JPH0773097B2 - Molecular beam crystal growth method - Google Patents

Molecular beam crystal growth method

Info

Publication number
JPH0773097B2
JPH0773097B2 JP61115363A JP11536386A JPH0773097B2 JP H0773097 B2 JPH0773097 B2 JP H0773097B2 JP 61115363 A JP61115363 A JP 61115363A JP 11536386 A JP11536386 A JP 11536386A JP H0773097 B2 JPH0773097 B2 JP H0773097B2
Authority
JP
Japan
Prior art keywords
substrate
molecular beam
growth
grown
pretreatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61115363A
Other languages
Japanese (ja)
Other versions
JPS62269310A (en
Inventor
淳二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61115363A priority Critical patent/JPH0773097B2/en
Publication of JPS62269310A publication Critical patent/JPS62269310A/en
Publication of JPH0773097B2 publication Critical patent/JPH0773097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概要〕 基板を構成する蒸気圧の高い元素の温度上昇による離脱
を補充するため、この元素の分子線を被成長基板に照射
しながら基板温度を上昇して基板表面の酸化膜を除去
し、基板に損傷をあたえない程度の低エネルギで大面積
のイオンビームを照射して残留炭素等の汚染物質を物理
的に除去する基板前処理により、結晶欠陥と不純物の導
入のない高品質の結晶成長を行う。
DETAILED DESCRIPTION [Outline] In order to supplement the detachment of an element having a high vapor pressure that constitutes the substrate due to temperature rise, the substrate temperature is raised while irradiating the substrate to be grown with a molecular beam of this element. Introducing crystal defects and impurities by pretreatment of the substrate by removing the oxide film on the substrate and irradiating a large area ion beam with low energy that does not damage the substrate to physically remove contaminants such as residual carbon. High quality crystal growth without any.

〔産業上の利用分野〕[Industrial application field]

本発明は被成長基板、とくに化合物半導体基板に高品質
化合物半導体エピタキシャル膜を得るための前処理方法
に関する。
The present invention relates to a pretreatment method for obtaining a high quality compound semiconductor epitaxial film on a substrate to be grown, especially a compound semiconductor substrate.

分子線エピタキシャル成長(MBE)法は数原子層の極め
て薄い層を精度よく形成できるため、超格子構造等の微
細構造形成に多用されるようになってきた。
Since the molecular beam epitaxial growth (MBE) method can accurately form an extremely thin layer of several atomic layers, it has been widely used for forming a fine structure such as a superlattice structure.

この場合も、他の成長法と同様に結晶性のよい成膜のた
めには、基板の前処理が重要な問題となる。
Also in this case, the pretreatment of the substrate is an important issue for forming a film with good crystallinity as in other growth methods.

〔従来の技術〕[Conventional technology]

従来のMBE法における化合物半導体基板の前処理方法と
してはつぎのような方法が用いられている。
The following method is used as a pretreatment method for a compound semiconductor substrate in the conventional MBE method.

真空中(成長室)で離脱しやすい元素を基板に照射
しながら基板を加熱する方法。
A method of heating a substrate while irradiating the substrate with an element that is easily released in a vacuum (growth chamber).

例えば、ガリウム砒素(GaAs)基板に対しては砒素(A
s)を照射しながら、基板を570〜600℃に加熱する。
For example, for gallium arsenide (GaAs) substrates, arsenic (A
The substrate is heated to 570 to 600 ° C. while irradiating with s).

この方法では酸化膜は除去できるが、炭素(C)等の汚
染物質は除去できない。
This method can remove the oxide film, but cannot remove contaminants such as carbon (C).

真空中でアルゴンイオン(Ar+)等のビームを照射
する方法。
A method of irradiating a beam of argon ions (Ar + ) in a vacuum.

この方法では、Ar+の衝撃でC等の汚染物質をはじき飛
ばすため、汚染物質の除去はできるが、0.5〜1KV程度の
高加速電圧を使っているため、結晶に欠陥を導入してし
まう。
In this method, contaminants such as C are repelled by the impact of Ar + , so that contaminants can be removed, but since a high acceleration voltage of about 0.5 to 1 KV is used, defects are introduced into the crystal.

