JPS5851509A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5851509A
JPS5851509A JP14998381A JP14998381A JPS5851509A JP S5851509 A JPS5851509 A JP S5851509A JP 14998381 A JP14998381 A JP 14998381A JP 14998381 A JP14998381 A JP 14998381A JP S5851509 A JPS5851509 A JP S5851509A
Authority
JP
Japan
Prior art keywords
substrate
oxide film
impurity
film
absorption coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14998381A
Other languages
Japanese (ja)
Inventor
Takashi Sato
孝 佐藤
Kazuo Nanbu
和夫 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14998381A priority Critical patent/JPS5851509A/en
Publication of JPS5851509A publication Critical patent/JPS5851509A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2258Diffusion into or out of AIIIBV compounds

Abstract

PURPOSE:To diffuse an impurity having a large optical absorption coefficient uniformly by forming an oxide film, to which the impurity is added, to the main surface of a substrate and irradiating laser beams from the back of the substrate. CONSTITUTION:Liquefied Sn and a silica film are applied onto the semi-ins- ulating GaAs substrate 1, and a film shaped in this manner is dried, and the oxide film 2 is formed. CO2 Laser pulses are irradiated from the arrow direction. The optical absorption coefficient of GaAs is extremely small to the CO2 laser beams. The optical absorption coefficient of the film 2 depends upon the quantity of the impurity added, and is large. Accordingly, only a section in the vicinity of the interface of the substrate 1 and the film 2 is heated, and a uniform impurity diffusion layer is obtained.

Description

【発明の詳細な説明】 本発明をエキ導体装置の製造方法、より靜しくにレーザ
アニーリングによるガリウム・砒素Gaム虐基板内への
不純物例えば錫(1m)拡散方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an electric conductor device, and more particularly to a method for diffusing an impurity, such as tin (1 m), into a gallium-arsenide substrate using laser annealing.

半導体装置の製造において多用されるようKなってきた
ンーザ光照射によるンーザ7二−リング技術は、半導体
基板の一部に固溶度以上に不純物を添加し5Φ長所があ
る。かかるI#lIkは、従来の炉7二−ル法に比べて
、 GaAm FET ICのソース、ドレイ・ンの形
成において1わめて効果的である。
The 7-ring technology using laser light irradiation, which has become widely used in the manufacture of semiconductor devices, has the advantage of adding 5Φ impurities to a portion of the semiconductor substrate at a level higher than the solid solubility. Such I#lIk is much more effective in forming the source and drain of GaAm FET ICs than the conventional furnace seven-hole method.

しかし、レーザ7二−ルにおいては、基板界面を例えば
荒れのない良好な状態に保って7二−ルの効果を得るに
ついて、固難な問題を経験する。
However, in the case of laser 7-neel, a difficult problem is encountered in maintaining the substrate interface in a good condition without roughness, for example, to obtain the effect of 7-neel.

基板内に高一度の不純物拡散層な得る方法として、現在
試みられている方法には、高濃度イオン注入層のレーザ
/ニールによるイオン注入原子の電気的活性化と、 G
aA1 &板上に成長された不純物添加酸化膜から不純
物を拡散する方法とがある・前の方法を工、イオン注入
によって導入された欠陥による光の吸収係数の増加現象
を利用するものである。従って、良好な高濃度を得るた
めに1工、注入原子を電気的に活性化させると同時に、
それによって導入された欠陥な除去する必要がある。そ
のために・工、レーザ光の照射エネルギー6工xJ/l
cが以上が必要となり、その結果GaAs is板表面
会工に一ザ照射による損傷を受けること罠なる。
Methods currently being attempted to obtain a high degree impurity diffusion layer in a substrate include electrical activation of ion implanted atoms by laser/neal of a highly concentrated ion implanted layer, and G
There is a method of diffusing impurities from an impurity-doped oxide film grown on the aA1 & plate.This method is a modification of the previous method and utilizes the phenomenon of an increase in the light absorption coefficient due to defects introduced by ion implantation. Therefore, in order to obtain a good high concentration, one step is to electrically activate the implanted atoms and at the same time,
The defects introduced thereby need to be removed. For this purpose, the irradiation energy of the laser beam is 6 mm x J/l.
c is required, and as a result, the GaAs isolating plate surface may be damaged by a single irradiation.

