JPH03146402A - Method and device for forming high-quality oxide superconducting thin film - Google Patents

Method and device for forming high-quality oxide superconducting thin film

Info

Publication number
JPH03146402A
JPH03146402A JP1284358A JP28435889A JPH03146402A JP H03146402 A JPH03146402 A JP H03146402A JP 1284358 A JP1284358 A JP 1284358A JP 28435889 A JP28435889 A JP 28435889A JP H03146402 A JPH03146402 A JP H03146402A
Authority
JP
Japan
Prior art keywords
thin film
substrate
crystal
oxide superconductor
superconducting thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1284358A
Other languages
Japanese (ja)
Inventor
Keizo Harada
敬三 原田
Hideo Itozaki
糸崎 秀夫
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1284358A priority Critical patent/JPH03146402A/en
Priority to CA002029038A priority patent/CA2029038C/en
Priority to US07/604,896 priority patent/US5143896A/en
Priority to EP90403092A priority patent/EP0426570B1/en
Priority to DE69024916T priority patent/DE69024916T2/en
Publication of JPH03146402A publication Critical patent/JPH03146402A/en
Priority to US07/946,735 priority patent/US5350737A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To enhance the quality by automation by laminating the crystals of an oxide superconductor on a substrate in the order specified and forming the films of the crystal in an active oxygen atmosphere. CONSTITUTION:The chamber 1 of the device for forming an oxide superconducting thin film is evacuated to about 5X10<-6>Torr, and a substrate 5 of MgO, etc., set on a substrate holder 3 is heated to about 650 deg.C by a heater 4. The temp. of a K-cell 2 contg. Bi, etc., as the vaporization source 10 is stored and controlled to a desired temp. by a microcomputer 11, a shutter 8 is opened or closed to control the amt. of the source 10 to be vaporized, O2 is excited by the electric discharge of a microwave power source 7 and supplied from a gaseous reactant supply pipe 6 to laminate the layer of a 1/2 unit crystal on the substrate 5, and the film forming is suspended in each lamination. The crystallinity and surface state of the thin film are observed by an RHEED (electron beam diffraction) consisting of an electron gun 20, etc., to promote crystallization until the crystal is equivalent in the crystal structure to the stored oxide superconductor (e.g. Bi2Sr2Ca2Cu3ON), and a high-quality oxide superconducting thin film having about 100nm thickness is produced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高品質の酸化物超電導薄膜の作製方法および
装置に関する。より詳細には、高品質の酸化物超電導薄
膜を分子ビームエピタキシ法(以下MBE法と記す〉で
作製する方法およびその方法による成膜を自動的に行う
ことが可能な装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for producing high quality oxide superconducting thin films. More specifically, the present invention relates to a method for producing a high-quality oxide superconducting thin film using a molecular beam epitaxy method (hereinafter referred to as MBE method), and an apparatus that can automatically perform film formation using the method.

従来の技術 化合物の薄膜を蒸着法で作製する場合、活性ガス雰囲気
中で原料を蒸発させ、基板上で反応させるいわゆる反応
性蒸着法を用いることがある。−方、多元系化合物の薄
膜を作製する場合には、組成の制御が行い易いMBE法
を用いることが有利である。また、化合物によっては、
この両者を組み合わせた方法により薄膜を作製すること
もある。
BACKGROUND ART When producing a thin film of a compound by a vapor deposition method, a so-called reactive vapor deposition method is sometimes used in which raw materials are evaporated in an active gas atmosphere and reacted on a substrate. On the other hand, when producing a thin film of a multi-component compound, it is advantageous to use the MBE method, which allows easy control of the composition. Also, depending on the compound,
A thin film may be produced by a method that combines both methods.

酸化物薄膜を上記の方法で作製する際には、活性ガスと
して一般に酸素を導入する。また、導入する酸素ガスを
マイクロ波放電等で活性化し、反応性をより高くして、
特性の優れた酸化物薄膜を作製することも行われる。例
えば、Appl、Phys。
When producing an oxide thin film by the above method, oxygen is generally introduced as an active gas. In addition, the introduced oxygen gas is activated by microwave discharge, etc. to make it more reactive.
The production of oxide thin films with excellent properties is also carried out. For example, Appl, Phys.

