JPH05148084A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH05148084A
JPH05148084A JP3316424A JP31642491A JPH05148084A JP H05148084 A JPH05148084 A JP H05148084A JP 3316424 A JP3316424 A JP 3316424A JP 31642491 A JP31642491 A JP 31642491A JP H05148084 A JPH05148084 A JP H05148084A
Authority
JP
Japan
Prior art keywords
substrate
thin film
thin films
superconductor
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3316424A
Other languages
Japanese (ja)
Inventor
Seiichi Tokunaga
誠一 徳永
Hiroaki Furukawa
浩章 古川
Masao Nakao
昌夫 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3316424A priority Critical patent/JPH05148084A/en
Publication of JPH05148084A publication Critical patent/JPH05148084A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a superconductor having oxide superconducting thin films of a specific structure laminated in high quality on a substrate and anisotropic superconducting characteristics in the surface direction of the substrate and provide a superconductor in which the oxide superconducting thin films and the normal conducting thin films are selectively formed on the substrate. CONSTITUTION:The objective superconductor 2 is characterized by having an off substrate 1, composed of a single crystal and having a surface tilted at a prescribed angle to the crystal surface, oxide superconducting thin films (2a) and normal conducting thin films (2b), laminated and formed in desired selected positions on the surface of the off substrate 1. Joining defects caused by lattice constant misfit of the materials between the substrate surface and the thin films are reduced by using the off substrate 1. The oxide superconducting thin films and normal conducting thin films are selectively laminated and formed by controlling plural evaporation sources. In this example, Y-Ba-Cu-O-based oxide superconducting thin films and Pr-Ba-Cu-O-based normal conducting thin films are respectively used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導電子デバイスに
利用される超電導体、特に酸化物超電導薄膜を有するも
のに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconductor used in a superconducting device, and more particularly to a superconductor having an oxide superconducting thin film.

【0002】[0002]

【従来の技術】近年、液体窒素温度以上の高い臨界温度
で超電導状態になるイットリウム(Y)系、ビスマス
(Bi)系及びタリウム(Tl)系の酸化物超電導体が
発見され、これを薄膜化し超電導電子デバイスへ応用す
る研究が盛んに行われている。
2. Description of the Related Art In recent years, yttrium (Y), bismuth (Bi) and thallium (Tl) based oxide superconductors have been discovered which are in a superconducting state at a high critical temperature higher than liquid nitrogen temperature. Researches applied to superconducting devices are being actively conducted.

【0003】このような超電導電子デバイスを作製する
には、酸化物超電導薄膜と異種物質(例えば絶縁体、半
導体、常電導体あるいは超電導体)の薄膜とを、絶縁体
あるいは半導体基板上に積層する技術が重要となる。
In order to manufacture such a superconducting device, an oxide superconducting thin film and a thin film of a different substance (for example, an insulator, a semiconductor, a normal conductor or a superconductor) are laminated on an insulator or a semiconductor substrate. Technology is important.

【0004】従来は結晶面に平行な表面を有するjus
t基板上に酸化物超電導薄膜を蒸着、スパッタ等により
積層形成するが、このjust基板の表面に凹凸がある
と、その上に形成された酸化物超電導薄膜にピンホール
や結晶性の乱れなどの欠陥が生じ良好な接合特性が得ら
れなくなってしまう。このため、just基板の表面を
十分に研磨し、できるだけ平坦な表面を得、ここに酸化
物超電導薄膜を形成している。なお、絶縁体基板として
は、SrTiO3基板や、MgO基板などが用いられ、
これらの(100)面上などに酸化物超電導薄膜が積層
形成される。
Conventionally, a jus having a surface parallel to the crystal plane
An oxide superconducting thin film is laminated on a t substrate by vapor deposition, sputtering, or the like. If the surface of this just substrate has irregularities, the oxide superconducting thin film formed on the just substrate may have pinholes or disorder of crystallinity. Defects occur and good bonding characteristics cannot be obtained. For this reason, the surface of the just substrate is sufficiently polished to obtain a surface as flat as possible, and an oxide superconducting thin film is formed there. As the insulator substrate, a SrTiO 3 substrate, a MgO substrate, or the like is used,
An oxide superconducting thin film is laminated on these (100) planes.

【0005】現在、SrTiO3(100)just基
板上に、酸化物超電導薄膜(Y1Ba 2Cu37-X)が結
晶単位ごとにc軸配向して成長することが知られている
(参考文献:T.Terasima and Y.Bandou,Phys.Rev.Lett.
65.(1990)2684)。しかし、このようなjust基板を
用いる方法では、結晶成長のきっかけとなるseedの
生成位置を特定することができず、基板表面上の所望の
選択個所に酸化物超電導薄膜を形成することができな
い。このように従来技術では、酸化物超電導薄膜を基板
上に所定の構造で高品位に積層することはできない。
Currently, SrTiO3(100) just group
On the plate, the oxide superconducting thin film (Y1Ba 2Cu3O7-X) Is tied
It is known that each crystal unit grows with c-axis orientation.
(Reference: T. Terasima and Y. Bandou, Phys. Rev. Lett.
65. (1990) 2684). However, a just board like this
With the method used, the seed
Since the generation position cannot be specified, the desired position on the substrate surface
It is not possible to form an oxide superconducting thin film at selected locations.
Yes. Thus, in the conventional technology, the oxide superconducting thin film is used as the substrate.
It cannot be laminated with a predetermined structure in a high quality.

