JPH10190077A - Manufacture of a-axis high temperature superconductive thin film - Google Patents

Manufacture of a-axis high temperature superconductive thin film

Info

Publication number
JPH10190077A
JPH10190077A JP9259452A JP25945297A JPH10190077A JP H10190077 A JPH10190077 A JP H10190077A JP 9259452 A JP9259452 A JP 9259452A JP 25945297 A JP25945297 A JP 25945297A JP H10190077 A JPH10190077 A JP H10190077A
Authority
JP
Japan
Prior art keywords
thin film
temperature
substrate
target
repetition rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9259452A
Other languages
Japanese (ja)
Inventor
Seidai Jo
正 大 徐
Kenyon Sei
建 ▲ヨン▼ 成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of JPH10190077A publication Critical patent/JPH10190077A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming superconductor layers
    • H10N60/0521Processes for depositing or forming superconductor layers by pulsed laser deposition, e.g. laser sputtering; laser ablation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic materials
    • H10N60/857Ceramic materials comprising copper oxide

Abstract

PROBLEM TO BE SOLVED: To form an a-axis oriented YBCO high temperature superconductive thin film by depositing an a-axis oriented superconductive thin film at a high temperature of a substrate for irradiation of pulse laser with rapid repetition rate in a target surface of a superconductive sintering body. SOLUTION: Vacuum degree of a vacuum deposition chamber 9 is held at a pressure of 10<-5> Torr by using a turbo-molecular pump 10. Then, a substrate 2 is heated by a substrate heater 3 and a temperature of the substrate 2 is raised. Furthermore, oxygen of high purity is injected into the vacuum deposition chamber 9 through a gas supply nozzle 4 and is held between 100mTorr and 300mTorr. Then, a pulse laser beam 6 is applied to a surface of a target 1 at an angle of 45 deg. from outside the vacuum deposition chamber 9 at a repetition rate of 10 to 100Hz, and a plasma is generated. Then, an a-axis oriented YBa2 Cu3 O7-x superconductive thin film 12 is deposited so that it reaches a surface of the oxide single crystal substrate 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パルスレ−ザを利
用してYBa2 Cu37-x (以下YBCOと称する)
の高温超伝導薄膜の製造方法に関し、特に高速反復率の
パルスレーザ(pulse laser)を利用したa
−軸背向YBCO薄膜製造方法に関するものである。
The present invention relates to a YBa 2 Cu 3 O 7-x (hereinafter referred to as YBCO) using a pulse laser.
The present invention relates to a method for producing a high-temperature superconducting thin film, and more particularly to a method using a pulse laser having a high repetition rate.
The present invention relates to a method of manufacturing a YBCO thin film with an axis facing backward.

【0002】[0002]

【従来の技術】YBCO高温超伝導体が発見されて以
来、平面型サンドイッチ形態のジョセプソン素子或いは
トランジスタのような電子素子応用のために、この物質
を薄膜で製造することが最重要課題として認識されてき
た。特に、YBCO超G導体は結晶構造が異方性をもつ
ため、a−軸或いはb−軸に対する超伝導特性を示す電
子対の可干渉長さが、c−軸背向の可干渉長さに比して
10倍程度長い。このような理由で、超伝導薄膜の電子
素子応用の際に、a−軸或いはb−軸背向に電流が流れ
るようにすることが有利である。したがって、超伝導薄
膜の結晶背向を制御することが非常に重要である。
2. Description of the Related Art Since the discovery of YBCO high-temperature superconductors, it has been recognized as a top priority to manufacture this material in a thin film for the application of electronic devices such as Josephson devices or transistors in a planar sandwich. Have been. In particular, since the YBCO super-G conductor has an anisotropic crystal structure, the coherence length of the electron pair exhibiting superconductivity with respect to the a-axis or the b-axis becomes larger than the coherence length in the c-axis backward direction. It is about 10 times longer than that. For this reason, it is advantageous to allow a current to flow in the backward direction of the a-axis or the b-axis when applying a superconducting thin film to an electronic device. Therefore, it is very important to control the crystal orientation of the superconducting thin film.

