JP3204101B2 - Deep drawing steel sheet and method for producing the same - Google Patents

Deep drawing steel sheet and method for producing the same

Info

Publication number
JP3204101B2
JP3204101B2 JP17999496A JP17999496A JP3204101B2 JP 3204101 B2 JP3204101 B2 JP 3204101B2 JP 17999496 A JP17999496 A JP 17999496A JP 17999496 A JP17999496 A JP 17999496A JP 3204101 B2 JP3204101 B2 JP 3204101B2
Authority
JP
Japan
Prior art keywords
less
content
sol
cal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17999496A
Other languages
Japanese (ja)
Other versions
JPH108201A (en
Inventor
嘉明 中澤
茂樹 野村
修二 中居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17999496A priority Critical patent/JP3204101B2/en
Publication of JPH108201A publication Critical patent/JPH108201A/en
Application granted granted Critical
Publication of JP3204101B2 publication Critical patent/JP3204101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、“プレス成形時には
軟質で良好なプレス成形性を示すと共に塗装焼付時に降
伏強度,引張強度が上昇して高強度が確保される焼付硬
化性”並びに“優れた時効性”、あるいは更に“優れた
耐二次加工脆性”を有するところの、引張強度340M
Pa以上の高強度深絞り用鋼板(冷延鋼板,電気めっき鋼
板,溶融亜鉛めっき鋼板)、及びその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION The present invention relates to "bake hardenability, which is soft and good in press formability at the time of press forming, and increases in yield strength and tensile strength during baking of paint to ensure high strength" and "excellent." Tensile strength of 340M, which has "aging resistance" or "excellent secondary processing brittleness"
The present invention relates to a high-strength steel sheet for deep drawing of Pa or higher (cold-rolled steel sheet, electroplated steel sheet, hot-dip galvanized steel sheet), and a method for producing the same.

【0002】[0002]

【従来技術とその課題】従来から、自動車業界において
は車体軽量化による燃費向上策が指向されており、その
ため材料の薄肉化が強く推進されてきた。そして、これ
に伴い衝突時の安全確保や耐デント性(静的な耐へこみ
性)の観点からより強度の高い鋼板が要望されてきた。
しかし、鋼板は高強度化するに伴って加工性が劣化する
ため、高強度鋼板の適用可能部位は自ずと制限されざる
を得なかった。
2. Description of the Related Art Conventionally, in the automobile industry, measures to improve fuel economy by reducing the weight of a vehicle body have been aimed at, and as a result, thinning of materials has been strongly promoted. Along with this, a steel sheet having higher strength has been demanded from the viewpoint of ensuring safety at the time of collision and dent resistance (static dent resistance).
However, since the workability of steel sheets deteriorates as the strength of the steel sheets increases, the applicable sites of the high-strength steel sheets have to be naturally limited.

【0003】そこで、「成形加工時には軟質で優れた加
工性を示し、 その後の塗装焼付後に降伏強度及び引張強
さが上昇するという特性(いわゆる焼付け硬化性)」を
有した高強度鋼板(冷延鋼板,電気めっき鋼板,溶融亜
鉛めっき鋼板)が注目され、その開発にしのぎが削られ
るようになった。そして、例えば特公昭60−4732
8号公報には、成分調整による固溶C量の確保とB添加
とによって優れた成形性と焼付硬化性を得る方法が、ま
た特公昭61−45689号公報や特開昭61−276
928号公報には極低炭素鋼をベ−スとし、その固溶C
量をC,N,S量とTi,Nb量によって制御することで優
れた成形性と焼付硬化性を備えた鋼板を得る方法がそれ
ぞれ提案されている。更に、特公平5−30900号公
報には、再結晶焼鈍中に浸炭処理を行うことによって焼
付け硬化性を付与させた深絞り用高強度鋼板の製造方法
が提案されている。
[0003] Accordingly, a high-strength steel sheet (cold-rolled) having the property of being soft at the time of forming and exhibiting excellent workability and of increasing yield strength and tensile strength after subsequent baking of paint (so-called bake hardenability). Steel sheets, electroplated steel sheets, and hot-dip galvanized steel sheets) have attracted attention, and their development has become increasingly competitive. And, for example, Japanese Patent Publication No. 60-4732
Japanese Patent Publication No. 61-45689 and Japanese Patent Application Laid-Open No. 61-276 disclose a method of obtaining excellent moldability and bake hardenability by securing the amount of dissolved C by adjusting the components and adding B.
No. 928 discloses an ultra-low carbon steel base,
Methods of obtaining steel sheets having excellent formability and bake hardenability by controlling the amounts by the amounts of C, N, S and Ti, Nb have been proposed. Furthermore, Japanese Patent Publication No. 5-30900 proposes a method for producing a high-strength steel sheet for deep drawing in which baking hardenability is imparted by performing carburization during recrystallization annealing.

【0004】しかしながら、これらの方法は、“C,
N,S量とTi,Nb量との関係から結果的に決まるとした
固溶C量”あるいは“浸炭処理によって確保される固溶
C量”のみを調整して焼付硬化性の制御を行おうとする
ものであり、固溶C量に影響を及ぼす他の元素への留意
に欠けていたこともあって、優れた常温時効性を示すと
共に25〜55N/mm2の焼付硬化量が安定して得られる
深絞り用高強度鋼板の製造方法としては満足できるもの
ではなかった。
[0004] However, these methods are known as "C,
In order to control the bake hardenability by adjusting only "the amount of solute C determined as a result of the relationship between the amounts of N and S and Ti and Nb" or "the amount of solute C secured by carburizing". In addition, due to lack of attention to other elements that affect the amount of solid solution C, it exhibits excellent normal-temperature aging properties and has a stable bake hardening amount of 25 to 55 N / mm 2. It was not satisfactory as a method for producing the obtained high-strength steel sheet for deep drawing.

【0005】もっとも、固溶C以外の他の元素の影響に
も着目し、これらを調整することによってより的確に焼
付硬化量を制御しようとした方法も幾つか提案されてい
る。例えば、特開平3−28326号公報には、極低炭
Ti添加鋼のMn及びS含有量を調整することによって高い
焼付硬化性と良好な成形性,時効性を示す加工用冷延鋼
板の製造方法が開示されている。しかし、この方法で
は、焼付硬化量のコントロ−ルが今一つ十分とは言え
ず、強度や常温時効性の点でも安定性に欠ける結果がも
たらされる懸念が拭えなかった。
However, some methods have been proposed in which attention is paid to the influence of elements other than solid solution C, and an attempt is made to more precisely control the bake hardening amount by adjusting these. For example, Japanese Unexamined Patent Publication No. 3-28326 discloses an extremely low-carbon
A method for producing a cold-rolled steel sheet for processing, which exhibits high bake hardenability and good formability and aging properties by adjusting the Mn and S contents of a Ti-added steel, is disclosed. However, in this method, the control of the amount of bake hardening is not sufficient, and there is no concern that the result of lack of stability in terms of strength and aging at room temperature cannot be avoided.

【0006】また、特開平7−70648号公報には
「特にC含有量:0.010〜 0.015%(以降、 成分割合を表
す%は重量%とする)のTi添加鋼をベ−スとし、 その見
掛け固溶C量(C含有量,Nb含有量,Mn含有量,P含有
量により算出される)を制御することによって、 引張強
度が340MPa以上でかつ高い焼付硬化性が付与された
高強度鋼板を製造する方法」が開示されている。しかし
ながら、この方法で得られる高強度鋼板は深絞り性の点
で十分な満足を得られなかった。
Japanese Patent Application Laid-Open No. Hei 7-70648 discloses that "particularly, a Ti-added steel having a C content of 0.010 to 0.015% (hereinafter,"% "representing a component ratio is referred to as"% by weight ") is used as a base. By controlling the solid solution C content (calculated by C content, Nb content, Mn content, and P content), it is possible to obtain a high-strength steel sheet with a tensile strength of 340 MPa or more and high bake hardenability. Manufacturing Method "is disclosed. However, the high-strength steel sheet obtained by this method has not been sufficiently satisfactory in terms of deep drawability.