Lett、53  (17)、24.pp1660−1
662. 0.G、Schlom  et  at。
Lett, 53 (17), 24. pp1660-1
662. 0. G, Schlom et at.

には、Dy−Ba−Cu−○系酸化物超電導薄膜を、マ
イクロ波放電により活性化した酸素ガスを導入しながら
、MBE法により作製する方法が開示されている。
discloses a method of manufacturing a Dy-Ba-Cu-○ based oxide superconducting thin film by MBE method while introducing oxygen gas activated by microwave discharge.

また、Appl、Phys、 Lett、54 (23
)、5.pp2364−2366゜T、Tatsun+
i et at、には、Bi −9r −Ca −Cu
 −0系酸化物超電導薄膜を02ガスを導入しながらイ
オンビームスパッタリングでエピタキシャル成長させる
作製方法が開示されている。
Also, Appl, Phys, Lett, 54 (23
), 5. pp2364-2366°T, Tatsun+
i et at, Bi -9r -Ca -Cu
A manufacturing method is disclosed in which a -0-based oxide superconducting thin film is epitaxially grown by ion beam sputtering while introducing 02 gas.

発明が解決しようとする課題 酸化物超電導体は、一般に層状ペロブスカイト構造と称
される、それぞれ異なる元素群で構成される二次元的な
層を積み重ねた結晶構造を有する。
Problems to be Solved by the Invention Oxide superconductors have a crystal structure generally referred to as a layered perovskite structure in which two-dimensional layers each composed of a different element group are stacked.

従来、MBE法で酸化物超電導薄膜を作製する場合、上
記の各層を順々に積層して、薄膜を形成していた。しか
しながら、上記の各層を順に形成しただけでは、酸化物
超電導体として好ましい結晶構造にならず、得られる薄
膜の超電導特性はあまりよくなかった。
Conventionally, when producing an oxide superconducting thin film by the MBE method, the above-mentioned layers were laminated one after another to form a thin film. However, simply forming the above layers in sequence did not provide a crystal structure suitable for an oxide superconductor, and the superconducting properties of the resulting thin film were not very good.

そこで、本発明の目的は、上記従来技術の問題点を解決
した高品質の酸化物超電導薄膜を作製する方法および装
置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method and apparatus for producing a high-quality oxide superconducting thin film that solves the problems of the prior art described above.

課題を解決するための手段 本発明に従うと、結晶構造が層状である酸化物超電導体
の薄膜をマイクロ波放電により励起した酸素を含むガス
を基板近傍に導入しながら分子ビームエピタキシ法で作
製する方法において、基板上に前記各層を前記酸化物超
電導体結晶を構成する順に積層し、%単位結晶に相当す
るだけの層を積層するごとに成膜を中断し、結晶構造が
前記酸化物超電導体と等しくなるまで、活性な酸素雰囲
気下で結晶化を促進する工程を繰り返して所望の厚さの
酸化物超電導薄膜を作製することを特徴とする酸化物超
電導薄膜の作製方法が提供される。
Means for Solving the Problems According to the present invention, a thin film of an oxide superconductor having a layered crystal structure is fabricated by molecular beam epitaxy while introducing a gas containing oxygen excited by microwave discharge into the vicinity of the substrate. In this step, each of the layers is laminated on the substrate in the order of forming the oxide superconductor crystal, and the film formation is interrupted every time a layer equivalent to a % unit crystal is laminated, so that the crystal structure is the same as that of the oxide superconductor. Provided is a method for manufacturing an oxide superconducting thin film, which comprises manufacturing an oxide superconducting thin film having a desired thickness by repeating the step of promoting crystallization in an active oxygen atmosphere until the thickness becomes equal.