【0003】YBCO超伝導結晶のa−軸が基板表面に
垂直に成長して、a―軸背向超伝導薄膜は従来の多くの
種類の物理的蒸着法と化学的蒸着法に就いては、低温蒸
着法により製造されてきた。{J.Fujita,et
al.,J.App1.Phys.,64(3),1
290(1988).,T.Arikawa,eta
l.,J.Appl.Phys.,29(12).L2
199(1990).,Y.Q.Li,et a1.,
J.Appl.Phys.,71(5),2427(1
992).,T.Burmann,et al.,So
lid State Comm.,90(9),599
(1994)}、低温蒸着法は蒸着基板の温度をc−軸
背向YBCO薄膜が成長する温度の700℃と800℃
の間の温度よりも、100℃程度低い600℃と700
℃の間の基板温度で、a−軸背向薄膜を製造する方法で
あり、このような低温蒸着法においては0.1nm/秒
以下の低蒸着速度でa−軸背向薄膜を製造した。特に、
パルスレーザ製造方法においては、10Hz以下の低い
パルスレ−ザ反復率を使用して、比較的低い蒸着速度で
a−軸背向薄膜を製造した。{(R.K.Singh,
et al,J.Appl.Phys.,67(8),
3785(1990).,S.H.Lee,et a
l.,J.Appl.Phys.,70(10),56
61(1991}}
[0003] The a-axis of a YBCO superconducting crystal grows perpendicular to the substrate surface, and the a-axis backside superconducting thin film is formed by many kinds of conventional physical vapor deposition and chemical vapor deposition. It has been manufactured by a low-temperature deposition method. {J. Fujita, et
al. , J. et al. App1. Phys. , 64 (3), 1
290 (1988). , T .; Arikawa, eta
l. , J. et al. Appl. Phys. , 29 (12). L2
199 (1990). , Y. Q. Li, et a1. ,
J. Appl. Phys. , 71 (5), 2427 (1
992). , T .; See Burmann, et al. , So
lid State Comm. , 90 (9), 599
(1994) 低温, the low-temperature deposition method sets the temperature of the deposition substrate to 700 ° C. and 800 ° C., which are the growth temperatures of the c-axis back-facing YBCO thin film
600 ° C. and 700 ° C. lower than the temperature between
This is a method for producing an a-axis back-facing thin film at a substrate temperature of between 0 ° C., and in such a low-temperature deposition method, an a-axis back-facing thin film was produced at a low deposition rate of 0.1 nm / sec or less. Especially,
In the pulsed laser manufacturing method, a-axis back-facing thin films were manufactured at relatively low deposition rates using a low pulsed laser repetition rate of 10 Hz or less. {(RK Singh,
et al, J.A. Appl. Phys. , 67 (8),
3785 (1990). , S .; H. Lee, et a
l. , J. et al. Appl. Phys. , 70 (10), 56
61 (1991)

【0004】このような低蒸着速度は、低速反復率を利
用したa−軸背向薄膜の低温蒸着法によれば、700℃
以上の高温ではa−軸背向でなく、c−軸背向YBCO
薄膜が成長し、さらに600℃以下の低温で蒸着された
a−軸背向薄膜内部には、低温のために生じた酸素の不
規則整列が発生し、YBCO高温超伝導薄膜の超伝導物
性が低下する短所がある。しかし、700℃以上の高温
において蒸着されたc−軸背向薄膜においては、酸素の
不規則整列が発生しないので、超伝導物性が良好であ
る。
According to the low-temperature deposition method of the a-axis back-facing thin film using a low repetition rate, the low deposition rate is 700 ° C.
At the high temperature described above, the YBCO is not c-axis backward but c-axis back.
The thin film grows, and in the a-axis backside thin film deposited at a low temperature of 600 ° C. or less, the disordered arrangement of oxygen generated due to the low temperature occurs, and the superconducting properties of the YBCO high-temperature superconducting thin film are reduced. There are disadvantages to be reduced. However, in the c-axis back-facing thin film deposited at a high temperature of 700 ° C. or more, the disordered arrangement of oxygen does not occur, so that the superconductivity is good.

