JPS6080216A - Method for epitaxial growth by molecular beam - Google Patents

Method for epitaxial growth by molecular beam

Info

Publication number
JPS6080216A
JPS6080216A JP18805083A JP18805083A JPS6080216A JP S6080216 A JPS6080216 A JP S6080216A JP 18805083 A JP18805083 A JP 18805083A JP 18805083 A JP18805083 A JP 18805083A JP S6080216 A JPS6080216 A JP S6080216A
Authority
JP
Japan
Prior art keywords
substrate
holding member
holding means
inas
molecular beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18805083A
Other languages
Japanese (ja)
Inventor
Koichi Sugiyama
耕一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18805083A priority Critical patent/JPS6080216A/en
Publication of JPS6080216A publication Critical patent/JPS6080216A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02398Antimonides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02549Antimonides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To prevent contamination of a substrate surface at ion implantation or excess of In by covering surfaces of holding means in a periphery of the substrate with InAs or InSb of the same quality as the substrate. CONSTITUTION:When a substrate 1 of InAs or InSb is attached to a substrate holding means 2 by In solder, surfaces of the holding means 2 and a substrate stopper plate 3 in a periphery of the substrate to be subjected to ion irradiation are also coated with In. Further, before ion bombardment, As or Sn is evaporated from a cell for molecular beam in a vacuum to heat the substrate 1, the holding means 2 and the stopper plate 3. By such heating, In fuses so that As or Sb atoms which bumped against the holding means 2 and the stopper plate 3 fuse into the In and solid phases of InAs or InSb are deposited on the surfaces of them after cooling to a room temperature. If ion implantation is performed under this condition, there is no exposed metallic part of the holding member 2 and the stopper plate 3 within a range that the ions bump against. Accordingly, the surface of the substrate 1 is not contaminated by the metal composing the holding means 2.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、半導体基板上に蒸着法により同種または異種
の結晶をエピタキシャル成長させる分子線エピタキシャ
ル成長法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a molecular beam epitaxial growth method for epitaxially growing crystals of the same type or different types on a semiconductor substrate by vapor deposition.

〔従来技術〕[Prior art]

分子細工・ピタキシャル成長法では、成長に先立ち、基
板表面の酸化物等を除去して清浄化することが必要であ
る。そのために、従来より、高温加熱して酸化物な蒸発
させる方法、またはイオン衝撃により酸化物ケとばして
除去する方法が用いられている。
In the molecular engineering/pitaxial growth method, prior to growth, it is necessary to clean the substrate surface by removing oxides and the like. To this end, conventional methods have been used to evaporate the oxide by heating at high temperatures, or to remove the oxide by evaporating the oxide by ion bombardment.

ところが、InAsまたはIn8bな基板とする場合に
は、融点が低いので、高温にできないこと。
However, when using an InAs or In8b substrate, the melting point is low, so it cannot be heated to a high temperature.

congruent evaporation (また
はsul)limation )温度(この温度以上で
はrV−V族半導体の表面から■族よりV族の方が蒸発
しゃすくなる温度)が低いので、高温加熱による方法で
は、セルからAs またはsbな蒸発させても基板表面
にIIIが分離して生成されや1−いこと等の理由から
、通常られてきた。
Since the congruent evaporation (or sul)limation temperature (above this temperature, the V group is more likely to evaporate from the surface of the rV-V group semiconductor than the group V group), high-temperature heating methods do not remove As or sul from the cell. This has been commonly used because III is unlikely to be separated and produced on the substrate surface even if sb is evaporated.

分子線エピタキシャル成長法では、第1図および第2図
に示すように、基板lはIn等の半田により、Mo +
 Ta等の金属よりなる基板保持具λに付着されて保持
される。また、場合によっては、さらに基板lを基板保
持具コに載置したのちに金属製基板押え板3により保持
するようにこの押え板3ta−ビスグで保持具2に固定
することが行なわれている。イオン衝撃は、アルゴン等
の不活性ガスなイオン化し、これを0.1−/kVの電
圧で加速したものを基板lの表面に当てることにより行
う。
In the molecular beam epitaxial growth method, as shown in FIGS. 1 and 2, the substrate l is made of Mo + by solder such as In.
It is attached and held by a substrate holder λ made of metal such as Ta. In addition, in some cases, after the substrate 1 is placed on the substrate holder, it is fixed to the holder 2 with the metal substrate holding plate 3 using this holding plate 3ta-visg. . Ion bombardment is performed by ionizing an inert gas such as argon, accelerating it at a voltage of 0.1-/kV, and applying it to the surface of the substrate 1.

この際に、イオンビームの照射範囲が基板lよりも広い
ため、基板lのみならず、基板lの周辺の基板保持具2
および基板押え板3の表面もイオン衝撃を受ける。この
ため、保持具λ等を構成しているMo、Ta等の金属原
子や、保持具2の表面に付着しているIn原子も叩き出
され、その一部は基板l゛の表面にも付着して汚染し、
あるいは基板lσ)表面なIn過剰となし、その後の結
晶成長に悪影響を及ぼす。
At this time, since the ion beam irradiation range is wider than the substrate l, not only the substrate l but also the substrate holder 2 around the substrate l
The surface of the substrate holding plate 3 is also subjected to ion bombardment. For this reason, metal atoms such as Mo and Ta that constitute the holder λ, etc., and In atoms attached to the surface of the holder 2 are also knocked out, and some of them also adhere to the surface of the substrate 1. and pollute;
Alternatively, excessive In may be produced on the surface of the substrate (lσ), which adversely affects subsequent crystal growth.

〔目 的〕〔the purpose〕

そこで、本発明の目的は、このような欠点を除去するべ
(、基板の周辺の保持具等の表面を基板と同質のInA
sまたはIn8bで覆い、適切に処理する分子線エピタ
キシャル成長法を提供することにある。
Therefore, an object of the present invention is to eliminate such drawbacks (i.e., to replace the surface of the holder etc. around the substrate with InA of the same quality as the substrate).
The object of the present invention is to provide a molecular beam epitaxial growth method in which the substrate is covered with In8b or In8b and treated appropriately.

〔発明の構成〕[Structure of the invention]

かかる目的を達成するために、本発明では。 In order to achieve such an objective, the present invention.

InAsまたはInS b基板上に当該基板と同一また
は異種の結晶を分子線エピタキシャル成長させるのに先
立って、前記基板V、In ?半田として基板保持部材
に接着し、その基板表面ン不活性ガスによるイオン衝撃
で清浄化するにあたり、前記基板保持部材に接着された
前記基板σ)周辺のイオン衝撃時にイオンが照射する範
囲の前記基板保持部材の表面をInで覆い、イオン衝撃
前に真空中で前記基板保持部材を加熱しなからAs i
たはsbな蒸発させて前記基板保持部材ビ覆っているI
nに付着させ1次に前記基板および前記基板保持部材な
冷却し、次いで前記基板ケイオン衝撃により清浄化する
Prior to molecular beam epitaxial growth of a crystal of the same or different type as the InAs or InS b substrate, the substrate V, In? When the substrate is bonded to a substrate holding member as solder and the surface of the substrate is cleaned by ion bombardment with an inert gas, the substrate σ) is bonded to the substrate holding member in the area irradiated with ions during ion bombardment around the substrate. The surface of the holding member is covered with In, and the substrate holding member is heated in a vacuum before ion bombardment.
or sb is evaporated to cover the substrate holding member.
First, the substrate and the substrate holding member are cooled, and then the substrate is cleaned by Kion bombardment.

なお、ここで、基板保持部材を/jO−≠!θ℃に加熱
1−るのが好適である・ 〔実施例〕 本発明では、まず、InAsまたはInSbによる基板
lン基板保持具λにIn半田により付着する際に、イオ
ン衝撃時にイオン照射σ)起る基板lの周辺の基板保持
部材、すなわち基板保持具!および基板押え板30表面
にもIn ?塗付して覆う。
Note that here, the substrate holding member is /jO−≠! [Example] In the present invention, first, when a substrate made of InAs or InSb is attached to a substrate holder λ by In solder, ion irradiation σ) is applied at the time of ion bombardment. A substrate holding member around the rising substrate l, that is, a substrate holder! And also on the surface of the substrate holding plate 30? Apply and cover.

更に、保持具2ft分子線エピタキシャル装置に装着し
、次いで真空排気後、イオン衝撃前に1例えば基板lと
してInAs基板乞用い6場合には分子線用セルからA
s tzt蒸発させ、InSb基板の場合にはsbを蒸
発させて、そのAs蒸気またはsb蒸気の雰囲気中で基
板lおよび基板保持具2および基板押え板3を150〜
≠s o ”cに加熱する。
Furthermore, the holder is attached to a 2ft molecular beam epitaxial apparatus, and then, after evacuation and before ion bombardment, if an InAs substrate is used as the substrate 1, for example, A is removed from the molecular beam cell.
In the case of an InSb substrate, sb is evaporated, and the substrate 1, substrate holder 2, and substrate holding plate 3 are heated to 150~
Heat to ≠s o ”c.

なお、この温度上限は、In8bの融点が530℃であ
るので、加熱温度がこの融点に余り近づかないように余
裕なもたせて≠SO℃に定めた。
Note that, since the melting point of In8b is 530°C, the upper limit of this temperature was set at ≠SO°C with a margin so that the heating temperature did not approach this melting point too much.

このように750℃以上で加熱な行うと、 Inは融解
するので、蒸発して基板保持具2および基板押え板3に
当ったAs またはsb原子はIn中に溶は込み、室温
に冷却後はその表面にInAsまたはInSbの固相を
析出する。この状態でイオン衝撃を行うと、イオンの当
る範囲には保持具コおよび基板押え板3の金属の露出部
はないから、基板/の表面はこれら保持具2を構成する
111t4MO等により汚染されることはない。
When heated above 750°C, In melts, so the As or sb atoms that evaporate and hit the substrate holder 2 and substrate holding plate 3 dissolve into the In, and after cooling to room temperature, the In melts. A solid phase of InAs or InSb is deposited on the surface. If ion bombardment is performed in this state, since there are no exposed metal parts of the holder 2 and the substrate holding plate 3 in the range hit by the ions, the surface of the substrate will be contaminated by the 111t4MO etc. that make up these holders 2. Never.

更にまた。保持具2および基板押え板3のInを塗布し
た表面には、InAsまたはInSbが生成されている
ので、この部分のイオン衝撃においては、In のみな
らず、As (またはsb)も叩き出される。そのため
、基板lの上に飛散して付着するものもInおよびAs
かもなり、イオン衝撃後の熱処理により、これらは基板
lと同じInAs(またはInSb )を形成し、従来
技術のようにIn過剰とはならず、その後のエピタキシ
ャル成長に殆んど影響を及ぼすことがない。
Yet again. Since InAs or InSb is generated on the In-coated surfaces of the holder 2 and the substrate holding plate 3, not only In but also As (or sb) is knocked out by ion bombardment of these parts. Therefore, the materials that scatter and adhere to the substrate l are also In and As.
However, by heat treatment after ion bombardment, these form the same InAs (or InSb) as the substrate 1, and there is no excessive In as in the conventional technology, and there is almost no effect on subsequent epitaxial growth. .

本発明でのこれらの作用はイオン・ビーム強度の空間分
布が一様でないときや、ビームのラスタ・スキャンを行
う場合に一層有効となる。
These effects of the present invention are more effective when the spatial distribution of the ion beam intensity is not uniform or when the beam is raster scanned.

〔効 果〕〔effect〕

以上説明したように、本発明方法によれば。 As explained above, according to the method of the present invention.

イオン衝撃時に基板表面が汚染されたり、In過剰にな
ることがないので、その上に良好な分子線エピタキシャ
ル成長を行うことができる利点がある。
Since the substrate surface is not contaminated or In excess occurs during ion bombardment, there is an advantage that good molecular beam epitaxial growth can be performed thereon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は基板および基板保持具の一例を示す上面図、お
よび第2図はその側面図である。 l・・・基板、 2・・・基板保持具。 3・・・基板押え板、 ≠・・・ビス。 特許出願人 日本電信電話公社
FIG. 1 is a top view showing an example of a substrate and a substrate holder, and FIG. 2 is a side view thereof. l...Substrate, 2...Substrate holder. 3... Board holding plate, ≠... screw. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 1) InAsまたはIn8b基板上に当該基板と同一
または異種の結晶を分子線エピタキシャル成長させるの
に先立って、前記基板’%7.Inを半田として基板保
持部材に接着し、その基板表面を不活性ガスによるイオ
ン衝撃で清浄化するにあたり、前記基板保持部材に接着
された前記基板の周辺のイオン衝撃時にイオンが照射す
る範囲の前記基板保持部材の表面をInで覆い、イオン
衝撃前に真空中で前記基板保持部材を加熱しながらAs
 またはSbヲ蒸発させて前記基板保持部材を覆ってい
るIn に付着させ、次に前記基板および前記基板保持
部材を冷却し、次いで前記基板をイオン衝撃により清浄
化することな特徴とする分−[エピタキシャル成長法。 2、特許請求の範囲第1項記載の分子線エピタキシャル
成長法において、前記基板保持部材+i so−弘jQ
℃に加熱することを特徴とする分子線エピタキシャル成
長法、 (以下余白)
[Claims] 1) Prior to molecular beam epitaxial growth of a crystal of the same or different type as the substrate on an InAs or In8b substrate, the substrate '%7. When In is bonded to a substrate holding member using solder and the surface of the substrate is cleaned by ion bombardment with an inert gas, the area irradiated with ions during ion bombardment around the substrate bonded to the substrate holding member is The surface of the substrate holding member is covered with In, and As is heated while the substrate holding member is heated in vacuum before ion bombardment.
Alternatively, the Sb is evaporated and deposited on the In covering the substrate holding member, the substrate and the substrate holding member are then cooled, and the substrate is then cleaned by ion bombardment. Epitaxial growth method. 2. In the molecular beam epitaxial growth method according to claim 1, the substrate holding member +i so-HirojQ
Molecular beam epitaxial growth method characterized by heating to ℃ (margin below)
JP18805083A 1983-10-07 1983-10-07 Method for epitaxial growth by molecular beam Pending JPS6080216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18805083A JPS6080216A (en) 1983-10-07 1983-10-07 Method for epitaxial growth by molecular beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18805083A JPS6080216A (en) 1983-10-07 1983-10-07 Method for epitaxial growth by molecular beam

Publications (1)

Publication Number Publication Date
JPS6080216A true JPS6080216A (en) 1985-05-08

Family

ID=16216803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18805083A Pending JPS6080216A (en) 1983-10-07 1983-10-07 Method for epitaxial growth by molecular beam

Country Status (1)

Country Link
JP (1) JPS6080216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269310A (en) * 1986-05-19 1987-11-21 Fujitsu Ltd Molecular beam crystal growth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269310A (en) * 1986-05-19 1987-11-21 Fujitsu Ltd Molecular beam crystal growth

Similar Documents

Publication Publication Date Title
US2778926A (en) Method for welding and soldering by electron bombardment
US4379218A (en) Fluxless ion beam soldering process
JPS6080216A (en) Method for epitaxial growth by molecular beam
US2970896A (en) Method for making semiconductor devices
JPS5983766A (en) Vacuum evaporation deposition by electron gun
JP2536472B2 (en) Solid phase growth method for polycrystalline semiconductor film
JPH0311727A (en) Manufacture of semiconductor thin film
US3164499A (en) Method of providing alloy contacts on semi-conductor bodies
RU2076390C1 (en) Method for vacuum cooling of semiconductor plates
JPS62195548A (en) Sample device and its production
JP2017053694A (en) Processing method
JPH048506B2 (en)
JP2790654B2 (en) Method for forming titanium dioxide film on plastic lens substrate
JP3098951B2 (en) Method for annealing GaAs substrate
JPH0136970B2 (en)
JPS5928334A (en) Semiconductor manufacturing apparatus
JPS6092607A (en) Electron beam annealing device
JPS63290255A (en) Surface treatment for aluminum material
JPS63233524A (en) Metallic film formation
JPH04236773A (en) Electron beam-heated vacuum deposition device
JPH0476203B2 (en)
JPS581074A (en) Evaporation source for vapor-deposition of metal
JPS5851509A (en) Manufacture of semiconductor device
JPS63222093A (en) Molecular beam epitaxy for compound semiconductor
JPS6096757A (en) Thin film vapor deposition apparatus