JPH03146403A - Formation of oxide superconducting thin film - Google Patents
Formation of oxide superconducting thin filmInfo
- Publication number
- JPH03146403A JPH03146403A JP1284359A JP28435989A JPH03146403A JP H03146403 A JPH03146403 A JP H03146403A JP 1284359 A JP1284359 A JP 1284359A JP 28435989 A JP28435989 A JP 28435989A JP H03146403 A JPH03146403 A JP H03146403A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- substrate
- laminated
- superconducting thin
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 33
- 230000015572 biosynthetic process Effects 0.000 title claims description 8
- 239000013078 crystal Substances 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 239000010408 film Substances 0.000 claims abstract description 12
- 238000001451 molecular beam epitaxy Methods 0.000 claims abstract description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000002425 crystallisation Methods 0.000 claims abstract description 10
- 230000008025 crystallization Effects 0.000 claims abstract description 10
- 239000001301 oxygen Substances 0.000 claims abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- 239000002887 superconductor Substances 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 4
- 230000001737 promoting effect Effects 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 238000002128 reflection high energy electron diffraction Methods 0.000 abstract description 5
- 238000010894 electron beam technology Methods 0.000 abstract description 3
- 238000010030 laminating Methods 0.000 abstract description 2
- 238000003475 lamination Methods 0.000 abstract description 2
- 230000008016 vaporization Effects 0.000 abstract 2
- 238000009834 vaporization Methods 0.000 abstract 2
- 239000000376 reactant Substances 0.000 abstract 1
- 230000008020 evaporation Effects 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 239000012495 reaction gas Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、酸化物超電導薄膜の作製方法に関する。より
詳細には、高品質の酸化物超電導薄膜を分子ビームエピ
タキシ法(以下MBE法と記す)で作製する方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing an oxide superconducting thin film. More specifically, the present invention relates to a method for producing a high-quality oxide superconducting thin film using a molecular beam epitaxy method (hereinafter referred to as MBE method).
従来の技術
化合物の薄膜を蒸着法で作製する場合、活性ガス雰囲気
中で原料を蒸発させ、基板上で反応させるいわゆる反応
性蒸着法を用いることがある。BACKGROUND ART When producing a thin film of a compound by a vapor deposition method, a so-called reactive vapor deposition method is sometimes used in which raw materials are evaporated in an active gas atmosphere and reacted on a substrate.
方、多元系化合物の薄膜を作製する場合には、組成の制
御が行い易いMBE法を用いることが有利である。また
、化合物によっては、この両者を組み合わせた方法によ
り薄膜を作製することもある。On the other hand, when producing a thin film of a multi-component compound, it is advantageous to use the MBE method, which allows easy control of the composition. Furthermore, depending on the compound, a thin film may be produced by a method that combines both methods.
酸化物薄膜を上記の方法で作製する際には、活性ガスと
して一般に酸素を導入する。また、導入する酸素ガスを
マイクロ波放電等で活性化し、反応性をより高くして、
特性の優れた酸化物薄膜を作製することも行われる。例
えば、Appl、Phys。When producing an oxide thin film by the above method, oxygen is generally introduced as an active gas. In addition, the introduced oxygen gas is activated by microwave discharge, etc. to make it more reactive.
The production of oxide thin films with excellent properties is also carried out. For example, Appl, Phys.
Lett、53 (17)、24.pp1660−16
62. D、G、Schlom et al。Lett, 53 (17), 24. pp1660-16
62. D., G., Schlom et al.
には、Dy−Ba−Cu−○系酸化物超電導薄膜を、マ
イクロ波放電により活性化した酸素ガスを導入しながら
、MBE法により作製する方法が開示されている。discloses a method of manufacturing a Dy-Ba-Cu-○ based oxide superconducting thin film by MBE method while introducing oxygen gas activated by microwave discharge.
発明が解決しようとする課題
酸化物超電導体は、一般に層状ペロブスカイト構造と称
される、それぞれ異なる元素群で構成される二次元的な
層を積み重ねた結晶構造を有する。Problems to be Solved by the Invention Oxide superconductors have a crystal structure generally referred to as a layered perovskite structure in which two-dimensional layers each composed of a different element group are stacked.