【0007】即ち、鋼板の高強度化を図る手法として固
溶強化,析出強化,細粒強化等が知られており、C含有
量を高めると固溶C量が増加して高強度化されることは
周知であるが、一方でC含有量が多くなると深絞り性の
改善が難しくなる。例えば、前記特開平7−70648
号公報に開示されているような“C含有量が0.01重量%
以上の鋼板”では引張強度が360N/mm2以上のレベル
となりがちで、いわゆる340BH鋼(引張強さ:34
0N/mm2)よりは高強度となって深絞り性はその分だけ
劣化する。
[0007] Solid solution strengthening, precipitation strengthening, fine grain strengthening, and the like are known as techniques for increasing the strength of a steel sheet. When the C content is increased, the amount of solid solution C increases to increase the strength. It is well known that, on the other hand, when the C content increases, it becomes difficult to improve the deep drawability. For example, Japanese Patent Application Laid-Open No. Hei 7-70648
As disclosed in Japanese Patent Publication No.
The above steel sheet "tends to have a tensile strength of 360 N / mm 2 or more, so-called 340BH steel (tensile strength: 34
0N / mm 2 ) and the deep drawability deteriorates accordingly.

【0008】そこで、優れた延性と深絞り性を示す焼付
硬化性高強度鋼板の製造に、C含有量の低減、例えばC
含有量の極力低い極低炭素鋼を適用することが考えられ
る。しかし、深絞り性の優れた極低炭素鋼をベ−スとし
て引張強度で340MPa以上の高強度化を実現するため
の工業的手段としては一般にSi,Mn,P等の強化元素を
添加する方法が採用されるが、これらの元素を多量添加
すると、例えば合金化溶融亜鉛めっきでの処理性劣化や
P偏析等による外観不良を招くおそれが出てくる。従っ
て、深絞り性改善のために低C化した鋼において上記弊
害を招くことなく引張強度340MPa以上の高強度化を
実現するには、Si,Mn,P等の強化元素の多量添加によ
り高強度化を図るのではなく、コストや手間のかかるそ
の他の高強度化手法を組み合わせることが必要であっ
た。そのため、経済性の面から実際には極低炭素鋼の採
用は好ましいものとは言えなかった。
[0008] Therefore, in the production of a bake hardenable high-strength steel sheet exhibiting excellent ductility and deep drawability, reduction of the C content, for example, C
It is conceivable to apply ultra-low carbon steel having the lowest possible content. However, as an industrial means for realizing high tensile strength of 340 MPa or more using ultra-low carbon steel having excellent deep drawability as a base, generally, a method of adding a reinforcing element such as Si, Mn, or P is used. However, if these elements are added in a large amount, there is a possibility that, for example, deterioration in processability in galvannealing and poor appearance due to P segregation or the like may be caused. Therefore, in order to realize a high tensile strength of 340 MPa or more without causing the above-mentioned adverse effects in a steel which has been reduced in carbon for improving the deep drawability, it is necessary to add a large amount of reinforcing elements such as Si, Mn, and P to increase the high strength. Instead, it was necessary to combine cost and labor-intensive other high strength methods. Therefore, in terms of economy, the use of ultra-low carbon steel was not actually preferable.

【0009】このようなことから、本発明が目的とした
のは、十分な焼付硬化性並びに優れた時効性を有してい
てプレス成形時には軟質で良好なプレス成形性を示し、
耐二次加工脆性にも優れる引張強度340MPa以上の高
強度深絞り用鋼板を工業的に安定提供できる手段を確立
することであった。
[0009] From the above, the object of the present invention is to have sufficient bake hardenability and excellent aging properties, exhibit soft and good press moldability during press molding,
It is an object of the present invention to establish means for industrially stably providing a high-strength deep-drawing steel sheet having a tensile strength of 340 MPa or more, which has excellent secondary work brittleness resistance.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく鋭意研究を行った結果、次の (a)〜 (d)に
示すような知見を得ることができた。 (a) 特開平7−70648号公報に開示されているよう
な0.01〜 0.015%ものCを含有する鋼板では比較的C含
有量が高いが故の加工性劣化に加え、この高いC含有量
とNb添加のためにNbCが多数析出することにより深絞り
性が不芳であるとの究明事項を踏まえると共に、極低炭
素鋼に高強度化のためSi,Mn,P等の多量添加を行うこ
とによるめっき性等への不利を十分にわきまえた本発明
者等は、まず、これらの手法によらない加工用高強度鋼
板の製造可能性を様々な観点から検討し、「極低炭素鋼
ベ−スにSi,Mn,Pの多量添加を行ったりC含有量を0.
01%以上に増加させたりしなくても、C含有量を特にセ
ミ極低炭素鋼レベル(C量が0.0030%以上0.0050%未満
のレベル)に調整した上で熱間圧延時に低温巻取を採用
すれば、上述したSi,Mn,P等の添加量を低減しても十
分な強度レベルが確保できることを見出した。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, have obtained the following findings (a) to (d). (a) In a steel sheet containing as much as 0.01 to 0.015% of C as disclosed in Japanese Patent Application Laid-Open No. 7-70648, the C content is relatively high, and in addition to the deterioration in workability, this high C content and Based on the finding that the deep drawability is poor due to the precipitation of a large amount of NbC due to the addition of Nb, the addition of a large amount of Si, Mn, P, etc. to the ultra-low carbon steel to increase the strength The present inventors, who were fully aware of the disadvantages to plating properties and the like caused by the above, first studied from various viewpoints the manufacturability of high-strength steel sheets for processing without using these techniques, Large amounts of Si, Mn and P are added to
Even if it does not increase to more than 01%, the C content is adjusted to the level of semi-extremely low carbon steel (C content is 0.0030% or more and less than 0.0050 %), and low-temperature winding is used during hot rolling. Then, it has been found that a sufficient strength level can be secured even if the amount of addition of Si, Mn, P and the like described above is reduced.

【0011】なお、この知見に到達するまでには予想を
超えた多大な困難が伴った。なぜなら、鋼板のC含有量
レベルが異なると固溶Cの作用に及ぼすSi,Mn,P等の
影響は変化し、そのため特定のC含有量レベルでのSi,
Mn,P等の強度向上への寄与度が判明していても、C含
有量レベル異なるとその知見が生かされないという問題
があったからである。その上、C量が増量されるに伴っ
て炭化物形成元素(TiやNb等)との拡散距離が短くなっ
て拡散しやすくなるので、C量の違いにより炭化物生成
の度合いは刻々と変わるという問題もあり、従ってC含
有量レベルが異なる領域での固溶C量を予測することも
極めて困難であったからである。
[0011] By the time this knowledge is reached, much more unexpected difficulties are involved. Because, when the C content level of the steel sheet is different, the influence of Si, Mn, P, etc. on the action of solute C changes, so that Si, M at a specific C content level changes.
This is because even if the degree of contribution of Mn, P, etc. to the strength improvement is known, there is a problem that the knowledge cannot be utilized if the C content level is different. In addition, as the C content is increased, the diffusion distance with carbide-forming elements (Ti, Nb, etc.) is shortened and the carbon is easily diffused. Therefore, the degree of carbide formation varies with the C content. This is because it was extremely difficult to predict the amount of solute C in regions where the C content level was different.

【0012】(b) また、C含有量が 0.003%以上 0.005
%未満のセミ極低炭素鋼の焼付硬化性は、“単純に算出
することができる上にNbによって調整可能な計算固溶C
量”と“Mn量”とによってコントロ−ルできることも分
かった。
(B) The C content is 0.003% or more and 0.005 % or more.
% Of semi-ultra low carbon steel has a bake hardenability of “calculated solid solution C that can be calculated simply and can be adjusted by Nb.
It was also found that control was possible by "amount" and "Mn amount".

【0013】この知見を図1,図2及び図3に基づいて
説明する。即ち、図1は鋼板の焼付硬化性と計算固溶C
量{=Cal.Sol.C量=Total.C−(12/93)Nb }との関係
を、図2は焼付硬化性とMn量との関係を、そして図3は
焼付硬化性とCal.Sol.C及びMn量との関係を示したグラ
フであるが、この結果を得た試験は次の方法で実施され
た。
This finding will be described with reference to FIGS. 1, 2 and 3. That is, FIG. 1 shows the baking hardenability of the steel sheet and the calculated solid solution C
Amount {= Cal.Sol.C amount = Total.C− (12/93) Nb}, FIG. 2 shows the relationship between bake hardenability and Mn amount, and FIG. 3 shows bake hardenability and Cal. FIG. 5 is a graph showing the relationship between the amounts of Sol. C and Mn. The test that obtained the results was performed by the following method.