他方、後の方法におい″C1不純物を添加された酸化膜
の光吸収係数は、GaA−基板の光吸収係数に比べて、
不純物添加量に依存して数桁以上高くなる。さらKは、
レーザ照射の場合イオン注入によつ【導入された欠陥の
除去という問題がない。
On the other hand, in the latter method, the light absorption coefficient of the oxide film doped with C1 impurity is compared to that of the GaA-substrate.
It increases by several orders of magnitude depending on the amount of impurities added. Sara K is
In the case of laser irradiation, there is no problem of removing defects introduced by ion implantation.

従って、照射エネルギーは、イオン注入層をレーザ7二
−ルする場合に比較して小になる利点かあ金 − 不純物添加酸化膜による拡散を、第1図を参照して説明
すると、その(a)の断面図に示されるように、半絶縁
性GaAs  基板lf)表面には、錫を含む二酸化シ
l :l :/ gv′aioaの酸化1ilk2がス
ピンコーティング(回転塗布)で塗布され、150℃の
温度で有機溶媒を飛散させ乾燥される。8m 拡散のた
めvcは、酸化膜20表面に矢印で示す如< CWAr
レーザ光を照射する。かかるアニールにおいてll論拡
散のために・工、同図(b)に示されるように、酸化膜
2の全層をレーザ光照射によって高温度すなわ8!O℃
以上に加熱する必要があるので、酸化膜2は損傷を受け
やす−・、同図(blは、酸化1120表面からGaA
−基板1内への深さく横軸)とレーザ光照射に、よる温
度(縦軸)の関係を示し、縦の点線は酸化膜2とGaA
s  基板lの界面を示す、前記したレーザ光を照射し
た場合、117cm”の照射エネルギーを得るためには
、酸化膜2のa向の温度がJlv′IIiもの沸点以上
になることが多く、そのときは酸化膜表面は蒸発しよう
として不安定な状11になり、GaA1  基板l内へ
の8n  の拡散が不均一になるだけでなく、酸化膜2
の熱歪によっ? GaAm基板1の表面か悪化する。す
なわち荒れたり欠陥が導入されたりする。
Therefore, the irradiation energy is smaller compared to the case where the ion implantation layer is irradiated with a laser beam.The diffusion by the gold-impurity-doped oxide film will be explained with reference to FIG. As shown in the cross-sectional view of the semi-insulating GaAs substrate lf), the surface of the semi-insulating GaAs substrate lf) was coated with oxide 1ilk2 of tin-containing sil dioxide:l:/gv′aioa by spin coating (rotary coating) and heated at 150 °C. It is dried by scattering the organic solvent at a temperature of . 8m Due to diffusion, vc is as shown by the arrow on the surface of the oxide film 20.
Irradiate with laser light. During such annealing, in order to cause diffusion, the entire layer of the oxide film 2 is heated to a high temperature, i.e., 8!, by laser beam irradiation, as shown in FIG. ℃
Since it is necessary to heat the oxide film 2 to a higher temperature, the oxide film 2 is easily damaged.
- Depth into substrate 1 (horizontal axis) and temperature (vertical axis) according to laser beam irradiation;
s When irradiating the above-mentioned laser beam that indicates the interface of the substrate l, in order to obtain an irradiation energy of 117 cm, the temperature of the oxide film 2 in the direction a often exceeds the boiling point of Jlv'IIi, and the In this case, the surface of the oxide film becomes unstable as it tries to evaporate, and not only does the diffusion of 8n into the GaA1 substrate become uneven, but the oxide film 2
Due to thermal distortion? The surface of the GaAm substrate 1 deteriorates. In other words, it becomes rough or defects are introduced.

本発明の目的は、上記した従来技術の問題を解決するK
あり、そのためには、半導体基板の主面上にそれのもつ
光吸収係数よりも数桁以上大きな光吸収係数をもつ不純
物添加酸化膜の薄膜を成長させ、しかる後に、半導体基
板裏面すなわち前記酸化膜が成長された表面とは反対側
の裏面から、半導体基板を十分に透過し、かつ、*化膜
の領域でyt、吸収が発生する波長をもつレーザ光を照
射し、酸化膜中の不純物を半導体基板内に拡散させる方
法を提供する。
An object of the present invention is to solve the problems of the prior art described above.
To do this, a thin film of impurity-doped oxide film having a light absorption coefficient several orders of magnitude larger than that of the semiconductor substrate is grown on the main surface of the semiconductor substrate, and then a thin film of impurity-doped oxide film is grown on the back surface of the semiconductor substrate, that is, the oxide film. Impurities in the oxide film are removed by irradiating a laser beam with a wavelength that sufficiently transmits through the semiconductor substrate and causes absorption in the oxide film region from the back surface opposite to the surface on which the oxide is grown. A method for diffusion into a semiconductor substrate is provided.

以下1本発明の方法の実施例を添付図面を参照して説明
する。
An embodiment of the method of the present invention will be described below with reference to the accompanying drawings.

第2図を参照すると(なお同図において、第1図に示し
た部分と同じ部分は同一符号を付し示す)。
Referring to FIG. 2 (in this figure, the same parts as those shown in FIG. 1 are denoted by the same reference numerals).

半絶縁性GaAm  基板l上には、前記した液状のI
I n7’II i (h (錫シリカフィルム)を3
tO00rpm 、 30蹴 で塗布し、しかる後に1
50℃、30  分の条件で811/810m膜を乾燥
して酸化膜2を形成する。次いで、図に矢印で示す如く
、約0.6 J/adのCO象レーザパルス、または2
00W/cmのCW Cot v−ザを照射する。とこ
ろで、CへまたはNdのYAG  レーザ光に対して、
GaA−の光吸収係数は非常に小で0.1国−1以下で
ある。一方、GaAg  基板1上の酸化膜20光吸収
係数は、不純物添加量に依存して104〜1G”国−1
以上になる。
On the semi-insulating GaAm substrate l, the liquid I described above is deposited.
I n7'II i (h (tin silica film) 3
Apply at tO00 rpm, 30 kicks, then 1
The 811/810m film is dried at 50° C. for 30 minutes to form an oxide film 2. Then, as indicated by the arrow in the figure, a CO quadrature laser pulse of about 0.6 J/ad, or 2
Irradiate with CW Cot v-za of 00 W/cm. By the way, for C or Nd YAG laser light,
The light absorption coefficient of GaA- is very small, less than 0.1 x 1. On the other hand, the light absorption coefficient of the oxide film 20 on the GaAg substrate 1 varies from 104 to 1G" country-1 depending on the amount of impurity addition.
That's all.

その結果、菖2図伽)に示されるように(なお。As a result, as shown in Figure 2 of the irises (note).

同図(blにおいて縦軸は温度を、横軸は基板1内への
深さを表わす)%GaAs  基板1と酸化@2の界面
(同図(blK縦の点線で示す)の近傍だけが温度上昇
する。かくして、酸化膜2の全層が高温度になることが
ないので、酸化#12のレーザ光照射による損傷は発生
しない、い(・かえると、前記したレーザ光照射によっ
て均一な不純物拡散層が得られることになった。
The same figure (in BL, the vertical axis represents temperature, and the horizontal axis represents the depth into substrate 1)%GaAs The temperature is only near the interface between substrate 1 and oxide@2 (indicated by the vertical dotted line in BLK) In this way, the entire layer of oxide film 2 does not reach a high temperature, so damage to oxide #12 due to laser light irradiation does not occur. The layers were obtained.

上記の実施例によって得られた結果はM3図に示され、
同図において、横軸はGaA−基板内への不純物拡散深
さ、縦軸は不純物の温度を示す。図カラ明らかなよ5i
C,前記の実施例においては、表面濃度約10” cr
” 、拡散深さ約10001 の不純物拡散層が得られ
た。なお同図において、砂地部分は酸化膜を示す。
The results obtained by the above example are shown in diagram M3,
In the figure, the horizontal axis shows the depth of impurity diffusion into the GaA-substrate, and the vertical axis shows the temperature of the impurity. The figure color is clear 5i
C. In the above example, the surface concentration is about 10" cr
'', an impurity diffusion layer with a diffusion depth of approximately 10,001 mm was obtained. In the figure, the sandy area indicates an oxide film.

前記実施例を利用し、高電子移動度トランジスタ(HI
CM?)のソース、ドレイン領域に高濃度8nドープ層
を形成することにより、コンタクト抵抗が著しく減少し
たことが確認された。
Using the above embodiment, a high electron mobility transistor (HI
CM? ) It was confirmed that the contact resistance was significantly reduced by forming a heavily doped 8n layer in the source and drain regions.