また、本発明では、上記の方法を自動的に実行する装置
として、内部を高真空に排気可能なチャンバと、該チャ
ンバ内に任意のガスを導入できるガス供給手段と、前記
導入ガスを励起するマイクロ波発生手段と、前記チャン
バ内で基板を保持する基板ホルダと、前記基板を加熱す
る加熱手段と、それぞれ独立に温度制御が可能で、それ
ぞれシャッタを具備する複数の蒸発源と、前記基板上の
薄膜の結晶構造を分析可能な分析手段と、前記ガス供給
手段、マイクロ波発生手段、加熱手段、蒸発源および蒸
発源のシャッタを制御する制御手段と、前記酸化物超電
導体の結晶に関するデータおよび前記制御手段が出力す
る制御データを記憶する記憶手段とを具備することを特
徴とする酸化物超電導薄膜を作製する装置が提供される
Further, in the present invention, as an apparatus for automatically executing the above method, a chamber capable of evacuating the inside to a high vacuum, a gas supply means capable of introducing any gas into the chamber, and exciting the introduced gas are provided. a microwave generating means, a substrate holder that holds the substrate in the chamber, a heating means that heats the substrate, a plurality of evaporation sources whose temperatures can be controlled independently and are each equipped with a shutter, and an analysis means capable of analyzing the crystal structure of the thin film of the oxide superconductor; a control means for controlling the gas supply means, the microwave generation means, the heating means, the evaporation source and the shutter of the evaporation source; and data regarding the crystal of the oxide superconductor; There is provided an apparatus for producing an oxide superconducting thin film, comprising a storage means for storing control data output by the control means.

作用 本発明の方法は、層状構造の結晶を有する酸化物超電導
体の%単位結晶に相当するだけの層を積層するごとに成
膜を中断し、結晶構造が酸化物超電導体と等しくなるま
で、活性な酸素雰囲気下で結晶化の促進を行い、これら
の工程を繰り返して酸化物超電導薄膜を作製するところ
にその主要な特徴がある。例えば、Bi25r2Ca、
Cu、 Oつ酸化物超電導体の結晶は、Bi−0層、S
「−0層、Cu−0層、Ca−0層、Cu−0層、Ca
−0層、Cu−0層、Sr −0層、Bi−0層が順に
積層された構成を有する。
Operation The method of the present invention interrupts film formation every time a layer corresponding to the % unit crystal of an oxide superconductor having a layered crystal structure is laminated, and continues until the crystal structure becomes equal to that of the oxide superconductor. Its main feature is that crystallization is promoted in an active oxygen atmosphere and these steps are repeated to produce an oxide superconducting thin film. For example, Bi25r2Ca,
The crystal of Cu, O oxide superconductor has Bi-0 layer, S
"-0 layer, Cu-0 layer, Ca-0 layer, Cu-0 layer, Ca
-0 layer, Cu-0 layer, Sr-0 layer, and Bi-0 layer are laminated in this order.

また、その結晶構造は、%単位結晶に相当する層を対称
的に積み重ねた構成となっている。従って、2単位結晶
に相当する層を積層するごとに成膜を中断し、結晶化の
促進を行い、結晶構造をBi2Sr、Ca2Cu308
酸化物超電導体に合わせることにより、単一相の高品質
な酸化物超電導薄膜が作製可能である。また、1単位結
晶に相当する層を積層するごとに結晶化の促進を行うの
では、層の数が多過ぎ、結晶構造を制御することが困難
である。
Moreover, its crystal structure has a structure in which layers corresponding to % unit crystals are stacked symmetrically. Therefore, every time a layer corresponding to two unit crystals is laminated, the film formation is interrupted to promote crystallization, and the crystal structure is changed to Bi2Sr, Ca2Cu308.
By matching with oxide superconductors, it is possible to fabricate single-phase, high-quality oxide superconducting thin films. Further, if crystallization is promoted each time a layer corresponding to one unit crystal is laminated, the number of layers is too large, and it is difficult to control the crystal structure.