【0014】試験試料を作成するため、まず、Si:0.01
%,P:0.020〜 0.023%,S:0.008%,Ti:0.011〜 0.0
12%,Al:0.04〜0.05%,N:0.0030%を同一レベルと
し、C,Mn及びNbをC:0.003〜0.0094%,Mn:0.16〜0.
19%,Nb:0.010〜 0.035%の範囲で変化させた12の鋼種
を実験室で溶製し、鍛造により厚さ25mmのスラブとし
てから仕上温度900〜940℃で厚さ6mmまで熱間圧
延した後、500℃と650℃の2温度で巻き取った。
次に、これらの熱延鋼板を表裏面とも1mm機械研削して
から 0.8mm厚に冷間圧延し、続いて焼鈍炉で再結晶焼鈍
を施した。ここで、焼鈍は、昇温速度約10℃/sで所定
の温度まで加熱し、810℃で50秒間保持した後に室
温まで冷却速度約10℃/sで冷却するサイクルとした。
そして、焼鈍後に更にスキンパスを 1.6%かけて試験試
料を得た。
To prepare a test sample, first, Si: 0.01
%, P: 0.020 to 0.023%, S: 0.008%, Ti: 0.011 to 0.0
12%, Al: 0.04 to 0.05%, N: 0.0030% at the same level, C, Mn and Nb are C: 0.003 to 0.0094%, Mn: 0.16 to 0.
Twelve steel grades with a range of 19% and Nb: 0.010-0.035% were smelted in a laboratory, forged into a 25 mm thick slab, and hot rolled to a thickness of 6 mm at a finishing temperature of 900-940 ° C. Thereafter, the film was wound at two temperatures of 500 ° C. and 650 ° C.
Next, these hot-rolled steel sheets were mechanically ground by 1 mm on both sides, and then cold-rolled to a thickness of 0.8 mm, followed by recrystallization annealing in an annealing furnace. Here, the annealing was a cycle of heating to a predetermined temperature at a heating rate of about 10 ° C./s, holding at 810 ° C. for 50 seconds, and then cooling to room temperature at a cooling rate of about 10 ° C./s.
After annealing, a test sample was obtained by further applying a skin pass of 1.6%.

【0015】このようにして得られた各試験試料につ
き、焼付硬化性の評価試験を行った。なお、焼付硬化性
の評価はBH量(2%引張予歪後における焼付加熱前後
の降伏強度の差)により行った。
Each test sample thus obtained was subjected to an evaluation test for bake hardenability. The bake hardenability was evaluated based on the BH amount (difference in yield strength before and after baking heat after 2% tensile prestrain).

【0016】図1〜3より確認できるように、C: 0.0
03%以上 0.005%未満のセミ極低炭素鋼におけるBH量
は、Cal.Sol.C量 (計算固溶C量) と相関が見られるも
ののバラツキが非常に大きく(図1参照)、またMn量の
影響も大きくて無視することができない(図2参照)。
しかるに、図3が明瞭に示す如く、BH量はCal.Sol.C
量とMn量の相互作用を受けていることが明らかであり、
特定の関係の下で整理されるCal.Sol.C量とMn量の値と
BH量とにはすっきりした相関が認められたことから、
このCal.Sol.C量とMn量とよりBH量を的確に推定でき
ることが判明した。
As can be seen from FIGS. 1 to 3, C: 0.0
BH content in semi-ultra low carbon steels of not less than 03% and less than 0.005 % is correlated with Cal.Sol.C content (calculated solid solution C content), but the dispersion is very large (see Fig. 1). Is too large to ignore (see FIG. 2).
However, as clearly shown in FIG. 3, the amount of BH is calculated as Cal.Sol.C.
It is clear that the interaction between the amount and Mn amount,
Since a clear correlation was recognized between the values of Cal.Sol.C and Mn and the BH amount arranged under a specific relationship,
It was found that the BH amount can be accurately estimated from the Cal.Sol.C amount and the Mn amount.

【0017】そこで、試験を実機ラインに移し、実機ラ
インにて前記各種成分のセミ極低炭素鋼板を製造してB
H量に関する成分の影響を検討した。その結果は図4に
示す通りであった。この図4に示す結果からも、BH量
は実機ラインで製造された鋼板の場合でもCal.Sol.C量
とMn量(式 10000×Cal.Sol.C− 420×Mn+80)より的
確に推定でき、該式により精度良く予測できることが分
かる。なお、上述した実験室にて製造したもの(図3参
照)と実機ラインにて製造したもの(図4参照)とで
“Cal.Sol.C量とMn量との関係式におけるCal.Sol.C及
びMnの係数”が異なっているのは、熱間圧延時の歪量が
異なることによるものであると考えられる(実機ライン
においては熱間圧延時の歪量が大きく、 炭化物の析出に
は歪誘起析出の影響が出ているためであると考えられ
る)。
Therefore, the test was transferred to an actual machine line, and semi-ultra low carbon steel sheets of the above-described various components were manufactured on the actual machine line to produce B
The effect of the components on the H content was studied. The result was as shown in FIG. From the results shown in FIG. 4, the BH amount can be accurately estimated from the Cal.Sol.C amount and the Mn amount (Equation 10000 × Cal.Sol.C−420 × Mn + 80) even in the case of the steel sheet manufactured on the actual machine line. It can be seen that the prediction can be made with high accuracy by the above equation. The product manufactured in the above-mentioned laboratory (see FIG. 3) and the product manufactured in the actual machine line (see FIG. 4) are referred to as “Cal.Sol. In the relational expression between the amounts of Cal.Sol.C and Mn. It is considered that the difference between the coefficients of C and Mn is due to the difference in the amount of strain during hot rolling (in the actual machine line, the amount of strain during hot rolling is large, This is probably due to the effect of strain-induced precipitation).

【0018】(c) 更に、粒界強度の点で極低炭素鋼より
は有利なセミ極低炭素鋼であっても二次加工脆性の問題
を避け得ないが、このセミ極低炭素鋼でもP量規制によ
って耐二次加工脆性に関する不利が緩和される上、これ
に加えて適量のBの添加を行うと耐二次加工脆性の顕著
な改善が認められる。
(C) Further, although the problem of secondary working embrittlement cannot be avoided even in the case of a semi-ultra low carbon steel which is more advantageous than the ultra low carbon steel in terms of grain boundary strength, this semi The regulation on the amount of P alleviates the disadvantage relating to the resistance to secondary working embrittlement. In addition, when an appropriate amount of B is added, a remarkable improvement in the resistance to secondary working embrittlement is recognized.

【0019】(d) そして、これら各知見事項の更なる検
討により、セミ極低炭素鋼(C量:0.0030%以上0.0050
%未満)を適用することによる極低炭素鋼に比べてのC
量増量や低温巻取による高強度化手法を組み合わせ、か
つ焼付硬化性はNbによって調整可能なCal.Sol.C量とMn
量によってコントロ−ルすることにより、またTi添加に
よる時効性改善手法及びP量規制やB添加による耐二次
加工脆性の改善を図る手法を組み合わせることにより、
引張強さで340MPa以上の高強度化を実現すると共に
安定した焼付硬化性並びに優れた時効性,耐二次加工脆
性を示し、めっき性にも優れた高強度深絞り用冷延鋼板
を得られることが明らかとなった。
The (d) The Then, by further examination of each of these findings matters semi ultra low carbon steel (C content: 0.0030% or more 0.0050
% Compared to ultra-low carbon steel by applying
Cal.Sol.C amount and Mn can be adjusted by Nb with baking hardenability combined with high strength method by increasing amount and low temperature winding.
By controlling by the amount, and by combining the aging improvement method by adding Ti and the method of controlling the P amount and improving the brittleness resistance by secondary addition by adding B,
A high-strength deep drawn cold-rolled steel sheet that achieves high strength of 340 MPa or higher in tensile strength, exhibits stable bake hardenability, excellent aging resistance, and secondary work brittleness, and has excellent plating properties. It became clear.