【0006】また、酸化物超電導薄膜が基板全面に形成
され、積層して得られる薄膜は、この場合、基板面に平
行にCu−O面がつながるので、基板面において二次元
超電導性を有することになり、異方性超電導特性を有す
る膜構造の超電導体を作製することが困難である。
Further, in this case, the thin film obtained by laminating the oxide superconducting thin film on the entire surface of the substrate and having the Cu--O plane connected in parallel to the substrate surface has two-dimensional superconductivity on the substrate surface. Therefore, it is difficult to manufacture a film-structured superconductor having anisotropic superconductivity.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の課題を
解決するためになされたものであり、酸化物超電導薄膜
を基板上に所定の構造で高品位に積層し、かつ、基板の
面方向において異方性超電導特性を有する超電導体を提
供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a high-quality oxide superconducting thin film is laminated on a substrate in a predetermined structure and the surface direction of the substrate is The present invention provides a superconductor having anisotropic superconductivity.

【0008】[0008]

【課題を解決するための手段】本発明は、単結晶からな
り、その結晶面に対し所定角度傾斜した表面を有する基
板と、この基板の表面上に形成された酸化物超電導薄膜
と常電導薄膜と、を有することを特徴とする超電導体を
提供する。
The present invention is directed to a substrate made of a single crystal and having a surface inclined at a predetermined angle with respect to the crystal plane, an oxide superconducting thin film and a normal conducting thin film formed on the surface of the substrate. There is provided a superconductor characterized by including:

【0009】[0009]

【作用】本発明によれば、単結晶からなり、その結晶面
に対し所定角度傾斜した鋸歯状の表面を有する基板(o
ff基板)を用いたので、結晶成長のきっかけとなるs
eedの生成位置を特定することができ、かつ、酸化物
超電導薄膜と常電導薄膜を選択的に配列形成することが
できる。
According to the present invention, a substrate (o) made of a single crystal and having a sawtooth surface inclined at a predetermined angle with respect to the crystal plane is used.
ff substrate) is used, so it can trigger crystal growth.
The generation position of seed can be specified, and the oxide superconducting thin film and the normal conducting thin film can be selectively formed.

【0010】[0010]

【実施例】図1は本発明の一実施例の超電導体の構成図
であり、off基板1上に酸化物超電導薄膜2a及び常
電導薄膜2bを交互に堆積させ、両者の繰り返し積層構
造からなる超電導体2が形成されている。
FIG. 1 is a block diagram of a superconductor according to an embodiment of the present invention, in which an oxide superconducting thin film 2a and a normal conducting thin film 2b are alternately deposited on an off substrate 1 and have a repeated laminated structure of both. A superconductor 2 is formed.

【0011】off基板1は、SrTiO3の結晶の
(100)面に対し、所定角度(4°)傾斜して研磨さ
れて作製されている。このため、その表面に結晶面と直
角な段面1aと結晶面に平行なステップ面1bとが形成
されている。この例では、傾斜角度が4°の基板1を利
用しているため、段面1aの長さをA、ステップ面1b
の長さをBとすると A/B=tan4°=1/14 となる。
The off substrate 1 is manufactured by polishing with an inclination of a predetermined angle (4 °) with respect to the (100) plane of the SrTiO 3 crystal. Therefore, a step surface 1a perpendicular to the crystal surface and a step surface 1b parallel to the crystal surface are formed on the surface. In this example, since the substrate 1 having an inclination angle of 4 ° is used, the length of the step surface 1a is A and the step surface 1b is
If the length of B is B, then A / B = tan 4 ° = 1/14.

【0012】なお、薄膜の堆積の際、薄膜は基板1のス
テップ面1bにおいて段面1aから結晶成長を開始す
る。酸化物超電導薄膜のa軸長及びb軸長はそれぞれ
0.389nm、0.383nmであり、SrTiO3
(100)面の格子定数は0.391nmであるため、
a軸長との方がミスマッチ(格子不整合)が小さく、酸
化物超電導薄膜及び常電導薄膜はa軸がY軸と平行な方
向に成長し1つのステップ面上に一対の酸化物超電導薄
膜と常電導薄膜が形成される。これによって、基板の薄
膜成長面に対して平行な面方向(X−Y面方向)にCu
−O面を持つc軸配向超電導薄膜が成長し、Y軸方向に
のみ超電導性を有する一次元超電導薄膜を形成すること
ができる。
During the deposition of the thin film, the thin film starts crystal growth from the step surface 1a on the step surface 1b of the substrate 1. The a-axis length and the b-axis length of the oxide superconducting thin film are 0.389 nm and 0.383 nm, respectively, and SrTiO 3
Since the lattice constant of the (100) plane is 0.391 nm,
The mismatch (lattice mismatch) with the a-axis length is smaller, and the oxide superconducting thin film and the normal conducting thin film grow in the direction in which the a-axis is parallel to the Y-axis and form a pair of oxide superconducting thin films on one step surface. A normal conducting thin film is formed. As a result, Cu is formed in a plane direction (XY plane direction) parallel to the thin film growth surface of the substrate.
A c-axis oriented superconducting thin film having a -O plane grows, and a one-dimensional superconducting thin film having superconductivity only in the Y-axis direction can be formed.

【0013】本実施例におけるSrTiO3の結晶は立
方晶系(格子定数 a=b=c=0.3905nm)で
あり、側面側の段面1aの長さAは0.3905nmと
なり、上面側のステップ面1bに14個のSrTiO3
の結晶が並ぶことによって、表面状態が均質な4°of
f基板1が得られる。
The crystal of SrTiO 3 in this example is a cubic system (lattice constant a = b = c = 0.3905 nm), and the length A of the step surface 1a on the side surface side is 0.3905 nm, and that on the upper surface side is 14 SrTiO 3 on the step surface 1b
4 ° of which surface condition is uniform due to the arrangement of crystals
The f board 1 is obtained.

【0014】4°off基板1上に形成された超電導体
2は、酸化物超電導体Y−Ba−Cu−O(Y1Ba2
37-X;6.5<7−δ<6.9)2a及び常電導体
Pr−Ba−Cu−O(Pr1Ba2Cu37-Y;6.5
<7−δ<6.9,Pr;プラセオジム)2bの薄膜か
ら構成されており、Y−Ba−Cu−Oは斜方晶系(格
子定数:a≠b≠c,a=0.38815nm、b=
0.38144nm、c=1.16749nm)であ
る。
The superconductor 2 formed on the 4 ° off substrate 1 is an oxide superconductor Y-Ba-Cu-O (Y 1 Ba 2 C
u 3 O 7-X; 6.5 <7-δ <6.9) 2a and normal conductor Pr-Ba-Cu-O ( Pr 1 Ba 2 Cu 3 O 7-Y; 6.5
<7-δ <6.9, Pr; praseodymium) 2b, and Y-Ba-Cu-O is an orthorhombic system (lattice constant: a ≠ b ≠ c, a = 0.38815 nm, b =
0.38144 nm, c = 1.16749 nm).

【0015】そして、SrTiO3の4°off基板上
に酸化物超電導薄膜2a(Y−Ba−Cu−O)及び常
電導薄膜2b(Pr−Ba−Cu−O)を積層形成する
と、Y−Ba−Cu−O及びPr−Ba−Cu−Oの
a、b、cと図1におけるX、Y、Zは次の如く対応し
て、超電導体2が形成される。
Then, when the oxide superconducting thin film 2a (Y-Ba-Cu-O) and the normal conducting thin film 2b (Pr-Ba-Cu-O) are laminated on the 4 ° off substrate of SrTiO 3 , Y-Ba is formed. The superconductor 2 is formed by a-b-c of -Cu-O and Pr-Ba-Cu-O and X, Y, Z in FIG.

【0016】a→Y、b→X、c→Z このため、図1に示す如く、結晶軸が揃った(c軸配
向)双晶欠陥のない酸化物超電導薄膜を得ることができ
る。この時の酸化物超電導薄膜及び常電導薄膜を形成す
る材料の条件は、それらの結晶薄膜層間接触面の結晶整
合性、並びにそれらと4°off基板1の結晶面との結
晶整合性が非常に高いことである。
A → Y, b → X, c → Z Therefore, as shown in FIG. 1, it is possible to obtain an oxide superconducting thin film having no crystal defects with aligned crystal axes (c-axis orientation). At this time, the material conditions for forming the oxide superconducting thin film and the normal conducting thin film are that the crystal matching between the crystal thin film interlayer contact surfaces and the crystal matching between them and the crystal plane of the 4 ° off substrate 1 are very high. It is expensive.

【0017】即ち、酸化物超電導薄膜及び常電導薄膜の
a軸長あるいはb軸長の一方と基板の結晶面の格子定数
と近似であれば、その一方の軸長(例えばa軸長)との
結晶整合性が高くなり、超電導体及び常電導薄膜は、例
えば、a軸がY軸と平行に、かつ、Z軸方向に成長す
る。また、1つのステップ面上に一対の酸化物超電導薄
膜と常電導薄膜を形成させることも可能となる。これに
よって、図1に示す如く、基板の薄膜成長面に対して平
行な面方向(X−Y面方向)にc軸配向超電導薄膜が選
択的に成長し、基板の傾斜方向(X軸方向)に垂直な基
板面内の方向(Y軸方向)のみに超電導性を有する異方
性超電導薄膜を形成することができる。
That is, if one of the a-axis length or the b-axis length of the oxide superconducting thin film and the normal conducting thin film is close to the lattice constant of the crystal plane of the substrate, the one of the a-axis lengths (for example, the a-axis length). The crystal matching becomes high, and the superconductor and the normal-conducting thin film grow, for example, with the a-axis parallel to the Y-axis and in the Z-axis direction. It is also possible to form a pair of oxide superconducting thin film and normal conducting thin film on one step surface. As a result, as shown in FIG. 1, the c-axis oriented superconducting thin film is selectively grown in the plane direction (XY plane direction) parallel to the thin film growth surface of the substrate, and the tilt direction of the substrate (X axis direction). It is possible to form an anisotropic superconducting thin film having superconductivity only in the direction (Y-axis direction) in the plane of the substrate perpendicular to.