本発明の方法では、単に積層しただけでは酸化物超電導
体として完全てない結晶が、結晶化促進工程により原子
が移動して、好ましい結晶となるものである。また、結
晶化の促進により、結晶中の酸素を補う効果もある。こ
のように、本発明の方法では、A単位結晶毎に結晶構造
を整えて薄膜を作製するので、得られる薄膜は非常に結
晶性がよく、表面が平滑な高品質なものとなる。
In the method of the present invention, a crystal that is not perfect as an oxide superconductor by simply stacking the layers becomes a preferable crystal through the movement of atoms through the crystallization promotion step. Further, by promoting crystallization, it has the effect of supplementing oxygen in the crystal. As described above, in the method of the present invention, a thin film is produced by adjusting the crystal structure of each A unit crystal, so that the obtained thin film has very good crystallinity and has a high quality surface with a smooth surface.

本発明の方法でBi2Sr、Ca2Cu308酸化物超
電導薄膜を作製する場合は、蒸発源に8!、Sr、 C
aおよびCuを用いる。MBE装置内の基板近傍には、
マイクロ波放電により励起した酸素を導入し、各蒸発源
のシャッタを制御しながら、上記の各層を順に積層する
。A単位結晶に相当する層の最上層の81−0層を積層
したら、蒸発源のシャッタを全て閉じて成膜を中断し、
結晶化の促進を行う。結晶化の促進は、薄膜の電子線回
折(RHEED)パターンをモニタしながら行い、結晶
構造が好ましくなったら終了する。そして、次の結晶の
積層を開始する。これらの工程を繰り返して薄膜を成長
させる。上記のBi25r2Ca2Cu、08の場合、
超電導体として好ましい結晶構造のものは、特徴的な変
調構造を有するため、電子線回折パターンから、結晶構
造の良否が判定可能である。すなわち、本発明の方法で
は、電子線回折パターンにより−、フィードバックコン
トロールを行いながら結晶化の促進を行う。
When producing a Bi2Sr, Ca2Cu308 oxide superconducting thin film using the method of the present invention, 8! , Sr, C
a and Cu are used. Near the board in the MBE device,
Oxygen excited by microwave discharge is introduced, and the above layers are sequentially laminated while controlling the shutter of each evaporation source. After laminating the top layer 81-0 corresponding to the A unit crystal, all the shutters of the evaporation source were closed and the film formation was interrupted.
Promotes crystallization. Crystallization is promoted while monitoring the electron beam diffraction (RHEED) pattern of the thin film, and ends when the crystal structure becomes favorable. Then, stacking of the next crystal is started. These steps are repeated to grow a thin film. In the case of the above Bi25r2Ca2Cu, 08,
Since a crystal structure preferable as a superconductor has a characteristic modulation structure, it is possible to determine whether the crystal structure is good or bad from an electron beam diffraction pattern. That is, in the method of the present invention, crystallization is promoted while performing feedback control based on the electron beam diffraction pattern.

本発明の方法では、基板近傍にマイクロ波放電により励
起させた酸素ガスを供給する。
In the method of the present invention, oxygen gas excited by microwave discharge is supplied near the substrate.

本発明の装置は、上記の本発明の方法を自動的に実行す
る。すなわち、本発明の装置は、チャンバ内に導入する
ガスの種類および流量、基板温度、蒸発源温度、シャッ
タの開閉等を制御する例えばマイクロコンピュータ等の
制御手段を具備する。
The device of the invention automatically carries out the method of the invention described above. That is, the apparatus of the present invention includes a control means, such as a microcomputer, for controlling the type and flow rate of gas introduced into the chamber, the substrate temperature, the evaporation source temperature, the opening and closing of the shutter, and the like.