【0020】本発明は、上記知見時効等に基づいて完成
されたもので、次の〜項に示す深絞り用鋼板及びそ
の製造方法を特徴とするものである。 C:0.0030%以上0.0050%未満, Si: 0.2%以下, Mn:0.07〜0.25%, P:0.05%以下, S: 0.015%以下, Nb:0.01〜0.04%, Al:0.01〜 0.1%, N: 0.005%以下 を含むと共に残部がFe及び不可避的不純物から成り、か
つTi量が下記 (1)式の条件を、またCal.Sol.C量 (計算
固溶C量) とMn量とが下記 (2)式の条件を満足している
ことを特徴とする、引張強度が340MPa以上で安定し
た焼付硬化性並びに優れた時効性を有する深絞り用鋼
板。 (48/14)N[%] ≦ Ti[%] ≦ (48/14)N[%] + (48/32)S[%] ……(1) 25 ≦ 10000×Cal.Sol.C[%] − 420×Mn[%] + 80 ≦ 55 ……(2) 〔但し、Cal.Sol.C[%] =Total.C[%] − (12/93)Nb[%] 〕
The present invention has been completed based on the above-mentioned knowledge aging and the like, and is characterized by the following deep-drawing steel sheet and the method for producing the same. C: 0.0030% to less than 0.0050%, Si: 0.2% or less, Mn: 0.07~0.25%, P: 0.05% or less, S: 0.015% or less, Nb: 0.01~0.04%, Al: 0.01~ 0.1%, N: 0.005% or less, the balance consists of Fe and unavoidable impurities, and the Ti content satisfies the condition of the following formula (1). The Cal.Sol.C content (calculated solid solution C content) and the Mn content 2) A deep drawing steel sheet which satisfies the condition of formula (2) and has stable bake hardenability and excellent aging at a tensile strength of 340 MPa or more. (48/14) N [%] ≤ Ti [%] ≤ (48/14) N [%] + (48/32) S [%] ... (1) 25 ≤ 10000 x Cal.Sol. C [% −420 × Mn [%] + 80 ≦ 55 (2) [However, Cal.Sol.C [%] = Total.C [%] − (12/93) Nb [%]]

【0021】 C:0.0030%以上0.0050%未満, Si: 0.2%以下, Mn:0.07〜0.25%, P:0.05%以下, S: 0.015%以下, Nb:0.01〜0.04%, Al:0.01〜 0.1%, N: 0.005%以下, B:0.0003〜0.0030% を含むと共に残部がFe及び不可避的不純物から成り、か
つTi量が下記 (1)式の条件を、またCal.Sol.C量 (計算
固溶C量) とMn量とが下記 (2)式の条件を満足している
ことを特徴とする、引張強度が340MPa以上で安定し
た焼付硬化性並びに優れた時効性,耐二次加工脆性を有
する深絞り用鋼板。 (48/14)N[%] ≦ Ti[%] ≦ (48/14)N[%] + (48/32)S[%] ……(1) 25 ≦ 10000×Cal.Sol.C[%] − 420×Mn[%] + 80 ≦ 55 ……(2) 〔但し、Cal.Sol.C[%] =Total.C[%] − (12/93)Nb[%] 〕
[0021] C: less than 0.0030% or more 0.0050%, Si: 0.2% or less, Mn: 0.07~0.25%, P: 0.05% or less, S: 0.015% or less, Nb: 0.01~0.04%, Al: 0.01~ 0.1% , N: 0.005% or less, B: 0.0003 to 0.0030%, the balance is composed of Fe and unavoidable impurities, and the Ti content is the condition of the following formula (1), and the Cal.Sol.C content (calculated solid solution (C content) and Mn content satisfy the condition of the following formula (2), and have a stable bake hardenability at a tensile strength of 340 MPa or more, and excellent aging resistance and secondary work brittleness resistance. Steel sheet for deep drawing. (48/14) N [%] ≤ Ti [%] ≤ (48/14) N [%] + (48/32) S [%] ... (1) 25 ≤ 10000 x Cal.Sol. C [% −420 × Mn [%] + 80 ≦ 55 (2) [However, Cal.Sol.C [%] = Total.C [%] − (12/93) Nb [%]]

【0022】 C:0.0030%以上0.0050%未満, Si: 0.2%以下, Mn:0.07〜0.25%, P:0.05%以下, S: 0.015%以下, Nb:0.01〜0.04%, Al:0.01〜 0.1%, N: 0.005%以下 を含むと共に残部がFe及び不可避的不純物から成り、か
つTi量が下記 (1)式の条件を満足し、またCal.Sol.C量
(計算固溶C量) とMn量とが下記 (2)式の条件を満足す
る鋼片を、Ar3点以上の温度域にて熱間圧延してから6
50℃未満の温度で巻取り、その後、酸洗及び冷間圧延
に次いで連続焼鈍ラインにて再結晶温度以上で焼鈍を施
すことを特徴とする、引張強度が340MPa以上で安定
した焼付硬化性並びに優れた時効性を有する深絞り用鋼
板の製造方法。 (48/14)N[%] ≦ Ti[%] ≦ (48/14)N[%] + (48/32)S[%] ……(1) 25 ≦ 10000×Cal.Sol.C[%] − 420×Mn[%] + 80 ≦ 55 ……(2) 〔但し、Cal.Sol.C[%] =Total.C[%] − (12/93)Nb[%] 〕
[0022] C: less than 0.0030% or more 0.0050%, Si: 0.2% or less, Mn: 0.07~0.25%, P: 0.05% or less, S: 0.015% or less, Nb: 0.01~0.04%, Al: 0.01~ 0.1% , N: 0.005% or less, the balance being Fe and unavoidable impurities, the Ti content satisfies the condition of the following equation (1), and the Cal.Sol.C content
A steel slab having (calculated solid solution C content) and Mn content satisfying the condition of the following formula (2) is hot-rolled in a temperature range of at least three points of Ar and then 6
Winding at a temperature of less than 50 ° C., followed by pickling and cold rolling, followed by annealing at a continuous annealing line at a recrystallization temperature or higher, with a stable bake hardenability at a tensile strength of 340 MPa or higher and Manufacturing method of steel sheet for deep drawing with excellent aging properties. (48/14) N [%] ≤ Ti [%] ≤ (48/14) N [%] + (48/32) S [%] ... (1) 25 ≤ 10000 x Cal.Sol. C [% −420 × Mn [%] + 80 ≦ 55 (2) [However, Cal.Sol.C [%] = Total.C [%] − (12/93) Nb [%]]

【0023】 C:0.0030%以上0.0050%未満, Si: 0.2%以下, Mn:0.07〜0.25%, P:0.05%以下, S: 0.015%以下, Nb:0.01〜0.04%, Al:0.01〜 0.1%, N: 0.005%以下, B:0.0003〜0.0030% を含むと共に残部がFe及び不可避的不純物から成り、か
つTi量が下記 (1)式の条件を満足し、またCal.Sol.C量
(計算固溶C量) とMn量とが下記 (2)式の条件を満足す
る鋼片を、Ar3点以上の温度域にて熱間圧延してから6
50℃未満の温度で巻取り、その後、酸洗及び冷間圧延
に次いで連続焼鈍ラインにて再結晶温度以上で焼鈍を施
すことを特徴とする、引張強度が340MPa以上で安定
した焼付硬化性並びに優れた時効性,耐二次加工脆性を
有する深絞り用鋼板の製造方法。 (48/14)N[%] ≦ Ti[%] ≦ (48/14)N[%] + (48/32)S[%] ……(1) 25 ≦ 10000×Cal.Sol.C[%] − 420×Mn[%] + 80 ≦ 55 ……(2) 〔但し、Cal.Sol.C[%] =Total.C[%] − (12/93)Nb[%] 〕
[0023] C: less than 0.0030% or more 0.0050%, Si: 0.2% or less, Mn: 0.07~0.25%, P: 0.05% or less, S: 0.015% or less, Nb: 0.01~0.04%, Al: 0.01~ 0.1% , N: 0.005% or less, B: 0.0003 to 0.0030%, the balance consists of Fe and unavoidable impurities, the Ti content satisfies the condition of the following formula (1), and the Cal.Sol.C content
A steel slab having (calculated solid solution C content) and Mn content satisfying the condition of the following formula (2) is hot-rolled in a temperature range of at least three points of Ar and then 6
Winding at a temperature of less than 50 ° C., followed by pickling and cold rolling, followed by annealing at a continuous annealing line at a recrystallization temperature or higher, with a stable bake hardenability at a tensile strength of 340 MPa or higher and A method for producing steel sheets for deep drawing with excellent aging and secondary work brittleness resistance. (48/14) N [%] ≤ Ti [%] ≤ (48/14) N [%] + (48/32) S [%] ... (1) 25 ≤ 10000 x Cal.Sol. C [% −420 × Mn [%] + 80 ≦ 55 (2) [However, Cal.Sol.C [%] = Total.C [%] − (12/93) Nb [%]]

【0024】次に、本発明において鋼の化学組成及び鋼
板の製造条件を前記の如くに限定した理由を、その作用
と共に説明する。
Next, the reason why the chemical composition of the steel and the manufacturing conditions of the steel sheet are limited as described above in the present invention will be described together with the operation thereof.