この結晶欠陥を除去するためにビーム照射後、基板を50
0〜600℃に加熱し、10〜20分間アニールする必要があっ
た。
After beam irradiation to remove this crystal defect, the substrate is
It was necessary to heat to 0-600 ° C and anneal for 10-20 minutes.

また、従来のイオンビームを照射して基板をスパッタリ
ングして前処理を行う方法では、ビーム径が数100μm
〜数mmと細いため、大口径基板に対して全面処理を行う
には時間がかかり、そのため一度清浄化した部分が再び
汚染されるといった問題があった。
In the conventional method of irradiating with an ion beam and sputtering the substrate to perform pretreatment, the beam diameter is several 100 μm.
Since it is as thin as a few mm, it takes a long time to perform the whole surface treatment on a large-diameter substrate, and there is a problem that the once cleaned portion is contaminated again.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の被成長基板の前処理方法においては、短時間で行
え、結晶欠陥の導入のない、かつ表面のすべての汚染物
が除去できる完全な方法はなかった。
In the conventional pretreatment method for a substrate to be grown, there has been no complete method that can be performed in a short time, without introducing crystal defects, and capable of removing all contaminants on the surface.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、結晶成長の前に真空中において、
被成長基板を構成する蒸気圧の高い元素の分子線を被成
長基板に照射しながら、該被成長基板を自然酸化膜が分
解除去される温度以上に加熱し、且つ該分子線の照射と
同時に該加熱されている被成長基板の全面に、該被成長
基板の面積と同程度以上のビーム面積をもつイオンビー
ムを用いイオンを一括照射して該基板表面部の汚染物質
を除去した後、該被成長基板上に結晶成長を行う工程を
有する本発明による分子線結晶成長方法により達成され
る。
To solve the above problems, in a vacuum before crystal growth,
While irradiating the growth substrate with a molecular beam of an element having a high vapor pressure that constitutes the growth substrate, the growth substrate is heated to a temperature at which the natural oxide film is decomposed and removed, and at the same time as the irradiation of the molecular beam. After the entire surface of the heated substrate to be grown is ion-irradiated with an ion beam having a beam area equal to or larger than the area of the substrate to be removed to remove contaminants on the surface of the substrate, This is achieved by the molecular beam crystal growth method according to the present invention, which has a step of growing a crystal on a substrate to be grown.

〔作用〕[Action]

本発明は、従来のイオンスパッタ法による基板前処理を
改良したものである。
The present invention is an improvement of the conventional substrate pretreatment by the ion sputtering method.

前述のように、従来の基板前処理方法は、化合物半導体
基板の場合では基板を構成しているV族や、VI族の元素
の蒸気圧が高いため、基板を加熱したときこれらの元素
が離脱し、面荒れや結晶欠陥を導入する。従来のイオン
スパッタ法では、イオン照射後にV族、あるいはVI族の
元素を基板に照射しながら基板加熱を行い、イオン照射
により導入した結晶欠陥のアニールを行っていた。
As described above, in the conventional substrate pretreatment method, in the case of the compound semiconductor substrate, the vapor pressure of the elements of group V and group VI that constitute the substrate is high, and therefore these elements are released when the substrate is heated. Then, surface roughness and crystal defects are introduced. In the conventional ion sputtering method, the substrate is heated while irradiating the substrate with the group V or VI element after the ion irradiation, and the crystal defects introduced by the ion irradiation are annealed.

本発明は、イオン照射時に、すでに基板温度を600℃以
上のアニール温度に昇温しておき、同時にV族、あるい
はVI族の元素を照射するようにし、かつ表面の汚染物質
の除去を熱的に促進するようにしたものである。
According to the present invention, at the time of ion irradiation, the substrate temperature is already raised to an annealing temperature of 600 ° C. or higher, and at the same time, the group V or group VI element is irradiated and the surface contaminants are removed thermally. It is intended to promote.