MBE法で酸化物超電導薄膜を作製する場合、上記の各
層を順々に積層して、薄膜を形成していた。When producing an oxide superconducting thin film by the MBE method, the above-mentioned layers are laminated one after another to form a thin film.
しかしながら、上記の各層を順に形成しただけでは、酸
化物超電導体として好ましい結晶構造にならず、得られ
る薄膜の超電導特性はあまりよくなかった。However, simply forming each of the above layers in sequence did not result in a crystal structure suitable for an oxide superconductor, and the superconducting properties of the resulting thin film were not very good.
そこで、本発明の目的は、上記従来技術の問題点を解決
した高品質の酸化物超電導薄膜を作製する方法を提供す
ることにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for producing a high-quality oxide superconducting thin film that solves the problems of the prior art described above.
課題を解決するための手段
本発明に従うと、結晶構造が層状である酸化物超電導体
の薄膜をマイクロ波放電により励起した酸素を含むガス
を基板近傍に導入しながら分子ビームエピタキシ法で作
製する方法において、基板上に前記各層を前記酸化物超
電導体結晶を構成する順に積層し、1単位結晶に相当す
るだけの層を積層するごとに成膜を中断し、活性な酸素
雰囲気下で結晶化を促進する工程を繰り返して所望の厚
さの酸化物超電導薄膜を作製することを特徴とする酸化
物超電導薄膜の作製方法が提供される。Means for Solving the Problems According to the present invention, a thin film of an oxide superconductor having a layered crystal structure is fabricated by molecular beam epitaxy while introducing a gas containing oxygen excited by microwave discharge into the vicinity of the substrate. In this step, each layer is laminated on a substrate in the order of forming the oxide superconductor crystal, and the film formation is interrupted every time a layer equivalent to one unit crystal is laminated, and crystallization is performed in an active oxygen atmosphere. A method for producing an oxide superconducting thin film is provided, which comprises repeating the promoting step to produce an oxide superconducting thin film having a desired thickness.
作用
本発明の方法は、層状構造の結晶を有する酸化物超電導
体の1単位結晶に相当するだけの層を積層するごとに成
膜を中断し、活性な酸素雰囲気下で結晶化の促進を行い
、これらの工程を繰り返して酸化物超電導薄膜を作製す
るところにその主要な特徴がある。例えば、Y1Ba2
Cu30t−に酸化物超電導体の結晶は、Ba−0層、
Cu−0層、Ba−0層、Cu−0層、Y−0層、Cu
−0層、Ba−0層、Cu−0層、Da−0層が順に積
層された構成を有する。従って、本発明の方法でY、B
a2Cu301−X酸化物超電導薄膜を作製する場合は
、蒸発源にYlBaおよびCuを用いる。MBE装置内
の基板近傍には、マイクロ波放電により励起した酸素を
導入し、各蒸発源のシャッタを制御しながら、上記の各
層を順に積層する。最後のBa−0層を積層したら、全
ての蒸発源のシャッタを閉じて成膜を中断し、結晶化の
促進を行う。この工程は薄膜の電子線回折パターンをモ
ニタしながら行い、結晶構造が好ましくなったら終了す
る。そして、次の結晶の積層を開始する。これらの工程
を繰り返して薄膜を成長させる。上記のY 1Ba2C
ua off−Xの場合、結晶のa軸よりもb軸が短い
。従って、結晶化の促進時に電子線回折のストリークパ
ターンの間隔から、結晶構造の良否が判定可能である。Function: The method of the present invention interrupts film formation every time a layer corresponding to one unit crystal of an oxide superconductor having a layered crystal structure is laminated, and promotes crystallization in an active oxygen atmosphere. Its main feature is that these steps are repeated to produce an oxide superconducting thin film. For example, Y1Ba2
The Cu30t-oxide superconductor crystal has a Ba-0 layer,
Cu-0 layer, Ba-0 layer, Cu-0 layer, Y-0 layer, Cu
It has a structure in which a -0 layer, a Ba-0 layer, a Cu-0 layer, and a Da-0 layer are laminated in this order. Therefore, in the method of the present invention, Y, B
When producing an a2Cu301-X oxide superconducting thin film, YlBa and Cu are used as evaporation sources. Oxygen excited by microwave discharge is introduced into the vicinity of the substrate in the MBE apparatus, and each of the above layers is laminated in order while controlling the shutter of each evaporation source. After laminating the last Ba-0 layer, the shutters of all evaporation sources are closed to interrupt film formation and promote crystallization. This process is carried out while monitoring the electron diffraction pattern of the thin film, and ends when the crystal structure becomes favorable. Then, stacking of the next crystal is started. These steps are repeated to grow a thin film. Y 1Ba2C above
In the case of ua off-X, the b-axis is shorter than the a-axis of the crystal. Therefore, it is possible to judge whether the crystal structure is good or bad from the intervals of the streak patterns of electron beam diffraction during the promotion of crystallization.