【作用】[Action]

[A] 鋼の化学組成 [A] Chemical composition of steel

【0025】C:Cについては、その含有量が低いほど
伸びやr値等の成形性に有利であるが、鋼板に340M
Pa以上の強度をSi,Mn,Pの添加量を抑えつつ確保する
ためにはC含有量は0.0030%以上とする必要がある。一
方、C含有量が0.0050%以上になると、固溶Cを適量に
制御するために必要なNbの添加量が増加するので製造コ
ストの増加につながり、更には深絞り性の指標であるr
値の低下をもたらす。従って、C含有量は0.0030%以上
0.0050%未満と定めた。なお、先に紹介した特開平7−
70648号公報に記載の発明では340MPa以上の高
強度と必要な焼付硬化性はC含有量が 0.010%未満では
得られないとされているが、本発明のように低温巻取を
組み合わせればこの問題を解消することができる。
C: The lower the C content, the more advantageous the formability such as elongation and r value.
The C content must be 0.0030% or more in order to secure the strength of Pa or more while suppressing the added amount of Si, Mn, and P. On the other hand, when the C content is 0.0050 % or more, the amount of Nb added to control the amount of solid solution C to an appropriate amount increases, which leads to an increase in manufacturing cost, and furthermore, r which is an index of deep drawability.
Results in lower values. Therefore, C content is 0.0030% or more
It was determined to be less than 0.0050 %. In addition, Japanese Patent Application Laid-Open No.
High strength and bake hardenability required more than 340MPa in the invention described in 70648 JP is the C content is obtained not less than 0.010%, but come Combine cold winding as in the present invention Can be solved.

【0026】Si:Siは、鋼の脱酸並びに固溶強化による
強度の上昇を目的として添加する有効な成分であるが、
その含有量が 0.2%を超えると表面性状や化成処理性あ
るいは塗装密着性を劣化させることから、Si含有量の上
限を 0.2%と定めた。
Si: Si is an effective component added for the purpose of deoxidizing steel and increasing the strength by solid solution strengthening.
If the content exceeds 0.2%, the surface properties, chemical conversion properties, and coating adhesion deteriorate, so the upper limit of the Si content is set to 0.2%.

【0027】Mn:Mnは本発明において非常に重要な成分
の1つである。まず、Mn含有量が0.07%未満であると製
鋼コストが増加するので、Mn含有量0.07%以上を確保す
る必要がある。
Mn: Mn is one of the very important components in the present invention. First, if the Mn content is less than 0.07%, steelmaking costs increase, so it is necessary to secure a Mn content of 0.07% or more.

【0028】そして、MnにはSをMnSとして固定する作
用があるので、Mn含有量が上昇するに伴ってS固定に必
要なTi量は少なくて済むようになり、焼付硬化性,時効
性を支配する鋼中の固溶CがTiCとして析出するように
なる。更には、MnSが析出することによりNbC等の炭化
物の析出核が増大して析出が促進されるので鋼中の固溶
C量が減少するなど、固溶Cに大きく影響を及ぼし焼付
硬化性を大きく支配する。従って、Mnは、C,Nb含有量
と共にBH量を表す下記 (2)式の条件を満たすように含
有量を調整する必要がある。 25 ≦ 10000×Cal.Sol.C[%] − 420×Mn[%] + 80 ≦ 55 ……(2) 〔但し、 Cal.Sol.C[%] =Total.C[%] − (12/93)Nb
[%] 〕 なお、上記 (2)式における「 10000×Cal.Sol.C[%] −
420×Mn[%] + 80 」の値が25未満であると深絞り性と
強度との関係で必要とする焼付硬化量を確保することが
できず、一方、該値が55を超えると焼付硬化性が著しく
高くなり、時効性の劣化を招くという不都合が出てく
る。
Since Mn has the effect of fixing S as MnS, the amount of Ti required for fixing S can be reduced with an increase in the Mn content, and the baking hardenability and aging properties are reduced. The solute C in the dominant steel precipitates as TiC. Furthermore, precipitation of MnS increases precipitation nuclei of carbides such as NbC and promotes precipitation, so that the amount of solid solution C in steel decreases. Dominates greatly. Therefore, it is necessary to adjust the content of Mn so as to satisfy the condition of the following formula (2), which represents the BH content together with the C and Nb content. 25 ≦ 10000 × Cal.Sol.C [%] − 420 × Mn [%] + 80 ≦ 55… (2) [However, Cal.Sol.C [%] = Total.C [%] − (12 / 93) Nb
[%]] Note that “10000 × Cal.Sol.C [%] −
If the value of “420 × Mn [%] + 80” is less than 25, the required amount of bake hardening cannot be ensured due to the relationship between deep drawability and strength. The curability becomes remarkably high, and the inconvenience that deterioration of aging property is caused appears.

【0029】ところで、0.25%以上の割合でMnを含有さ
せると深絞り性の指標であるr値の低下、更には前記図
2からも分かるようにBH量に及ぼすMnの寄与度が小さ
くなり、BH量が (2)式で制御できなくなる。従って、
Mn含有量は、0.07〜0.25%の範囲であって、かつ上記式
(2)を満たすように調整する必要がある。
By the way, when Mn is contained at a rate of 0.25% or more, the value of r, which is an index of deep drawability, decreases, and as can be seen from FIG. 2, the contribution of Mn to the BH amount decreases. The BH amount cannot be controlled by equation (2). Therefore,
The Mn content is in the range of 0.07 to 0.25% and the above formula
It is necessary to adjust to satisfy (2).

【0030】P:Pは、Si及びMnと同様、鋼板に所望の
強度を確保するために必要な成分であるが、その含有量
が0.05%を超えると合金化溶融亜鉛めっき時における合
金化処理性遅延や耐二次加工脆性の劣化を招くため、P
含有量は0.05%以下と定めた。なお、望ましくはP含有
量を 0.015〜0.05%に調整するのが良い。
P: Like Si and Mn, P is a component necessary for ensuring the desired strength of the steel sheet, but if its content exceeds 0.05%, alloying treatment at the time of galvannealing is performed. P and P
The content was determined to be 0.05% or less. Preferably, the P content is adjusted to 0.015 to 0.05%.

【0031】S:Sは鋼中に随伴される不可避的不純物
であり、S含有量の増加に伴いSを析出物として固定す
るのに必要なTi量が増加する上、赤熱脆性による表面疵
を招くようになる。従って、S含有量の上限を 0.015%
と定めた。
S: S is an unavoidable impurity that accompanies steel, and as the S content increases, the amount of Ti necessary to fix S as a precipitate increases, and surface flaws due to red-hot embrittlement increase. You will be invited. Therefore, the upper limit of S content is 0.015%
It was decided.

【0032】Ti:Tiも本発明において重要な元素の1つ
であり、S及びNを析出物として固定する作用を有して
いる。しかし、Ti含有量(%)が「(48/14)N[%] 」に
達しないと鋼中のNをTiNとして固定することができな
くなり時効性の劣化を招くおそれが出てくる。一方、Ti
含有量(%)が「 (48/14)N[%] + (48/32)S[%] 」を
超えると、NやSと結合せずに残った過剰のTiがCと炭
化物を作って固溶C量を減少させ、焼付硬化量に悪影響
を及ぼす。従って、Ti含有量は下記 (1)式を満たす範囲
に制御する必要がある。 (48/14)N[%] ≦ Ti[%]≦ (48/14)N[%] + (48/32)S[%] ……(1)
Ti: Ti is also one of the important elements in the present invention, and has an effect of fixing S and N as precipitates. However, if the Ti content (%) does not reach "(48/14) N [%]", N in the steel cannot be fixed as TiN, which may lead to deterioration of aging. Meanwhile, Ti
If the content (%) exceeds "(48/14) N [%] + (48/32) S [%]", the excess Ti that remains without combining with N or S forms carbides with C. As a result, the amount of solid solution C is reduced, and the amount of bake hardening is adversely affected. Therefore, it is necessary to control the Ti content in a range satisfying the following equation (1). (48/14) N [%] ≤ Ti [%] ≤ (48/14) N [%] + (48/32) S [%] ... (1)

【0033】Nb:Nbは、C及びMnと共に鋼板のBH量を
支配する重要な元素であるため、前述の(2) 式を満足す
るように含有量を制御する必要がある。また、Nb含有量
が0.01%よりも低いとCを固定するためのNb量が少なく
て焼付硬化性が著しく高くなり、時効性の劣化を招くほ
か、Cと共にNbCとして析出してしまうので細粒強化に
よる高強度への寄与が小さくなる。一方、0.04%を超え
るほどのNbの多量添加では、鋼板に焼付硬化性を具備さ
せるのが困難になると共に、再結晶温度の上昇を招くよ
うになる。従って、Nb含有量を0.01〜0.04%に調整する
ことも重要である。
Nb: Since Nb is an important element that controls the BH content of the steel sheet together with C and Mn, it is necessary to control the content so as to satisfy the above equation (2). On the other hand, if the Nb content is lower than 0.01%, the amount of Nb for fixing C is small, so that the bake hardenability becomes remarkably high, and the aging property is deteriorated. The contribution to high strength by reinforcement is small. On the other hand, when Nb is added in such a large amount as to exceed 0.04%, it becomes difficult to provide the steel sheet with bake hardenability, and the recrystallization temperature is increased. Therefore, it is also important to adjust the Nb content to 0.01 to 0.04%.