【0005】[0005]

【発明が解決しようとする課題】したがって、本発明は
パルスレーザを使用してa−軸背向YBa2 Cu3
7-x 薄膜を製造するにあたり、高速反復率を利用したa
−軸背向YBa2 Cu37-x 高温超伝導薄膜の成長方
法を提供することにその目的がある。
SUMMARY OF THE INVENTION Accordingly, the present invention provides an a-axis-backward YBa 2 Cu 3 O using a pulsed laser.
In manufacturing 7-x thin film, a using high repetition rate a
- it is an object to provide a JikuseMuko YBa 2 Cu 3 O 7-x growth method of high-temperature superconducting thin films.

【0006】[0006]

【課題を解決するための手段】上述した目的を達成する
ために本発明によるa−軸背向高温超伝導薄膜製造方法
は、超伝導焼結体のターゲット表面に高速反復率を有す
るパルスレ−ザを照射する高温の基板温度で、a−軸背
向超伝導薄膜を蒸着することを特徽とする。
In order to achieve the above-mentioned object, a method of manufacturing an a-axis back-facing high-temperature superconducting thin film according to the present invention comprises a pulse laser having a high repetition rate on a target surface of a superconducting sintered body. A special feature is to deposit an a-axis back-facing superconducting thin film at a high substrate temperature for irradiating the substrate.

【0007】本発明のa−軸背向薄膜製造方法は次のよ
うに構成される。 a.YBCO薄膜蒸着時の基板の温度は700℃と80
0℃の間で保たれる。 b.YBCO薄膜蒸着時の酸素圧力は100mTorr
と300mTorrの間で保たれる。 c.ターゲットと基板間の距離は4cmと10cmの間
で保たれる。 d.YBCOターゲット表面に照射されるパルスレ−ザ
のエネルギー密度は最少限1J/cm2 である。 e.YBCOターゲット表面に照射されるパルスレーザ
の反復率は10Hzと100Hzの間で保たれる。この
ときの反復率と蒸着速度は表1の通りである。
The method for manufacturing an a-axis backside thin film according to the present invention is configured as follows. a. The temperature of the substrate during the deposition of the YBCO thin film was 700 ° C and 80 ° C.
It is kept between 0 ° C. b. Oxygen pressure at the time of YBCO thin film deposition is 100 mTorr
And 300 mTorr. c. The distance between the target and the substrate is kept between 4 cm and 10 cm. d. The energy density of the pulse laser applied to the YBCO target surface is at least 1 J / cm 2 . e. The repetition rate of the pulsed laser illuminating the YBCO target surface is kept between 10 Hz and 100 Hz. Table 1 shows the repetition rate and the deposition rate at this time.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【発明の実施の形態】以下に、添付した図面を参照して
本発明の実施例を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0010】パルスレ一ザを使用してYBCO高温超伝
導薄膜を蒸着する装置の構成図を図1に示した。真空蒸
着室(9)において円板形態のYBCO組成を有する均
―の焼結体ターゲット(1)を回転可能なターゲット取
り付け器(8)に取り付け、ターゲットの向かい側に一
定距離を置いておかれた基板加熱器(3)に取り付けら
れた酸化物単結晶基板(2)が位置する。続いて、真空
蒸着室(9)の真空度をターボ分子式ポンプ(10)を
使用して、10-6Torrの圧力で保持させる。その
後、基板加熱器(3)で基板(2)を加熱して基板の温
度を700℃と800℃間に昇温する。更に続いて、高
純度の酸素気体をガス供給ノズル(4)を通じて真空蒸
着室(9)内部に注入して100mTorrと300m
Torrの間に保持する。
FIG. 1 shows the configuration of an apparatus for depositing a YBCO high-temperature superconducting thin film using a pulse laser. In a vacuum deposition chamber (9), a uniform sintered body target (1) having a disc-shaped YBCO composition was mounted on a rotatable target mounter (8), and was placed at a fixed distance from the target. An oxide single crystal substrate (2) attached to a substrate heater (3) is located. Subsequently, the degree of vacuum in the vacuum evaporation chamber (9) is maintained at a pressure of 10 -6 Torr by using a turbo molecular pump (10). Thereafter, the substrate (2) is heated by the substrate heater (3) to raise the temperature of the substrate between 700 ° C and 800 ° C. Subsequently, a high-purity oxygen gas was injected into the vacuum deposition chamber (9) through the gas supply nozzle (4) to obtain a pressure of 100 mTorr and 300 mTorr.
Hold during Torr.

【0011】次に、波長が308nmのパルス型紫外線
XeC1エクシーマレ−ザ光線(6)を、真空蒸着室
(9)の外部からターゲット(1)表面に対して45°
の角度で入射し、回転するYBCO焼結体ターゲット
(1)の表面に10Hzと100Hzの間の反復率で照
射して、プラズマ(11)を発生し、酸化物単結晶基板
(2)の表面にとどくようにしてa−軸背向YBCO超
伝導薄膜(12)を蒸着させる。
Next, a pulse type ultraviolet ray XeC1 excimer laser beam (6) having a wavelength of 308 nm is applied from the outside of the vacuum evaporation chamber (9) to the surface of the target (1) at 45 °.
The surface of the oxide single crystal substrate (2) is generated by irradiating the surface of the rotating YBCO sintered target (1) at a repetition rate of 10 Hz and 100 Hz to generate a plasma (11). The a-axis backward YBCO superconducting thin film (12) is deposited.

【0012】図2は、本発明のパルスレ−ザ蒸着方法に
より基板上に製造されたa−軸背向YBa2 Cu3
7-x 高温超伝導薄膜の断面図である。酸化物単結晶基板
(2)の上部にa−軸背向YBCO超伝導薄膜(12)
が蒸着された構造を示す。
FIG. 2 shows an a-axis backward YBa 2 Cu 3 O manufactured on a substrate by the pulse laser deposition method of the present invention.
It is sectional drawing of a 7-x high temperature superconducting thin film. A-axis YBCO superconducting thin film (12) on the oxide single crystal substrate (2)
Shows a structure in which is deposited.

【0013】本発明の第1実施例においては、回転する
YBCOターゲット表面に照射するパルスレーザ反復率
を異なるようにして、YBCO高温超伝導薄膜を蒸着す
ることに特徴がある。詳細な蒸着工程は次の通りであ
る。 蒸着基板;LaSrGaO4 (100)単結晶 蒸着基板の温度:700℃ パルスレーザ入射エネルギー密度:1 J/cm2 パルスレーザ反復率:1Hz,5Hz,10Hz,20
Hz,50Hz 基板とターゲット間の距離:4.2cm 蒸着酸素圧力:100mTorr 薄膜厚さ:100nm〜300nm パルスレ−ザ反復率を異なるようにして、蒸着したYB
CO薄膜の背向をX−線回折パターンにより分析した。
700℃基板温度において、1Hzの低い反復率で蒸着
したYBCO薄膜はc−軸背向に成長し、一方10Hz
以上の高速反復率で蒸着したYBCO薄膜はa−軸背向
に成長した。
The first embodiment of the present invention is characterized in that a YBCO high-temperature superconducting thin film is deposited by changing the pulse laser repetition rate for irradiating the rotating YBCO target surface. The detailed deposition process is as follows. Vapor deposition substrate; LaSrGaO 4 (100) single crystal Temperature of vapor deposition substrate: 700 ° C. Pulse laser incident energy density: 1 J / cm 2 Pulse laser repetition rate: 1 Hz, 5 Hz, 10 Hz, 20
Hz, 50 Hz Distance between substrate and target: 4.2 cm Deposition oxygen pressure: 100 mTorr Thin film thickness: 100 nm to 300 nm Deposited YB with different pulse laser repetition rate
The back side of the CO thin film was analyzed by an X-ray diffraction pattern.
At 700 ° C. substrate temperature, YBCO thin films deposited at a low repetition rate of 1 Hz grow c-axis backward, while 10 Hz
The YBCO thin film deposited at the above high repetition rate grew backward in the a-axis.

【0014】図3より、a−軸背向薄膜の背向分率とパ
ルスレーザ反復率との関係を示した。a−軸背向分率が
100%の場合が、a−軸背向として成長した薄膜であ
り、また10Hz以上の高速パルスレーザ反復率で蒸着
したYBCOはa−軸背向薄膜に製造されることが判
る。
FIG. 3 shows the relationship between the back-facing fraction of the a-axis back-facing thin film and the pulse laser repetition rate. When the a-axis backward fraction is 100%, the thin film is grown as the a-axis backward, and YBCO deposited at a high-speed pulse laser repetition rate of 10 Hz or more is manufactured as the a-axis backward film. You can see that.

【0015】本発明の第2実施例においては、50Hz
の高速反復率をYBCOターゲット表面に照射して、基
板温度を異なるようにして、a―軸背向YBCO高温超
伝導薄膜を蒸着することに特徴がある。詳細な蒸着工程
は次の通りである。 蒸着基板;LaSrGaO4 (100)単結晶 蒸着基板の温度:700℃、720℃、730℃、74
0℃、750℃ パルスレーザ入射エネルギー密度:1 J/cm2 パルスレ−ザ反復率:50Hz 基板とターゲット間の距離:4.2cm 蒸着酸素圧力:100mTorr 薄膜厚さ:100nm〜300nm パルスレ―ザ蒸着温度を異なるようにして、蒸着したY
BCO薄膜の背向をX−線回折パターンにより分析し
た。50Hzの高速反復率で蒸着した薄膜は、720℃
の温度においてもa−軸背向薄膜に成長した。しかし、
高速反復率で蒸着した薄膜と比較するために、1Hzの
低速反復率で蒸着した薄膜は、720℃の温度において
c−軸背向に成長した。
In the second embodiment of the present invention, 50 Hz
The YBCO target surface is irradiated with the high-speed repetition rate described above, and the substrate temperature is changed to deposit the Y-BCO high-temperature superconducting thin film on the a-axis back. The detailed deposition process is as follows. Deposition substrate; LaSrGaO 4 (100) single crystal Temperature of deposition substrate: 700 ° C., 720 ° C., 730 ° C., 74
0 ° C., 750 ° C. Pulsed laser incident energy density: 1 J / cm 2 Pulsed laser repetition rate: 50 Hz Distance between substrate and target: 4.2 cm Deposition oxygen pressure: 100 mTorr Thin film thickness: 100 nm to 300 nm Pulsed laser deposition temperature And the deposited Y
The back side of the BCO thin film was analyzed by X-ray diffraction pattern. The thin film deposited at a high repetition rate of 50 Hz is 720 ° C.
At this temperature, an a-axis thin film was grown. But,
For comparison with films deposited at a high repetition rate, films deposited at a low repetition rate of 1 Hz grew c-axis backward at a temperature of 720 ° C.

【0016】図4に、1Hzの低速反復率と50Hzの
高速反復率で蒸着したYBCO高温超伝導薄膜のa−軸
背向分率と蒸着温度間の関係を示した。a−軸背向分率
が100%の場合a−軸背向に成長した薄膜である。a
−軸背向YBCO薄膜の成長温度が50Hzの高速反復
率で薄膜を蒸着する場合、1Hzの低速反復率で蒸着す
る場合と比べて20℃増加した。すなわち、図4よりパ
ルスレーザ反復率が高速で増加するにつれてa−軸背向
YBCO薄膜の成長温度が増加することが判る。
FIG. 4 shows the relationship between the a-axis backward fraction and the deposition temperature of a YBCO high-temperature superconducting thin film deposited at a low repetition rate of 1 Hz and a high repetition rate of 50 Hz. When the a-axis backward fraction is 100%, the thin film has grown in the a-axis backward direction. a
The growth temperature of the axially-backward YBCO thin film was increased by 20 ° C. when depositing the thin film at a high repetition rate of 50 Hz compared to depositing the thin film at a low repetition rate of 1 Hz. That is, it can be seen from FIG. 4 that the growth temperature of the a-axis back YBCO thin film increases as the pulse laser repetition rate increases at a high speed.

【0017】[0017]

【発明の効果】上述した如く、本発明の高速パルスレ−
ザ反復率を利用したYBCO高温超伝導薄膜蒸着方法に
よれば、c−軸背向薄膜が成長する700℃以上の高温
においても、a−軸背向YBCO薄膜の成長が可能であ
る卓越した効果がある。
As described above, the high-speed pulse laser according to the present invention is used.
According to the YBCO high-temperature superconducting thin film deposition method utilizing the repetition rate, an excellent effect that an a-axis backside YBCO thin film can be grown even at a high temperature of 700 ° C. or more at which a c-axis backside thin film grows. There is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のパルスレーザを利用したYBa2 Cu
37-x 高温超伝導薄膜蒸着装置の構成図である。
FIG. 1 shows YBa 2 Cu using a pulse laser according to the present invention.
It is a block diagram of a 3 O 7-x high temperature superconducting thin film deposition apparatus.

【図2】本発明のパルスレーザ蒸着方法により、基板上
に製造されたa−軸背向YBa2 Cu37-x 高温超伝
導薄膜断面図である。
FIG. 2 is a cross-sectional view of an a - axis-backward YBa 2 Cu 3 O 7-x high - temperature superconducting thin film manufactured on a substrate by a pulse laser deposition method of the present invention.

【図3】本発明のパルスレ−ザ反復率を異なるようにし
て蒸着したYBa2 Cu37-x 薄膜のa−軸背向分率
と、パルスレーザ反復率との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the a-axis backward fraction and the pulse laser repetition rate of a YBa 2 Cu 3 O 7-x thin film deposited with different pulse laser repetition rates according to the present invention. .

【図4】本発明の低速反復率と高速反復率を利用して蒸
着したYBa2 Cu37-x 膜の膜のa−軸背向成長と
蒸着温度との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between a-axis backward growth of a YBa 2 Cu 3 O 7-x film deposited using a low repetition rate and a high repetition rate of the present invention and a deposition temperature.

【符号の説明】[Explanation of symbols]

1 YBa2 Cu37-x 焼結体ターゲット 2 単結晶基板 3 基板加熱器 4 ガス供給ノズル 5 パルスレ−ザ集光レンズ 6 パルスレ−ザ光線 7 パルスレ―ザ光線入射窓 8 ターゲット取り付け器 9 真空蒸着室 10 ターボ分子式ポンプ 11 プラズマ 12 a−軸背向YBa2 Cu37-x 薄膜Reference Signs List 1 YBa 2 Cu 3 O 7-x sintered target 2 Single crystal substrate 3 Substrate heater 4 Gas supply nozzle 5 Pulse laser condensing lens 6 Pulse laser beam 7 Pulse laser beam entrance window 8 Target mounting device 9 Vacuum Vapor deposition chamber 10 Turbo molecular pump 11 Plasma 12 a-axis-facing YBa 2 Cu 3 O 7-x thin film

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 パルスレーザを利用した超伝導薄膜の蒸
着方法において、超伝導焼結体のターゲット表面に高速
反復率を有するパルスレ−ザを照射する高温の基板温度
で、a−軸背向高温超伝導膜を蒸着することを特徽とす
るa−軸背向高温超伝導薄膜製造方法。
1. A method for depositing a superconducting thin film using a pulsed laser, wherein a target surface of a superconducting sintered body is irradiated with a pulse laser having a high repetition rate at a high substrate temperature; A method for producing an a-axis back-facing high-temperature superconducting thin film, which comprises specially depositing a superconducting film.
【請求項2】 上記焼結体ターゲットに照射されるレー
ザはエキシマパルスレ−ザであることを特徴とする請求
項1記載のa−軸背向高温超伝導薄膜製造方法。
2. The method according to claim 1, wherein the laser irradiated to the sintered body target is an excimer pulse laser.
【請求項3】 上記高温超伝導薄膜と焼結体のターゲッ
トは、YBa2 Cu37-x 薄膜により構成された酸化
物高温超伝導体を使用することを特徴とする請求項1記
載のa−軸背向高温超伝導薄膜製造方法。
3. The high-temperature superconductor according to claim 1, wherein the high-temperature superconducting thin film and the target of the sintered body use an oxide high-temperature superconductor constituted by a YBa 2 Cu 3 O 7-x thin film. a-Axial-facing high-temperature superconducting thin film manufacturing method.
【請求項4】 上記焼結体ターゲットに照射されるパル
スレーザ反復率は10乃至100Hz範囲内で、該ター
ゲットに照射し蒸着することを特徴とする請求項1記載
のa−軸背向高温超伝導薄膜製造方法。
4. The method according to claim 1, wherein the target is irradiated with a pulse laser having a repetition rate of 10 to 100 Hz in a range of 10 to 100 Hz. Conductive thin film manufacturing method.
【請求項5】 上記基板温度は700乃至800℃の範
囲の基板温度で、蒸着することを特徴とする請求項1記
載のa−軸背向高温超伝導薄膜製造方法。
5. The method according to claim 1, wherein the deposition is performed at a substrate temperature in a range of 700 to 800 ° C.
【請求項6】 上記パルスレーザがターゲットに照射さ
れるエネルギー密度が最小限1J/cm2 で、該ターゲッ
トに照射して蒸着することを特徴とする請求項1記載の
a−軸背向高温超伝導薄膜製造方法。
6. The a-axis back-facing high-temperature super-heater according to claim 1, wherein the target is irradiated with the pulsed laser at an energy density of at least 1 J / cm 2 and the target is irradiated. Conductive thin film manufacturing method.
【請求項7】 ターゲットと薄膜間の距離は4乃至10
cmの間で、蒸着することを特徴とする請求項1記載の
a−軸背向高温超伝導薄膜製造方法。
7. The distance between the target and the thin film is 4 to 10
The method of claim 1, wherein the vapor deposition is performed for a period of about 1 cm.
JP9259452A 1996-11-18 1997-08-12 Manufacture of a-axis high temperature superconductive thin film Withdrawn JPH10190077A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1996P54854 1996-11-18
KR1019960054854A KR100233838B1 (en) 1996-11-18 1996-11-18 Manufacturing method of a-axis oriented high tc superconducting thin film