44図には、上記した方法で形成された拡散層をもった
高電子移動度トランジスタ(HNMT)の要部が断面図
で示され、同図において、11はGaAg基板、12は
鳳濠ム7GaAs  層、点線13で示す−の・X2次
元電子ガスの走行路、14はソース電極。
FIG. 44 shows a cross-sectional view of the main part of a high electron mobility transistor (HNMT) having a diffusion layer formed by the method described above. In the same figure, 11 is a GaAg substrate, 12 is a GaAs 14 is a source electrode.

15はドレイン電極、16はゲート電極(これらの電極
は金・ゲル1ニク人(ム@G@)または金(ム1)で形
成する)、斜線を付した部分17は高濃度8nドープ層
(〜1G”or”)である、かかるHEMT  におい
て、図示の如くソース、ドレイン領域K111度In 
 ドープ層を設けることによつ【、コンタクト抵抗が着
しく減少した。
15 is a drain electrode, 16 is a gate electrode (these electrodes are formed of gold/gel 1 (M@G@) or gold (MU1)), and the shaded area 17 is a highly concentrated 8n doped layer ( ~1G"or"), the source and drain regions K111 degrees In as shown in the figure.
By providing the doped layer, the contact resistance was significantly reduced.

従来の熱拡散法を用いCM記の程度の高111にのドー
プ層を形成しようとすると、sso’c#!度σ)−魁
理が必要となる。このような高温度では、n−ムjGa
ムs / GaAs ヘデー構造の電子e〕走行路13
となる高純度のGaAm  へロームjGaム畠の不純
物であるシリコンまたはアルミニウム力(拡散し、高い
電子移動度が得られなかったものである1図示の実施例
では、シリ:17またはアルミニウムの拡散は発生する
ことなく、電子移動度の高−・HRMTが得られた。
When attempting to form a doped layer as high as 111 as described in CM using the conventional thermal diffusion method, sso'c#! Degree σ) − Kairi is required. At such high temperatures, n-mujGa
Mus / GaAs Hede structure electron e] Running path 13
In the example shown in the figure, the diffusion of Si:17 or aluminum is A high -.HRMT with high electron mobility was obtained without generation.

以上“に説明した如く、不晃明の方法によると、半導体
(GaAg)基板上に、それのもつ光吸収係数よりも数
桁以上大なる光吸収係数をもつ不純物(ilm)を添加
した酸化掬の薄い層(1000〜30θ0λ)な成長さ
せ、しかも後に、半導体基板裏面から、当M牛導体基板
を十分に透過し、かつ、前記酸化膜層の領域で光吸収の
生じる波長をもつレーザ光(例えばCWArレーザ光)
を照射し、この酸化膜中の不純物を半導体内に均一に拡
散させ、コンタクト抵抗を減少し5金ものであって、例
えばHEMTの製造におい℃は、従来の熱拡散法による
場合に比べ、轟〜・電子移動度が得られる効果があう。
As explained above, according to the unconventional method, an oxide film is formed on a semiconductor (GaAg) substrate by doping an impurity (ILM) with an optical absorption coefficient several orders of magnitude larger than that of the semiconductor (GaAg) substrate. A thin layer (1000 to 30θ0λ) is grown, and later, laser light (for example, CWAr laser beam)
The impurities in the oxide film are uniformly diffused into the semiconductor, reducing the contact resistance. ~・It has the effect of increasing electron mobility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による半絶縁性GaAs  基板のレ
ーザ7二−ルを示す図、第2図は本発明の方法による半
絶縁性G1ムS 基板のレーザ7二−ルを示す図、93
図(I42図に示すレーザ7二−ルの結果を示す線図、
第4図は本発明の方法により形成されるHEMT のl
1部の断面図である。 l・・・半絶縁性GaAs基板、 2 ・= 8m / jiio* II!化膜、 11
− GaAm基板、lj! −慕−ムjGaA一層。 13・・・2次元電子ガス走行路、 14・・・ソース電極、1B−・・ドレイン電極、16
・−ゲート電極、17−高濃度8nドープ層特許出願人
 富士通株式会社 ((1)(b) 第1図 (a)         (b) 第2図
1 is a diagram showing a laser beam 7 on a semi-insulating GaAs substrate according to the prior art, and FIG. 2 is a diagram showing a laser beam 7 on a semi-insulating G1S substrate according to the method of the present invention.
Figure (Diagram showing the results of the laser 7 needle shown in Figure I42,
FIG. 4 shows the height of the HEMT formed by the method of the present invention.
It is a sectional view of a part. l...Semi-insulating GaAs substrate, 2 ・= 8m / jiio* II! membrane, 11
- GaAm substrate, lj! -Mu-mujGaA more. 13... Two-dimensional electron gas travel path, 14... Source electrode, 1B-... Drain electrode, 16
・-Gate electrode, 17-High concentration 8n doped layer Patent applicant Fujitsu Limited ((1) (b) Figure 1 (a) (b) Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)  半導体基板主面上に、#半導体の一つ党徴収
係数により大なる光吸収係数をもつ不純物を添加した酸
化膜の層を形成し、咳半導体基板の裏画から、賦半導体
を透過し前記酸化膜の領域でjt、機微が発生するレー
ザ光を照射すること罠より、飾記酸化膜中の不純物を該
半導体基板内に拡散させることを特徴とする半導体装置
の製造方法。
(1) On the main surface of the semiconductor substrate, a layer of an oxide film doped with an impurity having a large light absorption coefficient according to the single absorption coefficient of the semiconductor is formed, and the added semiconductor is transmitted through the backing of the semiconductor substrate. A method for manufacturing a semiconductor device, characterized in that impurities in the oxide film are diffused into the semiconductor substrate by irradiating the region of the oxide film with a laser beam that generates a delicate amount.
(2)  GaA1  基板上にn−ムjGaAs  
層が形成された高電子移動度トランジスタを形成する方
法において、そのノース領域とドレイン領域とに高濃度
不純物をドープすることを特徴とする特許請求の範11
11EI項記載の半導体装置の製造方法。
(2) n-mujGaAs on GaA1 substrate
Claim 11: A method of forming a high electron mobility transistor in which a layer is formed, comprising doping a north region and a drain region thereof with a high concentration of impurity.
A method for manufacturing a semiconductor device according to Section 11EI.
JP14998381A 1981-09-22 1981-09-22 Manufacture of semiconductor device Pending JPS5851509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14998381A JPS5851509A (en) 1981-09-22 1981-09-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14998381A JPS5851509A (en) 1981-09-22 1981-09-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5851509A true JPS5851509A (en) 1983-03-26

Family

ID=15486897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14998381A Pending JPS5851509A (en) 1981-09-22 1981-09-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5851509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06156277A (en) * 1992-02-24 1994-06-03 Fiat Ferroviaria Spa Device for controlling rotation of railway vehicle about its longitudinal shaft
JP2013041938A (en) * 2011-08-12 2013-02-28 V Technology Co Ltd Laser doping method and laser doping apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130917A (en) * 1980-03-17 1981-10-14 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130917A (en) * 1980-03-17 1981-10-14 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06156277A (en) * 1992-02-24 1994-06-03 Fiat Ferroviaria Spa Device for controlling rotation of railway vehicle about its longitudinal shaft
JP2013041938A (en) * 2011-08-12 2013-02-28 V Technology Co Ltd Laser doping method and laser doping apparatus

Similar Documents

Publication Publication Date Title
JPS5823479A (en) Manufacture of semiconductor device
JP2602597B2 (en) Method for manufacturing thin film SOI substrate
JPH01187814A (en) Manufacture of thin film semiconductor device
JPH0587036B2 (en)
JPS5851509A (en) Manufacture of semiconductor device
JPS633447B2 (en)
JPH0797565B2 (en) Method for manufacturing semiconductor device
JPS637022B2 (en)
JPS6327063A (en) Manufacture of semiconductor device
JP2701711B2 (en) Method for manufacturing polycrystalline silicon thin film
JPH023539B2 (en)
JPH0468770B2 (en)
JPH01256124A (en) Manufacture of mos type semiconductor device
JP3084089B2 (en) Semiconductor device substrate and method of manufacturing the same
JP3103629B2 (en) Method for manufacturing arsenic compound semiconductor device
JPS58114423A (en) Manufacture of semiconductor device
JPH0361335B2 (en)
JPS593869B2 (en) Method for manufacturing silicon gate field effect semiconductor device
JP2699587B2 (en) Method of implanting impurities into semiconductor substrate
JPH0469421B2 (en)
JPS60149125A (en) Method for impurity doping into semiconductor substrate
JPH02301132A (en) Forming method for aluminum diffused layer on semiconductor substrate
JPS6119103B2 (en)
JPS6216014B2 (en)
JPS5914903B2 (en) Manufacturing method of field effect transistor using ion implantation method