【0034】Al:Alは、鋼中の酸素を固定し、またTiの
歩留を向上させるために少なくとも0.01%は含有させる
必要がある。一方、Alの必要以上の添加はコストアップ
につながることから、Al含有量の上限を0.08%と定め
た。
Al: Al must be contained at least 0.01% to fix oxygen in the steel and to improve the yield of Ti. On the other hand, excessive addition of Al leads to an increase in cost, so the upper limit of the Al content was set to 0.08%.

【0035】N:Nは鋼中に随伴される不可避的不純物
であり、材質を劣化させるので極力少ない方が好まし
い。従って、N含有量の上限は許容限界である 0.005%
と定めた。
N: N is an unavoidable impurity that accompanies steel and degrades the material. Therefore, the upper limit of the N content is the allowable limit of 0.005%
It was decided.

【0036】B:Bは、粒界を強化して鋼板の耐二次加
工脆性を向上させる作用を有しているため必要に応じて
含有せしめられる成分であるが、その含有量が0.0003%
未満では前記作用による所望の効果が得られず、一方、
0.0030%を超えて含有させてもその効果は飽和し、また
延性の劣化も招く。従って、B含有量は0.0003〜0.0030
%と定めた。
B: B is a component that can be added as necessary because it has the effect of strengthening the grain boundaries and improving the resistance to secondary working brittleness of the steel sheet. The content of B is 0.0003%.
If it is less than the desired effect of the above-mentioned action cannot be obtained,
Even if the content exceeds 0.0030%, the effect is saturated, and the ductility is also deteriorated. Therefore, the B content is 0.0003 to 0.0030.
%.

【0037】[B] 鋼板の製造条件 本発明に係る深絞り用鋼板を製造するに当っては、ま
ず、常法通りに転炉等で溶製され連続鋳造法で製造され
た前記化学組成のスラブを熱間のまま熱間圧延するか、
又は一旦室温まで冷却された前記スラブを再加熱して熱
間圧延する工程が採られる。この場合、Ar3点未満で圧
延を終了すると熱延鋼板の結晶方位が深絞り性に好まし
くない方位となるため、Ar3点以上で熱間圧延を完了さ
せる。
[B] Manufacturing Conditions of Steel Sheet In manufacturing the steel sheet for deep drawing according to the present invention, first, a steel sheet having the above-described chemical composition manufactured by a continuous casting method and melted in a converter or the like in a usual manner. Hot rolling the slab hot or
Alternatively, a step of hot-rolling by reheating the slab once cooled to room temperature is adopted. In this case, if rolling is completed at less than three points of Ar, the crystal orientation of the hot-rolled steel sheet becomes a direction unfavorable for deep drawability, so that hot rolling is completed at three or more points of Ar.

【0038】また、熱延の巻取り温度は、低くした方が
同一組成であっても容易に高強度化されるため650℃
未満(好ましくは600℃以下)とする。即ち、図5は
前記図1〜3の結果を得たのと同様な試験試料について
高温巻取り(650℃巻取り)を行った場合と低温巻取
り(500℃巻取り)を行った場合の機械的性質を比較
したものであるが、この図5からも、低温巻取が鋼板の
高強度化のために有効であることを確認できる。そし
て、優れた延性と深絞り性を示す340BH鋼を製造す
るためにはCの低下が必要であるが、低C域で高強度化
を図るには低温巻取りが有効に作用することを窺うこと
ができる。なお、巻取り温度を650℃未満とすること
はライン通板性並びに製造安定性の観点からも好ましい
ことである。
The lower the hot rolling temperature is, the lower the temperature is 650 ° C.
(Preferably 600 ° C. or less). That is, FIG. 5 shows a case where a high-temperature winding (650 ° C. winding) and a case where a low-temperature winding (500 ° C. winding) are performed on a test sample similar to those obtained the results of FIGS. As compared with the mechanical properties, FIG. 5 also confirms that low-temperature winding is effective for increasing the strength of the steel sheet. And, in order to produce 340BH steel exhibiting excellent ductility and deep drawability, it is necessary to lower C, but it is suggested that low-temperature winding works effectively to increase strength in a low C region. be able to. It is to be noted that setting the winding temperature to less than 650 ° C. is preferable also from the viewpoint of line threadability and production stability.

【0039】さて、低温巻取りされた熱延鋼板は、次い
で常法通りに酸洗されて冷間圧延に供される。この場
合、冷間圧延条件は特に限定する必要はないが、冷間圧
延率の増加に伴い深絞り性が向上する傾向にあるので6
0%以上の冷間圧延率とするのが望ましい。
The hot-rolled steel sheet rolled at a low temperature is then pickled in a conventional manner and subjected to cold rolling. In this case, the cold rolling conditions do not need to be particularly limited. However, since the deep drawability tends to improve with an increase in the cold rolling reduction, 6
It is desirable to set the cold rolling reduction to 0% or more.

【0040】続いて、冷間圧延後の鋼板には連続焼鈍ラ
イン(連続溶融亜鉛めっきラインを含む)で焼鈍が施さ
れる。なお、焼鈍温度は再結晶がなされる以上の温度で
あれば特に限定する必要がない。
Subsequently, the steel sheet after the cold rolling is annealed in a continuous annealing line (including a continuous galvanizing line). The annealing temperature need not be particularly limited as long as the temperature is higher than the temperature at which recrystallization is performed.

【0041】以下、実施例によって本発明をより具体的
に説明する。
Hereinafter, the present invention will be described more specifically with reference to examples.

【実施例】まず、通常の転炉及び連続鋳造機を用いて表
1に示す化学組成の素材鋼スラブを得た。
EXAMPLES First, a steel slab having the chemical composition shown in Table 1 was obtained using a conventional converter and a continuous casting machine.

【0042】[0042]

【表1】 [Table 1]

【0043】次に、これらのスラブを常法通りに120
0℃まで加熱してから熱間圧延し、900℃で仕上圧延
を完了した後、600℃で巻取り、 4.0mm厚の熱延鋼帯
とした。その後、この熱延鋼帯を酸洗してから 0.8mm厚
まで冷間圧延を行い、次いで連続焼鈍ライン(CAL)
にて820℃の温度で再結晶焼鈍するか、あるいは連続
溶融亜鉛めっきライン(CGL)にて820℃の温度で
再結晶させてからめっき並びに板温600℃での合金化
処理を行うかした。そして、これに続き、CAL材及び
CGL材とも伸び率:1.4〜 1.6%の条件で調質圧延を施
した。
Next, these slabs were placed in a conventional manner for 120 minutes.
After heating to 0 ° C., hot rolling was performed, and finish rolling was completed at 900 ° C., followed by winding at 600 ° C. to form a hot-rolled steel strip having a thickness of 4.0 mm. Thereafter, the hot-rolled steel strip is pickled, cold-rolled to a thickness of 0.8 mm, and then continuously annealed (CAL)
For recrystallization at a temperature of 820 ° C., or recrystallization at a temperature of 820 ° C. in a continuous hot-dip galvanizing line (CGL), followed by plating and alloying at a sheet temperature of 600 ° C. Then, after this, both the CAL material and the CGL material were subjected to temper rolling at an elongation of 1.4 to 1.6%.

【0044】次いで、このようにして得られた鋼板から
それぞれ試験片を切り出し、引張特性,r値及びBH量
の測定並びに加速時効試験(100℃×60分にて熱処理)を
行った。なお、加速時効試験では、時効試験後の降伏点
伸び(YPE)と初期降伏点伸びとから算出されるΔY
PEにより時効性を評価した。また、各鋼板について耐
二次加工脆性の調査も行った。耐二次加工脆性は、試験
片を絞り比:1.8で円筒形に成形した後、これらを円錐台
に載せ、衝撃を加えつつ押し込んだ時に脆性割れが発生
する温度で評価した。更に、溶融めっき材については、
実機ライン通板時のめっき性を調査した。これらの結果
を表2に示す。
Next, test pieces were cut out from the steel sheets thus obtained, and the tensile properties, r value and BH amount were measured, and an accelerated aging test (heat treatment at 100 ° C. for 60 minutes) was performed. In the accelerated aging test, ΔY calculated from the yield point elongation (YPE) after the aging test and the initial yield point elongation was calculated.
The aging was evaluated by PE. In addition, secondary work brittleness resistance of each steel plate was also investigated. The secondary work brittleness resistance was evaluated at a temperature at which brittle cracks occur when test pieces were formed into a cylindrical shape at a draw ratio of 1.8, placed on a truncated cone, and pressed while applying an impact. Furthermore, for hot-dip plated materials,
The plating properties during the actual machine line passing were investigated. Table 2 shows the results.

【0045】[0045]

【表2】 [Table 2]

【0046】表2に示される通り、本発明に係る鋼板
は、何れも引張強度が340MPa以上の高強度、r値が
1.5を上回る優れた深絞り性、並びに「25(N/mm2
≦BH≦55(N/mm2)」の安定した焼付硬化量、そし
てΔYPEが 0.1以下の優れた時効性を示している。ま
た、合金化溶融亜鉛めっきでのめっき性も良好である。
As shown in Table 2, each of the steel sheets according to the present invention has a high strength with a tensile strength of 340 MPa or more and an r-value.
Excellent deep drawability exceeding 1.5 and “25 (N / mm 2 )
≦ BH ≦ 55 (N / mm 2) stable bake hardening amount of "and ΔYPE indicates excellent aging resistance of 0.1 or less. Further, the plating property in the galvannealing is also good.

【0047】これに対して、比較例4,5及びでは適
用鋼の「A式の値」が25を下回るために良好な焼付硬
化性が得られず、また比較例及びでは適用鋼の「A
式の値」が55を上回るために焼付硬化量が大きく、時
効性も不芳である。また、比較例では、適用鋼のP
本発明の規定範囲よりも多いため、溶融亜鉛めっき性
が不芳である。
On the other hand, in Comparative Examples 4, 5 and 8 , the “value of formula A” of the applied steel was less than 25, so that good bake hardenability was not obtained. In Comparative Examples 6 and 7 , the applied steel "A
Since the “value of the formula” exceeds 55, the bake hardening amount is large, and the aging property is poor. In Comparative Example 3 , the P content of the applied steel
Is more than the specified range of the present invention, so that the hot-dip galvanizing property is poor.

【0048】 更に、比較例でも、適用鋼のC量が本発
明の規定範囲から外れているために深絞り性の指標であ
るr値が劣っている。
[0048] Further, a comparative example9However, the amount of C in applied steel is
Index of deep drawability, because it is out of the specified range.
R valueIs inferioring.

【0049】[0049]

【効果の総括】以上に説明した如く、この発明によれ
ば、引張強度で340MPa以上の高強度を有し、更に良
好で安定した焼付硬化性並びに優れた時効性,耐二次加
工脆性,めっき性を示す高強度深絞り用鋼板(冷延鋼
板,電気めっき鋼板,溶融めっき鋼板,合金化溶融亜鉛
めっき鋼板)を安定提供することが可能となり、自動車
用鋼板等としての厳しい要求に十分応えることができる
など、産業上有用な効果がもたらされる。
As described above, according to the present invention, the present invention has a high tensile strength of 340 MPa or more, and has good and stable bake hardenability, excellent aging resistance, secondary work brittleness resistance and plating. High-strength deep-drawing steel sheet (cold-rolled steel sheet, electroplated steel sheet, hot-dip coated steel sheet, hot-dip galvanized steel sheet) that can exhibit stable properties and sufficiently meet the strict demands of automotive steel sheets And other industrially useful effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼板の焼付硬化性と計算固溶C量{=Cal.Sol.
C量=Total.C−(12/93)Nb }との関係を示したグラフ
である。
Fig. 1 Bake hardenability of steel sheet and calculated solid solution C content {= Cal.Sol.
It is the graph which showed the relationship with C amount = Total. C- (12/93) Nb}.

【図2】鋼板の焼付硬化性とMn量との関係を示したグラ
フである。
FIG. 2 is a graph showing the relationship between the bake hardenability of a steel sheet and the amount of Mn.

【図3】鋼板の焼付硬化性とCal.Sol.C及びMn量との関
係を示したグラフである。
FIG. 3 is a graph showing the relationship between the bake hardenability of a steel sheet and the amounts of Cal.Sol.C and Mn.

【図4】実機ラインにより得た鋼板の焼付硬化性とCal.
Sol.C及びMn量との関係を示すグラフである。
Fig. 4 Baking hardenability and Cal.
It is a graph which shows the relationship with Sol.C and Mn amount.

【図5】高温巻取りを行った場合と低温巻取りを行った
場合の鋼板の機械的性質を比較したグラフである。
FIG. 5 is a graph comparing the mechanical properties of a steel sheet in the case of performing high-temperature winding and in the case of performing low-temperature winding.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−126756(JP,A) 特開 平5−195148(JP,A) 特開 平5−230598(JP,A) 特開 昭63−241122(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 9/46 - 9/48 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-7-126756 (JP, A) JP-A-5-195148 (JP, A) JP-A-5-230598 (JP, A) JP-A-63- 241122 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60 C21D 9/46-9/48