この制御手段に、成膜工程におけるチャンバ内の圧力、
雰囲気、基板温度、蒸発源温度、積層順序等のデータを
記憶手段から供給することで、自動的に成膜が行われる
。また、結晶化の促進時には、記憶手段から制御手段に
チャンバ内の圧力、雰囲気、基板温度等のデータを供給
する。そして、分析手段による薄膜の結晶状態のデータ
と記憶手段に記憶されている酸化物超電導体結晶のデー
タとを比較し、両者が一致するまでやはり自動的に結晶
化の促進を行う。上記の成膜工程と結晶化促進工程を自
動的に所定の回数繰り返すことにより、本発明の装置は
、本発明の方法による酸化物超電導薄膜の作製を自動的
に実行する。
This control means includes the pressure inside the chamber during the film forming process,
Film formation is performed automatically by supplying data such as the atmosphere, substrate temperature, evaporation source temperature, and stacking order from the storage means. Further, when promoting crystallization, data on the pressure in the chamber, the atmosphere, the substrate temperature, etc. are supplied from the storage means to the control means. Then, the data on the crystal state of the thin film obtained by the analysis means is compared with the data on the oxide superconductor crystal stored in the storage means, and crystallization is automatically promoted until the two match. By automatically repeating the above-mentioned film forming process and crystallization promotion process a predetermined number of times, the apparatus of the present invention automatically executes the production of an oxide superconducting thin film by the method of the present invention.

以下、本発明を実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 第1図に、本発明の方法を実現する装置の一例の概略図
を示す。第1図の装置は、MBE装置であり、内部を高
真空に排気可能なチャンバ1と、内部に収納した蒸発源
10の温度を制御して加熱でき、シャッタ8により前記
蒸発源10の蒸発量を制御可能な複数のクヌーセンセル
(K−セル)2と、搭載した基板5をヒータ4により温
度を制御して加熱可能な基板ホルダ3と、基板5の近傍
で開口し、マイクロ波電源7によるマイクロ波放電によ
り励起させた酸素を基板5表面近傍に供給する反応ガス
供給バイブロとを具備する。また、薄膜の結晶性および
表面状態を観察するための電子銃2゜およびスクリーン
21からなるRHEEDを具備する。K−セル2、ヒー
タ4、シャッタ8、マイクロ波電源7および反応ガス供
給バイブロのバルブ(不図示〉は、マイクロコンピュー
タ11によす制御される。マイクロコンピュータ11に
は、成膜工程および結晶化促進工程におけるチャンバ内
雰囲気、温度条件、積層順序、積層回数、作製する薄膜
を構成する酸化物超電導体の結晶構造等のデータが記憶
されている。また、マイクロコンピュータエ1には、M
BE装置のRHEEDの出力が入力される。マイクロコ
ンピュータ11は、上記の各種データに基づいて、制御
信号をMBE装置に出力して成膜を行う。また、結晶化
の促進時には、RHEEDの出力と記憶している酸化物
超電導体の結晶構造のデータとを比較し、フィードバッ
クコントロールを行う。
Embodiment FIG. 1 shows a schematic diagram of an example of an apparatus for implementing the method of the present invention. The apparatus shown in FIG. 1 is an MBE apparatus, and includes a chamber 1 that can be evacuated to a high vacuum, and an evaporation source 10 housed inside that can be heated by controlling the temperature. a plurality of Knudsen cells (K-cells) 2, which can control the temperature of the mounted substrate 5, a substrate holder 3 whose temperature can be controlled and heated by a heater 4, and a microwave power source 7 that opens near the substrate 5; A reactant gas supply vibro which supplies oxygen excited by microwave discharge to the vicinity of the surface of the substrate 5 is provided. It is also equipped with a RHEED consisting of an electron gun 2° and a screen 21 for observing the crystallinity and surface condition of thin films. The K-cell 2, the heater 4, the shutter 8, the microwave power source 7, and the reaction gas supply vibro valve (not shown) are controlled by the microcomputer 11. Data such as the chamber atmosphere, temperature conditions, lamination order, number of laminations, and crystal structure of the oxide superconductor constituting the thin film to be fabricated are stored in the microcomputer 1.
The RHEED output of the BE device is input. The microcomputer 11 outputs a control signal to the MBE apparatus to perform film formation based on the above-mentioned various data. Furthermore, when promoting crystallization, feedback control is performed by comparing the RHEED output with stored data on the crystal structure of the oxide superconductor.