本発明の方法では、単に積層しただけでは酸化物超電導
体として完全でない結晶が、結晶化促進工程により原子
が移動して、好ましい結晶となるものである。また、結
晶中の酸素を補う効果もある。このように、本発明の方
法では、1単位結晶毎に結晶構造を整えて薄膜を作製す
るので、得られる薄膜は非常に結晶性がよく、表面平滑
性に優れた、高品質なものとなる。In the method of the present invention, a crystal that is not perfect as an oxide superconductor by simply stacking becomes a preferable crystal through the movement of atoms in the crystallization promotion step. It also has the effect of supplementing oxygen in the crystal. As described above, in the method of the present invention, a thin film is produced by adjusting the crystal structure of each unit crystal, so the obtained thin film has very good crystallinity, has excellent surface smoothness, and is of high quality. .
本発明の方法では、基板近傍にマイクロ波放電により励
起させた酸素ガスを供給する。In the method of the present invention, oxygen gas excited by microwave discharge is supplied near the substrate.
以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.
実施例
第1図に、本発明の方法を実現する装置の一例の概略図
を示す。第1図の装置は、MBE装置であり、内部を高
真空に排気可能なチャンバ1と、内部に収納した蒸発源
lOの温度を制御して加熱でき、シャッタ8により前記
蒸発源lOの蒸発量を制御可能な複数のクヌーセンセル
(K−セル〉 2と、搭載した基板5をヒータ4により
温度を制御して加熱可能な基板ホルダ3と、基板5の近
傍で開口し、マイクロ波電源7によるマイクロ波放電に
より励起させた酸素を基板5表面近傍に供給する反応ガ
ス供給バイブロとを具備する。また、薄膜の結晶性およ
び表面状態を観察するための電子銃20およびスクリー
ン21からなるRHEEDを具備する。Embodiment FIG. 1 shows a schematic diagram of an example of an apparatus for implementing the method of the present invention. The apparatus shown in FIG. 1 is an MBE apparatus, and includes a chamber 1 that can be evacuated to a high vacuum, and an evaporation source 1O housed inside that can be heated by controlling the temperature. a plurality of Knudsen cells (K-cells) 2, which can control the temperature of the substrate 5 mounted thereon, a substrate holder 3 whose temperature can be controlled and heated by a heater 4, and a microwave power source 7 that opens near the substrate 5; It is equipped with a reaction gas supply vibro that supplies oxygen excited by microwave discharge to the vicinity of the surface of the substrate 5. It is also equipped with an RHEED consisting of an electron gun 20 and a screen 21 for observing the crystallinity and surface state of the thin film. do.
