JPS62195548A - Sample device and its production - Google Patents

Sample device and its production

Info

Publication number
JPS62195548A
JPS62195548A JP61038550A JP3855086A JPS62195548A JP S62195548 A JPS62195548 A JP S62195548A JP 61038550 A JP61038550 A JP 61038550A JP 3855086 A JP3855086 A JP 3855086A JP S62195548 A JPS62195548 A JP S62195548A
Authority
JP
Japan
Prior art keywords
sample
holder
embedding
layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61038550A
Other languages
Japanese (ja)
Other versions
JPH0765952B2 (en
Inventor
Yoshinori Ikebe
池辺 義紀
Hifumi Tamura
田村 一二三
Eiichi Izumi
泉 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61038550A priority Critical patent/JPH0765952B2/en
Priority to PCT/JP1987/000116 priority patent/WO1990008312A1/en
Priority to US07/123,114 priority patent/US4833331A/en
Publication of JPS62195548A publication Critical patent/JPS62195548A/en
Publication of JPH0765952B2 publication Critical patent/JPH0765952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2204Specimen supports therefor; Sample conveying means therefore
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/142Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using a solid target which is not previously vapourised

Abstract

PURPOSE:To prevent the electrification of a sample, the splashing thereof by repulsion and the deterioration in quality, contamination, etc. by embedding the sample into a liquid metal or low melting metal having high purity and low vapor pressure and holding the same. CONSTITUTION:A small In lump 1a having 99.99% purity and 156 deg.C m.p. is melted by heating on a holder 2 consisting of SUS to form an In layer 1, then the holder 2 is cooled with air. The powder sample 4 of an insulator is thinly and uniformly sprinkled on the In layer 1 and after the layer is lightly pressed, the In layer 1 is solidified. The sample 4 is loaded together with the holder 2 to the device and an ion beam 5 is irradiated to the sample 4 to analyze the elements thereof. An electric charge 6 generated on the sample surface conducts to the In layer 1 and therefore, there is no disturbance of the analysis by the electrification of the sample itself. The deformation of the sample shape is obviated according to the above-mentioned method and since the In has the high purity and low vapor pressure, impurities and released gases are hardly generated and the contamination of the sample and the device is obviated.

Description

【発明の詳細な説明】 〔9IIBAの利用分野〕 不発明は試料装置およびその製造方法に係り、特にイオ
ンマイクロアナライザ(以下、IMA&略す)に好適な
試料装置およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of 9IIBA] The present invention relates to a sample device and a method for manufacturing the same, and particularly to a sample device suitable for an ion microanalyzer (hereinafter referred to as IMA) and a method for manufacturing the same.

〔発明の背景〕[Background of the invention]

IMA装置の試料富にItかれた、1!l繊留の粉末状
試料(表面が酸化妊れた粒子収金!44含む)Kイオン
ビームな照射すると、粉末状試料の帯域現象が現れ、相
互の斥力により試料が飛散してしまうといつ問題がある
I was impressed by the sample richness of the IMA device, 1! When irradiating a powdered sample (including particles with oxidized particles!44 on the surface) with a K ion beam, a band phenomenon appears in the powdered sample, and if the sample scatters due to mutual repulsion, it may cause problems. There is.

そこで、従来より、IMAm置に用いるための、杷l&
吻の粉末状試料2よび砿小ペレット状試料の前処理と取
りつけに関しては、種々の工夫中提案がなされている。
Therefore, conventionally, we have developed a
Various proposals have been made regarding the pretreatment and attachment of the proboscis powder sample 2 and the small pellet sample.

このような試料の前処理と取付けに関連した公知文献と
しては、例えば、染野、安盛著“表面分析=(1976
年講麟社発行)第241〜242頁がわるQ この文献では、板状(ペレット状)や粉末状の微細片試
料の前処理と取り付けに触れられており、特に粉末試料
の前処理と取りつけ方法として、(1)試料を両面接着
テープで止める方法、(2)試料をプレスしてベレット
状にする方法、および (3)試料を溶媒で溶解する方法、 の3方法があげられている。しかし、各々の方法には、
それぞれ次のような問題がある。
Known documents related to such sample pretreatment and mounting include, for example, Someno and Yasumori, "Surface Analysis = (1976)".
(Published by Nenkorinsha) Pages 241-242 Q This document mentions the pretreatment and attachment of plate-like (pellet-like) and powder-like micropiece samples, and especially the pretreatment and attachment of powder samples. Three methods are listed: (1) fixing the sample with double-sided adhesive tape, (2) pressing the sample into a pellet shape, and (3) dissolving the sample in a solvent. However, each method has
Each has the following problems.

(1)の方法ではテープに導電性を持たせるためにスプ
レーするが、試料が汚され、正確な情報が得られなくな
る。
In method (1), the tape is sprayed to make it conductive, but the sample gets contaminated and accurate information cannot be obtained.

(2)の方法は、目の細かい金属網に1試料粉末を均一
に薄く振りかけ、プレスしてベレットにするものである
が、微粉末試料の落ちこぼれや、プレスによる試料形状
の変形などがあり、好ましくない。
Method (2) involves sprinkling one sample powder evenly and thinly on a fine metal mesh and pressing it into a pellet. Undesirable.

(3)の方法では、溶媒により試料が変質したシ、汚さ
れたりする恐れがある。
In method (3), there is a risk that the sample may be denatured or contaminated by the solvent.

上記の外にも、粉末状試料などを銀ペーストで固定する
方法も考えられる。しかし、この方法でも、前記(3)
の方法と同様に、銀ペーストの#媒により試料の変質、
汚染を生じたシ、装置が汚されるという問題がある。
In addition to the above method, a method of fixing a powdered sample or the like with silver paste may also be considered. However, even with this method, the above (3)
Similar to the method of
There is a problem that contamination occurs and the equipment becomes dirty.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、純度が高く、蒸気圧の低い液体金属や
低融点金属などを用い、その中に被験試料を包埋状態で
保持することKより、被験試料の帯電を防止して試料の
斥力による飛散を無くすると共に1試料の変質、汚染や
装置の汚染などを実質上完全に防止することのできる試
料装置およびその製造方法を提供することKある。
The purpose of the present invention is to use a liquid metal or a low melting point metal with high purity and low vapor pressure, and to hold the test sample in an embedded state, thereby preventing the test sample from being electrostatically charged. It is an object of the present invention to provide a sample device and a method for manufacturing the same, which can eliminate scattering due to repulsive force and substantially completely prevent deterioration and contamination of a single sample and contamination of the device.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、試料ホルダの上面に低融点金属または
液体金属の層を形成し、前記層内に被験試料の微細片を
包埋した点にある。
A feature of the present invention is that a layer of low melting point metal or liquid metal is formed on the upper surface of the sample holder, and minute pieces of the test sample are embedded within the layer.

また、本発明の他の特徴は、試料ホルダの上面に低融点
金属または液体金属を棋せ、必要に応じては、これを加
熱溶融して液状とし、その表面を平滑化した後に、被験
試料の微細片を振りかけ、さらに適当な押え部材で押込
il!1′mシて、特にIMA装置に用いるに通した試
料装置を製造するようにした点にある。
Another feature of the present invention is that a low melting point metal or a liquid metal can be applied to the top surface of the sample holder, and if necessary, this can be heated and melted to make it into a liquid state, and the surface of the metal can be smoothed before being applied to the test sample. Sprinkle fine pieces of and press in with a suitable presser! The point is that a sample device specifically adapted for use in an IMA device has been manufactured.

〔発明の実施例〕[Embodiments of the invention]

以下に、図面を参照して本発明の実施例を伐明する。 Embodiments of the present invention will be explained below with reference to the drawings.

まず、第1実施例を第1図、第2図で説明する。First, a first embodiment will be explained with reference to FIGS. 1 and 2.

例えばSUS (ステンレススチール)で作られたホル
ダ2上に、MA[99,99%で、融点156℃のIn
の小さい塊1aを、第1図(人)に示すように置く。
For example, on the holder 2 made of SUS (stainless steel), MA [99.99%, melting point 156°C In
A small lump 1a of is placed as shown in FIG. 1 (person).

ヒータ3でホルダ2並びKInの塊lを加熱すると、I
nの塊1は溶融する。これを平らな金属板などで、第1
図(n) K示すように1表面が滑らかな金属層IKし
た後、必要に応じて試料ホルダ2を空冷する。
When the lump l of KIn arranged in the holder 2 is heated by the heater 3, I
Mass 1 of n is melted. Place this on a flat metal plate, etc.
As shown in Figure (n) K, after IKing a metal layer with a smooth surface, the sample holder 2 is air cooled if necessary.

次に、絶縁豐の粉末状試料4をInn属層l上に均一に
薄く撮りかけ、適当なローラまたは押え板で上から軽く
押した後金属層1を固化し、第2図に示すように1試J
P+4をIn金属層1内に押込んで包埋する。このよう
に前処理された試料4を、金属層1およびホルダ2と共
KIMA装置の試料室に装填する。
Next, a powdered sample 4 of insulating rattan is uniformly and thinly placed on the Inn metal layer 1, and after lightly pressing it from above with an appropriate roller or presser plate, the metal layer 1 is solidified, and the metal layer 1 is solidified as shown in FIG. 1st trial J
P+4 is pushed into the In metal layer 1 and embedded. The sample 4 thus pretreated is loaded together with the metal layer 1 and holder 2 into the sample chamber of the KIMA apparatus.

第2図のように1イオンビーム5を試料4に照射して元
素を分析する場合、イオン衝撃誘起導電現象(Ion 
Bombardment Induced Condu
ctivity)  により、イオノ照射時の絶Ill
蜜試料は導IE性を帝びる。
When analyzing elements by irradiating the sample 4 with one ion beam 5 as shown in Fig. 2, the ion bombardment induced conduction phenomenon (Ion
Bombardment Induced Condu
ctivity), there is no risk of failure during ion irradiation.
Honey samples have high IE conductivity.

しかし、本実施例によれば、試料40表面に生じた電荷
6は、In金属層1へ伝導するので、試料4自体が#電
して分析が妨害されることはなくなる。
However, according to this embodiment, the charges 6 generated on the surface of the sample 40 are conducted to the In metal layer 1, so that the sample 4 itself is not charged and the analysis is not disturbed.

本実施例により、欠のような効果がるることがわかった
According to this example, it was found that an effect similar to that of a chip can be obtained.

(1)絶縁物の粉末状試料をInm属層へ包埋するのに
、適当な押え部材で軽く押すだけで良く、試料形状が変
形しない。
(1) To embed a powdered sample of an insulator in an Inm metal layer, it is sufficient to press it lightly with a suitable holding member, and the shape of the sample does not deform.

(2) Inは純度が高く、蒸気圧が低いので、不純物
や放出ガスが殆んど無く、試料や装置を汚さない。
(2) In has high purity and low vapor pressure, so there are almost no impurities or released gases, and it does not contaminate samples or equipment.

また、試料の変質も少ない。In addition, there is little deterioration of the sample.

なお、以上では、ホルダ2の下部がら、ヒータ3で包諷
用金属を加熱、溶融する例について示したが、ホルダ2
の上方から、適宜の手段でInの塊1を直接に加熱溶融
する方法によっても、同様な効果が得られることはいう
までもない。
In the above, an example was shown in which the wrapping metal is heated and melted by the heater 3 from the lower part of the holder 2, but the holder 2
It goes without saying that similar effects can be obtained by directly heating and melting the In lump 1 from above using an appropriate means.

次に、本発明の第2実施例を第3図にしたがって述べる
。第3図は償小ペレット状試料4aなIn金薦層IK包
埋した状態を示す平面図である。七の他の構成および技
法は、第1図の場合と同じでらる0 なお、試料軸の深さ方向の分析をする場合、イオンビー
ムを試料4aより広い四辺形h b c d +7) 
11i域にわたって掃引させるのが望ましい。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a plan view showing a small pellet-like sample 4a embedded in an In gold layer IK. The other configurations and techniques of 7 are the same as those shown in Figure 1.0 Note that when analyzing the depth direction of the sample axis, the ion beam is shaped like a quadrilateral h b c d +7) wider than the sample 4a.
It is desirable to sweep over the 11i region.

このようKすれば、イオンビームによる試料のスパッタ
が試料!!面に対して必ずしも垂直に行なわれないこと
に起因する試料端面エツジの影響がなくなり、簡単な手
法で精度良い深さ方向の分析ができるようになる。
With K like this, the sputtering of the sample by the ion beam becomes the sample! ! This eliminates the influence of the edge of the sample end surface due to the fact that the analysis is not necessarily perpendicular to the surface, making it possible to perform accurate depth analysis with a simple method.

本発明の第3夾施例な第4図(A)、(B)  にした
がって述べる。本実施例は、ホルダ2aに包埋用金属を
貯溜するためのウェル7を設けたものである。
A third embodiment of the present invention will be described with reference to FIGS. 4(A) and 4(B). In this embodiment, a well 7 for storing embedding metal is provided in the holder 2a.

その他の構成および技法は第1図の場合と同じである。Other configurations and techniques are the same as in FIG.

前述の実施例と同様に、液体金属または低融点金属をウ
ェル7内に置いて液状とし、その上に粉末試料を載置し
、平坦な押え部材で軽く押して試料4を包埋する。
As in the previous embodiment, a liquid metal or a low melting point metal is placed in the well 7 to make it liquid, a powder sample is placed thereon, and the sample 4 is embedded by pressing lightly with a flat holding member.

この場合、試料4がベレット状のように、平坦面を有す
るものであれば、第4図(B)のよりにこの平坦面をウ
ェル7の上面に一致させることが容易である。
In this case, if the sample 4 has a flat surface, such as a pellet shape, it is easy to make this flat surface coincide with the upper surface of the well 7 as shown in FIG. 4(B).

このようKすれば、試料をホルダと共KIMA装置に装
填した場合に、試料の縦方向(イオンビーム軸方向)の
位置が決ま9、イオンビーム照射位置が定まるごとKな
るので、ホルダ2を移動したり、あるいは試料を交換し
たりするごとにイオンビーム調整をする手間が省けると
いう利点を生ずる。
By doing K in this way, when the sample is loaded together with the holder into the KIMA device, the vertical position of the sample (in the ion beam axis direction) is determined 9, and K is determined every time the ion beam irradiation position is determined, so the holder 2 is moved. This has the advantage that the effort of adjusting the ion beam every time the sample is changed or replaced is eliminated.

本発明の第4実施例を、#!5図にしたがって述べる。The fourth embodiment of the present invention is #! This will be explained according to Figure 5.

第5図は、ホルダ2に複数叫の瓦埋金属用ウェル7を設
けた場合の断面図である。その他の構成および技法は第
1図の場合と同じである。
FIG. 5 is a sectional view when the holder 2 is provided with a plurality of wells 7 for buried metal. Other configurations and techniques are the same as in FIG.

本実施例によれば、第3実施例による前述の効果に加え
てさらに、一度に多種類の試料を前処理し、取りつける
ことができるという利点がある。
According to this embodiment, in addition to the above-described effects of the third embodiment, there is an advantage that many kinds of samples can be pretreated and mounted at once.

以上では、包埋金属層としてInを用いたが、その他に
もHgl Ga、 Snl Bll Pbなどの低融点
(約200〜300℃以下)金属を用いることができる
In the above description, In was used as the embedded metal layer, but other low melting point metals (approximately 200 to 300° C. or lower) such as HglGa and SnlBllPb may also be used.

包埋金II4に必要な主な要件は (1)試料を包埋処理するときに液状であること、(2
)試料上の帯電を放電するのに十分な導電性があること (3)蒸気圧が低く、試料や装置を汚さないこと、(4
)試料と同じ成分を含まないこと、などである。
The main requirements for embedding gold II4 are (1) being liquid when embedding the sample;
) has sufficient conductivity to discharge the charge on the sample; (3) has low vapor pressure and does not contaminate the sample or equipment; (4)
) does not contain the same components as the sample, etc.

〔発明の効果〕〔Effect of the invention〕

本発明により、次のような効果があることがわかった。 It has been found that the present invention has the following effects.

(1)導電性金属層を試料包埋用として用いるので、ス
プレーを行なわなくてすみ、スプレーによる試料の汚れ
や変質が無い。
(1) Since the conductive metal layer is used for embedding the sample, there is no need for spraying, and there is no staining or deterioration of the sample due to spraying.

(2)試料を液体状の金属層に包埋するのKX@<押し
つけるだけで良く、試料形状の変形がない。
(2) To embed the sample in a liquid metal layer, just press it and there is no deformation of the sample shape.

(3)試料を溶媒で溶解しないので、試料が変質、汚染
しない。
(3) Since the sample is not dissolved in a solvent, the sample is not altered or contaminated.

(4)金属層は純度が高く、蒸気圧が低いので、不純吻
や放出ガスによる試料やW&置の汚れがない。
(4) Since the metal layer has high purity and low vapor pressure, there is no contamination of the sample or W& place due to impurity or emitted gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の試料装置を製造する工穆を説明するだ
めの正面図、第2図は本発明の試料装置の一実施例にイ
オンビームを照射し九状態を示すwRm図、第3図は金
属層にfg、埋された微小ベレット状試料に本発明を適
用した他の実施例の上面図、第4図および第5図はそれ
ぞれ、包埋用金属を備えた本発明のさらに他の実施例の
断面図である。 l・・・液体金属、低融点金属の金属層、2・・・ホル
ダ、3・・・ヒータ、4・・・絶縁物の粉末状試料およ
び微小ペレット状試料、5・・・イオンビーム、6・・
・帯電現象により生じる電荷、7・・・包埋用金属ウェ
ル 代理人弁理士  平 木 道 人 第4図 第5図
FIG. 1 is a front view for explaining the process for manufacturing the sample device of the present invention, FIG. 2 is a wRm diagram showing nine states when an embodiment of the sample device of the present invention is irradiated with an ion beam, and FIG. The figure is fg in the metal layer, a top view of another embodiment in which the present invention is applied to an embedded micro-bellet-shaped sample, and FIGS. FIG. l...Liquid metal, metal layer of low melting point metal, 2...Holder, 3...Heater, 4...Insulating powder sample and minute pellet sample, 5...Ion beam, 6・・・
・Electric charge caused by electrostatic phenomenon, 7...Michihito Hiraki, patent attorney representing metal well for embedding Figure 4 Figure 5

Claims (8)

【特許請求の範囲】[Claims] (1)ホルダと、前記ホルダの上面に固着された包埋用
金属層と、前記包埋用金属層内に、少なくともその一部
が露出する状態で包埋された被験試料とよりなることを
特徴とする試料装置。
(1) It consists of a holder, an embedding metal layer fixed to the upper surface of the holder, and a test sample embedded in the embedding metal layer with at least a portion thereof exposed. Characteristic sample device.
(2)包埋用金属層は、低融点金属および液体金属のい
ずれかであることを特徴とする前記特許請求の範囲第1
項記載の試料装置。
(2) The embedding metal layer is either a low melting point metal or a liquid metal.
Sample device described in section.
(3)ホルダはその上面に少なくとも1つのウェルを形
成され、前記各ウェルに包埋用金属層が設けられたこと
を特徴とする前記特許請求の範囲第1項または第2項記
載の試料装置。
(3) The sample device according to claim 1 or 2, wherein the holder has at least one well formed on its upper surface, and each well is provided with an embedding metal layer. .
(4)被験試料の表面が、ウェルの上面によつて規定さ
れる平面と同一平面内にあることを特徴とする前記特許
請求の範囲第3項記載の試料装置。
(4) The sample device according to claim 3, wherein the surface of the test sample is in the same plane as the plane defined by the upper surface of the well.
(5)被験試料は絶縁性であることを特徴とする前記特
許請求の範囲第1項ないし第4項のいずれかに記載の試
料装置。
(5) The sample device according to any one of claims 1 to 4, wherein the test sample is insulating.
(6)ホルダの上面に過量の包埋用液状金属を載せてそ
の表面を平面状にならす工程と、前記包埋用液状金属の
表面に被験試料の微細片を振りかける工程と、前記微細
片を包埋用液状金属に向つて押しつけて包埋状態とする
工程とよりなることを特徴とする試料装置の製造方法。
(6) A step of placing an excessive amount of liquid metal for embedding on the top surface of the holder to make the surface flat, a step of sprinkling fine pieces of the test sample on the surface of the liquid metal for embedding, and a step of sprinkling the fine pieces of the test sample on the surface of the liquid metal for embedding. A method for manufacturing a sample device, comprising the step of pressing the sample device against a liquid metal for embedding to bring it into an embedding state.
(7)包埋用金属は低融点金属であり、ホルダの上面に
載置された後加熱溶融されることを特徴とする前記特許
請求の範囲第6項記載の試料装置の製造方法。
(7) The method for manufacturing a sample device according to claim 6, wherein the embedding metal is a low melting point metal, and is heated and melted after being placed on the upper surface of the holder.
(8)被験試料は絶縁性であることを特徴とする前記特
許請求の範囲第6項または第7項記載の試料装置の製造
方法。
(8) A method for manufacturing a sample device according to claim 6 or 7, wherein the test sample is insulating.
JP61038550A 1986-02-24 1986-02-24 Sample holding method and device Expired - Lifetime JPH0765952B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61038550A JPH0765952B2 (en) 1986-02-24 1986-02-24 Sample holding method and device
PCT/JP1987/000116 WO1990008312A1 (en) 1986-02-24 1987-02-23 Holding method for specimen of electric insulation
US07/123,114 US4833331A (en) 1986-02-24 1987-02-23 Method of holding an electrically insulating sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61038550A JPH0765952B2 (en) 1986-02-24 1986-02-24 Sample holding method and device

Publications (2)

Publication Number Publication Date
JPS62195548A true JPS62195548A (en) 1987-08-28
JPH0765952B2 JPH0765952B2 (en) 1995-07-19

Family

ID=12528398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61038550A Expired - Lifetime JPH0765952B2 (en) 1986-02-24 1986-02-24 Sample holding method and device

Country Status (2)

Country Link
JP (1) JPH0765952B2 (en)
WO (1) WO1990008312A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101047215B1 (en) 2009-07-30 2011-07-06 정태승 Manufacturing method of conductive cold mounting specimen for scanning electron microscope (SEM)
JP2013224927A (en) * 2012-03-23 2013-10-31 Sumika Chemical Analysis Service Ltd Observation sample, observation sample preparation method, and observation method
JP2016075525A (en) * 2014-10-03 2016-05-12 株式会社トクヤマ Method for preparing sample for observing particles with electron microscope and method for observing particles with electron microscope
JP2017102081A (en) * 2015-12-04 2017-06-08 住友金属鉱山株式会社 Ore observation sample for mineral particle analyzer and method for preparing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196354U (en) * 1981-06-09 1982-12-13
JPS5889847U (en) * 1981-12-11 1983-06-17 三菱重工業株式会社 Sample for film observation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5063077U (en) * 1973-10-11 1975-06-09

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196354U (en) * 1981-06-09 1982-12-13
JPS5889847U (en) * 1981-12-11 1983-06-17 三菱重工業株式会社 Sample for film observation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101047215B1 (en) 2009-07-30 2011-07-06 정태승 Manufacturing method of conductive cold mounting specimen for scanning electron microscope (SEM)
JP2013224927A (en) * 2012-03-23 2013-10-31 Sumika Chemical Analysis Service Ltd Observation sample, observation sample preparation method, and observation method
JP2016075525A (en) * 2014-10-03 2016-05-12 株式会社トクヤマ Method for preparing sample for observing particles with electron microscope and method for observing particles with electron microscope
JP2017102081A (en) * 2015-12-04 2017-06-08 住友金属鉱山株式会社 Ore observation sample for mineral particle analyzer and method for preparing the same

Also Published As

Publication number Publication date
WO1990008312A1 (en) 1990-07-26
JPH0765952B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
TWI373791B (en) Proximity deposition
JPS5933267B2 (en) Failure analysis method for semiconductor devices
JPS62195548A (en) Sample device and its production
DE3575496D1 (en) PHOTORESIST EXPOSURE METHOD AND DEVICE USING AN ELECTRON BEAM WHOSE ENERGY AND CHARGE ARE CONTROLLED.
JPS62284256A (en) Preparation of sample for laser ionization mass spectrometer and sample base
TW306033B (en) Method of removing charge effect and thermal damage of charged particle microscope
JP2547103B2 (en) Antistatic device
JPS5917193B2 (en) sputtering equipment
US4833331A (en) Method of holding an electrically insulating sample
WO2023157352A1 (en) Specimen support, ionization method, and mass spectrometry method
JPH02298031A (en) Removal of foreign body
JP2890431B2 (en) Superconducting circuit manufacturing method
JP2002116162A (en) Simple antistatic method for xps to insulating specimen
JPH09264823A (en) Sample holding substrate and method therefor
JP3348223B2 (en) Substrate processing method and substrate processing apparatus
JPH0244193Y2 (en)
JPH1092715A (en) Electrostatic chucking device and electron-beam lithography device using the same
JPS5928631B2 (en) Vapor deposition equipment
JPH0415911A (en) Substrate heating device of molecular beam epitaxy system
JPS63241161A (en) Vacuum deposition method
JPS6080216A (en) Method for epitaxial growth by molecular beam
JPH04172245A (en) Lc/api mass analyzer
JPS5897825A (en) Ion beam deposition method
JP2001140072A (en) Substrate holding device
JPH06103953A (en) Thin film forming method using metal ions and its device