Publications (1)

Publication Number Publication Date
JPH10190077A true JPH10190077A (en) 1998-07-21

Family

ID=19482236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9259452A Withdrawn JPH10190077A (en) 1996-11-18 1997-08-12 Manufacture of a-axis high temperature superconductive thin film

Country Status (2)

Country Link
JP (1) JPH10190077A (en)
KR (1) KR100233838B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101108345B1 (en) * 2004-12-09 2012-01-25 엘지디스플레이 주식회사 Appartus And Method for Fabricating Liquid Crystal Display Panel

Also Published As

Publication number Publication date
KR19980036296A (en) 1998-08-05
KR100233838B1 (en) 1999-12-01

Similar Documents

Publication Publication Date Title
US5212148A (en) Method for manufacturing oxide superconducting films by laser evaporation
US6933065B2 (en) High temperature superconducting thick films
US5872080A (en) High temperature superconducting thick films
US5968877A (en) High Tc YBCO superconductor deposited on biaxially textured Ni substrate
US4912087A (en) Rapid thermal annealing of superconducting oxide precursor films on Si and SiO2 substrates
JPH01305815A (en) Production of superconductive oxide film using nitrogen before oxygen
US4874741A (en) Non-enhanced laser evaporation of oxide superconductors
US5439877A (en) Process for depositing high temperature superconducting oxide thin films
US5480861A (en) Layered structure comprising insulator thin film and oxide superconductor thin film
JPH0577347B2 (en)
JPH07267791A (en) Production of oxide superconductor thin film and oxide superconductor thin film laminate
JP3144104B2 (en) Preparation method of high quality oxide superconducting thin film
JPH10190077A (en) Manufacture of a-axis high temperature superconductive thin film
US6194353B1 (en) Process for preparing superconducting thin film formed of oxide superconductor material
JPH01224297A (en) Production of metal oxide superconductor material layer
US4981839A (en) Method of forming superconducting oxide films using zone annealing
JPH04182317A (en) Formation of oxide superconducting thin film
US5438037A (en) Method for depositing another thin film on an oxide thin film having perovskite crystal structure
KR970009739B1 (en) Method of manufacture for superconductor thin film
JP2817299B2 (en) Preparation method of composite oxide superconducting thin film
JPH0196015A (en) Formation of superconducting thin film
US4950644A (en) Method for the epitaxial preparation of a layer of a metal-oxide superconducting material with a high transition temperature
KR100240861B1 (en) Process for depositing high temperature superconducting oxide thin films
JP3240686B2 (en) Method for producing high-quality oxide superconducting thin film and superconducting junction
JPH05170448A (en) Production of thin ceramic film

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041102