第1図に示すMBE装置を用いて、MgO(100)面
上に、本発明の方法でY、Ba、Cu、○、−8膜を作
製した。基板5の近傍には反応ガス供給バイブロからマ
イクロ波放電により励起させた02を供給した。蒸発源
にはY、BaおよびCuを用い、K−セルの温度を、Y
は1450℃、Baは500℃、Cuは1080℃とし
た。Ba5CuSBaSCuSY、 CuSBa、 C
u5Haの順にシャッタを開いて、l単位結晶分の層を
積層した。それぞれのシャッタを開く時間は、Yが4秒
、Baが3秒、Cuが5秒であった。積層時および結晶
化促進時のチャンバ1内の真空度は、5X10−’To
rrで、基板温度は650℃とし、最終的に厚さ110
0nの薄膜を作製した。結晶化促進時には、RHEED
により、電子線回折パターンを観察し、結晶のa軸より
もb軸が短くなるまで行った。尚、比較のために厚さ1
100nに成膜した従来の方法でも薄膜を作製し、超電
導特性を測定した。共通な条件は、
基板温度(成膜時) :650℃チャンバ真空度
: 5 Xl0−’torr反応ガス供給量
: 0.5SCCMマイクロ波放電部真空度:
0.5Torr得られた膜のTc5Jcを測定した結果
を併せて第1表に示す。Using the MBE apparatus shown in FIG. 1, Y, Ba, Cu, ○, -8 films were produced on the MgO (100) surface by the method of the present invention. In the vicinity of the substrate 5, 02 excited by microwave discharge was supplied from a reaction gas supply vibro. Y, Ba and Cu are used as evaporation sources, and the temperature of the K-cell is set to Y
The temperature was 1450°C, the temperature was 500°C for Ba, and the temperature was 1080°C for Cu. Ba5CuSBaSCuSY, CuSBa, C
The shutters were opened in the order of u5Ha, and layers for 1 unit crystal were laminated. The time to open each shutter was 4 seconds for Y, 3 seconds for Ba, and 5 seconds for Cu. The degree of vacuum inside the chamber 1 during lamination and crystallization promotion is 5X10-'To
rr, the substrate temperature is 650℃, and the final thickness is 110℃.
A thin film of 0n was prepared. When promoting crystallization, RHEED
The electron beam diffraction pattern was observed until the b-axis of the crystal became shorter than the a-axis. For comparison, the thickness is 1
A thin film was also produced using the conventional method of forming a film to a thickness of 100 nm, and its superconducting properties were measured. Common conditions are: Substrate temperature (during film formation): 650°C Chamber vacuum: 5 Xl0-'torr Reaction gas supply amount
: 0.5SCCM microwave discharge section vacuum degree:
Table 1 also shows the results of measuring Tc5Jc of the film obtained at 0.5 Torr.
注:比較例の成膜速度は、0.5A/秒本発明の方法で
作製した薄膜は、平滑性に優れ、結晶性もより高い高品
質な薄膜であった。Note: The film formation rate in the comparative example was 0.5 A/sec. The thin film produced by the method of the present invention was a high quality thin film with excellent smoothness and higher crystallinity.
発明の詳細
な説明したように本発明の方法に従うと、従来よりも高
品質の酸化物薄膜を作製することが可能である。これは
、本発明の方法に独特な、1単位結晶積層するごとに成
膜を中断し、結晶化を促進することの効果である。By following the method of the present invention as described in detail, it is possible to produce an oxide thin film of higher quality than ever before. This is an effect unique to the method of the present invention, in which film formation is interrupted every time one unit crystal is laminated to promote crystallization.
また、本発明の方法は、従来の装置等に大きな改造を加
えることなく、実現可能である。Furthermore, the method of the present invention can be implemented without major modifications to conventional equipment.
第1図は、本発明の方法を実現するMBE装置の一例の
概略図である。
〔主な参照番号〕
1・・・チャンバ、 2・・・K−セル、3・・・基
板ホルダ、4・・・ヒータ、5・・・基板、
6・・・反応ガス供給パイプ、
7・・・マイクロ波電源、8・・・シャッタ、lO・・
・蒸発源、 20・・・RHEED用電子銃、2■・・
・RHEED用スクリーンFIG. 1 is a schematic diagram of an example of an MBE apparatus implementing the method of the present invention. [Main reference numbers] 1... Chamber, 2... K-cell, 3... Substrate holder, 4... Heater, 5... Substrate, 6... Reaction gas supply pipe, 7... ...Microwave power supply, 8...Shutter, lO...
・Evaporation source, 20...RHEED electron gun, 2■...
