JPH0248404A - Method for forming superconducting thin film and apparatus therefor - Google Patents

Method for forming superconducting thin film and apparatus therefor

Info

Publication number
JPH0248404A
JPH0248404A JP63200647A JP20064788A JPH0248404A JP H0248404 A JPH0248404 A JP H0248404A JP 63200647 A JP63200647 A JP 63200647A JP 20064788 A JP20064788 A JP 20064788A JP H0248404 A JPH0248404 A JP H0248404A
Authority
JP
Japan
Prior art keywords
thin film
superconducting
substrate
temperature
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63200647A
Other languages
Japanese (ja)
Inventor
Naoki Awaji
直樹 淡路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63200647A priority Critical patent/JPH0248404A/en
Publication of JPH0248404A publication Critical patent/JPH0248404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To improve the critical current and critical temperature of a superconducting thin film deposited on a substrate heated at a specific temperature by intermittently irradiating the surface of the thin film with laser light or infrared ray. CONSTITUTION:O2 gas is supplied from an oxygen feeding apparatus 7 to a substrate 2 in a state of shower while keeping the substrate 2 at a specific temperature by heating with a heater 3a. The reaction chamber 1 is evacuated and maintained to a specific pressure during the above process. A thin film 2a of a superconducting material is formed by irradiating metal sources 4a-4c (e.g., Y, Ba and Cu) with electron beam while keeping the above state and evaporating the metal sources 4a-4c to deposit Y, Ba, Cu and O constituting a superconducting material on the substrate 2 in amorphous state. Simultaneous to the deposition process, the front surface of the thin film 2a is intermittently irradiated with laser pulses of a CO2 laser 6 in order to heat the surface of the thin film 2a at a crystal growth temperature of the superconducting material. The surface temperature of the thin film 2a is reciprocated between a high temperature to effect the crystal growth and a low temperature to cause the phase transition to a rhombic system having excellent superconducting property by this process.

Description

【発明の詳細な説明】 〔概要〕 超伝導薄膜の形成方法に関し、 ロー界雷流、臨界温度ともに高い超伝導Fil膜の形成
方法の提供を目的とし、 予め所定温度に加熱された基板上に超伝導材料薄膜を堆
積させる際に、前記超伝導材料薄膜の表面にレーザ光ま
たは赤外線を間欠的に照射することを含み構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for forming a superconducting thin film, the present invention aims to provide a method for forming a superconducting film with high low-field lightning current and high critical temperature. The method includes intermittently irradiating the surface of the superconducting material thin film with laser light or infrared rays when depositing the superconducting material thin film.

〔産業上の利用分野〕[Industrial application field]

本発明は、超伝導薄膜の形成方法およびその形成装置に
関する。
The present invention relates to a method for forming a superconducting thin film and an apparatus for forming the same.

近年、超伝導特性を利用した超伝導装置の開発が盛んで
あり、ジゴセフソン接合の作成などのデバイスへの応用
から高い臨界電流と臨界温度を有する超伝導薄膜の提供
が望まれている。
In recent years, the development of superconducting devices that utilize superconducting properties has been active, and it is desired to provide superconducting thin films with high critical current and critical temperature for applications in devices such as the creation of digocefson junctions.

〔従来の技術] 高温超伝導材料(たとえばY+ Ba、 Cu、 0の
混合物)は700℃〜800℃に加熱しないと結晶成長
しない。しかし、この温度での安定した結晶構造は正方
晶であり、正方晶の結晶構造では酸素含有量が少なく、
はとんど超伝導特性を示さない。この正方晶を酸素供給
下で400〜600°Cに冷却すると、この温度におけ
る安定な結晶構造である斜方晶に相転移し、このとき酸
素を十分に取り入れて高臨界電流、高臨界温度の優れた
超伝導特性を示す。
[Prior Art] High temperature superconducting materials (for example, a mixture of Y+ Ba, Cu, 0) do not undergo crystal growth unless heated to 700°C to 800°C. However, the stable crystal structure at this temperature is tetragonal, and the tetragonal crystal structure has a low oxygen content.
rarely exhibit superconducting properties. When this tetragonal crystal is cooled to 400 to 600°C under oxygen supply, it undergoes a phase transition to orthorhombic crystal structure, which is a stable crystal structure at this temperature. Shows excellent superconducting properties.

そこで従来の超伝導薄膜の形成方法としては、スバンタ
法あるいはEB蒸着法により超伝導材料を基板上に非晶
質状態に堆積さセた後、900°Cで数時間アニールし
て結晶成長させ、その後400’Cの酸素雰囲気中で再
度アニールして超伝導特性を持たせている。
Therefore, as a conventional method for forming a superconducting thin film, a superconducting material is deposited in an amorphous state on a substrate by the Svanta method or EB evaporation method, and then annealed at 900°C for several hours to grow crystals. Thereafter, it is annealed again in an oxygen atmosphere at 400'C to impart superconducting properties.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、この従来の方法ではアニール工程中に基板を9
00°Cの高温に長時間加熱するので、超伝導膜と基板
の境界面で熱拡散により超伝導膜の結晶構造が乱れるた
めに超伝導特性の低下を招き、臨界電流、臨界温度とも
に低い薄膜しか得られていない。
However, in this conventional method, the substrate is
Since heating is carried out at a high temperature of 00°C for a long time, the crystal structure of the superconducting film is disturbed by thermal diffusion at the interface between the superconducting film and the substrate, resulting in a decrease in superconducting properties, resulting in a thin film with low critical current and critical temperature. I've only gotten so much.

本発明は、臨界電流、臨界温度ともに高い超伝導TI膜
の提供を目的とする。
The present invention aims to provide a superconducting TI film with high critical current and high critical temperature.

〔課題を解決するための手段] 本発明の超伝導薄膜の形成方法は、予め所定温度に加熱
された基板上に超伝導材料薄膜を堆積させる際に、前記
超伝導材料薄膜の表面にレーザ光または赤外線を間欠的
に照射することを特徴とし、本発明の超伝導薄膜の形成
装置は、基板を加熱して基板温度を所定温度に保つ加熱
手段と、前記基板上に超伝導材料薄膜を堆積させる手段
と、前記超伝導材料薄膜の表面にレーザ光または赤外線
を間欠的に照射する手段とを有することを特徴とし、 前記目的を達成する。
[Means for Solving the Problems] The method for forming a superconducting thin film of the present invention is such that when depositing a superconducting thin film on a substrate that has been heated to a predetermined temperature in advance, a laser beam is applied to the surface of the superconducting thin film. Alternatively, the superconducting thin film forming apparatus of the present invention is characterized by intermittently irradiating the superconducting thin film with infrared rays. and means for intermittently irradiating the surface of the superconducting material thin film with laser light or infrared rays.

〔作用〕[Effect]

本発明では、予め基板を超伝導材の斜方晶転移が起きる
400°C程度に加熱しておき、基板上に超伝導材料を
非晶質状態で堆積させる過程において、レーザ光または
赤外線を基板上に被着形成された超伝導材料薄膜に間欠
的に照射する。これにより、前記超伝導材料薄膜表面の
温度は、レーザ光または赤外線の照射時には瞬間的に9
00°C程度に上昇し、非照射時には急激に基板温度に
まで下降する。
In the present invention, the substrate is heated in advance to about 400°C, where orthorhombic transition occurs in the superconducting material, and in the process of depositing the superconducting material on the substrate in an amorphous state, laser light or infrared rays are applied to the substrate. The superconducting material thin film deposited thereon is intermittently irradiated. As a result, the temperature of the surface of the superconducting material thin film instantaneously decreases to 9.
The temperature rises to about 00°C, and rapidly drops to the substrate temperature during non-irradiation.

この結果、基板上に非晶質上に堆積した超伝導材料は、
レーザ光(または赤外線)照射による高温時に結晶成長
し、非照射による低温時に斜方晶に相転移して超伝導特
性ををする薄膜となる。このようにして、超伝導特性を
有する物質が順次堆積して、超伝導薄膜が形成される。
As a result, the superconducting material deposited on the substrate is
Crystals grow at high temperatures caused by laser light (or infrared) irradiation, and undergo a phase transition to orthorhombic crystals at low temperatures without irradiation, resulting in a thin film with superconducting properties. In this way, substances having superconducting properties are sequentially deposited to form a superconducting thin film.

通常、超伝導薄膜形成の基板に用いられるMgO5rT
i03.サファイア単結晶は、レーザ光または赤外線の
波長範囲に対して高い透光性を示し、レーザ光および赤
外線の大部分は基板を透過するので、光照射による不必
要な基板の温度上昇はなく、また超伝導材料はレーザ光
および赤外線の吸収性が高いので、光照射による温度上
昇は超伝導材料薄膜の表面だけであり、基板温度は40
0°C程度の低温に保たれる。
MgO5rT, which is usually used as a substrate for forming superconducting thin films.
i03. Sapphire single crystal exhibits high transparency in the wavelength range of laser light and infrared rays, and most of the laser light and infrared rays pass through the substrate, so there is no unnecessary temperature rise of the substrate due to light irradiation. Since superconducting materials have high absorbency of laser light and infrared rays, the temperature rise due to light irradiation is only on the surface of the superconducting material thin film, and the substrate temperature is 40°C.
It is kept at a low temperature of around 0°C.

この結果、従来のような、高温加熱のために起こる相転
移による超伝導薄膜の結晶構造の乱れや、基板元素の熱
拡散による超伝導薄膜への不純物混入のない超伝導薄膜
が形成されるようになる。
As a result, a superconducting thin film can be formed without disrupting the crystal structure of the superconducting thin film due to phase transitions caused by high-temperature heating, or without contaminating the superconducting thin film with impurities due to thermal diffusion of substrate elements. become.

従って、超伝導特性の劣化、すなわち臨界温度および臨
界電電流の低下を招くことなく、超伝導薄膜が形成でき
るようになる。
Therefore, a superconducting thin film can be formed without deteriorating superconducting properties, that is, reducing critical temperature and critical electric current.

さらに、超伝導材料の堆積と同時に超伝導薄膜が形成で
きるので、従来の多大の時間を要したアニール工程が不
要となり、工程の所要時間が大幅に短縮される。
Furthermore, since the superconducting thin film can be formed at the same time as the superconducting material is deposited, the conventional annealing process that takes a lot of time is no longer necessary, and the time required for the process is significantly shortened.

〔実施例〕〔Example〕

第1図は本発明の実施例に係る超伝導薄膜の形成装置の
構成図である0図において、1は反応室、2はMgO,
5rTiOiまたはサファイア単結晶の基板、2aは基
板2上に被着形成された超伝導材料薄膜、3は基板2を
支持する基板支持具で、基板支持具3には基板2を加熱
するヒータ3aが備えつけである。
FIG. 1 is a block diagram of a superconducting thin film forming apparatus according to an embodiment of the present invention. In FIG. 0, 1 is a reaction chamber, 2 is an MgO,
5rTiOi or sapphire single crystal substrate; 2a is a superconducting material thin film deposited on the substrate 2; 3 is a substrate support for supporting the substrate 2; the substrate support 3 includes a heater 3a for heating the substrate 2; It is provided.

4a、4b、4cはそれぞれY、 Ba、 Cuの超伝
導材料の金属ソース、5 a −cはそれぞれY、 B
aCuを加熱する電子ビームの発生部である。
4a, 4b, and 4c are metal sources of superconducting materials of Y, Ba, and Cu, respectively, and 5a-c are Y, B, respectively.
This is the part where the electron beam that heats the aCu is generated.

6は基板表面を加熱するCOt レーザ、7は基板に酸
素をシャワー状に供給する酸素供給器である。
6 is a COt laser that heats the surface of the substrate, and 7 is an oxygen supplier that supplies oxygen to the substrate in the form of a shower.

なお、8は反応室内を真空に引く排気口である。Note that 8 is an exhaust port for evacuating the inside of the reaction chamber.

次に同図を参照しながら、本発明の実施例に係る超伝導
薄膜の形成方法について説明する。
Next, a method for forming a superconducting thin film according to an embodiment of the present invention will be described with reference to the same figure.

まず、基板2をヒータ3aで加熱して400″Cに保ち
ながら、酸素供器7により酸素をガス流量6cc/mi
nで基板2にシャワー状に供給する。このとき、反応室
1内の圧力を不図示の排気手段により排気して5 X 
10−’Torrに保つ。この状態のままでY、 Ba
、 Cuの金属ソース4a〜Cに電子ビームを照射する
ことにより、金属ソース4a−cを蒸発させ、超伝導材
料であるY、 Ba、 Cu、 ’Oを基板2上に非晶
質状態で堆積させて超伝導材料薄膜2aを形成する。
First, while heating the substrate 2 with the heater 3a and keeping it at 400''C, oxygen is supplied with the oxygen supplier 7 at a gas flow rate of 6cc/mi.
It is supplied to the substrate 2 in the form of a shower at n. At this time, the pressure inside the reaction chamber 1 is evacuated by an unillustrated exhaust means, and the pressure inside the reaction chamber 1 is 5
Maintain at 10-'Torr. In this state, Y, Ba
, By irradiating the metal sources 4a to 4C of Cu with an electron beam, the metal sources 4a to 4c are evaporated, and the superconducting materials Y, Ba, Cu, 'O are deposited in an amorphous state on the substrate 2. This forms a superconducting material thin film 2a.

これと同時に、超伝導材料薄膜2aの表面の温度が超伝
導材料(Y、 Ba、 Cu、 O)が結晶成長する9
00−1000’Cになるように、パワー0.3J/c
m”のCow レーザ6によりレーザ光(波長l006
μm)を間欠的に超伝導材料WtWi 2 aの前面に
パルス照射する。このときの超伝導材料薄膜表面の温度
変化を第2図に示す、なお、レーザの照射周波数は91
Hz (すなわち、照射周期は11m5ec )で、レ
ーザ光の照射時間はI tmsec、非照射時間は10
m5ecである。
At the same time, the temperature of the surface of the superconducting material thin film 2a is such that the superconducting materials (Y, Ba, Cu, O) grow crystals9.
Power 0.3J/c so that it is 00-1000'C
Laser light (wavelength 1006
μm) is intermittently pulsed onto the front surface of the superconducting material WtWi 2 a. Figure 2 shows the temperature change on the surface of the superconducting thin film at this time.The laser irradiation frequency was 91
Hz (i.e., the irradiation period is 11 m5ec), the irradiation time of the laser beam is I tmsec, and the non-irradiation time is 10 msec.
It is m5ec.

この結果、超伝導材料薄膜2aの表面温度は、結晶成長
する900〜1000°Cの高温と、超伝導特性の優れ
た斜方晶に相転移する400〜600”Cの低温との間
を繰り返し変化する。
As a result, the surface temperature of the superconducting material thin film 2a repeatedly changes between a high temperature of 900 to 1000°C, where crystal growth occurs, and a low temperature of 400 to 600"C, which undergoes a phase transition to an orthorhombic crystal with excellent superconducting properties. Change.

この結果、高温時に基板表面に非晶質状態で堆積した超
伝導材料が結晶成長し、続く低温時に斜方晶に相転移し
て、超伝導特性を有する膜となる。
As a result, the superconducting material deposited in an amorphous state on the substrate surface at high temperatures undergoes crystal growth, and subsequently undergoes a phase transition to orthorhombic crystals at low temperatures, resulting in a film having superconducting properties.

このように超伝導材料の結晶成長と相転移が絶えず行わ
れて基板2上に超伝導薄膜が成長する。
In this way, crystal growth and phase transition of the superconducting material are continuously performed, and a superconducting thin film is grown on the substrate 2.

本発明で用いるレーザ光は、超伝導薄膜形成の基板とし
て主に用いられるMgO,SrTiO3,サファイア単
結晶をほとんど透過するので、レーザ光照射による基板
2の温度上昇はない。従って、基板温度は400’C程
度の低温に保たれるので、高温での相転移することによ
る超伝導薄膜の結晶構造の乱れや、基板元素の熱拡散に
よる超伝導薄膜への不純物混入を招くことなく超伝導薄
膜が形成できる。この結果、臨界電流、臨界温度ともに
高い超伝導薄膜が形成できるようになる。
Since the laser beam used in the present invention almost transmits through MgO, SrTiO3, and sapphire single crystals that are mainly used as substrates for forming superconducting thin films, the temperature of the substrate 2 does not increase due to laser beam irradiation. Therefore, since the substrate temperature is kept at a low temperature of about 400'C, the crystal structure of the superconducting thin film may be disturbed due to phase transition at high temperatures, and impurities may be mixed into the superconducting thin film due to thermal diffusion of substrate elements. Superconducting thin films can be formed without any problems. As a result, a superconducting thin film with high critical current and high critical temperature can be formed.

さらに、超伝導材料の堆積と同時に超伝導特性を示す超
伝導薄膜が形成できるので、従来のアニール工程が不要
になる。この結果、製造工程に要する時間が大幅に短縮
され、量産性に優れるとともにコスト低減に効果がある
Additionally, a superconducting thin film exhibiting superconducting properties can be formed simultaneously with the deposition of superconducting materials, eliminating the need for conventional annealing steps. As a result, the time required for the manufacturing process is significantly shortened, resulting in excellent mass productivity and cost reduction.

なお、本実施例では、超伝導材料薄膜の形成にE B 
776着法を用いたが、他の方法(たとえば、スパッタ
法など)を用いていもよい9また、本実施例ではレーザ
光の照射方法として、パルス照射して行ったが、超伝導
材料薄膜の表面をスキャンさせてもよい。
In addition, in this example, E B was used to form the superconducting material thin film.
Although the 776 deposition method was used, other methods (such as sputtering) may be used.9 Also, in this example, pulse irradiation was used as the laser beam irradiation method, but The surface may also be scanned.

さらに、超伝導材料薄膜2aの照射光にはレーザ光の代
わりに赤外線を用いてもよいが、いずれの場合もパワー
が強すぎるとY、 Ba、 Cuが再庫発するので注意
する必要がある。
Further, infrared rays may be used instead of laser beams for irradiating the superconducting material thin film 2a, but in either case, care must be taken because if the power is too strong, Y, Ba, and Cu will be regenerated.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光照射による温度上昇は超伝導材料薄
膜の表面だけであり基板温度は400″C程度の低温に
保たれるので、基板元素が拡散することなく超伝導薄膜
が形成できるようになる。従って、特性の優れた超伝導
f!膜、すなわち臨界電流臨界温度ともに高い超伝導薄
膜が形成できるようになる。
According to the present invention, the temperature increase due to light irradiation occurs only on the surface of the superconducting material thin film, and the substrate temperature is kept at a low temperature of about 400"C, so that the superconducting thin film can be formed without diffusion of the substrate elements. Therefore, a superconducting f! film with excellent properties, that is, a superconducting thin film with high critical current and critical temperature can be formed.

さらに、反応室内において超伝導材料の結晶成長と斜方
晶転移が同時に行われるので、超伝導薄膜の形成が一工
程で完了する。従って、従来方法において多大の時間を
要したアニール工程が不要となり、工程の所要時間が大
幅に短縮されて生産性が向上するとともにコスト低減に
も効果がある。
Furthermore, since crystal growth and orthorhombic transition of the superconducting material occur simultaneously in the reaction chamber, the formation of the superconducting thin film is completed in one step. Therefore, the annealing step, which took a long time in the conventional method, is no longer necessary, and the time required for the step is significantly shortened, which improves productivity and is also effective in reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る超伝導薄膜の形成装置の
構成図、 第2図はレーザ光照射をパルス照射で行った場合におけ
る超伝導材料薄膜表面の温度変化図である。 (符号の説明) ■・・・反応室、 2・・・基板、 2a・・・超伝導材料薄膜、 3・・・基板支持具、 3a・・・ヒータ、 4a−c・・・金属ソース、 5a〜C・・・電子ビーム発生部、 6・・・CO2レーザ、 7・・・酸素供給器、 8・・・排気口。
FIG. 1 is a block diagram of a superconducting thin film forming apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing temperature changes on the surface of a superconducting thin film when laser beam irradiation is performed in pulsed irradiation. (Explanation of symbols) ■...Reaction chamber, 2...Substrate, 2a...Superconducting material thin film, 3...Substrate supporter, 3a...Heater, 4a-c...Metal source, 5a-C... Electron beam generation unit, 6... CO2 laser, 7... Oxygen supplier, 8... Exhaust port.

Claims (2)

【特許請求の範囲】[Claims] (1)予め所定温度に加熱された基板上に超伝導材料薄
膜を堆積させる際に、 前記超伝導材料薄膜の表面にレーザ光または赤外線を間
欠的に照射することを特徴とする超伝導薄膜の形成方法
(1) A superconducting thin film characterized in that when depositing a superconducting thin film on a substrate heated to a predetermined temperature, the surface of the superconducting thin film is intermittently irradiated with laser light or infrared rays. Formation method.
(2)基板を加熱して基板温度を所定温度に保つ加熱手
段と、 前記基板上に超伝導材料薄膜を堆積させる手段と、 前記超伝導材料薄膜の表面にレーザ光または赤外線を間
欠的に照射する手段とを有することを特徴とする超伝導
薄膜の形成装置。
(2) heating means for heating the substrate to keep the substrate temperature at a predetermined temperature; means for depositing a superconducting material thin film on the substrate; and intermittently irradiating the surface of the superconducting material thin film with laser light or infrared rays. 1. An apparatus for forming a superconducting thin film, comprising means for forming a superconducting thin film.
JP63200647A 1988-08-10 1988-08-10 Method for forming superconducting thin film and apparatus therefor Pending JPH0248404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63200647A JPH0248404A (en) 1988-08-10 1988-08-10 Method for forming superconducting thin film and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63200647A JPH0248404A (en) 1988-08-10 1988-08-10 Method for forming superconducting thin film and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH0248404A true JPH0248404A (en) 1990-02-19

Family

ID=16427877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63200647A Pending JPH0248404A (en) 1988-08-10 1988-08-10 Method for forming superconducting thin film and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH0248404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267106A (en) * 1989-04-07 1990-10-31 Sanyo Electric Co Ltd Production of superconducting device
EP0926257A1 (en) * 1997-12-23 1999-06-30 United Technologies Corporation Pre-oxidation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267106A (en) * 1989-04-07 1990-10-31 Sanyo Electric Co Ltd Production of superconducting device
EP0926257A1 (en) * 1997-12-23 1999-06-30 United Technologies Corporation Pre-oxidation method

Similar Documents

Publication Publication Date Title
JP2757284B2 (en) Method for producing metal oxide superconducting material layer by laser evaporation
EP0609886B1 (en) Method and apparatus for preparing crystalline thin-films for solid-state lasers
JPH0248404A (en) Method for forming superconducting thin film and apparatus therefor
JP2767298B2 (en) LAMINATED THIN FILM AND PROCESS FOR PRODUCING THE SAME
JPH01208327A (en) Production of thin film of superconductor
JPH0210719A (en) Manufacture of polycrystalline layer having rough crystal structure for thin film semiconductor device
JPS59148325A (en) Method and device for growing single crystal thin film of compound semiconductor
JPH0288409A (en) Production of thin layer composed of oxide type high temperature superconductor
JPH01152770A (en) Substrate with superconducting thin-film
JPS58190897A (en) Method for growing crystal by molecular beam
JPH02149402A (en) Process and device for preparing oxide superconductor
RU1575856C (en) Method of producing films of superconductive oxide materials
JP2817299B2 (en) Preparation method of composite oxide superconducting thin film
JPH03174305A (en) Production of oxide superconductor
JPH02221120A (en) Production of superconducting thin film
JPS62212293A (en) Epitaxial growth with molecular rays
JPH03140466A (en) Production of thin oxide film with large area
JPH01215963A (en) Formation of thin superconducting film
JPH0365501A (en) Preparation of oxide thin film
JPH11314999A (en) Production of oxide thin film
JPH04349616A (en) Formation of polycrystalline silicon thin film
JPS63193520A (en) Manufacture of polycrystalline silicon thin film
JPS62207796A (en) Molecular beam epitaxy
JPH04175206A (en) Method and apparatus for production of oxide superconducting thin film
JPH0450104A (en) Production of high-quality oxide superconducting thin film and equipment therefor