第1図に示す本発明のM B E装置を用いて、jAg
○基板の(100)面上に、本発明の方法で、B1□S
r、Ca2Cu、08薄膜を作製した。蒸発源にはB1
、S「、CaおよびCuを用い、マイクロコンピュータ
11に以下の条件で薄膜を作製する制御を行うようデー
タを記憶させた。K−セルの温度を、それぞれB1を5
30 ℃、Srを500 ℃、Caを520 ℃、Cu
を1100℃とする。13 lSS r SCu 1C
a SCu SCa s Cu % S r SB r
の順にシャッタを開いて、%単位結晶分の層を積層する
。それぞれのシャンクを開く時間は、Biを2秒、Sr
を3秒、Caを4秒、Cuを3秒とする。積層時および
結晶化促進時のチャンバ1内の真空度は、5 X 10
−’Torrで、基板温度は650℃とし、最終的に厚
さ100 nmの薄膜を作製した。結晶化促進時には、
RHEEDにより、電子線回折パターンをマイクロコン
ピュータ11に人力し、記憶されているBiaSr2C
aaCu+ owl酸化物超電導体と結晶構造が等しく
なるまで結晶化の促進を行った。具体的には、電子線回
折パターンの変調構造により、結晶構造を特定した。他
の条件を以下に示す。
Using the MBE device of the present invention shown in FIG.
○ B1□S on the (100) plane of the substrate by the method of the present invention
r, Ca2Cu, 08 thin film was prepared. B1 is the evaporation source
, S', Ca and Cu, data was stored in the microcomputer 11 to control the production of a thin film under the following conditions.
30 °C, Sr at 500 °C, Ca at 520 °C, Cu
is set to 1100°C. 13 lSS r SCu 1C
a SCu SCa s Cu % S r SB r
The shutters are opened in this order, and layers with a crystal content of % are deposited. The time to open each shank is 2 seconds for Bi and 2 seconds for Sr.
is 3 seconds, Ca is 4 seconds, and Cu is 3 seconds. The degree of vacuum in the chamber 1 during lamination and crystallization promotion is 5 x 10
-'Torr and the substrate temperature was 650° C., and a thin film with a final thickness of 100 nm was produced. When promoting crystallization,
By RHEED, the electron beam diffraction pattern is manually input to the microcomputer 11, and the stored BiaSr2C
Crystallization was promoted until the crystal structure became equal to that of the aaCu+ owl oxide superconductor. Specifically, the crystal structure was identified by the modulation structure of the electron beam diffraction pattern. Other conditions are shown below.

基板温度(成膜時)    :650℃チャンバ真空度
    : 5 Xl0−’torr反応ガス供給量 
   : 0.5SCCMマイクロ波放電部真空度: 
Q、5Torr得られた膜のT。%JCを測定した結果
を併せて第1表に示す。
Substrate temperature (during film formation): 650°C Chamber vacuum: 5 Xl0-'torr Reaction gas supply amount
: 0.5SCCM microwave discharge section vacuum degree:
Q, 5 TorrT of the obtained film. The results of measuring %JC are also shown in Table 1.

第1表 本発明の方法で作製した薄膜は、平滑性に優れ、結晶性
もより高い高品質な薄膜であった。
Table 1 The thin films produced by the method of the present invention were high quality thin films with excellent smoothness and higher crystallinity.

発明の詳細 な説明したように本発明の方法に従うと、従来よりも高
品質の酸化物薄膜を作製することが可能である。これは
、本発明の方法に独特な、A単位結晶分だけ積層するご
とに成膜を中断し、結晶構造が酸化物超電導体と等しく
なるまで結晶化の促進を行うことの効果である。
By following the method of the present invention as described in detail, it is possible to produce an oxide thin film of higher quality than ever before. This is an effect unique to the method of the present invention, in which the film formation is interrupted every time the A unit crystal is laminated, and crystallization is promoted until the crystal structure becomes equal to that of the oxide superconductor.