・RHEED screen
Claims (1)
ロ波放電により励起した酸素を含むガスを基板近傍に導
入しながら分子ビームエピタキシ法で作製する方法にお
いて、基板上に前記各層を前記酸化物超電導体結晶を構
成する順に積層し、1単位結晶に相当するだけの層を積
層するごとに成膜を中断し、活性な酸素雰囲気下で結晶
化を促進する工程を繰り返して所望の厚さの酸化物超電
導薄膜を作製することを特徴とする酸化物超電導薄膜の
作製方法。In a method of fabricating a thin film of an oxide superconductor having a layered crystal structure by a molecular beam epitaxy method while introducing a gas containing oxygen excited by microwave discharge near the substrate, each of the layers is formed on the substrate. The layers are laminated in the order that they form a unit crystal, the film formation is interrupted every time the layers equivalent to one unit crystal are laminated, and the process of promoting crystallization in an active oxygen atmosphere is repeated to achieve the desired thickness of oxidation. 1. A method for producing an oxide superconducting thin film, the method comprising producing a superconducting thin film.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1284359A JPH03146403A (en) | 1989-10-31 | 1989-10-31 | Formation of oxide superconducting thin film |
CA002029038A CA2029038C (en) | 1989-10-31 | 1990-10-31 | Process and system for preparing a superconducting thin film of oxide |
US07/604,896 US5143896A (en) | 1989-10-31 | 1990-10-31 | Process and system for preparing a superconducting thin film of oxide |
EP90403092A EP0426570B1 (en) | 1989-10-31 | 1990-10-31 | Process and system for preparing a superconducting thin film of oxide |
DE69024916T DE69024916T2 (en) | 1989-10-31 | 1990-10-31 | Method and system for producing a superconducting thin film from oxide |
US07/946,735 US5350737A (en) | 1989-10-31 | 1992-08-28 | MBE process for preparing oxide superconducting films |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1284359A JPH03146403A (en) | 1989-10-31 | 1989-10-31 | Formation of oxide superconducting thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03146403A true JPH03146403A (en) | 1991-06-21 |
Family
ID=17677572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1284359A Pending JPH03146403A (en) | 1989-10-31 | 1989-10-31 | Formation of oxide superconducting thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03146403A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5711813A (en) * | 1994-09-29 | 1998-01-27 | Mitsubishi Denki Kabushiki Kaisha | Epitaxial crystal growth apparatus |
-
1989
- 1989-10-31 JP JP1284359A patent/JPH03146403A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5711813A (en) * | 1994-09-29 | 1998-01-27 | Mitsubishi Denki Kabushiki Kaisha | Epitaxial crystal growth apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5350737A (en) | MBE process for preparing oxide superconducting films | |
EP0533945B1 (en) | Production method for oxide superconductor film | |
JPH0354116A (en) | Compound oxide superconducting thin film and production thereof | |
JPH0867968A (en) | Production of oxide thin film | |
JPH03146403A (en) | Formation of oxide superconducting thin film | |
KR100445625B1 (en) | Method of Making Bismuth Compound and Dielectric Material of Bismuth | |
US5340793A (en) | Layer-by-layer process for forming Bi -containing oxide superconducting films | |
Gorbenko et al. | Epitaxial BaTiO3 films grown by aerosol MOCVD | |
JP2639544B2 (en) | Single crystal thin film of LaA Lower 2 Cu 3 Lower O 7 Lower 3 x with three-layer perovskite structure and LaA Lower 2 Cu Lower 3 O Lower 7 Lower 7 x thin film manufacturing method | |
JPH03146406A (en) | Formation of oxide superconducting thin film | |
JPH03146404A (en) | Method and device for forming high-quality oxide superconducting thin film | |
JPH03146402A (en) | Method and device for forming high-quality oxide superconducting thin film | |
JP2539458B2 (en) | Method and device for manufacturing superconducting thin film | |
JP3413888B2 (en) | Method of forming oxide thin film | |
JP3292004B2 (en) | Method for producing bismuth compound | |
JPH0435033A (en) | Manufacture of ferroelectric thin film | |
JPH05148084A (en) | Superconductor | |
JPH0365501A (en) | Preparation of oxide thin film | |
JPH05263240A (en) | Production of dielectric thin film and its device | |
JPH03122003A (en) | Production of alkali metal-replaced oxide thin film | |
JPH05267570A (en) | Manufacture of dielectric thin film and device thereof | |
JPH08325019A (en) | Production of bismuth layer compound | |
JPH02255533A (en) | Production of bi-containing superconducting thin film | |
JPH07206592A (en) | Method for producing oxide thin film | |
JPH11278996A (en) | Crystal growth of oxide thin film |