また、大口径の100eV以下の低加速ビームを基板全面に
照射することにより、短時間に処理を行い、かつ結晶欠
陥の導入を少なくすることができる。大口径ビームはカ
ウフマン型のイオンビーム源を用いて得られる。
Further, by irradiating the entire surface of the substrate with a low-acceleration beam having a large diameter of 100 eV or less, it is possible to perform processing in a short time and reduce the introduction of crystal defects. Large diameter beams are obtained using a Kaufman type ion beam source.

〔実施例〕〔Example〕

第1図は本発明の実施例を説明するMBE装置の断面図で
ある。
FIG. 1 is a sectional view of an MBE device for explaining an embodiment of the present invention.

図において、被成長基板3として、GaAs基板〔インジウ
ム(In)ソルダでモリブデン(Mo)ブロックに貼り付け
たもの〕を用い、これを基板出入口8より基板交換室7
に入れ高真空に排気する。
In the figure, a GaAs substrate [attached to a molybdenum (Mo) block with indium (In) solder] is used as the substrate 3 to be grown, and this is inserted from the substrate inlet / outlet 8 to the substrate exchange chamber 7
And evacuate to high vacuum.

つぎに、ゲートバルブ9を開いて高真空に排気された基
板前処理室1にGaAs基板3を入れ基板加熱ホルダ2に取
り付け、ゲートバルブ9を閉じる。GaAs基板3は基板加
熱ヒータ4により最高800℃まで加熱できる。
Next, the gate valve 9 is opened, the GaAs substrate 3 is put into the substrate pretreatment chamber 1 evacuated to a high vacuum, and the substrate heating holder 2 is attached, and the gate valve 9 is closed. The GaAs substrate 3 can be heated up to 800 ° C. by the substrate heater 4.

基板前処理室1には、ビーム径2インチのカウフマン型
イオン源5と、As分子線源6とが設けられている。
The substrate pretreatment chamber 1 is provided with a Kauffman ion source 5 having a beam diameter of 2 inches and an As molecular beam source 6.

As分子線を約1×10-5Torrの強度でGaAs基板3に照射し
ながら、基板温度を600℃まで昇温する。この温度に保
持しながら、加速電圧50eVのアルゴンイオン(Ar+)ビ
ームを約20分間GaAs基板3に照射した。
The substrate temperature is raised to 600 ° C. while irradiating the GaAs substrate 3 with the As molecular beam at an intensity of about 1 × 10 −5 Torr. While maintaining this temperature, the GaAs substrate 3 was irradiated with an argon ion (Ar + ) beam having an acceleration voltage of 50 eV for about 20 minutes.

基板加熱ヒータ4の電源を切った後、約200℃まで基板
温度が下がったところで、ゲートバルブ10を開いて、Ga
As基板3を高真空に排気された結晶成長室11に導入し、
基板加熱ホルダ12に取り付ける。
After turning off the power to the substrate heater 4, when the substrate temperature drops to about 200 ° C, open the gate valve 10
The As substrate 3 is introduced into the crystal growth chamber 11 evacuated to a high vacuum,
It is attached to the substrate heating holder 12.

この前処理の終わったGaAs基板3上に、As分子線源14と
Ga分子線源15を用いてGaAs結晶をエピタキシャル成長し
た。この際、Si分子線源16より、Siを基板と同じ1×10
17cm-3程度一様にドープした。
The As molecular beam source 14 and the As molecular beam source 14 are placed on the GaAs substrate 3 after this pretreatment.
A GaAs crystal was epitaxially grown using a Ga molecular beam source 15. At this time, from the Si molecular beam source 16, Si is the same as the substrate 1 × 10
It was uniformly doped at about 17 cm -3 .

成長温度は600℃、成長速度は1μm/時間、成長膜厚は
1μmである。基板は基板加熱ヒータ13により加熱され
る。
The growth temperature is 600 ° C., the growth rate is 1 μm / hour, and the growth film thickness is 1 μm. The substrate is heated by the substrate heater 13.

従来の、成長室内で600℃のサーマルクリーニングのみ
の前処理を行って成長した結晶と、本発明の前処理を行
って成長した結晶の基板−エピタキシャル層界面付近の
キャリア濃度のプロファイルをC−V(容量−電圧)測
定により調べた。
A carrier concentration profile in the vicinity of the substrate-epitaxial layer interface between a conventional crystal grown by performing only the thermal cleaning at 600 ° C. in the growth chamber and a crystal grown by performing the pretreatment of the present invention is CV. (Capacity-voltage) was measured.

第2図は本発明の前処理を行って成長した結晶と、従来
の基板加熱のみの前処理を行って成長した結晶の深さに
対するキャリア濃度の分布を示す図である。
FIG. 2 is a diagram showing the distribution of carrier concentration with respect to the depth of the crystal grown by the pretreatment of the present invention and the crystal grown by the conventional pretreatment of only substrate heating.

図において、従来法(a)ではカーボン汚染によると思
われるキャリアの空乏化領域(b)が存在する。
In the figure, in the conventional method (a), there is a carrier depletion region (b) which is considered to be due to carbon contamination.

本発明の実施例(c)によると、キャリアの空乏化がほ
とんどなくなっていることが分かった。
According to Example (c) of the present invention, it was found that carrier depletion was almost eliminated.

すなわち、基板表面の汚染物質の除去がなされており、
かつ結晶欠陥の導入もなかったことが分かった。
That is, the contaminants on the substrate surface have been removed,
It was also found that no crystal defects were introduced.

実施例においては、前処理時の基板加熱温度を600℃と
した、Ar+ビームの照射を約20分としたが、基板加熱温
度を600℃よりさらに高温にすれば、Ar+ビームの照射時
間は短縮できる。
In the examples, the substrate heating temperature during pretreatment was 600 ° C., and the Ar + beam irradiation was about 20 minutes. However, if the substrate heating temperature is higher than 600 ° C., the Ar + beam irradiation time Can be shortened.

また、実施例においてはAr+ビームを用いたが、これの
代わりにネオンイオン(Ne+)、ヘリウムイオン(H
e+)、水素イオン(H2 +)、窒素イオン(N2 +)、または
これらの混合ガスのイオンビームを用いてもよい。
In addition, although an Ar + beam was used in the examples, instead of this, neon ions (Ne + ) and helium ions (H
e + ), hydrogen ions (H 2 + ), nitrogen ions (N 2 + ), or an ion beam of a mixed gas thereof may be used.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したように本発明による被成長基板の前
処理方法では、処理を短時間で行え、結晶欠陥の導入が
なく、かつ表面のすべての汚染物が除去できる。
As described above in detail, in the pretreatment method for a substrate to be grown according to the present invention, the treatment can be performed in a short time, no crystal defects are introduced, and all contaminants on the surface can be removed.

従って、高品質のMBE成長膜が得られる。Therefore, a high quality MBE growth film can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を説明するMBE装置の断面図、 第2図は本発明の前処理を行って成長した結晶と、従来
の基板加熱のみの前処理を行って成長した結晶の深さに
対するキャリア濃度の分布を示す図である。 図において、 1は基板前処理室、2は基板加熱ホルダ、3は被成長基
板でGaAs基板、4は基板加熱ヒータ、5はカウフマン型
イオン源、6はAs分子線源、7は基板交換室、8は基板
出入口、9、10はゲートバルブ、11は結晶成長室、12は
基板加熱ホルダ、13は基板加熱ヒータ、14はAs分子線
源、15はGa分子線源、16はSi分子線源 である。
FIG. 1 is a cross-sectional view of an MBE apparatus for explaining an embodiment of the present invention, and FIG. 2 is a crystal grown by the pretreatment of the present invention and a crystal grown by the conventional pretreatment of only substrate heating. It is a figure which shows the distribution of the carrier concentration with respect to depth. In the figure, 1 is a substrate pretreatment chamber, 2 is a substrate heating holder, 3 is a substrate to be grown, GaAs substrate, 4 is a substrate heating heater, 5 is a Kaufman type ion source, 6 is an As molecular beam source, and 7 is a substrate exchange chamber. , 8 is a substrate inlet / outlet, 9 and 10 are gate valves, 11 is a crystal growth chamber, 12 is a substrate heating holder, 13 is a substrate heating heater, 14 is an As molecular beam source, 15 is a Ga molecular beam source, and 16 is a Si molecular beam. Source.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】結晶成長の前に真空中において、被成長基
板を構成する蒸気圧の高い元素の分子線を被成長基板に
照射しながら、該被成長基板を自然酸化膜が分解除去さ
れる温度以上に加熱し、且つ該分子線の照射と同時に該
加熱されている被成長基板の全面に、該被成長基板の面
積と同程度以上のビーム面積をもつイオンビームを用い
イオンを一括照射して該基板表面部の汚染物質を除去し
た後、該被成長基板上に結晶成長を行う工程を有するこ
とを特徴とする分子線結晶成長方法。
1. A natural oxide film is decomposed and removed from a growth substrate while irradiating the growth substrate with a molecular beam of an element having a high vapor pressure which constitutes the growth substrate in a vacuum before crystal growth. Simultaneously irradiating the entire surface of the heated substrate to be heated with a temperature equal to or higher than the temperature with an ion beam having a beam area equal to or larger than the area of the substrate to be grown. A molecular beam crystal growth method comprising a step of performing crystal growth on the substrate to be grown after removing contaminants on the surface portion of the substrate.
JP61115363A 1986-05-19 1986-05-19 Molecular beam crystal growth method Expired - Lifetime JPH0773097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61115363A JPH0773097B2 (en) 1986-05-19 1986-05-19 Molecular beam crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61115363A JPH0773097B2 (en) 1986-05-19 1986-05-19 Molecular beam crystal growth method