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量割合にて C:0.0030%以上0.0050%未満, Si: 0.2%以下, Mn:0.07〜0.25%, P:0.05%以下, S: 0.015%以下, Nb:0.01〜0.04%, Al:0.01〜 0.1%, N: 0.005%以下 を含むと共に残部がFe及び不可避的不純物から成り、か
つTi量が下記 (1)式の条件を、またCal.Sol.C量 (計算
固溶C量) とMn量とが下記 (2)式の条件を満足している
ことを特徴とする、引張強度が340MPa以上で安定し
た焼付硬化性並びに優れた時効性を有する深絞り用鋼
板。 (48/14)N[%] ≦ Ti[%] ≦ (48/14)N[%] + (48/32)S[%] ……(1) 25 ≦ 10000×Cal.Sol.C[%] − 420×Mn[%] + 80 ≦ 55 ……(2) 〔但し、Cal.Sol.C[%] =Total.C[%] − (12/93)Nb[%] 〕
At 1. A weight ratio C: 0.0030% to less than 0.0050%, Si: 0.2% or less, Mn: 0.07~0.25%, P: 0.05% or less, S: 0.015% or less, Nb: 0.01~0.04%, Al: 0.01 to 0.1%, N: 0.005% or less, the balance is composed of Fe and unavoidable impurities, and the amount of Ti satisfies the condition of the following formula (1). Amount) and Mn amount satisfy the condition of the following formula (2). A deep drawing steel sheet having stable baking hardenability at a tensile strength of 340 MPa or more and excellent aging properties. (48/14) N [%] ≤ Ti [%] ≤ (48/14) N [%] + (48/32) S [%] ... (1) 25 ≤ 10000 x Cal.Sol. C [% −420 × Mn [%] + 80 ≦ 55 (2) [However, Cal.Sol.C [%] = Total.C [%] − (12/93) Nb [%]]
【請求項2】 重量割合にて C:0.0030%以上0.0050%未満, Si: 0.2%以下, Mn:0.07〜0.25%, P:0.05%以下, S: 0.015%以下, Nb:0.01〜0.04%, Al:0.01〜 0.1%, N: 0.005%以下, B:0.0003〜0.0030% を含むと共に残部がFe及び不可避的不純物から成り、か
つTi量が下記 (1)式の条件を、またCal.Sol.C量 (計算
固溶C量) とMn量とが下記 (2)式の条件を満足している
ことを特徴とする、引張強度が340MPa以上で安定し
た焼付硬化性並びに優れた時効性,耐二次加工脆性を有
する深絞り用鋼板。 (48/14)N[%] ≦ Ti[%] ≦ (48/14)N[%] + (48/32)S[%] ……(1) 25 ≦ 10000×Cal.Sol.C[%] − 420×Mn[%] + 80 ≦ 55 ……(2) 〔但し、Cal.Sol.C[%] =Total.C[%] − (12/93)Nb[%] 〕
At 2. A weight ratio C: 0.0030% to less than 0.0050%, Si: 0.2% or less, Mn: 0.07~0.25%, P: 0.05% or less, S: 0.015% or less, Nb: 0.01~0.04%, Al: 0.01 to 0.1%, N: 0.005% or less, B: 0.0003 to 0.0030%, the balance is made up of Fe and unavoidable impurities, and the amount of Ti satisfies the condition of the following formula (1). The C content (calculated solid solution C content) and the Mn content satisfy the condition of the following equation (2). The baking hardenability is stable at a tensile strength of 340 MPa or more, and the excellent aging and anti-aging properties. Deep-drawing steel sheet with secondary work brittleness. (48/14) N [%] ≤ Ti [%] ≤ (48/14) N [%] + (48/32) S [%] ... (1) 25 ≤ 10000 x Cal.Sol. C [% −420 × Mn [%] + 80 ≦ 55 (2) [However, Cal.Sol.C [%] = Total.C [%] − (12/93) Nb [%]]
【請求項3】 重量割合にて C:0.0030%以上0.0050%未満, Si: 0.2%以下, Mn:0.07〜0.25%, P:0.05%以下, S: 0.015%以下, Nb:0.01〜0.04%, Al:0.01〜 0.1%, N: 0.005%以下 を含むと共に残部がFe及び不可避的不純物から成り、か
つTi量が下記 (1)式の条件を満足し、またCal.Sol.C量
(計算固溶C量) とMn量とが下記 (2)式の条件を満足す
る鋼片を、Ar3点以上の温度域にて熱間圧延してから6
50℃未満の温度で巻取り、その後、酸洗及び冷間圧延
に次いで連続焼鈍ラインにて再結晶温度以上で焼鈍を施
すことを特徴とする、引張強度が340MPa以上で安定
した焼付硬化性並びに優れた時効性を有する深絞り用鋼
板の製造方法。 (48/14)N[%] ≦ Ti[%] ≦ (48/14)N[%] + (48/32)S[%] ……(1) 25 ≦ 10000×Cal.Sol.C[%] − 420×Mn[%] + 80 ≦ 55 ……(2) 〔但し、Cal.Sol.C[%] =Total.C[%] − (12/93)Nb[%] 〕
At 3. A weight ratio C: 0.0030% to less than 0.0050%, Si: 0.2% or less, Mn: 0.07~0.25%, P: 0.05% or less, S: 0.015% or less, Nb: 0.01~0.04%, Al: 0.01-0.1%, N: 0.005% or less, the balance consists of Fe and unavoidable impurities, the Ti content satisfies the condition of the following formula (1), and the Cal.Sol.C content
A steel slab having (calculated solid solution C content) and Mn content satisfying the condition of the following formula (2) is hot-rolled in a temperature range of at least three points of Ar and then 6
Winding at a temperature of less than 50 ° C., followed by pickling and cold rolling, followed by annealing at a continuous annealing line at a recrystallization temperature or higher, with a stable bake hardenability at a tensile strength of 340 MPa or higher and Manufacturing method of steel sheet for deep drawing with excellent aging properties. (48/14) N [%] ≤ Ti [%] ≤ (48/14) N [%] + (48/32) S [%] ... (1) 25 ≤ 10000 x Cal.Sol. C [% −420 × Mn [%] + 80 ≦ 55 (2) [However, Cal.Sol.C [%] = Total.C [%] − (12/93) Nb [%]]
【請求項4】 重量割合にて C:0.0030%以上0.0050%未満, Si: 0.2%以下, Mn:0.07〜0.25%, P:0.05%以下, S: 0.015%以下, Nb:0.01〜0.04%, Al:0.01〜 0.1%, N: 0.005%以下, B:0.0003〜0.0030% を含むと共に残部がFe及び不可避的不純物から成り、か
つTi量が下記 (1)式の条件を満足し、またCal.Sol.C量
(計算固溶C量) とMn量とが下記 (2)式の条件を満足す
る鋼片を、Ar3点以上の温度域にて熱間圧延してから6
50℃未満の温度で巻取り、その後、酸洗及び冷間圧延
に次いで連続焼鈍ラインにて再結晶温度以上で焼鈍を施
すことを特徴とする、引張強度が340MPa以上で安定
した焼付硬化性並びに優れた時効性,耐二次加工脆性を
有する深絞り用鋼板の製造方法。 (48/14)N[%] ≦ Ti[%] ≦ (48/14)N[%] + (48/32)S[%] ……(1) 25 ≦ 10000×Cal.Sol.C[%] − 420×Mn[%] + 80 ≦ 55 ……(2) 〔但し、Cal.Sol.C[%] =Total.C[%] − (12/93)Nb[%] 〕
At 4. The weight ratio C: 0.0030% to less than 0.0050%, Si: 0.2% or less, Mn: 0.07~0.25%, P: 0.05% or less, S: 0.015% or less, Nb: 0.01~0.04%, Al: 0.01-0.1%, N: 0.005% or less, B: 0.0003-0.0030%, the balance consists of Fe and unavoidable impurities, and the Ti content satisfies the condition of the following formula (1). Sol.C amount
A steel slab having (calculated solid solution C content) and Mn content satisfying the condition of the following formula (2) is hot-rolled in a temperature range of at least three points of Ar and then 6
Winding at a temperature of less than 50 ° C., followed by pickling and cold rolling, followed by annealing at a continuous annealing line at a recrystallization temperature or higher, with a stable bake hardenability at a tensile strength of 340 MPa or higher and A method for producing steel sheets for deep drawing with excellent aging and secondary work brittleness resistance. (48/14) N [%] ≤ Ti [%] ≤ (48/14) N [%] + (48/32) S [%] ... (1) 25 ≤ 10000 x Cal.Sol. C [% −420 × Mn [%] + 80 ≦ 55 (2) [However, Cal.Sol.C [%] = Total.C [%] − (12/93) Nb [%]]
JP17999496A 1996-06-20 1996-06-20 Deep drawing steel sheet and method for producing the same Expired - Fee Related JP3204101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17999496A JP3204101B2 (en) 1996-06-20 1996-06-20 Deep drawing steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17999496A JP3204101B2 (en) 1996-06-20 1996-06-20 Deep drawing steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JPH108201A JPH108201A (en) 1998-01-13
JP3204101B2 true JP3204101B2 (en) 2001-09-04

Family

ID=16075605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17999496A Expired - Fee Related JP3204101B2 (en) 1996-06-20 1996-06-20 Deep drawing steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP3204101B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6663980B1 (en) 1998-09-30 2003-12-16 Toyo Kohan Co., Ltd. Clad plate for lead frames, lead frame using the same, and method of manufacturing the lead frame

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5477198B2 (en) * 2010-06-29 2014-04-23 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
DE102017103308A1 (en) * 2017-02-17 2018-08-23 Voestalpine Stahl Gmbh Method for producing steel sheets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6663980B1 (en) 1998-09-30 2003-12-16 Toyo Kohan Co., Ltd. Clad plate for lead frames, lead frame using the same, and method of manufacturing the lead frame

Also Published As

Publication number Publication date
JPH108201A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
US20210292862A1 (en) High-strength cold rolled steel sheet with low material non-uniformity and excellent formability, hot dipped galvanized steel sheet, and manufacturing method therefor
US9322091B2 (en) Galvanized steel sheet
JP5413546B2 (en) High strength thin steel sheet and method for producing the same
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
KR101264574B1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
EP2623622B1 (en) High-strength hot-dip galvanized steel sheet with excellent deep drawability and stretch flangeability, and process for producing same
WO2018151023A1 (en) High-strength steel plate and method for manufacturing same
JP2005528519A5 (en)
JP2011052317A (en) Dual phase steel sheet and method for manufacturing the same
WO2016113781A1 (en) High-strength steel sheet and production method therefor
EP4180547A1 (en) Hot-pressed member and manufacturing method therefor
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
JPH024657B2 (en)
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
WO2021020439A1 (en) High-strength steel sheet, high-strength member, and methods respectively for producing these products
JP3204101B2 (en) Deep drawing steel sheet and method for producing the same
JP4506380B2 (en) Manufacturing method of high-strength steel sheet
JP2003003216A (en) Method for producing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance
JPH06306531A (en) Cold rolled steel sheet for machining excellent in baking hardenability and surface treated steel sheet
JP2745922B2 (en) Non-aging cold-rolled steel sheet for deep drawing with excellent bake hardenability and method for producing the same
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
JPH0826411B2 (en) Method for manufacturing high strength cold rolled steel sheet with excellent deep drawability
JP3812248B2 (en) High-strength cold-rolled steel sheet with excellent surface properties and press formability and method for producing the same
JP5251206B2 (en) High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 12

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees