JP2016075525A - Method for preparing sample for observing particles with electron microscope and method for observing particles with electron microscope - Google Patents

Method for preparing sample for observing particles with electron microscope and method for observing particles with electron microscope Download PDF

Info

Publication number
JP2016075525A
JP2016075525A JP2014204997A JP2014204997A JP2016075525A JP 2016075525 A JP2016075525 A JP 2016075525A JP 2014204997 A JP2014204997 A JP 2014204997A JP 2014204997 A JP2014204997 A JP 2014204997A JP 2016075525 A JP2016075525 A JP 2016075525A
Authority
JP
Japan
Prior art keywords
particles
electron microscope
tin
observation
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014204997A
Other languages
Japanese (ja)
Other versions
JP6392622B2 (en
Inventor
祐 三嶋
Yu Mishima
祐 三嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2014204997A priority Critical patent/JP6392622B2/en
Publication of JP2016075525A publication Critical patent/JP2016075525A/en
Application granted granted Critical
Publication of JP6392622B2 publication Critical patent/JP6392622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a preparation method of an observation sample allowing particles with a specific average particle diameter which makes observation with an electron microscope difficult to be easily observed with the electron microscope, and a method for observing the particles with the electron microscope by using the observation sample.SOLUTION: Particles 1 whose average particle diameter is more than 100 nm and equal to or less than 100 μm are pressed together with tin 2, so that an observation sample having a part in which the particles 1 and the tin 2 contact with each other is prepared. The observation sample is observed with an electron microscope, so that the particles 1 are observed.SELECTED DRAWING: Figure 1

Description

本発明は、粒子を電子顕微鏡で観察するための観察用試料の新規な作製方法であり、また、該測定試料を用いた粒子の新規な電子顕微鏡観察方法に関する。   The present invention relates to a novel method for producing an observation sample for observing particles with an electron microscope, and also relates to a novel electron microscope observation method for particles using the measurement sample.

粉末試料(粒子)の形状や内部構造を確認するには、電子顕微鏡による観察が行われる。   In order to confirm the shape and internal structure of the powder sample (particles), observation with an electron microscope is performed.

例えば、透過型電子顕微鏡(以下、TEMという)による粒子の観察では、電子線が透過するために観察対象試料の厚みはおおよそ100nm以下の厚みが必要となる。そのため、有機薄膜を有するシートメッシュ上に粉末試料を分散固定する方法が開示されている(例えば、特許文献1参照)。この方法では、電子線の透過性の観点から、粉末試料の粒径が100nm以下と微小であるか、電子線が透過するに十分に薄い試料端部等に限り観察が可能であった。   For example, in observation of particles with a transmission electron microscope (hereinafter referred to as TEM), the thickness of the observation target sample needs to be approximately 100 nm or less because an electron beam is transmitted. Therefore, a method of dispersing and fixing a powder sample on a sheet mesh having an organic thin film has been disclosed (see, for example, Patent Document 1). In this method, from the viewpoint of electron beam transparency, it was possible to observe only the end of the sample where the particle size of the powder sample was as small as 100 nm or less or thin enough to allow the electron beam to pass through.

また、走査型電子顕微鏡(以下、SEMという)による粒子の観察では、導電テープや適当な試料台の上に粒子をばら撒き、観察する方法が一般的である。この方法では、粒子表面の粗さや粒径の評価は可能であるが、粒子内部の情報を得ることができなかった。   Further, in the observation of particles with a scanning electron microscope (hereinafter referred to as SEM), a method is generally used in which particles are dispersed on a conductive tape or a suitable sample stage and observed. In this method, the roughness of the particle surface and the particle size can be evaluated, but information inside the particle cannot be obtained.

そのため、粒径が100nmを超える粒子のTEMによる観察では試料の薄片化が必要であり、SEMによる粒子の内部構造の観察には、断面を露出させるための加工が必要であった。   Therefore, thinning of the sample is necessary for TEM observation of particles having a particle size exceeding 100 nm, and processing for exposing the cross section is necessary for observation of the internal structure of the particles by SEM.

近年、GaイオンやArイオンを照射することで試料形状を加工できるイオンエッチング装置(イオンビームを照射する装置)が開発され、粉末試料の電子顕微鏡観察用試料作製に用いられている。粉末試料のTEM観察用試料作製では、ガリウム(Ga)イオンの照射により対象物の任意の部分の薄膜化が可能な集束イオンビーム(Focused Ion Beam)加工装置(以下、FIB装置という)が用いられることが多い。また、粉末試料のSEM観察では、FIB装置だけでなく、アルゴン(Ar)イオンの照射により、平滑な断面を作製するイオンミリング装置が用いられる。どちらの試料作製方法においても、粒径が十分に大きく、例えば、粒子径が100μmを超える粒子であれば、一粒子をピンセットで摘む等単独で取り扱えるため、無機バルク試料と同様に試料作製が可能である。   In recent years, an ion etching apparatus (an apparatus that irradiates an ion beam) capable of processing a sample shape by irradiation with Ga ions or Ar ions has been developed and used for preparing a sample for observing a powder sample with an electron microscope. In preparation of a TEM observation sample of a powder sample, a focused ion beam processing apparatus (hereinafter referred to as an FIB apparatus) capable of thinning an arbitrary part of an object by irradiation with gallium (Ga) ions is used. There are many cases. In SEM observation of a powder sample, not only an FIB apparatus but also an ion milling apparatus that produces a smooth cross section by irradiation with argon (Ar) ions is used. In either sample preparation method, if the particle size is sufficiently large, for example, if the particle size exceeds 100 μm, one particle can be handled by itself, such as picking with a tweezers, so that sample preparation is possible in the same way as for inorganic bulk samples It is.

これに対して、単独粒子としては取り扱えず、且つ粒径が100nmを超える粒子では、この粒子を直接電子顕微鏡で観察した場合、TEM観察では電子線が透過せず、SEM観察では、表面形状しか観察できない。そのため、通常は、粒子を固定するために樹脂等に混合し、この混合物をイオンエッチング装置により加工して、得られた加工物を観察している。この加工物を電子顕微鏡で観察することにより粒子の形状、内部構造を観察することができる。   On the other hand, in the case of particles that cannot be handled as single particles and have a particle size exceeding 100 nm, when these particles are directly observed with an electron microscope, an electron beam is not transmitted in TEM observation, and only surface shape is observed in SEM observation. I can't observe. Therefore, usually, the particles are mixed with a resin or the like to fix the particles, the mixture is processed by an ion etching apparatus, and the obtained workpiece is observed. The shape and internal structure of the particles can be observed by observing the processed product with an electron microscope.

ところで、電池材料や半導体材料などで使用される粒子は、耐熱性、耐水性等の性能を向上させるために、粒子表面に様々な処理を施し、粒子表面に表面処理層を形成させることがある。求める機能の発現には、表面処理層は所望の厚みで均一となることが望ましく、表面処理層の構造を詳細に評価することが重要となる。   By the way, in order to improve performance such as heat resistance and water resistance, particles used in battery materials and semiconductor materials may be subjected to various treatments to form a surface treatment layer on the particle surface. . For the expression of the desired function, it is desirable that the surface treatment layer be uniform with a desired thickness, and it is important to evaluate the structure of the surface treatment layer in detail.

表面処理層の構造を観察するに当たり、上記樹脂に混合する観察用試料作製方法では、表面処理層が有機物であった場合、樹脂中での硬化時に、表面処理層の溶出、剥離等が起こることがあり、表面処理層の厚みを適切に評価することができなかった。そのため、有機物によって表面が被覆された粒子の観察では、表面処理層の構造に影響を与えることなく、粒子を固定する方法が望まれていた。   In observing the structure of the surface treatment layer, in the sample preparation method for observation mixed with the above resin, if the surface treatment layer is organic, elution or peeling of the surface treatment layer occurs during curing in the resin. Thus, the thickness of the surface treatment layer could not be properly evaluated. Therefore, in the observation of particles whose surface is coated with an organic substance, a method for fixing the particles without affecting the structure of the surface treatment layer has been desired.

これに対して、樹脂のような有機高分子材料ではないもので粒子を固定化して粒子の形状、断面を測定する方法が検討されている。具体的には、粒子状の微小隕石の分析の際に、粉末試料(粒子状の微小隕石)と金とを圧接させ、これをFIB装置により加工し、透過型電子顕微鏡(TEM)で観察する方法が知られている(例えば、非特許文献1参照)。この方法によれば、金を用いることで成分が未知である隕石(粒子)であっても、変質を回避してTEM観察することができる。また、粉末試料の傍に金属が存在していることになるため、FIB装置による加工前に必要な導電処理を省くことができ、非常によい試料作製方法である。   On the other hand, a method of immobilizing particles with a material that is not an organic polymer material such as a resin and measuring the shape and cross section of the particles has been studied. Specifically, when analyzing particulate micrometeorites, a powder sample (particulate micrometeorite) and gold are pressed into contact with each other, processed by an FIB apparatus, and observed with a transmission electron microscope (TEM). The method is known (for example, refer nonpatent literature 1). According to this method, even if it is a meteorite (particle) whose component is unknown by using gold, alteration can be avoided and TEM observation can be performed. In addition, since metal is present near the powder sample, it is possible to omit a necessary conductive treatment before processing by the FIB apparatus, which is a very good sample preparation method.

しかしながら、包埋金属として金は非常に高価であり、日常的に用いることは困難である。さらに、金は常温で比較的硬い金属であるため、微小隕石(粒子)と金とを圧接させるには、焼きなましを行うなど、試料作製に多くの手間と時間がかかっており、改善の余地があった。また、焼きなましを行うと、例えば、有機物で表面処理された粒子などは、その表面の有機物が変質してしまうおそれがあり、様々な粒子へ適用するという点においても、更なる改良が必要であった。   However, gold as an embedded metal is very expensive and difficult to use on a daily basis. Furthermore, since gold is a relatively hard metal at room temperature, it takes a lot of labor and time to prepare the sample, such as annealing, in order to press the micro meteorite (particles) into gold, and there is room for improvement. there were. Further, when annealing is performed, for example, particles surface-treated with organic matter may change the organic matter on the surface, and further improvement is necessary in terms of application to various particles. It was.

特開平2−262226号公報JP-A-2-262226

野口 高明、初期太陽系における鉱物−水−有機物相互作用 惑星と生命の起源物質初期進化 平成26年8月22日研削 インターネット<URL:http://www-sys.eps.s.u-tokyo.ac.jp/~nagahara-kaken/members/noguchi/index.html>Takaaki Noguchi, Mineral-Water-Organic Interactions in the Early Solar System Early Evolution of Planetary and Life Origins August 22, 2014 Grinding Internet <URL: http://www-sys.eps.su-tokyo.ac.jp /~nagahara-kaken/members/noguchi/index.html>

従って、本発明の目的は、従来の方法では電子顕微鏡での観察が難しかった特定の粒子径を有する粒子を容易に電性顕微鏡で観察できる観察用試料の作製方法と、該粒子の観察方法とを提供することにある。特に、樹脂包埋により構造破壊が起こりやすい有機物による表面処理が施された粒子であっても、内部構造及び表面処理層に損傷がない電子顕微鏡観察用試料の作製方法と、該粒子の観察方法とを提供することにある。   Therefore, an object of the present invention is to provide a method for preparing an observation sample that can easily observe particles having a specific particle diameter that have been difficult to observe with an electron microscope by a conventional method, and a method for observing the particles. Is to provide. In particular, a method for preparing an electron microscope observation sample in which the internal structure and the surface treatment layer are not damaged even if the particles are subjected to a surface treatment with an organic substance that easily undergoes structural destruction due to resin embedding, and an observation method for the particles And to provide.

本発明者等は、上記課題を解決するため、鋭意検討を行った。そして、本発明者等は、金に代わる、安価で加工性のよい材料を探索した結果、常温において金よりも軟らかい錫を用いることにより上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、第1の発明は、粒子を電子顕微鏡で観察するために作製する観察用試料の作製方法であって、該粒子の平均粒子径が100nmを超え100μm以下であり、該粒子と錫とを圧接することにより、該粒子と錫とが接触した部分を有する観察用試料を作製する方法である。
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies. As a result of searching for materials that are inexpensive and have good workability instead of gold, the present inventors have found that the above problems can be solved by using tin that is softer than gold at room temperature, and the present invention has been completed. It was.
That is, the first invention is a method for producing an observation sample that is produced for observing particles with an electron microscope, wherein the average particle diameter of the particles is more than 100 nm and not more than 100 μm. This is a method for producing an observation sample having a portion where the particles and tin are in contact with each other by pressure welding.

第1の発明においては、前記粒子が無機粒子である場合に好適に使用できる。その中でも、前記粒子の表面が有機物で被覆された無機粒子である場合、表面の有機物を変質(構造破壊等)させることなく、該粒子の観察ができるため、非常に有用な方法となる。
さらに、第1の発明においては、観察用試料は錫上に前記粒子から形成される層を含み、該層の最も厚い部分の厚みは前記粒子の平均粒子径の3倍以上であることが好ましい。こうすることにより、粒子の観察可能な視野数を増やすことができる。
In 1st invention, when the said particle | grain is an inorganic particle, it can be used conveniently. Among them, when the surface of the particle is an inorganic particle coated with an organic substance, the particle can be observed without altering the organic substance on the surface (structural destruction or the like), which is a very useful method.
Furthermore, in the first invention, the observation sample includes a layer formed of the particles on tin, and the thickness of the thickest part of the layer is preferably 3 times or more the average particle diameter of the particles. . By doing so, the number of visual fields in which particles can be observed can be increased.

また、第1の発明においては、前記観察用試料が、錫上に前記粒子を圧接させた圧接物にイオンビームを照射して断面を露出させたものである場合に優れた効果を発揮する。すなわち、錫上に粒子を固定化するため、イオンビームによって観察用試料断面(粒子断面)を容易に露出させることができる。   In the first invention, an excellent effect is exhibited when the observation sample is obtained by irradiating an ion beam on a pressure-contacted material in which the particles are pressure-contacted on tin to expose a cross section. That is, since the particles are fixed on the tin, the observation sample cross section (particle cross section) can be easily exposed by the ion beam.

第2の発明は、上述した方法にて作製した電子顕微鏡観察用試料を、電子顕微鏡にて観察する方法である。   2nd invention is the method of observing the sample for electron microscope observation produced with the method mentioned above with an electron microscope.

本発明によれば、粒子と錫とを圧接して観察用試料を作製するため、容易に粒子を固定化できるため、該粒子の電子顕微鏡観察が容易となる。具体的には、直接観察しようとすると電子線が透過せず内部構造が観察できなかった平均粒子径が100nmを超え100μm以下の粒子であっても、錫に圧接した観察用試料とするため、該観察用試料を容易に加工することができる。例えば、該観察用試料は、イオンビームを照射することによって容易に断面を露出することができるため、粒子の電子顕微鏡観察が容易となる。   According to the present invention, since the sample for observation is prepared by press-contacting the particle and tin, the particle can be easily fixed, so that the electron microscope can be easily observed. Specifically, in order to obtain an observation sample in pressure contact with tin even if the average particle diameter is over 100 nm and not more than 100 μm, the electron beam does not pass through and the internal structure cannot be observed when directly observing. The observation sample can be easily processed. For example, since the cross section of the observation sample can be easily exposed by irradiating an ion beam, observation of particles with an electron microscope is facilitated.

さらに、錫を用いることにより、平均粒子径が100nmを超え100μm以下であり、かつ有機物で表面処理された粒子であっても、内部構造及び表面処理層に損傷がなく、容易に電子顕微鏡観察用試料が作製できる。その結果、該電子顕微鏡観察試料を測定することにより、該粒子の内部のみならず、粒子表面の表面処理層の構造を容易に観察することができる。   Further, by using tin, even if the average particle diameter is more than 100 nm and not more than 100 μm and the particles are surface-treated with an organic substance, the internal structure and the surface treatment layer are not damaged, and can be easily observed with an electron microscope. A sample can be prepared. As a result, by measuring the electron microscope observation sample, not only the inside of the particle but also the structure of the surface treatment layer on the particle surface can be easily observed.

粉末試料と錫からなる圧接物の概念図Conceptual diagram of a pressure welding object consisting of a powder sample and tin 実施例1で測定したラウリルリン酸処理したAlN粉末(表面を有機物で処理した粉末)のTEM写真TEM photograph of AlN powder treated with lauryl phosphate (powder whose surface was treated with organic matter) measured in Example 1

本発明は、粒子を電子顕微鏡で観察するために作製する観察用試料の作製方法である。そして、該粒子の平均粒子径は100nmを超え100μm以下であり、本発明は、該粒子と錫とを圧接することにより、該粒子と錫とが接触した部分を有する観察用試料を作製するものである。そして、該観察用試料を電子顕微鏡で観察することにより、該粒子の形状(表面の状態等)、内部構造を電子顕微鏡で観察する方法である。以下、順を追って本発明について説明する。   The present invention is a method for producing an observation sample prepared for observing particles with an electron microscope. And the average particle diameter of this particle | grain exceeds 100 nm and is 100 micrometers or less, and this invention produces the sample for observation which has the part which this particle | grain and tin contacted by press-contacting this particle | grain and tin. It is. And it is the method of observing the shape (surface state etc.) and internal structure of this particle | grain with an electron microscope by observing this observation sample with an electron microscope. Hereinafter, the present invention will be described in order.

(測定の対象となる粒子)
本発明において、観察の対象となる粒子は、平均粒子径が100nmを超え100μm以下のものである。平均粒子径が100nmを超え100μm以下の粒子は、そのまま電子顕微鏡で観察すると電子線が透過せず、粒子内部の構造が観察できない問題があったり、そのまま断面を露出させようとした場合、取扱いが困難であるため、本発明の方法が好適に適用できる。そのため、観察の対象となるより好適な粒子は、平均粒子径が100nmを超え50μm以下のものである。さらに、観察方法に適した粒子径としては、SEM観察を行うには、多くの粒子を観察できることから、平均粒子径が100nmを超え10μm以下である粒子が好ましい。また、TEM観察を行うには、TEM観察の観察領域を考慮すると、平均粒子径が500nm以上5μm以下である粒子が好ましい。
(Particles to be measured)
In the present invention, the particles to be observed are those having an average particle diameter of more than 100 nm and 100 μm or less. Particles with an average particle diameter of more than 100 nm and not more than 100 μm cannot be observed with an electron microscope as they are, and there is a problem that the internal structure of the particles cannot be observed. Since it is difficult, the method of the present invention can be suitably applied. Therefore, more preferable particles to be observed are those having an average particle diameter of more than 100 nm and 50 μm or less. Furthermore, as a particle size suitable for the observation method, in order to perform SEM observation, since many particles can be observed, particles having an average particle size of more than 100 nm and 10 μm or less are preferable. In order to perform TEM observation, in consideration of the observation region of TEM observation, particles having an average particle diameter of 500 nm or more and 5 μm or less are preferable.

なお、本発明において、平均粒子径とは、レーザー回折散乱法により測定した粒度分布(体積分布)の中間値に対応する球相当径(直径)を意味するものである。レーザー回折散乱法による粒度分布の測定は、市販のレーザー回折散乱式粒度分布測定装置(例えば日機装(株)製MT3300)によって行うことができる。   In addition, in this invention, an average particle diameter means the spherical equivalent diameter (diameter) corresponding to the intermediate value of the particle size distribution (volume distribution) measured by the laser diffraction scattering method. The particle size distribution can be measured by the laser diffraction scattering method using a commercially available laser diffraction scattering type particle size distribution measuring device (for example, MT3300 manufactured by Nikkiso Co., Ltd.).

また、粒子の粒度分布がシャープである、例えば、平均粒径がRとしたとき、試料に含まれる粒子の最小粒径が0.4R以上、最大粒径が2.5R以下を満足する粒子を対象とする場合に、本発明の方法は好適に採用できる。粒径が0.4R〜2.5Rの粒子は、錫と圧接した際に粒子と粒子間に隙間が多くなるため、粒子の表面状態(断面を露出した際の表面の状態を含む)を観察するための視野が増えるため好適である。   In addition, the particle size distribution of the particles is sharp. For example, when the average particle size is R, particles satisfying a minimum particle size of 0.4R or more and a maximum particle size of 2.5R or less included in the sample. In the case of an object, the method of the present invention can be suitably employed. Particles having a particle size of 0.4R to 2.5R have a large gap between the particles when pressed with tin, so the surface state of the particles (including the surface state when the cross section is exposed) is observed. This is preferable because the field of view for doing so increases.

該粒子は、平均粒子径が100nmを超え100μm以下の範囲である要件を満足すれば、特に制限されるものではなく、有機粒子(粉末)、無機粒子(粉末)であってもよい。中でも、表面を有機物で被覆した無機粒子は、樹脂で包埋する際の問題等があるため、本発明の対象物として好適である。ただし、錫の粒子は、圧接させる錫と一体化されないようなものに限られる。   The particles are not particularly limited as long as they satisfy the requirement that the average particle diameter is in the range of more than 100 nm and not more than 100 μm, and may be organic particles (powder) or inorganic particles (powder). Among these, inorganic particles whose surfaces are coated with an organic substance have a problem in embedding with a resin and are suitable as an object of the present invention. However, the tin particles are limited to those that are not integrated with the tin to be pressed.

無機粒子を例示すれば、樹脂に混合される無機フィラーを挙げることができ、具体的にはシリカ、アルミナ、III族窒化物、タルク、マイカ、炭酸カルシウム等の公知のものが挙げられる。その中でも、表面を有機物、例えば、界面活性剤のようなアルキルスルホン酸、アルキルホスホン酸、アルキルリン酸、アルキルアンモニウム、アルキルイミダゾリウムならびにこれらの塩や、有機基を有するシランカップリング剤のようなものが挙げられる。なお、表面が上記有機物で被覆された無機粒子は、有機物で被覆された状態の平均粒子径が100nmを超え100μm以下の範囲を満足すればよい。   Examples of the inorganic particles include inorganic fillers mixed with the resin, and specific examples thereof include silica, alumina, group III nitride, talc, mica, calcium carbonate, and the like. Among them, the surface is organic, for example, alkyl sulfonic acid such as surfactant, alkyl phosphonic acid, alkyl phosphoric acid, alkyl ammonium, alkyl imidazolium and their salts, and silane coupling agents having organic groups. Things. In addition, the inorganic particles whose surfaces are coated with the organic material may satisfy an average particle diameter in the state of being coated with the organic material in a range of more than 100 nm and 100 μm or less.

(錫)
本発明において、上記粒子と圧接させる錫は、工業用に市販されているものであれば、いずれも使用できるが、純度が高いほど好適である。これは錫と粉末との化学反応による変性を防ぐためである。具体的な純度としては、99.99%以上であるものが好ましい。
(tin)
In the present invention, any tin can be used as long as it is commercially available for industrial use, but the higher the purity, the better. This is to prevent modification due to a chemical reaction between tin and powder. The specific purity is preferably 99.99% or more.

錫は、常温においてブリネル硬さが5.3と非常に柔らかく、低い圧力によって粒子と圧接することができる。そのため、粒子自体が壊れ易かったり、変形し易い有機粒子・無機粒子であったとしても、固定化が容易となり、電子顕微鏡用観察試料(例えば、断面を露出させたもの)を作製し易い。さらには、表面が有機物で被覆された無機粒子であっても、その有機物層の構造を変形・変質させることなく、電子顕微鏡用観察試料を作製できる。   Tin has an extremely soft Brinell hardness of 5.3 at room temperature, and can be brought into pressure contact with particles at a low pressure. Therefore, even if the particles themselves are easily broken or easily deformable organic particles / inorganic particles, fixation becomes easy, and it is easy to produce an observation sample for an electron microscope (for example, one whose cross section is exposed). Furthermore, even if the surface is an inorganic particle coated with an organic material, an observation sample for an electron microscope can be produced without deforming or altering the structure of the organic material layer.

加えて、粒子と錫とを圧接することで、粒子の近傍に錫が存在するようになり、FIB装置による加工に先立ち実施する導電処理を省くことができる。また、錫を使用して電子顕微鏡観察試料を作製することにより、イオンミリング装置を用いて露出させた断面をSEMによって観察する際にも、導電処理を省くことが可能である。これにより蒸着等を用いた導電処理時に発生する表面処理層へのダメージを除くことができる。   In addition, by press-contacting the particles and tin, tin is present in the vicinity of the particles, and the conductive treatment performed prior to processing by the FIB apparatus can be omitted. In addition, by preparing an electron microscope observation sample using tin, it is possible to omit the conductive treatment when observing the exposed cross section with an ion milling apparatus using an SEM. As a result, damage to the surface treatment layer that occurs during the conductive treatment using vapor deposition or the like can be eliminated.

粒子と圧接させる錫の形状は、特に制限されるものではないが、圧接前の錫の厚みがあまりに薄い場合、得られる圧接物が非常に薄くなり、操作性が低下するため、ある程度の厚みを有するもの使用することが好ましい。例えば、錫のインゴットから切り分けた数mm程度の錫片や、直径数mm程度の球状の錫を用いることが好ましい。具体的には、直径1mm〜5mmの大きさである球状の錫を粒子との圧接に使用することが好ましい。   The shape of the tin that is pressed into contact with the particles is not particularly limited, but if the thickness of the tin before pressure welding is too thin, the resulting pressure contact is very thin and the operability is reduced. It is preferable to use what it has. For example, it is preferable to use a tin piece of about several mm cut from a tin ingot or spherical tin of about several mm in diameter. Specifically, it is preferable to use spherical tin having a diameter of 1 mm to 5 mm for pressure contact with the particles.

(粒子と錫とを圧接して圧接物(観察用試料)を作製する方法)
粒子と錫とを圧接して圧接物を作製する方法は、特に制限されるものではない。具体的には、錫と粒子とを接触させ、その接触物に圧力をかければよい。具体的には、接触物に垂直に圧力をかける機構を有し、錫よりも硬く、平滑な材料によって圧接できる装置を使用することができる。
(Method of making pressure contact (sample for observation) by pressing particles and tin)
There is no particular limitation on the method for producing the press-contacted product by press-contacting the particles and tin. Specifically, it is sufficient that tin and particles are brought into contact with each other and pressure is applied to the contact object. Specifically, it is possible to use an apparatus that has a mechanism that applies pressure perpendicular to the contact object and that can be pressed by a smooth material that is harder than tin.

具体的に圧接物を作製する方法を例示すると、以下の方法が挙げられる。先ず、球状の錫を使用する場合、圧接する際には事前に錫表面を、例えば、油圧プレス機によって平坦化する。次いで、その平坦化した錫上に粒子を乗せ、再び油圧プレス機によって粒子の少なくとも一部を錫内に押し込む。この時の圧力は、粒子を錫に押し込めるに十分な圧力であればよい。錫を使用するため、小さな圧力で圧接物を作製できる。なお、この方法では、錫上に粒子の一部が接触した圧接物とするものであるが、錫と粒子とを混合するように圧接して、錫中に粒子が分散された圧接物を作製してもよい。   Specific examples of the method for producing the press contact include the following methods. First, when using spherical tin, the surface of the tin is flattened in advance by, for example, a hydraulic press machine before pressure welding. Next, the particles are placed on the flattened tin, and at least a part of the particles is pushed into the tin again by a hydraulic press. The pressure at this time may be a pressure sufficient to push the particles into tin. Since tin is used, it is possible to produce a pressure contact with a small pressure. Note that, in this method, a pressure-contact material in which a part of the particles is in contact with the tin is used, but the pressure-contact material in which the particles are dispersed in the tin is prepared by pressure-bonding so that the tin and the particles are mixed. May be.

圧接時の最適な圧力は、対象となる粒子の性質、形状、得られる圧接物の取扱い易さを考慮して、所望の形状を有する圧接物となるように適宜決定すればよい。過度の圧力で圧接した場合には、圧接物が薄くなり過ぎるため、取り扱いを困難にするだけでなく、粉末同士の接触により表面処理層へのダメージの原因となり得る。なお、圧接時には、粒子表面の有機物に影響を与えない範囲であれば、加熱によって錫を軟らかくし、圧接することも可能である。   The optimum pressure at the time of pressure welding may be appropriately determined so as to obtain a pressure welded material having a desired shape in consideration of the properties and shape of the target particles and ease of handling of the obtained pressure welded material. When pressed with excessive pressure, the pressed product becomes too thin, which not only makes handling difficult, but may cause damage to the surface treatment layer due to contact between powders. In addition, at the time of pressure welding, it is possible to soften tin by heating and press-contact within a range that does not affect the organic matter on the particle surface.

得られる圧接物は、錫と粒子とが混合されたものであってもよいが、粒子の表面構造を観察するためには、錫上に粒子から形成される層を含み、該層の最も厚い部分の厚みが前記粒子の平均粒子径の3倍以上となるものが好ましい。この圧接物は、錫上に粒子を乗せ、圧接することにより作製できる。錫上に構成される粒子の最も厚い部分の層厚みが該粒子の平均粒子径の3倍以上となることにより、電子顕微鏡での測定点を多く増やすことができる。特に、該層は、隙間を有するものであることから、粒子の表面を観察する場合に好適に適用できる圧接物となる。なお、粒子の層の厚みの上限値は、平均粒子径の10倍である。この上限値を超えると、圧接物から粒子が脱離し易くなり、操作性が低下する傾向にある。なお、粒子から形成される層厚みは、SEM観察やTEM観察により確認できる。なお、この圧接物には、下記に詳述するが、TEM観察を行う場合には、粒子から形成される層上に、例えば、タングステンからなる保護層を形成することもできる。   The obtained pressure-contact material may be a mixture of tin and particles, but in order to observe the surface structure of the particles, it includes a layer formed from the particles on the tin, and is the thickest layer. It is preferable that the thickness of the portion is three times or more the average particle diameter of the particles. This press contact object can be produced by placing particles on tin and press contact. When the layer thickness of the thickest part of the particles formed on the tin is at least three times the average particle diameter of the particles, the number of measurement points with an electron microscope can be increased. In particular, since the layer has a gap, it becomes a pressure contact material that can be suitably applied when observing the surface of the particles. The upper limit of the particle layer thickness is 10 times the average particle diameter. When this upper limit is exceeded, the particles are liable to be detached from the pressure-contact material, and the operability tends to be lowered. In addition, the layer thickness formed from particle | grains can be confirmed by SEM observation or TEM observation. In addition, although this press-contact thing is explained in full detail below, when performing TEM observation, the protective layer which consists of tungsten, for example can also be formed on the layer formed from particle | grains.

(圧接物を加工する方法(観察用試料を作製する方法)、および電子顕微鏡での観察方法)
前記方法で作製した圧接物は、その形状によればそのままSEMで観察することの可能である。ただし、測定の対象となる圧接物は、電子顕微鏡観察の方法に応じて、次の方法で加工して観察用試料とすることもできる。例えば、イオンビームにより断面を露出した圧接物を観察用試料とすることにより、粒子の表面状態、表面と内部との界面の状態、内部構造等を観察することできる。
(Method of processing the pressed object (method of preparing a sample for observation) and observation method with an electron microscope)
According to the shape of the press-contact material produced by the above method, it can be observed as it is with an SEM. However, the pressure contact object to be measured can be processed by the following method according to the electron microscope observation method to obtain an observation sample. For example, the surface state of the particles, the state of the interface between the surface and the inside, the internal structure, and the like can be observed by using a pressure contact object whose cross section is exposed by an ion beam as an observation sample.

圧接物を、FIB装置を用いてTEM観察用試料を作製する場合について説明する。この場合、公知の方法が適用でき、本発明の測定対象物である粒子では、マイクロサンプリング法が適している。   A case in which the TEM observation sample is manufactured using the FIB apparatus as the pressure contact object will be described. In this case, a known method can be applied, and the microsampling method is suitable for particles that are the measurement object of the present invention.

具体的には、圧接物表面の任意の場所において、FIB装置により、表面デポジション処理(例えば、タングステンデポジション)を施し、先ず保護層を形成する。この保護層は加工時の状態のまま、所定の電子顕微鏡観察用試料作製処理を行う。こうすることにより、錫の上に、粒子からなる層と、さらに上に加工時のイオンビームのフレアから保護するための保護層(タングステン)とで構成されたものが得られる。なお、保護層はタングステンに限らず、粒子の表面に施された表面処理層と異なる組成であるものであれば、何ら制限なく使用できる。   Specifically, a surface deposition process (for example, tungsten deposition) is performed by an FIB apparatus at an arbitrary location on the surface of the pressure contact object, and a protective layer is first formed. The protective layer is subjected to a predetermined electron microscope observation sample preparation process while being processed. By doing so, a layer composed of particles and a protective layer (tungsten) for protecting against flare of an ion beam during processing can be obtained on the tin. The protective layer is not limited to tungsten, and any protective layer can be used as long as it has a composition different from that of the surface treatment layer applied to the surface of the particles.

次いで、この保護層を形成した圧接物にGaイオンを照射して、圧接物の断面を露出させると共に、100nm程度の膜厚に切り出して観察用試料とすることができる。この際の加工条件は、特に制限されるものではなく、公知の条件を採用することができる。このようにして、得られた電子顕微鏡観察用試料に含まれる粒子からなる層は、錫と接触した部分の粒子、タングステンなどの保護層と接触した部分の粒子、さらに粒子同士でしか接触していない粒子の部分に分類できる。この中で、粒子の内部構造を観察するには、いずれの領域においても観察が可能である。粒子表面の表面処理層を観察するには、粒子からなる層の中間に存在する、粒子同士でしか接触していない部分の観察が適している。中でも、粒子と粒子とが接触した際に形成する隙間を観察することで、表面が有機物で被覆された無機粒子であっても、その被覆状態を確認することができる。   Next, the pressure-contacting material on which this protective layer is formed is irradiated with Ga ions to expose the cross-section of the pressure-contacting material and cut into a film thickness of about 100 nm to obtain an observation sample. The processing conditions at this time are not particularly limited, and known conditions can be employed. In this way, the layer made of particles contained in the obtained sample for electron microscope observation is in contact with only particles between the particles in contact with tin, particles in contact with a protective layer such as tungsten, and particles. Can be classified into no particle parts. Among these, in order to observe the internal structure of the particles, observation can be performed in any region. In order to observe the surface treatment layer on the surface of the particle, it is suitable to observe a portion that exists in the middle of the layer made of particles and is in contact only with the particles. In particular, by observing the gap formed when the particles come into contact with each other, the coated state can be confirmed even if the surface is an inorganic particle coated with an organic substance.

また、表面に有機物を被覆した無機粒子を観察する場合には、表面処理層の厚みによって、電子顕微鏡の種類を適宜選択することもできる。例えば、膜厚が数十nm以下と非常に薄い場合にはTEM観察が適している。その際、粒子と表面処理層の平均原子番号差が大きい場合には、TEM観察法の一つであるSTEM観察(走査型TEM)から得られるZコントラスト像による観察が適している。粒子が結晶性である場合は、TEM観察で得られる格子像により、粒子と表面処理層を区別することが可能である。その他、二次電子像や反射電子像、さらに電子線入射によって発生するX線や、試料との相互作用によって特定のエネルギーを損失した電子線の強度マップからも表面処理層の可視化が可能である。   Moreover, when observing the inorganic particle which coat | covered the organic substance on the surface, the kind of electron microscope can also be selected suitably according to the thickness of a surface treatment layer. For example, TEM observation is suitable when the film thickness is as thin as several tens of nm or less. At that time, when the difference in average atomic number between the particles and the surface treatment layer is large, observation with a Z contrast image obtained from STEM observation (scanning TEM) which is one of TEM observation methods is suitable. When the particles are crystalline, the particles and the surface treatment layer can be distinguished from each other by a lattice image obtained by TEM observation. In addition, the surface treatment layer can be visualized from secondary electron images, reflected electron images, X-rays generated by electron beam incidence, and intensity maps of electron beams that have lost specific energy due to interaction with the sample. .

以上の方法は、TEMにより観察する方法であるが、本発明の方法により得られた観察用試料は、SEM観察にも使用できる。例えば、FIB装置やイオンミリング装置により圧接物の断面を露出させることにより、粒子の断面を露出させることができるため、SEM観察に適用できる。SEM観察用の観察用試料とするとする方法は、特に制限されるものではなく、一般的に知られている加工条件を採用すればよい。   Although the above method is a method of observing by TEM, the observation sample obtained by the method of the present invention can also be used for SEM observation. For example, since the cross section of the particle can be exposed by exposing the cross section of the pressure contact object with an FIB apparatus or an ion milling apparatus, it can be applied to SEM observation. The method for obtaining an observation sample for SEM observation is not particularly limited, and generally known processing conditions may be employed.

次に、実施例により本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention in detail, this invention is not limited to a following example.

実施例1
(圧接物の作製)
観察対象粒子として、界面活性剤であるドデシルリン酸によって表面が被覆された、平均粒子径1000nmの窒化アルミニウム(AlN)粉末(粒子)を使用した。平均粒子径とは、日機装(株)製マイクロトラックHRAにより、粒度分布(体積分布)の中間値として求めた。錫は、三津和化学薬品株式会社製 純度99.9999%の球状(粒子径 2.5mm)の錫を使用した。
Example 1
(Preparation of pressure contact)
As the particles to be observed, aluminum nitride (AlN) powder (particles) having an average particle diameter of 1000 nm, the surface of which was coated with a surfactant, dodecyl phosphoric acid, was used. The average particle size was determined as an intermediate value of the particle size distribution (volume distribution) by Nikkiso Co., Ltd. Microtrac HRA. As tin, spherical tin (particle diameter: 2.5 mm) having a purity of 99.9999% manufactured by Mitsuwa Chemicals Co., Ltd. was used.

球状錫500mgを東邦マシナリー株式会社製油圧成形機 TM-26にセットし、上面を平滑化させた後、表面処理を実施した前記AlN粉末を0.5mgふり掛けた。再び油圧プレス成型機により粉末と錫とを圧接した(図1 参照)。圧接物自体の厚みは1mm程度、粒子の層の最も厚い部分は4μm程度であり、圧接時には油圧プレス成型機付属の圧力計の指針が動くことはなかった。こうすることにより、錫と粒子とが接触した部分を有する圧接物を作製した。   500 mg of spherical tin was set in a hydraulic molding machine TM-26 manufactured by Toho Machinery Co., Ltd., and the upper surface was smoothed, and then the AlN powder subjected to the surface treatment was sprinkled with 0.5 mg. The powder and tin were pressed together again with a hydraulic press molding machine (see FIG. 1). The thickness of the pressure contact itself was about 1 mm, and the thickest part of the particle layer was about 4 μm. During pressure welding, the pointer of the pressure gauge attached to the hydraulic press molding machine did not move. By doing so, a pressure contact object having a portion where tin and particles were in contact with each other was produced.

(観察用試料の作製)
次に、TEM観察用の薄片試料を得るために、FIB装置(SII製SMI3050)を使用した。
(Preparation of observation sample)
Next, in order to obtain a thin sample for TEM observation, an FIB apparatus (SMI SMI3050) was used.

FIB装置にて観察される2次イオン顕微鏡(SIM)像により、圧接物の表面において、AlN粉末が露出した任意の箇所にてW(CO)6ガスを用いてタングステン保護膜を形成した。その後、FIB装置に装備されているマイクロプロ―ビングシステムを用いて、圧接体の一片を抽出した。抽出した圧接体の一片をTEM観察用ナノメッシュ(SIIナノテクノロジー社製)に固定し、薄片加工を行った。   Based on the secondary ion microscope (SIM) image observed with the FIB apparatus, a tungsten protective film was formed using W (CO) 6 gas at an arbitrary position where the AlN powder was exposed on the surface of the pressure contact object. Thereafter, a piece of the pressed body was extracted using a microprobing system equipped in the FIB apparatus. One piece of the extracted pressure contact body was fixed to a nanomesh for TEM observation (manufactured by SII Nanotechnology) and processed into a thin piece.

薄片加工はFIB装置を用い、加速電圧30kVのGaイオンを照射して行った。試料に対するダメージを抑えるため、ビーム電流値は3nAを超えないよう対物絞りを調整し、切片厚みがおおよそ100nmになるまで薄くした。こうすることにより電子顕微鏡観察用試料を作製した。   The flake processing was performed by irradiating Ga ions with an acceleration voltage of 30 kV using an FIB apparatus. In order to suppress damage to the sample, the objective aperture was adjusted so that the beam current value did not exceed 3 nA, and the section thickness was reduced to approximately 100 nm. In this way, a sample for electron microscope observation was produced.

(電子顕微鏡観察)
得られた観察用試料の観察をTEM装置(FEI社製Tecnai F20)によって行った。観察はTEM装置の機能の一つである、広角環状暗視野検出器を用いたSTEM観察によるZコントラスト像である。その結果を図2に示す。
(Electron microscope observation)
The obtained sample for observation was observed with a TEM apparatus (Tecnai F20 manufactured by FEI). Observation is a Z-contrast image obtained by STEM observation using a wide-angle annular dark field detector, which is one of the functions of the TEM apparatus. The result is shown in FIG.

このような手法によると、AlN粒子の外観、特に表面付近の観察が容易にできた。図2に示す通り、AlN粒子の表面に有機物(ドデシルリン酸)の層が観察されている。   According to such a method, it was possible to easily observe the appearance of the AlN particles, particularly the vicinity of the surface. As shown in FIG. 2, a layer of organic matter (dodecyl phosphate) is observed on the surface of the AlN particles.

1 無機粒子(AlN粉末)、
2 錫
1 inorganic particles (AlN powder),
2 Tin

Claims (6)

粒子を電子顕微鏡で観察するために作製する観察用試料の作製方法であって、該粒子の平均粒子径が100nmを超え100μm以下であり、該粒子と錫とを圧接することにより、該粒子と錫とが接触した部分を有する観察用試料を作製する方法。   A method for preparing an observation sample prepared for observing particles with an electron microscope, wherein the particles have an average particle diameter of more than 100 nm and not more than 100 μm, and the particles and tin are pressed to contact the particles. A method for producing an observation sample having a portion in contact with tin. 前記粒子が、無機粒子であることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the particles are inorganic particles. 前記粒子が、表面が有機物で被覆された無機粒子であることを特徴とする請求項1に記載の方法。 The method according to claim 1, wherein the particle is an inorganic particle having a surface coated with an organic substance. 前記観察用試料が、錫上に前記粒子から形成される層を含み、該層の最も厚い部分の厚みが前記粒子の平均粒子径の3倍以上であることを特徴とする請求項1〜3の何れかに記載の方法。   4. The observation sample includes a layer formed of the particles on tin, and the thickness of the thickest portion of the layer is three times or more the average particle diameter of the particles. The method in any one of. 前記観察用試料が、錫上に前記粒子を圧接させた圧接物にイオンビームを照射して断面を露出させたものであることを特徴とする請求項1〜4の何れかに記載の方法。   The method according to any one of claims 1 to 4, wherein the observation sample is obtained by irradiating an ion beam onto a pressure-contacted material in which the particles are pressure-contacted on tin to expose a cross section. 請求項1〜5のいずれかの方法で作製した観察用試料を電子顕微鏡で観察することにより、該粒子を電子顕微鏡で観察する方法。   A method of observing the particles with an electron microscope by observing the observation sample produced by the method according to claim 1 with an electron microscope.
JP2014204997A 2014-10-03 2014-10-03 Sample preparation method for observing particles with an electron microscope, and method for observing particles with an electron microscope Expired - Fee Related JP6392622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014204997A JP6392622B2 (en) 2014-10-03 2014-10-03 Sample preparation method for observing particles with an electron microscope, and method for observing particles with an electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014204997A JP6392622B2 (en) 2014-10-03 2014-10-03 Sample preparation method for observing particles with an electron microscope, and method for observing particles with an electron microscope

Publications (2)

Publication Number Publication Date
JP2016075525A true JP2016075525A (en) 2016-05-12
JP6392622B2 JP6392622B2 (en) 2018-09-19

Family

ID=55949796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014204997A Expired - Fee Related JP6392622B2 (en) 2014-10-03 2014-10-03 Sample preparation method for observing particles with an electron microscope, and method for observing particles with an electron microscope

Country Status (1)

Country Link
JP (1) JP6392622B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156226A (en) * 2016-03-02 2017-09-07 住友金属鉱山株式会社 Method for observing powder sample and method for forming the powder sample

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195548A (en) * 1986-02-24 1987-08-28 Hitachi Ltd Sample device and its production
JPH09264823A (en) * 1996-03-29 1997-10-07 Toshiba Corp Sample holding substrate and method therefor
JP2012185014A (en) * 2011-03-04 2012-09-27 Nec Corp Sample preparation method for transmission electron microscope
US20140084205A1 (en) * 2012-09-26 2014-03-27 Dileep Singh Nanoparticles for heat transfer and thermal energy storage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195548A (en) * 1986-02-24 1987-08-28 Hitachi Ltd Sample device and its production
JPH09264823A (en) * 1996-03-29 1997-10-07 Toshiba Corp Sample holding substrate and method therefor
JP2012185014A (en) * 2011-03-04 2012-09-27 Nec Corp Sample preparation method for transmission electron microscope
US20140084205A1 (en) * 2012-09-26 2014-03-27 Dileep Singh Nanoparticles for heat transfer and thermal energy storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156226A (en) * 2016-03-02 2017-09-07 住友金属鉱山株式会社 Method for observing powder sample and method for forming the powder sample

Also Published As

Publication number Publication date
JP6392622B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
Fox et al. Helium ion microscopy of graphene: beam damage, image quality and edge contrast
Naylor et al. Synthesis and physical properties of phase-engineered transition metal dichalcogenide monolayer heterostructures
Kuznetsov et al. Hydrogen-induced blistering mechanisms in thin film coatings
Garg et al. Revealing the role of nitrogen on hydride nucleation and stability in pure niobium using first-principles calculations
Pal Singh et al. Study of surface morphology and grain size of irradiated MgO thin films
Thevamaran et al. Dynamic martensitic phase transformation in single-crystal silver microcubes
Cheng et al. Convergent ion beam alteration of 2D materials and metal-2D interfaces
CN110423183A (en) A kind of characterizing method of aluminum composition micron order aluminium ball surface oxide layer
JP6392622B2 (en) Sample preparation method for observing particles with an electron microscope, and method for observing particles with an electron microscope
Vladár Strategies for scanning electron microscopy sample preparation and characterization of multiwall carbon nanotube polymer composites
Zagler et al. Beam-driven dynamics of aluminium dopants in graphene
Yan et al. In situ observation of the degradation behavior and the systematic investigation of corrosion mechanism in AZ31 alloy
Parish et al. Aberration-corrected X-ray spectrum imaging and fresnel contrast to differentiate nanoclusters and cavities in helium-irradiated alloy 14YWT
Huang et al. Graphene to graphene, and substrate to substrate: how to reliably differentiate supported graphene from polycrystalline substrates using SEM?
Volkert et al. Transmission electron microscopy of fluorapatite–gelatine composite particles prepared using focused ion beam milling
Roviglione et al. Rhombohedral graphite phase in nodules from ductile cast iron
LEE et al. Post‐thinning using Ar ion‐milling system for transmission electron microscopy specimens prepared by focused ion beam system
Camara et al. Effects of temperature on the ion-induced bending of germanium and silicon nanowires
Kim et al. Ultrafast Na Transport into Crystalline Sn via Dislocation‐Pipe Diffusion
JP2004179038A (en) Fixing method of sample for transmission electron microscope and sample table
Wang et al. Analysis of surface microstructures formed on Ir substrate under different bias conditions by microwave plasma chemical vapor deposition
An et al. Transmission Electron Microscopy Specimen Preparation for Two Dimensional Material Using Electron Beam Induced Deposition of a Protective Layer in the Focused Ion Beam Method
Rashid et al. Interface damage of protective layer in TEM lamella preparation for highly doped Ge substrate
JP6394969B2 (en) Electron microscope sample preparation method and reaction product metal-containing particle analysis method
Park et al. Influence of irradiation-induced defects on fracture behavior in highly pure SiC

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180823

R150 Certificate of patent or registration of utility model

Ref document number: 6392622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees