JPH0450104A - Production of high-quality oxide superconducting thin film and equipment therefor - Google Patents

Production of high-quality oxide superconducting thin film and equipment therefor

Info

Publication number
JPH0450104A
JPH0450104A JP16107690A JP16107690A JPH0450104A JP H0450104 A JPH0450104 A JP H0450104A JP 16107690 A JP16107690 A JP 16107690A JP 16107690 A JP16107690 A JP 16107690A JP H0450104 A JPH0450104 A JP H0450104A
Authority
JP
Japan
Prior art keywords
thin film
substrate
oxide superconducting
film
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16107690A
Other languages
Japanese (ja)
Inventor
Hisao Hattori
久雄 服部
Keizo Harada
敬三 原田
Shusuke Nakanishi
秀典 中西
Hideo Itozaki
糸崎 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16107690A priority Critical patent/JPH0450104A/en
Publication of JPH0450104A publication Critical patent/JPH0450104A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title thin film with improved quality by making a film formation while irradiating a substrate with laser beams and observing the thin film crystal on the substrate and by proceeding with the film formation by changing the wavelength of the laser beams according to the crystal state. CONSTITUTION:A chamber 1 is evacuated to a high vacuum, a substrate 5 is heated to a specified temperature with a heater 4, and the evaporation sources 10 for superconductor constituents are heated and evaporated under control with K-cells 2 along with feeding a reaction gas, thus forming an oxide thin film on the substrate. The crystal state of the thin film is observed through the reflective high-speed electron beam diffraction technique, and the thin film is irradiated with laser beams from a laser equipment 7 by varying the wavelength according to the crystal state, thus forming the objective high-quality oxide superconducting thin film. The K-cells 2, heater 4, laser equipment 7 and reaction gas feed pipe 6 etc., are each controlled by a microcomputer 11, thus setting in-chamber atmosphere, temperature conditions, crystal structure etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高品質の酸化物超電導薄膜の作製方法および
装置に関する。より詳細には、高品質の酸化物超電導薄
膜を物理的蒸着法で作製する方法およびその方法による
成膜を自動的に行うことが可能な装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for producing high quality oxide superconducting thin films. More specifically, the present invention relates to a method for producing a high-quality oxide superconducting thin film using a physical vapor deposition method, and an apparatus that can automatically perform film formation using the method.

従来の技術 Y lBa2CU307−X系、B1゜5r2Ca2C
u30X系およびT12Ba2Ca2Cu301!系の
各酸化物超電導体は、臨界温度が高く、実用化が有望と
考えられている。
Conventional technology Y lBa2CU307-X series, B1゜5r2Ca2C
u30X series and T12Ba2Ca2Cu301! Each of the oxide superconductors in the system has a high critical temperature and is considered promising for practical use.

これらの酸化物超電導体を、ジョセフソン素子、超電導
トランジスタ等の電子デバイスに応用するためには、薄
膜化することが必須である。
In order to apply these oxide superconductors to electronic devices such as Josephson elements and superconducting transistors, it is essential to make them thin.

酸化物超電導体の薄膜作製方法としては、真空蒸着法、
MBE法、スパッタリング法、CVD法等が検討されて
いる。最も一般的に用いられている方法は、スパッタリ
ング法であるが、真空蒸着法では電磁場を全く印加しな
いで成膜することが可能であり、MBE法では組成の制
御が厳密に行える等、高品質の酸化物超電導薄膜を作製
できる可能性がある。
Methods for producing thin films of oxide superconductors include vacuum evaporation,
MBE method, sputtering method, CVD method, etc. are being considered. The most commonly used method is the sputtering method, but the vacuum evaporation method allows film formation without applying any electromagnetic field, and the MBE method allows for strict composition control, resulting in high quality. It is possible to create oxide superconducting thin films.

発明が解決しようとする課題 上述のような、電子デバイスに使用するためには、単結
晶で、かつ平滑性に優れた酸化物超電導薄膜が好ましい
Problems to be Solved by the Invention For use in electronic devices as described above, an oxide superconducting thin film that is single crystal and has excellent smoothness is preferable.

しかしながら、従来の方法では、成膜中の基板温度を高
< (700℃前後)しないと、超電導特性のよい酸化
物超電導薄膜が得られなかった。このため使用可能な基
板は限られており、また、高温での成膜を行うことによ
り、基板元素の拡散が起こるため、酸化物超電導薄膜の
基板近傍の部分はその超電導特性が劣化する。
However, in the conventional method, an oxide superconducting thin film with good superconducting properties could not be obtained unless the substrate temperature during film formation was high (approximately 700° C.). Therefore, usable substrates are limited, and since film formation at high temperatures causes diffusion of substrate elements, the superconducting properties of the oxide superconducting thin film in the vicinity of the substrate deteriorate.

そこで、本発明の目的は、上記従来技術の問題点を解決
した高品質の酸化物超電導薄膜を作製する方法および装
置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method and apparatus for producing a high-quality oxide superconducting thin film that solves the problems of the prior art described above.

課題を解決するための手段 本発明に従うと、酸化物超電導体の薄膜を、物理的蒸着
法で基板上に作製する方法において、前記基板にレーザ
光を照射しながら、且つ前記基板上の薄膜の結晶を観察
しながら成膜を行い、結晶状態に応じて前記レーザ光の
波長を変化させて成膜を行うことを特徴とする酸化物超
電導薄膜の作製方法が提供される。
Means for Solving the Problems According to the present invention, in a method for producing a thin film of an oxide superconductor on a substrate by a physical vapor deposition method, while irradiating the substrate with a laser beam, the thin film on the substrate is A method for producing an oxide superconducting thin film is provided, which is characterized in that film formation is performed while observing a crystal, and film formation is performed by changing the wavelength of the laser beam according to the crystal state.

また、本発明では、上記の方法を実施する装置として、
内部を高真空に排気可能なチャンバと、該チャンバ内に
任意のガスを導入できるガス供給手段と、前記チャンバ
内で基板を保持する基板ホルダと、前記基板を加熱する
加熱手段と、前記基板上の薄膜の結晶構造を観察可能な
観察手段と、前記基板にレーザ光を照射するレーザ光照
射手段と、前記ガス供給手段、加熱手段およびレーザ光
照射手段を制御する制御手段とを具備することを特徴と
する酸化物超電導薄膜を作製する装置が提供される。
Further, in the present invention, as an apparatus for implementing the above method,
a chamber whose interior can be evacuated to a high vacuum; a gas supply means capable of introducing any gas into the chamber; a substrate holder that holds a substrate within the chamber; a heating means that heats the substrate; The method further comprises: observation means capable of observing the crystal structure of the thin film; laser light irradiation means for irradiating the substrate with laser light; and control means for controlling the gas supply means, heating means and laser light irradiation means. An apparatus for producing a characteristic oxide superconducting thin film is provided.

作用 本発明の方法は、基板にレーザ光を照射し、且つ、基板
上に形成されつつある酸化物超電導薄膜の結晶状態を観
測し、その結果によりレーザ光の波長を変化させるとこ
ろにその主要な特徴がある。
Function The method of the present invention irradiates a substrate with laser light, observes the crystal state of the oxide superconducting thin film being formed on the substrate, and changes the wavelength of the laser light based on the results. It has characteristics.

即ち、本発明の方法では、基板上に形成されつつある酸
化物超電導薄膜にレーザ光により適当な強度の反応エネ
ルギを供給し、結晶性のよい高品質な酸化物超電導薄膜
を作製する。
That is, in the method of the present invention, reaction energy of appropriate intensity is supplied by laser light to the oxide superconducting thin film being formed on the substrate, thereby producing a high quality oxide superconducting thin film with good crystallinity.

本発明では、レーザ光は基板表面において反応中の酸化
物超電導薄膜にエネルギを供給する。また、レーザ光を
照射することにより、基板温度が上昇することは好まし
くない。そのため、レーザ光の波長は短波長であること
が好ましく、また、波長が可変であることが必要なので
、例えば色素レーザ等が好ましい。
In the present invention, laser light supplies energy to the reacting oxide superconducting thin film on the substrate surface. Further, it is not preferable that the substrate temperature rises due to laser light irradiation. Therefore, it is preferable that the wavelength of the laser beam is short, and since the wavelength needs to be variable, for example, a dye laser or the like is preferable.

また、本発明では、酸化物超電導薄膜の結晶状態を観測
しながら成膜を行うが、この観測は反射高速電子線回折
(RHEED)で行うことが好ましい。
Further, in the present invention, film formation is performed while observing the crystal state of the oxide superconducting thin film, and this observation is preferably performed by reflection high-speed electron diffraction (RHEED).

以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 第1図に、本発明の方法を実現する装置の一例の概略図
を示す。第1図の装置は、MBE装置であり、内部を高
真空に排気可能で、レーザ入射窓13を備えたチャンバ
1と、内部に収納した蒸発源10の温度を制御して加熱
でき、シャッタ9により前記蒸発源10の蒸発量を制御
可能な複数のクヌーセンセル(K−セル)2と、搭載し
た基板5をヒータ4により温度を制御して加熱可能な基
板ホルダ3と、基板5の近傍で開口し、酸素を基板5表
面近傍に供給する反応ガス供給バイブロとを具備する。
Embodiment FIG. 1 shows a schematic diagram of an example of an apparatus for implementing the method of the present invention. The device shown in FIG. 1 is an MBE device, which can be evacuated to a high vacuum, has a chamber 1 equipped with a laser entrance window 13, can heat the evaporation source 10 housed inside by controlling the temperature, and has a shutter 9. a plurality of Knudsen cells (K-cells) 2 capable of controlling the evaporation amount of the evaporation source 10; a substrate holder 3 capable of heating the mounted substrate 5 by controlling the temperature with a heater 4; A reaction gas supply vibro which is open and supplies oxygen to the vicinity of the surface of the substrate 5 is provided.

また、薄膜の表面状態を観察するRHEED用電子銃2
0およびスクリーン21を具備する。さらにチャンバ1
外部には、基板にレーザ光を照射するレーザ装置7、集
光レンズ8およびフィルタ12が配置されている。レー
ザ装置7は色素レーザであり、色素セルを変えることに
より発振波長を切り替えることが可能である。
In addition, RHEED electron gun 2 for observing the surface condition of thin films
0 and a screen 21. Furthermore, chamber 1
A laser device 7 that irradiates the substrate with laser light, a condensing lens 8, and a filter 12 are arranged outside. The laser device 7 is a dye laser, and the oscillation wavelength can be changed by changing the dye cell.

K−セル2、ヒータ4、レーザ装置7、シャッタ9およ
び反応ガス供給バイブロのバルブ(不図示)は、マイク
ロコンピュータ11により制御される。マイクロコンピ
ュータ11には、成膜工程におけるチャンバ内雰囲気、
温度条件、作製する薄膜を構成する酸化物超電導体の結
晶構造等のデータが記憶されている。また、マイクロコ
ンピュータ11には、MBE装置のRHEEDの出力が
人力さレル。マイクロコンピュータ11は、上記の各種
データに基づいて、制御信号をMBE装置に出力して成
膜を行う。また、記憶している酸化物超電導体の結晶構
造のデータとを比較し、レーザ装置7を制御してレーザ
光波長のフィードバックコントロールを行う。
The K-cell 2, the heater 4, the laser device 7, the shutter 9, and the reaction gas supply vibro valve (not shown) are controlled by a microcomputer 11. The microcomputer 11 stores the chamber internal atmosphere in the film forming process,
Data such as temperature conditions and the crystal structure of the oxide superconductor constituting the thin film to be produced are stored. Further, the microcomputer 11 receives the output of RHEED of the MBE device manually. The microcomputer 11 outputs control signals to the MBE apparatus to perform film formation based on the various data described above. It also compares the stored crystal structure data of the oxide superconductor and controls the laser device 7 to perform feedback control of the laser light wavelength.

第1図に示す本発明のMBE装置を用いて、MgO基板
の(100)面上に、本発明の方法で、Y1Ba2Cu
30t−x膜を作製した。蒸発源にはY、BaおよびC
uを用いた。RHEEDから、電子線回折パターンをマ
イクロコンピュータ11に入力し、電子線回折の強度変
化とレーザの発振波長の変化が同期するようマイクロコ
ンピュータ11により制御した。具体的には、電子線回
折の中心ストリークの周期的な変化(−周期の長さは、
超電導体が1ユニツトセル成長する時間に対応する)と
同期させてレーザ光の波長を430〜530 nmの範
囲で変化させて成膜した。成膜条件を以下に示す。
Using the MBE apparatus of the present invention shown in FIG. 1, Y1Ba2Cu
A 30t-x film was prepared. Evaporation sources include Y, Ba and C.
u was used. The electron beam diffraction pattern was input from the RHEED to the microcomputer 11, and the microcomputer 11 controlled the pattern so that the change in electron beam diffraction intensity and the change in the laser oscillation wavelength were synchronized. Specifically, the periodic change in the center streak of electron beam diffraction (-period length is
The film was formed by changing the wavelength of the laser light in the range of 430 to 530 nm in synchronization with the time required for the superconductor to grow one unit cell. The film forming conditions are shown below.

基板温度      =500℃ チャンバ真空度   : 5 xlQ ’torrレー
ザ光波長    =430〜530 nmレーザ光照射
強度  + 10〜100 m J /cof膜厚  
      :200nm また、比較のために基板にレーザ光を照射しない従来の
方法でも他の条件を等しく設定して、酸化物超電導薄膜
を作製した。得られたそれぞれの薄膜のT。、Jcを測
定した結果を以下に示す。
Substrate temperature = 500°C Chamber vacuum degree: 5 xlQ 'torr Laser light wavelength = 430 to 530 nm Laser light irradiation intensity + 10 to 100 m J / cof film thickness
:200 nm For comparison, an oxide superconducting thin film was also fabricated using a conventional method in which the substrate was not irradiated with laser light, with other conditions being set the same. T of each thin film obtained. , Jc are shown below.

Tc (K)  Jc(A/cI11) (77にで測
定)本発明  84    2.3 Xl06比較例 
 34 本発明の方法で作製した薄膜は、外観上も平滑性が高く
、結晶性もより高い高品質な薄膜であった。
Tc (K) Jc (A/cI11) (Measured at 77) Invention 84 2.3 Xl06 Comparative Example
34 The thin film produced by the method of the present invention was a high-quality thin film with high smoothness in appearance and higher crystallinity.

発明の詳細 な説明したように本発明の方法に従うと、従来よりも高
品質の酸化物薄膜を作製することが可能である。これは
、本発明の方法に独特な、薄膜構成する酸化物の結晶の
成長に合わせて、波長を変化させながら基板にレーザ光
を照射することの効果である。
By following the method of the present invention as described in detail, it is possible to produce an oxide thin film of higher quality than ever before. This is an effect unique to the method of the present invention, in which the substrate is irradiated with laser light while changing the wavelength in accordance with the growth of the oxide crystals constituting the thin film.

また、本発明の装置を使用すると上記の本発明の方法を
自動的に実現可能である。
Moreover, using the apparatus of the present invention, the above-described method of the present invention can be automatically implemented.

〔主な参照番号〕[Main reference number]

1・・・チャンバ、  2・・・K−セル、3・・・基
板ホルダ、4・・・ヒータ、5・・・基板、 6・・・反応ガス供給パイプ、 7・・・レーザ装置、 8・・・集光レンズ、 9・・・シャッタ、 10・・・蒸発源、 11・・・マイクロコンピュータ 特許出願人 住友電気工業株式会社
DESCRIPTION OF SYMBOLS 1... Chamber, 2... K-cell, 3... Substrate holder, 4... Heater, 5... Substrate, 6... Reaction gas supply pipe, 7... Laser device, 8 ...Condensing lens, 9...Shutter, 10...Evaporation source, 11...Microcomputer patent applicant Sumitomo Electric Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化物超電導体の薄膜を、物理的蒸着法で基板上
に作製する方法において、前記基板にレーザ光を照射し
ながら、且つ前記基板上の薄膜の結晶を観察しながら成
膜を行い、結晶状態に応じて前記レーザ光の波長を変化
させて成膜を行うことを特徴とする酸化物超電導薄膜の
作製方法。
(1) In a method of producing a thin film of an oxide superconductor on a substrate by physical vapor deposition, the film is formed while irradiating the substrate with laser light and observing the crystals of the thin film on the substrate. . A method for producing an oxide superconducting thin film, characterized in that the film is formed by changing the wavelength of the laser beam depending on the crystal state.
(2)酸化物超電導体の薄膜を物理的蒸着法で基板上に
作製する装置において、内部を高真空に排気可能なチャ
ンバと、該チャンバ内に任意のガスを導入できるガス供
給手段と、前記チャンバ内で基板を保持する基板ホルダ
と、前記基板を加熱する加熱手段と、前記基板上の薄膜
の結晶構造を観察可能な観察手段と、前記基板にレーザ
光を照射するレーザ光照射手段と、前記ガス供給手段、
加熱手段およびレーザ光照射手段を制御する制御手段と
を具備することを特徴とする酸化物超電導薄膜を作製す
る装置。
(2) An apparatus for producing a thin film of an oxide superconductor on a substrate by a physical vapor deposition method, comprising: a chamber capable of evacuating the interior to a high vacuum; a gas supply means capable of introducing any gas into the chamber; a substrate holder for holding a substrate in a chamber; a heating means for heating the substrate; an observation means for observing a crystal structure of a thin film on the substrate; a laser light irradiation means for irradiating the substrate with laser light; the gas supply means;
1. An apparatus for producing an oxide superconducting thin film, comprising a heating means and a control means for controlling a laser beam irradiation means.
JP16107690A 1990-06-19 1990-06-19 Production of high-quality oxide superconducting thin film and equipment therefor Pending JPH0450104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16107690A JPH0450104A (en) 1990-06-19 1990-06-19 Production of high-quality oxide superconducting thin film and equipment therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16107690A JPH0450104A (en) 1990-06-19 1990-06-19 Production of high-quality oxide superconducting thin film and equipment therefor

Publications (1)

Publication Number Publication Date
JPH0450104A true JPH0450104A (en) 1992-02-19

Family

ID=15728172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16107690A Pending JPH0450104A (en) 1990-06-19 1990-06-19 Production of high-quality oxide superconducting thin film and equipment therefor

Country Status (1)

Country Link
JP (1) JPH0450104A (en)

Similar Documents

Publication Publication Date Title
JP2757284B2 (en) Method for producing metal oxide superconducting material layer by laser evaporation
JPH0462716A (en) Crystalline carbonaceous thin-film and its deposition method
US6489587B2 (en) Fabrication method of erbium-doped silicon nano-size dots
JPH0354116A (en) Compound oxide superconducting thin film and production thereof
JPH04104901A (en) Production of oxide superconducting thin film
EP0609886B1 (en) Method and apparatus for preparing crystalline thin-films for solid-state lasers
US5248659A (en) Process for preparing a superconducting thin oxide film
JPH0450104A (en) Production of high-quality oxide superconducting thin film and equipment therefor
JPH01309956A (en) Production of oxide superconductor
JPH03174307A (en) Production of oxide superconductor
JPH01215963A (en) Formation of thin superconducting film
JPH0248404A (en) Method for forming superconducting thin film and apparatus therefor
JPH02221120A (en) Production of superconducting thin film
JPH03174305A (en) Production of oxide superconductor
US4950644A (en) Method for the epitaxial preparation of a layer of a metal-oxide superconducting material with a high transition temperature
JPH02156074A (en) Production of thin superconductor film
JPH04175206A (en) Method and apparatus for production of oxide superconducting thin film
JPH01246108A (en) Production of superconducting oxide thin film
JP2916514B2 (en) Manufacturing method of oxide thin film
JPH02149403A (en) Process for preparing oxide superconductor and heat-treating apparatus of the superconductor
RU1575856C (en) Method of producing films of superconductive oxide materials
JPH03253559A (en) Apparatus for producing oxide thin film
JPH03146403A (en) Formation of oxide superconducting thin film
JPH04212217A (en) Method and device for manufacturing oxide superconductive wire rod
Sonnenberg et al. The Influence of Processing Parameters on the Development of Biaxially Aligned Zirconia Thin Films Deposited by Ion Beam Assisted Deposition