【0018】続いて、この超電導体2の作製方法につい
て説明する。図2は、分子線エピタキシー法(MBE)
による超電導体作製装置の概略構成図であり、気密容器
3の内部が成長室4とされている。この成長室4の基板
ホルダ5には、基板1が装着される。なお、ヒータ7は
基板1を所定温度に加熱するものであり、その酸化防止
のため白金−ロジウム合金(Pt−Rh(20%))か
ら形成されている。
Next, a method for manufacturing the superconductor 2 will be described. Figure 2 shows the molecular beam epitaxy method (MBE)
It is a schematic block diagram of the superconductor manufacturing apparatus by this, and the inside of the airtight container 3 is made into the growth chamber 4. The substrate 1 is mounted on the substrate holder 5 in the growth chamber 4. The heater 7 heats the substrate 1 to a predetermined temperature, and is formed of a platinum-rhodium alloy (Pt-Rh (20%)) to prevent its oxidation.

【0019】一方、この基板1に対向する位置には、複
数の蒸発源8a〜8dが設けられており、ここより、超
電導体2の作製に必要なY、Pr、Ba、Cuがそれぞ
れ独立に原子あるいは分子状態で蒸発し、それぞれ基板
に照射される。なお、蒸発源8aはCu用の電子ビーム
蒸発源であり、8b、8c及び8dはY、Ba及びPr
の堝蒸発源である。
On the other hand, a plurality of evaporation sources 8a to 8d are provided at positions facing the substrate 1, from which Y, Pr, Ba and Cu necessary for producing the superconductor 2 are independently provided. It vaporizes in the atomic or molecular state and is irradiated onto the substrate. The evaporation source 8a is an electron beam evaporation source for Cu, and 8b, 8c and 8d are Y, Ba and Pr.
It is the crucible evaporation source.

【0020】また、基板1の近傍には、酸素源9aに接
続されている酸素噴出口9cが配置されており、ここよ
りO2あるいはラジカルOが基板1に向けて供給され
る。なお、バルブ9bは酸素の供給量を制御するための
ものである。
An oxygen jet 9c connected to an oxygen source 9a is arranged in the vicinity of the substrate 1, and O 2 or radicals O are supplied toward the substrate 1 from here. The valve 9b is for controlling the supply amount of oxygen.

【0021】各蒸発源8の前面には、蒸発物の照射を制
御するために開閉可能なシャッタ10がもうけており、こ
のシャッタ10の開閉は薄膜堆積コントローラ11によって
行われる。この薄膜堆積コントローラ11には、膜厚検出
器12が接続されており、これによって基板1上に堆積さ
れた膜厚を検出し、膜厚に応じてシャッタ10の開閉を制
御する。なお、薄膜堆積コントローラ11は蒸発源8a〜
8dの加熱制御による蒸発量の制御も行う。
On the front surface of each evaporation source 8, there is provided a shutter 10 that can be opened and closed to control the irradiation of evaporated material, and the opening and closing of this shutter 10 is performed by a thin film deposition controller 11. A film thickness detector 12 is connected to the thin film deposition controller 11, which detects the film thickness deposited on the substrate 1 and controls the opening and closing of the shutter 10 according to the film thickness. The thin film deposition controller 11 includes the evaporation sources 8a ...
The amount of evaporation is also controlled by the heating control of 8d.

【0022】ここで、膜厚検出器12としては、例えば水
晶振動子式のものが採用される。この水晶振動子式の膜
厚検出器12は、6MHzで発振する水晶板上への蒸着量
によって、発振周波数が変化することを利用するもので
ある。なお、膜厚検出器12としては、発光式のもの等を
適宜採用することができる。
Here, as the film thickness detector 12, for example, a crystal oscillator type is adopted. The crystal oscillator type film thickness detector 12 utilizes that the oscillation frequency changes depending on the amount of vapor deposition on the crystal plate which oscillates at 6 MHz. As the film thickness detector 12, a light emitting type or the like can be appropriately adopted.

【0023】また、成長室4には、真空ポンプ13が接続
されており、成長室4内の圧力を所定のものに調整でき
るようになっている。
A vacuum pump 13 is connected to the growth chamber 4 so that the pressure inside the growth chamber 4 can be adjusted to a predetermined value.

【0024】さらに、この装置においては、成長室4に
反射型高速電子線回折銃14及びスクリーン15、4重極質
量分析器16が設けていると共に、試料準備室17が接続さ
れている。
Further, in this apparatus, the growth chamber 4 is provided with a reflection type high-speed electron diffraction gun 14, a screen 15, and a quadrupole mass analyzer 16, and a sample preparation chamber 17 is connected thereto.

【0025】成長室4内の反射型高速電子線回折用電子
銃14及びスクリーン15は薄膜形成前の基板1の表面にお
ける結晶性や成膜中の薄膜の表面の結晶性をRHEED
(反射高速電子回折)により、モニタするものであり、
また4重極質量分析器16は成膜中の成長室4内の残留ガ
スをモニタするものである。これらによって成膜の条件
を監視し、これを常に好適なものに維持することによ
り、高品質の成膜を可能としている。試料準備室17は試
料交換の際に、成長室4内が大気に晒されるのを防止
し、成長室4内を高真空に保持するためのものである。
The reflection-type high-energy electron diffraction electron gun 14 and the screen 15 in the growth chamber 4 are RHEED based on the crystallinity of the surface of the substrate 1 before thin film formation and the crystallinity of the thin film surface during film formation.
(Reflection high-speed electron diffraction)
The quadrupole mass spectrometer 16 monitors the residual gas in the growth chamber 4 during film formation. By monitoring the film forming conditions by these and always maintaining the film forming conditions suitable, it is possible to form a high quality film. The sample preparation chamber 17 is intended to prevent the inside of the growth chamber 4 from being exposed to the atmosphere at the time of exchanging the sample, and to maintain the inside of the growth chamber 4 in a high vacuum.

【0026】このような装置において、基板1を基板ホ
ルダ5にセットすると共に、基板1の温度ヒータ7によ
って制御する。そして、蒸発源8によりY、Pr、Ba
及びCuを蒸発させると共に、所定量の酸素(O2ある
いはラジカルO)を酸素噴出口9cより成長室4内に供
給する。
In such an apparatus, the substrate 1 is set on the substrate holder 5 and controlled by the temperature heater 7 of the substrate 1. Then, Y, Pr, and Ba are evaporated by the evaporation source 8.
In addition to evaporating Cu and Cu, a predetermined amount of oxygen (O 2 or radical O) is supplied into the growth chamber 4 through the oxygen jet port 9c.

【0027】また、薄膜堆積コントローラ11によりシャ
ッタ10の開閉を制御し、Y、Ba、Cuのシャッタを同
時に開く(操作A)。これはY1Ba2Cu37-Xの薄膜
作製に対応する。一方Pr1Ba2Cu37-Xの薄膜を作
製する場合には、Pr、Ba、Cuのシャッタを同時に
開く(操作B)。こうして非常にゆっくり(0.05〜
0.15nm/sec程度)と基板1上に膜を堆積する
ことを繰り返して薄膜を形成する。この時、基板1の近
傍には、酸素噴出口9cより酸素が供給されているた
め、薄膜は酸化されながら形成され、Y−Ba−Cu−
Oからなる酸化物超電導薄膜(厚さ=10〜100nm
程度)、あるいは、Pr−Ba−Cu−Oからなる常電
導体薄膜が基板1上に形成されることになる。
Further, the thin film deposition controller 11 controls the opening and closing of the shutter 10 to simultaneously open the Y, Ba and Cu shutters (operation A). This corresponds to thin film production of Y 1 Ba 2 Cu 3 O 7-X . On the other hand, in the case of producing a thin film of Pr 1 Ba 2 Cu 3 O 7-X , the shutters of Pr, Ba and Cu are simultaneously opened (operation B). So very slowly (0.05 ~
(About 0.15 nm / sec) and the deposition of the film on the substrate 1 are repeated to form a thin film. At this time, since oxygen is supplied to the vicinity of the substrate 1 from the oxygen ejection port 9c, the thin film is formed while being oxidized, and Y-Ba-Cu-
Oxide superconducting thin film made of O (thickness = 10 to 100 nm
Or a normal conductor thin film made of Pr—Ba—Cu—O is formed on the substrate 1.

【0028】薄膜成長の際、この操作A、操作Bを交互
に繰り返すことにより、Y−Ba−Cu−Oからなる超
電導薄膜(S層)及びPr−Ba−Cu−Oからなる常
電導薄膜(N層)が交互に堆積され、SNS構造が繰り
返され、図1のような超格子構造の超電導体2が得られ
る。
During the thin film growth, by repeating this operation A and operation B alternately, the superconducting thin film (S layer) made of Y-Ba-Cu-O and the normal conductive thin film (P-Ba-Cu-O) ( N layers) are alternately deposited and the SNS structure is repeated to obtain a superconductor 2 having a superlattice structure as shown in FIG.

【0029】このようにして、酸化物超電導薄膜及び常
電導体を交互に積層形成した超電導体2は、薄膜中から
酸素が脱離しないように、酸素噴出口9cからO2ある
いはラジカルOの供給を受けながら、基板1の温度を下
げて、気密容器3から取り出される。
In this way, the superconductor 2 in which the oxide superconducting thin films and the normal conductor are alternately laminated is supplied with O 2 or radical O from the oxygen jet port 9c so that oxygen is not desorbed from the thin film. While receiving, the temperature of the substrate 1 is lowered and the substrate 1 is taken out from the airtight container 3.

【0030】次に、実際に蒸着を行った例について説明
する。この際の条件は、以下のようなものである。
Next, an example of actual vapor deposition will be described. The conditions at this time are as follows.

【0031】蒸発量: Y :0.019nm/sec Pr:0.021nm/sec Ba:0.039nm/sec Cu:0.062nm/sec O* :1×1016個/sec (*:O2あるいはラジ
カルO) 膜厚:10〜100nm 基板温度:600〜750℃ 使用基板:SrTiO3(100)4°off基板
Evaporation amount: Y: 0.019 nm / sec Pr: 0.021 nm / sec Ba: 0.039 nm / sec Cu: 0.062 nm / sec O * : 1 × 10 16 pieces / sec (*: O 2 or Radical O) Film thickness: 10 to 100 nm Substrate temperature: 600 to 750 ° C. Substrate used: SrTiO 3 (100) 4 ° off substrate

【0032】上記の作製条件で、RHEEDにより随時
観察しながら、操作Aにより超電導薄膜(Y1Ba2Cu
37-X)を、操作Bにより常電導薄膜(Pr1Ba2Cu
37 -Y)をそれぞれ交互に堆積する。
Under the above-mentioned production conditions, the superconducting thin film (Y 1 Ba 2 Cu
3 O 7-X ) was added to the normal conductive thin film (Pr 1 Ba 2 Cu) by the operation B.
3 O 7 -Y ) are alternately deposited.

【0033】まず、操作Aを開始すると、RHEEDの
振動強度は減少する。振動強度が極小値になったところ
で操作Aを終了し、3秒経過後次に操作Bを開始する。
同様に振動強度の極大値で操作Bを終了し、3秒経過後
再び操作Aを開始する。その際、シャッタの開放時間
は、操作A及び操作Bともに5秒であった。
First, when the operation A is started, the vibration intensity of the RHEED decreases. When the vibration intensity reaches the minimum value, the operation A is ended, and after 3 seconds, the operation B is started again.
Similarly, the operation B is ended at the maximum value of the vibration intensity, and the operation A is started again after 3 seconds have passed. At that time, the opening time of the shutter was 5 seconds in both the operation A and the operation B.

【0034】この時のRHEED振動の時間変化を図3
に示す。この場合、1つのステップ面のZ軸方向の長さ
Bは6nmであることより、図1に示す如く、1ステッ
プ面上に一対の超電導薄膜及び常電導薄膜とがZ軸方向
にそれぞれ3nmずつ配列して形成されることがわか
る。
FIG. 3 shows the time change of the RHEED vibration at this time.
Shown in. In this case, since the length B of one step surface in the Z-axis direction is 6 nm, as shown in FIG. 1, a pair of superconducting thin film and normal conducting thin film each have 3 nm in the Z-axis direction on one step surface. It can be seen that they are formed in an array.

【0035】図4(A)〜(D)、及び図5(A)〜
(C)に、上述の方法により形成される酸化物超電導薄
膜と常電導薄膜のoff基板上での結晶成長過程、及び
超電導体2の形成過程を示す。
FIGS. 4A to 4D and 5A to
(C) shows a crystal growth process of the oxide superconducting thin film and the normal conducting thin film formed by the above method on the off substrate, and a forming process of the superconductor 2.

【0036】まず、操作Aにより分子線S(Y1Ba2
37-X)が基板1に照射され、図4(A)〜(B)に
示す如く、Y1Ba2Cu37-Xの結晶が基板1の結晶面
のステップ面1bにおいて段面1a側から成長を開始
し、酸化物超電導薄膜の第1層2a1が堆積される(図
5(A))。ここで、sAはY1Ba2Cu37-Xの結晶
一単位(ユニット)を示す。
First, the molecular beam S (Y 1 Ba 2 C
u 3 O 7-X ) is irradiated on the substrate 1, and Y 1 Ba 2 Cu 3 O 7-X crystals are formed on the step surface 1b of the crystal plane of the substrate 1 as shown in FIGS. The growth is started from the step surface 1a side, and the first layer 2a 1 of the oxide superconducting thin film is deposited (FIG. 5 (A)). Here, s A represents one crystal unit of Y 1 Ba 2 Cu 3 O 7-X .

【0037】続いて、操作Aを終了し、操作Bを開始す
ると、分子線N(Pr1Ba2Cu37-Y)が照射され、
図4(C)に示す如く、Pr1Ba2Cu37-Yの結晶が
ステップ面1bにおいて超電導薄膜の第1層2a1側か
ら成長を開始する。そして、隣の段面に達したところで
操作Bを終了すると、その結晶成長が停止され、常電導
体薄膜の第1層2b1が堆積され、超電導体の第1層21
が形成される(図5(B))。ここで、nBはPr1Ba
2Cu37-Yの結晶一単位(ユニット)を示す。第2層
以降は、第1層の上に第1層と同じように2a2、2
2、2a3、2b3....と堆積されていく(図4
(D))及び図5(C))。
Subsequently, when the operation A is finished and the operation B is started, the molecular beam N (Pr 1 Ba 2 Cu 3 O 7-Y ) is irradiated,
As shown in FIG. 4 (C), crystals of Pr 1 Ba 2 Cu 3 O 7 -Y start to grow from the first layer 2a 1 side of the superconducting thin film on the step surface 1b. Then, when the operation B is completed at the point where the adjacent step surface is reached, the crystal growth is stopped, the first layer 2b 1 of the normal conductor thin film is deposited, and the first layer 2 1 of the superconductor is formed.
Are formed (FIG. 5 (B)). Where n B is Pr 1 Ba
2 shows one unit of Cu 3 O 7 -Y crystal. After the second layer, 2a 2 and 2 are formed on the first layer in the same manner as the first layer.
b 2 , 2a 3 , 2b 3 .... are deposited (Fig. 4
(D)) and FIG. 5 (C)).

【0038】本実施例では、このように操作A、操作B
を10周期繰り返し、超電導薄膜及び常電導薄膜を交互
に堆積して超格子構造を有する超電導体を作製した。
In this embodiment, the operation A and the operation B are performed as described above.
Was repeated 10 cycles to alternately deposit the superconducting thin film and the normal conducting thin film to produce a superconductor having a superlattice structure.

【0039】なお、本実施例においては、超電導薄膜及
び常電導薄膜の構成物質にY1Ba2Cu37-X及びPr
1Ba2Cu37-Yをそれぞれ用いたが、上述の格子定数
等の条件が合致していれば、他の物質から構成される超
電導薄膜及び常電導薄膜をそれぞれ用いてもよい。ま
た、本実施例では、4°off基板を利用したが、ここ
に積層形成される超電導薄膜及び常電導薄膜の構成物質
の種類に応じてこれ以外の傾斜を有するoff基板の使
用も可能である。また、酸化物超電導薄膜の形成には、
RFマグネトロンスパッタ等他の方法を利用してもよ
い。
In the present example, the constituent materials of the superconducting thin film and the normal conducting thin film were Y 1 Ba 2 Cu 3 O 7-X and Pr.
Although 1 Ba 2 Cu 3 O 7-Y is used, a superconducting thin film and a normal conducting thin film made of another substance may be used as long as the conditions such as the above-mentioned lattice constant are met. Further, although the 4 ° -off substrate is used in the present embodiment, it is possible to use an off substrate having a slope other than this depending on the types of constituent materials of the superconducting thin film and the normal conducting thin film to be laminated thereon. .. Further, in forming the oxide superconducting thin film,
Other methods such as RF magnetron sputtering may be used.

【0040】図6は、本発明一実施例により作製された
超格子構造を有する超電導体の電気抵抗−温度特性を示
す。超電導体の基板面に対して平行なZ軸方向及びY軸
方向に電流を流し、電流値をIC/2にして電気抵抗の
温度特性を測定した。なお、ここでICは超電導臨界電
流である。
FIG. 6 shows the electric resistance-temperature characteristic of a superconductor having a superlattice structure manufactured according to an embodiment of the present invention. A current was made to flow in the Z-axis direction and the Y-axis direction parallel to the substrate surface of the superconductor, the current value was set to I C / 2, and the temperature characteristic of the electric resistance was measured. Here, I C is a superconducting critical current.

【0041】図6において、Z軸方向ではほぼ半導体的
挙動を、Y軸方向では超電導臨界温度TC≒80Kの超
電導的挙動をそれぞれ示す。従って、この超電導体は、
Y軸方向にのみ超電導性を有する異方性超電導薄膜であ
ることがわかる。
In FIG. 6, almost semiconductor behavior is shown in the Z-axis direction, and superconductivity behavior at the superconducting critical temperature T C ≈80 K is shown in the Y-axis direction. Therefore, this superconductor
It can be seen that this is an anisotropic superconducting thin film having superconductivity only in the Y-axis direction.

【0042】[0042]

【発明の効果】本発明によれば、単結晶からなり、その
結晶面に対し所定角度傾斜した表面を有する基板(of
f基板)に超電導薄膜と常電導薄膜を選択的に配列形成
することができ、これより、基板の面方向において異方
性超電導特性を有する超電導体を得ることができる。
According to the present invention, a substrate (of which is made of a single crystal and has a surface inclined at a predetermined angle with respect to the crystal plane of the substrate (of
It is possible to selectively form the superconducting thin film and the normal conducting thin film on the (f substrate), and thereby obtain a superconductor having anisotropic superconducting properties in the plane direction of the substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明一実施例の超電導体の構造を示す断面図
である。
FIG. 1 is a sectional view showing a structure of a superconductor according to an embodiment of the present invention.

【図2】本発明一実施例の薄膜作製装置の構成を示す説
明図である。
FIG. 2 is an explanatory diagram showing a configuration of a thin film forming apparatus according to an embodiment of the present invention.

【図3】本発明一実施例の薄膜製造工程のRHEED振
動の時間変化を示す図である。
FIG. 3 is a diagram showing a time change of RHEED vibration in a thin film manufacturing process of an example of the present invention.

【図4】本発明一実施例の超電導体薄膜の成長過程を示
す図である。
FIG. 4 is a diagram showing a growth process of a superconductor thin film according to an embodiment of the present invention.

【図5】本発明一実施例の超電導体の形成過程を示す図
である。
FIG. 5 is a diagram showing a process of forming a superconductor according to an embodiment of the present invention.

【図6】本発明一実施例の超電導体の電気抵抗の温度特
性を示す図である。
FIG. 6 is a diagram showing temperature characteristics of electric resistance of a superconductor according to an example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】単結晶からなり、その結晶面に対し所定角
度傾斜した表面を有する基板と、この基板の前記表面上
に形成された酸化物超電導薄膜と常電導薄膜と、を有す
ることを特徴とする超電導体。
1. A substrate comprising a single crystal and having a surface inclined at a predetermined angle with respect to the crystal plane, an oxide superconducting thin film and a normal conducting thin film formed on the surface of the substrate. And a superconductor.
JP3316424A 1991-11-29 1991-11-29 Superconductor Pending JPH05148084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3316424A JPH05148084A (en) 1991-11-29 1991-11-29 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3316424A JPH05148084A (en) 1991-11-29 1991-11-29 Superconductor

Publications (1)

Publication Number Publication Date
JPH05148084A true JPH05148084A (en) 1993-06-15

Family

ID=18076930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3316424A Pending JPH05148084A (en) 1991-11-29 1991-11-29 Superconductor

Country Status (1)

Country Link
JP (1) JPH05148084A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2838026A1 (en) * 1978-08-31 1980-03-13 Sakura Color Prod Corp Prodn. of pencil leads with increased strength and wear resistance - from mixts. of graphite, nigrosine and wax emulsion
WO2002103815A1 (en) * 2001-06-19 2002-12-27 Japan Science And Technology Agency Superconducting thin film having columnar pin retaining center using nano-dots
JP2005078939A (en) * 2003-08-29 2005-03-24 Japan Science & Technology Agency Superconducting film and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2838026A1 (en) * 1978-08-31 1980-03-13 Sakura Color Prod Corp Prodn. of pencil leads with increased strength and wear resistance - from mixts. of graphite, nigrosine and wax emulsion
WO2002103815A1 (en) * 2001-06-19 2002-12-27 Japan Science And Technology Agency Superconducting thin film having columnar pin retaining center using nano-dots
US7491678B2 (en) 2001-06-19 2009-02-17 Japan Science And Technology Agency Superconducting thin film having columnar pin retaining center using nano-dots
JP2005078939A (en) * 2003-08-29 2005-03-24 Japan Science & Technology Agency Superconducting film and its manufacturing method
JP4495426B2 (en) * 2003-08-29 2010-07-07 独立行政法人科学技術振興機構 Superconducting film and manufacturing method thereof
US7772157B2 (en) 2003-08-29 2010-08-10 Japan Science And Technology Agency Superconducting film and method of manufacturing the same
US8148300B2 (en) 2003-08-29 2012-04-03 Japan Science And Technology Agency Superconducting film and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Wördenweber Growth of high-Tc thin films
EP1178129B1 (en) Polycrystalline thin film and method for preparation thereof, and superconducting oxide and method for preparation thereof
EP0655514B1 (en) Film depositing apparatus and process for preparing layered structure including oxide superconductor thin film
US7220315B2 (en) Method of producing polycrystalline thin film and method of producing an oxide superconducting element
JPH0761920B2 (en) Superconducting material manufacturing method
EP0446145B1 (en) Process for preparing high-temperature superconducting thin films
US5885939A (en) Process for forming a-axis-on-c-axis double-layer oxide superconductor films
US5480861A (en) Layered structure comprising insulator thin film and oxide superconductor thin film
EP0410868A2 (en) Superconducting thin film of compound oxide and process for preparing the same
JP4131771B2 (en) Polycrystalline thin film, manufacturing method thereof and oxide superconducting conductor
JPH05148084A (en) Superconductor
JP3144104B2 (en) Preparation method of high quality oxide superconducting thin film
US6194353B1 (en) Process for preparing superconducting thin film formed of oxide superconductor material
EP0487421B1 (en) Process for preparing a thin film of Bi-type oxide superconductor
US5438037A (en) Method for depositing another thin film on an oxide thin film having perovskite crystal structure
JPH04271183A (en) Superconductor
JP2704625B2 (en) Method for producing LnA lower 2 Cu lower 3 O-low 7-x single crystal thin film and LnA lower 2 Cu lower 3 O lower 7-x thin film having three-layer perovskite structure
JP2835235B2 (en) Method of forming oxide superconductor thin film
JP3189634B2 (en) Preparation method of oxide thin film
JP3732780B2 (en) Polycrystalline thin film and method for producing the same, and oxide superconducting conductor and method for producing the same
JPH05170448A (en) Production of thin ceramic film
JP2004362784A (en) Oxide superconductor and its manufacturing method
JP2004124255A (en) Production method for polycrystal thin film, and production method for oxide superconductor
JPH03146403A (en) Formation of oxide superconducting thin film
JPH10190077A (en) Manufacture of a-axis high temperature superconductive thin film