Publications (2)

Publication Number Publication Date
JPS62269310A JPS62269310A (en) 1987-11-21
JPH0773097B2 true JPH0773097B2 (en) 1995-08-02

Family

ID=14660669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61115363A Expired - Lifetime JPH0773097B2 (en) 1986-05-19 1986-05-19 Molecular beam crystal growth method

Country Status (1)

Country Link
JP (1) JPH0773097B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2706369B2 (en) * 1990-11-26 1998-01-28 シャープ株式会社 Method for growing compound semiconductor and method for manufacturing semiconductor laser

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116192A (en) * 1982-12-21 1984-07-04 Fujitsu Ltd Crystal growth method by molecular beam
JPS6080216A (en) * 1983-10-07 1985-05-08 Nippon Telegr & Teleph Corp <Ntt> Method for epitaxial growth by molecular beam

Also Published As

Publication number Publication date
JPS62269310A (en) 1987-11-21

Similar Documents

Publication Publication Date Title
US5275687A (en) Process for removing surface contaminants from III-V semiconductors
JPS63224233A (en) Surface treatment
JPH0773097B2 (en) Molecular beam crystal growth method
JPS6246994A (en) Method and apparatus for growing thin film
JPH0319218A (en) Formation process and device of soi substrate
JP2840802B2 (en) Method and apparatus for manufacturing semiconductor material
JP2704931B2 (en) Method for forming selective growth mask and method for removing same
JPH05213695A (en) Method for depositing thin diamond film
JPS6423538A (en) Method and equipment for manufacturing semiconductor device
JPH03131593A (en) Preliminary treatment of substrate for epitaxial grow
JP2520617B2 (en) Semiconductor crystal growth method and apparatus for implementing the same
JPH0243720A (en) Molecular beam epitaxial growth method
JP2686699B2 (en) Method for forming GaN mask for selective growth
JPH0517300A (en) Etching method and production of compound semiconductor base body
JP2998336B2 (en) Method for etching compound semiconductor and method for forming semiconductor structure
JPH0226892A (en) Method and device for molecular beam epitaxial growth
JPS6235512A (en) Manufacture of single crystal thin film of semiconductor
JPS62212293A (en) Epitaxial growth with molecular rays
JPS6246993A (en) Apparatus for growing thin filmlike crystal
JPH04214616A (en) Compound semiconductor crystal growth method and device
JPH0443631A (en) Growth method of compound semiconductor crystal and equipment therefor
JPH01158720A (en) Method and apparatus for growing compound semiconductor crystal
JPS60177618A (en) Manufacture of semiconductor device
JPS6047414A (en) Method and device for growing thin film
JPH01223721A (en) Method and device for crystal growth