JPS6235512A - Manufacture of single crystal thin film of semiconductor - Google Patents
Manufacture of single crystal thin film of semiconductorInfo
- Publication number
- JPS6235512A JPS6235512A JP17405485A JP17405485A JPS6235512A JP S6235512 A JPS6235512 A JP S6235512A JP 17405485 A JP17405485 A JP 17405485A JP 17405485 A JP17405485 A JP 17405485A JP S6235512 A JPS6235512 A JP S6235512A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- substrate
- semiconductor
- film
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、半導体単結晶薄膜の製造方法に係りを成長さ
せるには、気相成長法が一般的に用いられてきた。例え
ば、シリコン基板上へのシリコン?
薄膜エピタキシャル成長の場合、5iCffi+ガス菩
ソースガスとして、シリコンlfi!を〜12005.
(l
[”C]中で堆積させている。この場合、1200[’
C]と云うかなりの高温での熱処理を行うので、シリコ
ン基板とシリコン薄膜との界面に不純物分布のだれを生
じる。そこで、エピタキシャル成長温度を下げるために
、5iH2Cn2ガス或いはS i H4ガスを用いた
気相成長法が検討されている。しかし、これらのガスを
用いたとしても、900〜950[’C]が低温の限度
になっており、不純物のだれを確実に防止することは困
難である。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor single crystal thin film.A vapor phase growth method has generally been used to grow a semiconductor single crystal thin film. For example, silicon on a silicon substrate? In the case of thin film epitaxial growth, silicon lfi! is used as the source gas. ~12005.
(l[”C]. In this case, 1200['
Since the heat treatment is performed at a considerably high temperature (C), the impurity distribution is distorted at the interface between the silicon substrate and the silicon thin film. Therefore, in order to lower the epitaxial growth temperature, a vapor phase growth method using 5iH2Cn2 gas or S i H4 gas is being considered. However, even if these gases are used, the lower temperature limit is 900 to 950 ['C], and it is difficult to reliably prevent impurities from dripping.
一方、LSIでは、各素子の寸法がさらに小さくなって
いくため、エピタキシャル成長層の薄膜化及びその界面
での不純物分布のだれの解消が必須であり、そのために
はエピタキシャル成長温度のより低温化及び単時間熱処
理化が指向されている。On the other hand, in LSI, as the dimensions of each element become smaller, it is essential to make the epitaxial growth layer thinner and eliminate the drooping of the impurity distribution at the interface. The trend is towards heat treatment.
これに対し近年、非晶質シリコン膜を固相エピタキシャ
ル成長させる方法が盛んに検討されている。この方法を
用いれば、炉熱処理温度550〜600[”C]でシリ
コンエピタキシャル成長層を一得ることが可能であると
共に、固相エピタキシャル成長の熱源としてエネルギー
ビームを用いると、極めて単時間で非晶質層が単結晶化
される。即ち、固相エピタキシャル成長法により、上記
要求を満たすことが可能であり、極めて有力な方法とな
っている。On the other hand, in recent years, a method of growing an amorphous silicon film by solid phase epitaxial growth has been actively studied. Using this method, it is possible to obtain a silicon epitaxial growth layer at a furnace heat treatment temperature of 550 to 600 [''C], and when an energy beam is used as the heat source for solid phase epitaxial growth, an amorphous layer can be formed in an extremely short time. In other words, the solid phase epitaxial growth method can satisfy the above requirements and is an extremely effective method.
しかしながら、この種の方法にあっては次のような問題
があった。即ち、固相エピタキシャル成長法で得られた
単結晶薄膜では、膜中に意図しない不純物の混入が生じ
ており、また格子欠陥の発生が見られ、これらが電気的
特性の不均一化を招く要因となっている。However, this type of method has the following problems. In other words, in single crystal thin films obtained by solid phase epitaxial growth, unintended impurities are mixed into the film, and lattice defects are also observed, which are factors that lead to non-uniform electrical characteristics. It has become.
本発明は上記事情を考慮してなされたもので、その目的
とするところは、意図しない不純物の混入や格子欠陥の
ない結晶品質の優れた単結晶半導体IIP14を単時間
熱処理工程により得ることができ、LSI製造プロセス
に好適する半導体単結晶薄膜の製造方法を提供すること
にある。The present invention has been made in consideration of the above circumstances, and its purpose is to obtain a single-crystal semiconductor IIP14 with excellent crystal quality, free of unintentional impurity contamination and lattice defects, through a single-time heat treatment process. An object of the present invention is to provide a method for manufacturing a semiconductor single crystal thin film suitable for an LSI manufacturing process.
本発明の骨子は、非晶質半導体膜の被着からエネルギー
ビームの照射を行う工程までの間、膜中に不純物が混入
するのを抑えるために、制御された雰囲気中で上記処理
を行うことにある。The gist of the present invention is to perform the above treatment in a controlled atmosphere in order to suppress the incorporation of impurities into the film from the deposition of the amorphous semiconductor film to the step of irradiating the energy beam. It is in.
固相エピタキシャル成長法で製造した単結晶薄膜に不純
物の混入が生じている原因について、本発明者等が各種
実験を重ねた結果、非晶質半導体膜を被着された試料が
大気中に晒されることが、不純物混入の最大の原因とな
っていることが判明した。即ち、単結晶基板への非晶質
半導体膜の被着は蒸Il装置やCVD装置のチャンバ内
で行われ、次いでこの基板は一旦大気中に取出されたの
ち同相エピタキシャル成長装置のチャンバ内に収容され
てビームアニールされる。ここで、上記各チャンバ内を
不純物のない制御された雰囲気としても、最終的に形成
される半導体単結晶膜中への不純物の混入は避けられな
かった。そこで、基板を大気中に晒す時間を短くしたと
ころ、上記不純物の混入が少なくなることが判明した。As a result of various experiments conducted by the present inventors to investigate the cause of impurity contamination in single-crystal thin films manufactured by solid-phase epitaxial growth, it was found that samples coated with amorphous semiconductor films were exposed to the atmosphere. This was found to be the biggest cause of impurity contamination. That is, an amorphous semiconductor film is deposited on a single crystal substrate in a chamber of an evaporation device or a CVD device, and then this substrate is once taken out into the atmosphere and then placed in a chamber of an in-phase epitaxial growth device. beam annealed. Here, even if the atmosphere in each of the above chambers is controlled to be free of impurities, the contamination of impurities into the semiconductor single crystal film that is finally formed is unavoidable. Therefore, it was found that by shortening the time period during which the substrate was exposed to the atmosphere, the amount of impurities introduced was reduced.
さらに、基板を大気中に晒すことなく、非晶質半導体膜
の被着及びビームアニールによる単結晶化を行うことに
より、不純物の混入が著しく低減することが判明した。Furthermore, it has been found that impurity contamination can be significantly reduced by depositing an amorphous semiconductor film and performing single crystallization by beam annealing without exposing the substrate to the atmosphere.
本発明はこのような点に看目し、単結晶半導体基板上に
半導体単結晶薄膜を製造する方法において、単結晶半導
体基板上に非晶質半導体膜を被着したのち、上記基板を
大気中に晒すことなく所定本発明によれば、非晶質半導
体膜の被着及びその後に続くビームアニール工程を制御
された雰囲気中で進めることにより、不純物の混入を防
ぎ格子欠陥の発生を大幅に低減することができる。しか
も、エネルギービームの照射で非晶質半導体膜を単結晶
化することで、固相エピタキシャル成長を極めて短時間
に行うことができる。このため、不純物混入が少なく、
且つ不純物のだれのない高品質の単結晶半導体膜を得る
ことができ、LSIの製造に極めて有効である。In view of these points, the present invention provides a method for manufacturing a semiconductor single crystal thin film on a single crystal semiconductor substrate, in which an amorphous semiconductor film is deposited on the single crystal semiconductor substrate, and then the substrate is exposed to air. According to the present invention, by proceeding with the deposition of the amorphous semiconductor film and the subsequent beam annealing process in a controlled atmosphere, the incorporation of impurities is prevented and the occurrence of lattice defects is significantly reduced. can do. Moreover, solid-phase epitaxial growth can be performed in an extremely short time by turning an amorphous semiconductor film into a single crystal by irradiating it with an energy beam. Therefore, there is less contamination with impurities,
In addition, a high quality single crystal semiconductor film free of impurities can be obtained, which is extremely effective in manufacturing LSIs.
以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.
第1図は本発明の一実施例方法に使用したシリコン単結
晶薄膜の製造装置を示す概略構成図である。図中11は
第1の真空容器であり、この容器11内にはシリコンか
らなる蒸着源12及び該蒸着it!12を加熱蒸発せし
める電子銃(E−ガン)13が収容されている。さらに
、容器11内には試料基板として単結晶シリコン基板1
4が配置され、この基板14はヒータ15により加熱さ
れるものとなっている。FIG. 1 is a schematic diagram showing a silicon single crystal thin film manufacturing apparatus used in a method according to an embodiment of the present invention. In the figure, 11 is a first vacuum container, and inside this container 11 is a vapor deposition source 12 made of silicon and the vapor deposition source 12 and the vapor deposition source 12 made of silicon. An electron gun (E-gun) 13 that heats and vaporizes 12 is housed therein. Furthermore, a single crystal silicon substrate 1 is contained in the container 11 as a sample substrate.
4 is arranged, and this substrate 14 is heated by a heater 15.
1 容器11には、ゲートバルブ16を介して第2□の
真空容器17が接続されている。この容器17内には、
上記容器11で薄膜が蒸着されたシリコン基板14が搬
送される。そして、基板14の上面にフラッシュランプ
18からの光ビーム19が照射されるものとなっている
。なお、図中20は透明板、21.22は排気口、23
.24はグー1〜バルブをそれぞれ示している。1 A second □ vacuum container 17 is connected to the container 11 via a gate valve 16. Inside this container 17,
A silicon substrate 14 on which a thin film has been deposited is transported in the container 11 . The upper surface of the substrate 14 is then irradiated with a light beam 19 from a flash lamp 18. In addition, in the figure, 20 is a transparent plate, 21.22 is an exhaust port, and 23
.. 24 indicates goo 1 to bulb, respectively.
次に、上記装置を用いたシリコン単結晶薄膜の製造方法
について説明する。Next, a method for manufacturing a silicon single crystal thin film using the above apparatus will be described.
まず、面方位(100)の単結晶シリコン基板(単結晶
半導体基板)14を洗浄したのち、第1の真空容器11
内に配置し、lX1O−10[torr]の真空中で、
800 [”C]、30分間の熱処理を行った。次いで
、基板温度を室温まで下げ、電子ビーム蒸着法で、第2
図(a)に示す如く基板14上に非晶質シリコン膜(非
晶質半導体膜)31を0.4[μTrL]の厚さに堆積
した。なお、蒸着時の真空度は1 、2X 10−8[
torr]とした。First, after cleaning a single crystal silicon substrate (single crystal semiconductor substrate) 14 with a plane orientation of (100), the first vacuum vessel 11 is cleaned.
in a vacuum of lX1O-10 [torr],
A heat treatment was performed at 800 ["C] for 30 minutes. Next, the substrate temperature was lowered to room temperature, and a second process was performed using an electron beam evaporation method.
As shown in Figure (a), an amorphous silicon film (amorphous semiconductor film) 31 was deposited on the substrate 14 to a thickness of 0.4 [μTrL]. The degree of vacuum during vapor deposition was 1,2X 10-8[
torr].
次いで、ゲートバルブ16を開き、基板14を第2の真
空容器17内に搬送した。このとき、容器17内は1
X 10” ” [torr]の真空度に保持してお
いた。これにより、基板14は非晶質シリコン膜31の
被着から次のビームアニール工程までに大気中に晒され
ることなく、高真空中に保持されることになる。Next, the gate valve 16 was opened and the substrate 14 was transferred into the second vacuum container 17. At this time, the inside of the container 17 is 1
The degree of vacuum was maintained at X 10'' [torr]. As a result, the substrate 14 is not exposed to the atmosphere from the deposition of the amorphous silicon film 31 until the next beam annealing step, and is held in a high vacuum.
次いで、フラッシュランプ18により、20[J/cI
I!2]の光ビーム19を基板14上に照射すると、第
2図(b)に示す如く非晶質シリコン膜31は固相エピ
タキシャル成長により単結晶層さと再結晶化された。こ
のとき得られた単結晶シリコン膜32の結晶性を評価し
たところ、格子欠陥及び不純物は殆どなく、極めて良質
の薄膜層であることが判明した。Then, with the flash lamp 18, 20 [J/cI
I! When the light beam 19 of [2] was irradiated onto the substrate 14, the amorphous silicon film 31 was recrystallized into a single crystal layer by solid phase epitaxial growth, as shown in FIG. 2(b). When the crystallinity of the single-crystal silicon film 32 obtained at this time was evaluated, it was found that there were almost no lattice defects or impurities, and it was a thin film layer of extremely good quality.
このように本実施例方法によれば、非晶質シリコン膜3
1を被着したシリコン基板14を大気中に晒すことなく
、ビームアニールすることより、不純物の混入がなく格
子欠陥の極めて少ない良質の単結晶シリコン11132
を得ることができる。また、ビームアニールにより固相
エピタキシャル成長により単結晶化しているので、非晶
質シリコン膜の再結晶化を短時間に行うことができ、こ
れにより不純物のだれを少なくし得る等の利点もある。In this way, according to the method of this embodiment, the amorphous silicon film 3
By beam annealing the silicon substrate 14 coated with 11132 without exposing it to the atmosphere, high-quality single-crystal silicon 11132 with no contamination of impurities and extremely few lattice defects can be obtained.
can be obtained. Furthermore, since single crystallization is achieved by solid-phase epitaxial growth using beam annealing, the amorphous silicon film can be recrystallized in a short time, which has the advantage of reducing the amount of impurities.
第3図は他の実施例方法に使用したシリコン単結晶薄膜
の製造装置を示す概略構成図である。なお、第1図と同
一部分には同一符号を付して、そ容器11内には、シリ
コン基板14と共に分子線堆積用のクヌーセンセル(蒸
着源)41がそれぞれ収容されている。また、容器11
内には、前記したフラッシュランプ等からの光ビーム1
9が導入されるものとなっている。FIG. 3 is a schematic diagram showing a silicon single crystal thin film manufacturing apparatus used in another example method. The same parts as in FIG. 1 are denoted by the same reference numerals, and a Knudsen cell (evaporation source) 41 for molecular beam deposition is housed in the container 11 together with a silicon substrate 14. In addition, container 11
Inside is a light beam 1 from the above-mentioned flash lamp etc.
9 will be introduced.
この装置を用い、先の実施例方法と同様に、面方位(1
00)の単結晶シリコン基板14を洗浄したのち、容器
11内に配置して先と同様の熱処理を行った。次いで、
シリコン基板14上に非晶質シリコン膜31を蒸着しな
がら、フラッシュランプ等で5[J/α2]の光ビーム
を照射すると、非晶質シリコン膜31は瞬時に固相エピ
タキシャル成長を起こして単結晶化した。Using this device, the surface orientation (1
After cleaning the single crystal silicon substrate 14 of No. 00), it was placed in the container 11 and subjected to the same heat treatment as before. Then,
When the amorphous silicon film 31 is deposited on the silicon substrate 14 and irradiated with a light beam of 5 [J/α2] using a flash lamp or the like, the amorphous silicon film 31 instantly undergoes solid phase epitaxial growth and becomes a single crystal. It became.
このような方法であっても、非晶質シリコン膜31の被
着及びビームアニールによる固相エピタキシャル成長工
程中に、基板14が大気中に晒されることはなく、不純
物の混入を極めて少なくすることができる。従って、先
の実施例と同様の効果が得られる。Even with this method, the substrate 14 is not exposed to the atmosphere during the deposition of the amorphous silicon film 31 and the solid phase epitaxial growth process by beam annealing, and the incorporation of impurities can be extremely reduced. can. Therefore, the same effects as in the previous embodiment can be obtained.
なお、本発明は上述した各実施例方法に限定されるもの
ではない。例えば、前記非晶質シリコン膜の被着は蒸着
法に限るものではなく、スパッタ蒸着法或いはCVD法
等であってもよい。また、エネルギービームとしては、
フラッシュランプ等の光に限るものではなく、レーザ光
、電子ビーム或いは赤外線等を用いることが可能である
。さらに、シリコンに限らず、他の半導体薄膜の単結晶
化に適用できるのは、勿論のことである。その他、本発
明の要旨を逸脱しない範囲で、種々変形して実施するこ
とができる。Note that the present invention is not limited to the methods of each embodiment described above. For example, the method of depositing the amorphous silicon film is not limited to the vapor deposition method, but may be a sputter vapor deposition method, a CVD method, or the like. In addition, as an energy beam,
The light is not limited to a flash lamp or the like, but it is also possible to use a laser beam, an electron beam, infrared rays, or the like. Furthermore, it goes without saying that the present invention can be applied to single crystallization of not only silicon but also other semiconductor thin films. In addition, various modifications can be made without departing from the gist of the present invention.
第1図は本発明の一実施例方法に使用したシリコン単結
晶薄膜製造装置を示す概略構成図、第2図(a)(b)
は上記装置を用いたシリコン単結晶薄膜の製造工程を示
す断面図、第3図は他の実施例方法に用いたシリコン単
結晶薄膜製造装置を示す概略構成図である。
11・・・第1の真空容器、12・・・蒸着源、13.
・・・E−ガン、14・・・単結晶シリコン基板(単結
晶半導体基板)、15・・・ヒータ、16.23.24
・・・ゲートバルブ、17・・・第2の真空容器、18
・・・フラッシュランプくエネルギービーム族13ft
)、1つ・・・光ビーム(エネルギービー・ム)、20
・・・透明板、21.22・・・排気口、3ゴ・・・非
晶質シリコン膜(非晶質半導体膜)、32・・・単結晶
シリコン膜。
出願人 工業技術院長 等々力 達
第1図
第2図
第3図Fig. 1 is a schematic configuration diagram showing a silicon single crystal thin film manufacturing apparatus used in an embodiment method of the present invention, Fig. 2 (a) and (b)
3 is a cross-sectional view showing the manufacturing process of a silicon single crystal thin film using the above-mentioned apparatus, and FIG. 3 is a schematic configuration diagram showing a silicon single crystal thin film manufacturing apparatus used in another example method. 11... First vacuum container, 12... Evaporation source, 13.
...E-gun, 14...Single crystal silicon substrate (single crystal semiconductor substrate), 15...Heater, 16.23.24
...Gate valve, 17...Second vacuum container, 18
...Flash lamp energy beam group 13ft
), 1...light beam (energy beam), 20
...Transparent plate, 21.22...Exhaust port, 3go...Amorphous silicon film (amorphous semiconductor film), 32...Single crystal silicon film. Applicant: Director of the Agency of Industrial Science and Technology Tatsu Todoroki Figure 1 Figure 2 Figure 3
Claims (5)
工程と、次いで上記基板を大気中に晒すことなく所定の
雰囲気中に保持する工程と、この状態で上記半導体膜に
エネルギービームを照射して該半導体膜を固相エピタキ
シャル成長せしめる工程とを含むことを特徴とする半導
体単結晶薄膜の製造方法。(1) A process of depositing an amorphous semiconductor film on a single crystal semiconductor substrate, a process of holding the substrate in a predetermined atmosphere without exposing it to the atmosphere, and an energy beam applied to the semiconductor film in this state. A method for manufacturing a semiconductor single crystal thin film, comprising the step of irradiating the semiconductor film with solid phase epitaxial growth.
の照射を、同一チャンバ内で行うことを特徴とする特許
請求の範囲第1項記載の半導体単結晶薄膜の製造方法。(2) The method for manufacturing a semiconductor single crystal thin film according to claim 1, wherein the deposition of the amorphous semiconductor film and the irradiation of the energy beam are performed in the same chamber.
の照射を、10^−^8[torr]以下の高真空中で
行うことを特徴とする特許請求の範囲第1項又は第2項
記載の半導体単結晶薄膜の製造方法。(3) Claim 1 or 2, characterized in that the deposition of the amorphous semiconductor film and the irradiation of the energy beam are performed in a high vacuum of 10^-^8 [torr] or less. The method for producing the semiconductor single crystal thin film described above.
の照射を、同時に行うことを特徴とする特許請求の範囲
第2項記載の半導体単結晶薄膜の製造方法。(4) The method for manufacturing a semiconductor single crystal thin film according to claim 2, wherein the deposition of the amorphous semiconductor film and the irradiation of the energy beam are performed simultaneously.
、シリコンを用いたことを特徴とする特許請求の範囲第
1項記載の半導体単結晶薄膜の製造方法。(5) The method for manufacturing a semiconductor single crystal thin film according to claim 1, wherein silicon is used as the single crystal semiconductor substrate and the amorphous semiconductor film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17405485A JPS6235512A (en) | 1985-08-09 | 1985-08-09 | Manufacture of single crystal thin film of semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17405485A JPS6235512A (en) | 1985-08-09 | 1985-08-09 | Manufacture of single crystal thin film of semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6235512A true JPS6235512A (en) | 1987-02-16 |
Family
ID=15971809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17405485A Pending JPS6235512A (en) | 1985-08-09 | 1985-08-09 | Manufacture of single crystal thin film of semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6235512A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002047137A1 (en) * | 2000-12-08 | 2002-06-13 | Sony Corporation | Semiconductor thin film forming method, production methods for semiconductor device and electrooptical device, devices used for these methods, and semiconductor device and electrooptical device |
JP2009256747A (en) * | 2008-04-18 | 2009-11-05 | Canon Anelva Corp | Magnetron sputtering system, and method of manufacturing thin film |
US7883988B2 (en) | 2008-06-04 | 2011-02-08 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor substrate |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57183020A (en) * | 1981-05-06 | 1982-11-11 | Hitachi Ltd | Formation of semiconductor layer |
JPS5893223A (en) * | 1981-11-30 | 1983-06-02 | Toshiba Corp | Preparation of semiconductor device |
-
1985
- 1985-08-09 JP JP17405485A patent/JPS6235512A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57183020A (en) * | 1981-05-06 | 1982-11-11 | Hitachi Ltd | Formation of semiconductor layer |
JPS5893223A (en) * | 1981-11-30 | 1983-06-02 | Toshiba Corp | Preparation of semiconductor device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002047137A1 (en) * | 2000-12-08 | 2002-06-13 | Sony Corporation | Semiconductor thin film forming method, production methods for semiconductor device and electrooptical device, devices used for these methods, and semiconductor device and electrooptical device |
US7183229B2 (en) | 2000-12-08 | 2007-02-27 | Sony Corporation | Semiconductor thin film forming method, production methods for semiconductor device and electrooptical device, devices used for these methods, and semiconductor device and electrooptical device |
JP2009256747A (en) * | 2008-04-18 | 2009-11-05 | Canon Anelva Corp | Magnetron sputtering system, and method of manufacturing thin film |
US7883988B2 (en) | 2008-06-04 | 2011-02-08 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5435264A (en) | Process for forming epitaxial BaF2 on GaAs | |
JPH10149984A (en) | Method and device for forming polycrystalline silicon | |
JPS6235512A (en) | Manufacture of single crystal thin film of semiconductor | |
JPS6223450B2 (en) | ||
CA1184020A (en) | Method of manufacturing semiconductor device | |
JPS58190020A (en) | Epitaxial growth method | |
JPS5940525A (en) | Growth of film | |
JP3177152B2 (en) | Heat treatment film forming method | |
JPH0652714B2 (en) | Thin film material manufacturing method | |
JP3024543B2 (en) | Crystalline silicon film and method of manufacturing the same | |
JPH0645257A (en) | Method for forming semiconductor thin film | |
JP2511845B2 (en) | Processing equipment for vapor phase growth | |
JPH10116795A (en) | Equipment for manufacturing semiconductor material | |
JPH0243720A (en) | Molecular beam epitaxial growth method | |
JPS62176986A (en) | Device for treating thin film | |
JPH09110594A (en) | Heterogeneous epitaxial growth of aluminum oxide single crystal film on silicon substrate and device used for the method | |
JPH08139015A (en) | Germanium thin film growth method | |
JP2861683B2 (en) | Method of forming amorphous silicon film | |
JPH0773097B2 (en) | Molecular beam crystal growth method | |
JPH0248404A (en) | Method for forming superconducting thin film and apparatus therefor | |
JPS60236213A (en) | Manufacture of semiconductor substrate | |
JPH0831838A (en) | Semiconductor substrate and production thereof | |
JPH0629234A (en) | Manufacture of semiconductor device | |
JPS62293724A (en) | Method for cleaning surface | |
JPS6092607A (en) | Electron beam annealing device |