ti amount in the product by the amount converted as the effective Ti amount (Ti *) calculated by the following equation (1).

Ti*(%)=totalTi(%)−{(48/32)×S(%) +(48/14)×N(%)} …(1) したがって、本発明の目的に対してはTi*量、Nb量とC
量との関係が(2)式 1≦(Ti*/48+Nb/93)/(C/12)≦4.5 …(2) を満足する範囲で含有する必要がある。この(2)式の
値が1より小さいとC、Nを充分に固定することができ
ずにr値を劣化させる。一方、4.5を超えると、r値を
高める作用が飽和すると共に、固溶Ti、Nbが後工程での
雰囲気焼鈍時に侵入したCを直ちに固定してしまい、粒
界や粒内に必要なC量を残存させることができなくな
り、Cの粒界偏析を阻止することにより、所望の耐2次
加工脆性が得られない。
Ti * (%) = totalTi (%) − {(48/32) × S (%) + (48/14) × N (%)} (1) Therefore, for the purpose of the present invention, Ti * Amount, Nb amount and C
It must be contained within the range of the relationship with the amount in the formula (2) 1 ≦ (Ti * / 48 + Nb / 93) / (C / 12) ≦ 4.5 (2). If the value of the equation (2) is smaller than 1, C and N cannot be fixed sufficiently and the r value is deteriorated. On the other hand, if it exceeds 4.5, the action of increasing the r-value is saturated, and the solid solution Ti and Nb immediately fix the C that has invaded during the subsequent annealing in the atmosphere, so that the amount of C required at the grain boundaries and grains is increased. However, the desired secondary work embrittlement resistance cannot be obtained by preventing grain boundary segregation of C.

B: Bは耐2次加工脆性に対して有効な元素であるので、必
要に応じて添加することができる。しかし、0.003%を
超えるとその効果は飽和すると共にr値を手員させるの
で、経済性も併せて考慮して、0.003%以下とする。
B: B is an element effective for the secondary work embrittlement resistance, so that it can be added if necessary. However, if it exceeds 0.003%, the effect is saturated and the r value is manipulated. Therefore, considering the economic efficiency as well, the content is made 0.003% or less.

次に本発明の製造条件について説明する。Next, the manufacturing conditions of the present invention will be described.

上記化学成分を有する鋼は、常法により溶解、鋳造され
るが、続く熱間圧延では、1000〜1250℃に加熱した後、
仕上温度を(Ar3−50)〜(Ar3+100)℃の範囲とする
条件で熱間圧延を行う必要がある。これは、r値向上の
観点から熱延板での粒径の細粒化と集合組織のランダム
化が必要であるために、仕上温度をAr3点以上にするの
が好ましいためである。しかし、フェライト・オーステ
ナイト二相域であっても、オーステナイトの微細粒が多
い時は必ずしもAr3点以上でなくても良いので、加熱温
度を1000〜1250℃の範囲とし、且つ熱間圧延の仕上温度
を(Ar3−50)〜(Ar3+100)℃の範囲とする。なお、
他の熱延条件は特に制限されない。
Steel having the above chemical composition is melted and cast by a conventional method, but in the subsequent hot rolling, after heating to 1000 to 1250 ° C.,
It is necessary to perform hot rolling under conditions that the finishing temperature and (Ar 3 -50) ~ (Ar 3 +100) ℃ range. This is because from the viewpoint of improving the r value, it is preferable to make the finishing temperature Ar 3 or higher because it is necessary to reduce the grain size of the hot rolled sheet and randomize the texture. However, even in the ferrite / austenite two-phase region, when the austenite fine grains are many, the number of Ar points does not necessarily have to be 3 or more, so the heating temperature should be in the range of 1000 to 1250 ° C and the finish of hot rolling should be the temperature is (Ar 3 -50) ~ (Ar 3 +100) ℃ range. In addition,
Other hot rolling conditions are not particularly limited.

次に、熱間圧延後は、鋼中の固溶C、Nを炭窒化物とし
て固定するために、巻取温度を500〜800℃の範囲にする
必要がある。
Next, after hot rolling, the coiling temperature needs to be in the range of 500 to 800 ° C. in order to fix the solid solution C and N in the steel as carbonitrides.

巻取後、酸洗し、冷間圧延を行うが、その条件は特に制
限されないものの、r値に有利な(111)面方位集合組
織を発達させるために60〜90%のトータル圧延率が望ま
しい。
After winding, pickling and cold rolling are performed, but the conditions are not particularly limited, but a total rolling rate of 60 to 90% is desirable in order to develop a (111) orientation texture that is advantageous for r value. .

この冷間圧延後、溶融亜鉛メッキライン内において、浸
炭雰囲気ガス中で再結晶温度以上の範囲で連続焼鈍を行
い、r値に有利な(111)面方位集合組織を形成させ
る。すなわち、r値は主として鋼の(111)面方位集合
組織に依存しており、再結晶焼鈍前に巻取処理によって
固溶C及び固溶Nを炭窒化物として固定して完全に除く
のは、前記(111)面方位集合組織を得るためである。
しかし、一旦、再結晶が完了し前記集合組織が形成され
れば、その後に侵入するCはr値に悪影響を与えない。
浸炭雰囲気中より侵入したCのうち、TiC、NbCとして固
定されなかったCが粒界に偏析して、耐2次加工脆性を
改善する。そのための固溶C量は3〜30ppmとする必要
がある。すなわち、3ppmよりも少ないと必要な固溶C量
が不足し、充分な耐2次加工脆性が得られず、一方、30
ppmを超えると伸び等の加工性が劣化し、また溶融亜鉛
メッキラインの通板速度を低下させねばにらず、生産性
の低下を招く。
After this cold rolling, in the hot dip galvanizing line, continuous annealing is performed in a carburizing atmosphere gas at a temperature not lower than the recrystallization temperature to form a (111) plane orientation texture advantageous to the r value. That is, the r value mainly depends on the (111) plane orientation texture of the steel, and the solid solution C and the solid solution N are fixed as carbonitrides and completely removed by the coiling treatment before recrystallization annealing. This is for obtaining the (111) plane orientation texture.
However, once the recrystallization is completed and the texture is formed, C invading thereafter does not adversely affect the r value.
Of the C that has entered from the carburizing atmosphere, C that is not fixed as TiC or NbC segregates at the grain boundaries, improving the secondary work embrittlement resistance. Therefore, the amount of solute C must be 3 to 30 ppm. That is, if it is less than 3 ppm, the required amount of solid solution C is insufficient, and sufficient secondary processing brittleness resistance cannot be obtained.
If it exceeds ppm, workability such as elongation is deteriorated, and the stripping speed of the hot dip galvanizing line must be reduced, resulting in a decrease in productivity.

溶融亜鉛メッキラインでの連続焼鈍はこの必要固溶C量
が得られるように行う。勿論、温度は再結晶温度以上の
温度である。なお、連続焼鈍雰囲気は、還元性雰囲気で
CO或いは低級炭化水素を混入させてカーボンポテンシャ
ルを制御した浸炭ガスとする。連続焼鈍炉の炉内滞留時
間は短時間であり、2sec〜2minが望ましい。
Continuous annealing in a hot dip galvanizing line is performed so that this required amount of solid solution C can be obtained. Of course, the temperature is above the recrystallization temperature. The continuous annealing atmosphere is a reducing atmosphere.
A carburizing gas with a controlled carbon potential is obtained by mixing CO or lower hydrocarbons. The residence time in the continuous annealing furnace is short, preferably 2 seconds to 2 minutes.

溶融亜鉛メッキラインにおいて、連続焼鈍を行った後、
引き続いて連続的に溶融亜鉛メッキを施す。なお、本発
明では過時効処理を必要としないが、メッキ浴近傍温度
で過時効処理を行ってもよく、この場合は、引き続いて
溶融亜鉛メッキ浴に侵漬してメッキを行う。更に必要に
応じて合金化処理を行ってもよい。
After performing continuous annealing in the hot dip galvanizing line,
Subsequently, hot dip galvanizing is continuously performed. Although the present invention does not require the overaging treatment, the overaging treatment may be performed at a temperature in the vicinity of the plating bath. In this case, the immersion galvanizing bath is subsequently immersed for plating. Further, alloying treatment may be performed if necessary.

次に本発明の実施例を示す。Next, examples of the present invention will be described.

(実施例) 第1表に示す化学成分を有する極低炭素鋼を1150℃で30
分間加熱して溶体化処理を行った後、仕上温度を890℃
で熱間圧延を終了し、その後720℃で巻取処理を行い、
酸洗後、圧下率75%で冷間圧延を行った。次いで、溶融
亜鉛メッキライン内において、浸炭雰囲気又は不活性ガ
ス中で780℃で40秒の再結晶焼鈍を施し、その後450℃で
溶融亜鉛メッキ処理を施した後、0.8%のスキンパスを
施した。
(Example) An ultra low carbon steel having the chemical composition shown in Table 1 was used at 1150 ° C. for 30 days.
After heat treatment for 1 minute and solution treatment, finish temperature is 890 ℃
After that, hot rolling is completed, and then winding treatment is performed at 720 ° C.
After pickling, cold rolling was performed at a reduction rate of 75%. Then, in the hot-dip galvanizing line, recrystallization annealing was performed at 780 ° C. for 40 seconds in a carburizing atmosphere or an inert gas, then hot-dip galvanizing treatment was performed at 450 ° C., and then 0.8% skin pass was applied.

得られた溶融亜鉛メッキ冷延鋼板について機械的性質、
r値、2次加工脆性限界温度を調べた結果を第2表に示
す。
Mechanical properties of the obtained hot dip galvanized cold rolled steel sheet,
Table 2 shows the results of examining the r value and the secondary working brittleness limit temperature.

なお、脆性試験は、総絞り比2.7でカップ成形し得られ
たカップを35mmの高さにトリムした後、各試験温度の冷
媒中において頂角40゜の円錐ポンチに押し込んで脆性破
壊の発生しない限界温度を測定し、これを2次加工脆性
限界温度とした。
In the brittleness test, after the cup obtained by forming a cup with a total drawing ratio of 2.7 was trimmed to a height of 35 mm, it was pushed into a conical punch with an apex angle of 40 ° in a refrigerant at each test temperature to prevent brittle fracture. The critical temperature was measured and used as the secondary working brittleness critical temperature.

第2表より明らかなように、本発明例は、従来例に比べ
て、深絞り用溶融亜鉛メッキ冷延鋼板としてのプレス成
形性(r値)を維持しつつ、優れた耐2次加工脆性を有
している。
As is clear from Table 2, the examples of the present invention have excellent secondary work embrittlement resistance while maintaining the press formability (r value) as the hot-dip galvanized cold-rolled steel sheet for deep drawing, as compared with the conventional examples. have.

これをP含有量が0.025%以下の鋼における(Ti*/48+
Nb/93)/(C/12)の値とr値並びに2次加工脆性限界
温度との関係で整理した結果を第1図に示す。同図よ
り、(Ti*/48+Nb/93)/(C/12)の値が本発明範囲内
にある本発明例はr値が高く、2次加工脆性限界温度が
低いことがわかる。
In steels with a P content of 0.025% or less (Ti * / 48 +
Fig. 1 shows the results organized by the relationship between the Nb / 93) / (C / 12) value, the r value, and the secondary working brittleness limit temperature. From the figure, it is understood that the invention examples in which the value of (Ti * / 48 + Nb / 93) / (C / 12) is within the range of the invention have a high r value and a low secondary working embrittlement limit temperature.

また、第2図はP含有量と2次加工脆性限界温度との関
係を整理したものであり、Pは粒界に偏析し2次加工脆
性を起こし易くするが、浸炭により所定量のCを存在さ
せると耐2次加工脆性が改善され、更にBの添加により
耐2次加工脆性が改善されることがわかる。
Further, FIG. 2 shows the relationship between the P content and the secondary working embrittlement limit temperature. P segregates at the grain boundaries and easily causes secondary working brittleness. It is understood that when it is present, the secondary work embrittlement resistance is improved, and the addition of B improves the secondary work embrittlement resistance.

(発明の効果) 以上詳述したように、本発明によれば、深絞り用溶融亜
鉛メッキ冷延鋼板としての要求を損なうことなく、耐2
次加工脆性に優れた鋼板を生産性よく得ることが可能で
ある。
(Effects of the Invention) As described in detail above, according to the present invention, it is possible to improve the resistance to deep-drawing without impairing the requirements as a hot-dip galvanized cold-rolled steel sheet.
It is possible to obtain a steel sheet having excellent subsequent working brittleness with high productivity.

【図面の簡単な説明】 第1図はP含有量が0.025%以下の鋼における(Ti*/48
+Nb/93)/(C/12)の値とr値並びに2次加工脆性限
界温度との関係を示す図、 第2図はP含有量と2次加工脆性限界温度との関係を示
す図である。
[Brief Description of Drawings] Fig. 1 shows (Ti * / 48) for steel with P content of 0.025% or less.
+ Nb / 93) / (C / 12) value and r value, and the relationship between secondary working brittleness limit temperature, Fig. 2 is a diagram showing the relationship between P content and secondary working brittleness limit temperature is there.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で(以下、同じ)、C:0.01%以下、
Si:0.2%以下、Mn:0.05〜0.40%、P:0.10%以下、S:0.0
2%以下、sol.Al:0.01〜0.08%、N:0.005%以下を含有
し、更にTi及びNbの単独又は複合添加で、下式(1)に
従う有効Ti量(以下、Ti*と表す)及びNb量とC量との
関係が下式(2) Ti*(%)=totalTi(%)−{(48/32)×S(%) +(48/14)×N(%)} …(1) 1≦(Ti*/48+Nb/93)/(C/12)≦4.5 …(2) を満足する範囲で含有し、残部がFe及び不可避的不純物
よりなる鋼を1000〜1250℃の範囲に加熱した後、熱間圧
延を行って(Ar3−50)〜(Ar3+100)℃の範囲で圧延
を終了し、その後500〜800℃の範囲で巻き取り、これを
酸洗して冷間圧延を行った後、浸炭雰囲気ガス中で再結
晶温度以上の温度に加熱して、固溶C量を3〜30ppmに
制御し、引き続いて連続的に溶融亜鉛メッキを施すこと
を特徴とする耐2次加工脆性に優れた深絞り用溶融亜鉛
メッキ冷延鋼板の製造方法。
1. By weight% (hereinafter the same), C: 0.01% or less,
Si: 0.2% or less, Mn: 0.05 to 0.40%, P: 0.10% or less, S: 0.0
2% or less, sol.Al: 0.01 to 0.08%, N: 0.005% or less, and by adding Ti and Nb alone or in combination, the effective Ti amount according to the following formula (1) (hereinafter referred to as Ti *) And the relationship between the amount of Nb and the amount of C is expressed by the following formula (2) Ti * (%) = totalTi (%)-{(48/32) × S (%) + (48/14) × N (%)} ... (1) Steel containing 1 ≦ (Ti * / 48 + Nb / 93) / (C / 12) ≦ 4.5 (2) with the balance Fe and unavoidable impurities in the range of 1000 to 1250 ° C. After that, hot rolling is performed to finish the rolling in the range of (Ar 3 −50) to (Ar 3 +100) ° C, and then it is wound in the range of 500 to 800 ° C, pickled and cooled. After hot rolling, it is heated to a temperature not lower than the recrystallization temperature in a carburizing atmosphere gas to control the amount of solid solution C to 3 to 30 ppm, and subsequently to continuously perform galvanizing. Hot-dip galvanizing cold for deep drawing with excellent secondary processing brittleness resistance Manufacturing method of rolled steel sheet.
【請求項2】前記鋼が、更にB:0.003%以下を含有する
ものである請求項1に記載の方法。
2. The method according to claim 1, wherein the steel further contains B: 0.003% or less.
JP1286853A 1989-08-09 1989-11-02 Method for producing hot-dip galvanized cold-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance Expired - Lifetime JPH0784620B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1286853A JPH0784620B2 (en) 1989-11-02 1989-11-02 Method for producing hot-dip galvanized cold-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance
CA002022907A CA2022907C (en) 1989-08-09 1990-08-08 Method of manufacturing a steel sheet
EP90115249A EP0421087B1 (en) 1989-08-09 1990-08-08 Method of manufacturing a steel sheet
DE69014532T DE69014532T2 (en) 1989-08-09 1990-08-08 Process for the production of a steel sheet.
US07/564,756 US5085714A (en) 1989-08-09 1990-08-09 Method of manufacturing a steel sheet
KR1019900012246A KR930001519B1 (en) 1989-08-09 1990-08-09 Method of manufacturing a steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1286853A JPH0784620B2 (en) 1989-11-02 1989-11-02 Method for producing hot-dip galvanized cold-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance

Publications (2)

Publication Number Publication Date
JPH03150317A JPH03150317A (en) 1991-06-26
JPH0784620B2 true JPH0784620B2 (en) 1995-09-13

Family

ID=17709877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1286853A Expired - Lifetime JPH0784620B2 (en) 1989-08-09 1989-11-02 Method for producing hot-dip galvanized cold-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance

Country Status (1)

Country Link
JP (1) JPH0784620B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074054C (en) * 1995-02-23 2001-10-31 新日本制铁株式会社 Cold-rolled steel sheet and hot-dipped galvanized steel sheet excellent in uniform workability, and process for producing the sheets
JP3873638B2 (en) * 2001-03-09 2007-01-24 Jfeスチール株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110659A (en) * 1981-12-25 1983-07-01 Nippon Kokan Kk <Nkk> Galvanized steel plate for deep drawing and its manufacture
JPS5974232A (en) * 1982-10-20 1984-04-26 Nippon Steel Corp Production of bake hardenable galvanized steel sheet for ultradeep drawing having extremely outstanding secondary processability
JPS59140333A (en) * 1983-01-28 1984-08-11 Nippon Steel Corp Manufacture of cold rolled steel sheet for deep drawing with superior secondary workability and surface treatability
JPS60149729A (en) * 1984-01-11 1985-08-07 Kawasaki Steel Corp Production of cold rolled steel sheet for press forming
JPS61119621A (en) * 1984-11-16 1986-06-06 Nippon Steel Corp Manufacture of cold rolled steel sheet for deep drawing
JPS6237341A (en) * 1985-08-12 1987-02-18 Kawasaki Steel Corp Hot-rolled steel plate for superdrawing having superior resistance to secondary operation brittleness
JPS6338556A (en) * 1986-08-04 1988-02-19 Nisshin Steel Co Ltd Cold rolled steel sheet for deep drawing having superior resistance to cracking by secondary working and its manufacture
JPS6386819A (en) * 1986-09-30 1988-04-18 Kawasaki Steel Corp Production of cold rolled steel sheet for deep drawing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110659A (en) * 1981-12-25 1983-07-01 Nippon Kokan Kk <Nkk> Galvanized steel plate for deep drawing and its manufacture
JPS5974232A (en) * 1982-10-20 1984-04-26 Nippon Steel Corp Production of bake hardenable galvanized steel sheet for ultradeep drawing having extremely outstanding secondary processability
JPS59140333A (en) * 1983-01-28 1984-08-11 Nippon Steel Corp Manufacture of cold rolled steel sheet for deep drawing with superior secondary workability and surface treatability
JPS60149729A (en) * 1984-01-11 1985-08-07 Kawasaki Steel Corp Production of cold rolled steel sheet for press forming
JPS61119621A (en) * 1984-11-16 1986-06-06 Nippon Steel Corp Manufacture of cold rolled steel sheet for deep drawing
JPS6237341A (en) * 1985-08-12 1987-02-18 Kawasaki Steel Corp Hot-rolled steel plate for superdrawing having superior resistance to secondary operation brittleness
JPS6338556A (en) * 1986-08-04 1988-02-19 Nisshin Steel Co Ltd Cold rolled steel sheet for deep drawing having superior resistance to cracking by secondary working and its manufacture
JPS6386819A (en) * 1986-09-30 1988-04-18 Kawasaki Steel Corp Production of cold rolled steel sheet for deep drawing

Also Published As

Publication number Publication date
JPH03150317A (en) 1991-06-26

Similar Documents

Publication Publication Date Title
EP2415894B1 (en) Steel sheet excellent in workability and method for producing the same
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
KR930001519B1 (en) Method of manufacturing a steel sheet
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP3855678B2 (en) Manufacturing method of thin steel sheet with excellent room temperature aging resistance, workability, and paint bake hardenability
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
CN111492079A (en) Zinc-based plated steel sheet having excellent room-temperature aging resistance and bake hardenability, and method for producing same
JP2009235532A (en) High strength steel sheet having excellent deep drawability, and method for producing the same
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP3882679B2 (en) Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance
JP3840901B2 (en) Cold-rolled steel sheet, plated steel sheet, and method for producing cold-rolled steel sheet having excellent strength increasing ability by heat treatment after forming
JP4010132B2 (en) Composite structure type high-tensile hot-dip galvanized steel sheet excellent in deep drawability and method for producing the same
JP4561200B2 (en) High-strength cold-rolled steel sheet with excellent secondary work brittleness resistance and manufacturing method thereof
JP4140962B2 (en) Manufacturing method of low yield ratio type high strength galvannealed steel sheet
JP3911972B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet
JPH03253543A (en) Cold rolled steel sheet or galvanized steel sheet for deep drawing having excellent secondary processing brittleness resistance or baking hardenability
JP2003193189A (en) High tensile strength galvanized steel sheet with composite structure having excellent deep drawability and production method therefor
JP2004002909A (en) Complex metallographic structure type high tensile strength hot-dip galvanized cold rolled steel sheet with excellent deep drawability and stretch-flange formability, and manufacturing method
JP4506380B2 (en) Manufacturing method of high-strength steel sheet
JP2826259B2 (en) Method for producing high-tensile cold-rolled steel sheet with excellent press formability
JPH07116521B2 (en) Thin steel sheet manufacturing method
JP4715637B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent formability
JPH0784620B2 (en) Method for producing hot-dip galvanized cold-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance
JP3204101B2 (en) Deep drawing steel sheet and method for producing the same
JP5251206B2 (en) High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method