また、本発明の装置を使用すると上記の本発明の方法を
自動的に実現可能である。
Moreover, using the apparatus of the present invention, the above-described method of the present invention can be realized automatically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法を実現する本発明のMBE装置
の一例の概略図である。 〔主な参照番号〕 1・・・チャンバ、  2・・・K−セル、3・・・基
板ホルダ、4・・・ヒータ、5・・・基板、 6・・・反応ガス供給パイプ、 7・・・マイクロ波電源、 8・・・シャッタ、 lO・・・蒸発源、 11・・・マイクロコンピュータ 20・・・RHEED用電子銃、 21・・・RHEED用スクリーン
FIG. 1 is a schematic diagram of an example of an MBE apparatus of the present invention implementing the method of the present invention. [Main reference numbers] 1... Chamber, 2... K-cell, 3... Substrate holder, 4... Heater, 5... Substrate, 6... Reaction gas supply pipe, 7. ... Microwave power supply, 8 ... Shutter, lO ... Evaporation source, 11 ... Microcomputer 20 ... Electron gun for RHEED, 21 ... Screen for RHEED

Claims (2)

【特許請求の範囲】[Claims] (1)結晶構造が層状である酸化物超電導体の薄膜をマ
イクロ波放電により励起した酸素を含むガスを基板近傍
に導入しながら分子ビームエピタキシ法で作製する方法
において、基板上に前記各層を前記酸化物超電導体結晶
を構成する順に積層し、に単位結晶に相当するだけの層
を積層するごとに成膜を中断し、結晶構造が前記酸化物
超電導体と等しくなるまで、活性な酸素雰囲気下で結晶
化を促進する工程を繰り返して所望の厚さの酸化物超電
導薄膜を作製することを特徴とする酸化物超電導薄膜の
作製方法。
(1) In a method in which a thin film of an oxide superconductor having a layered crystal structure is produced by molecular beam epitaxy while introducing a gas containing oxygen excited by microwave discharge into the vicinity of the substrate, each of the layers is formed on the substrate. The layers are laminated in the order of forming the oxide superconductor crystal, and the film formation is interrupted every time a layer equivalent to a unit crystal is laminated, and the film is deposited under an active oxygen atmosphere until the crystal structure becomes equal to that of the oxide superconductor. 1. A method for producing an oxide superconducting thin film, comprising repeating the step of promoting crystallization to produce an oxide superconducting thin film having a desired thickness.
(2)酸化物超電導体の薄膜を分子ビームエピタキシ法
で基板上に作製する装置において、内部を高真空に排気
可能なチャンバと、該チャンバ内に任意のガスを導入で
きるガス供給手段と、前記導入ガスを励起するマイクロ
波発生手段と、前記チャンバ内で基板を保持する基板ホ
ルダと、前記基板を加熱する加熱手段と、それぞれ独立
に温度制御が可能で、それぞれシャッタを具備する複数
の蒸発源と、前記基板上の薄膜の結晶構造を分析可能な
分析手段と、前記ガス供給手段、マイクロ波発生手段、
加熱手段、蒸発源および蒸発源のシャッタを制御する制
御手段と、前記酸化物超電導体の結晶に関するデータお
よび前記制御手段が出力する制御データを記憶する記憶
手段とを具備することを特徴とする酸化物超電導薄膜を
作製する装置。
(2) An apparatus for producing a thin film of an oxide superconductor on a substrate by a molecular beam epitaxy method, comprising: a chamber capable of evacuating the interior to a high vacuum; a gas supply means capable of introducing any gas into the chamber; A microwave generating means for exciting the introduced gas, a substrate holder for holding the substrate in the chamber, a heating means for heating the substrate, and a plurality of evaporation sources whose temperature can be controlled independently and each has a shutter. and analysis means capable of analyzing the crystal structure of the thin film on the substrate, the gas supply means, and the microwave generation means.
An oxidation method characterized by comprising a heating means, a control means for controlling an evaporation source, and a shutter of the evaporation source, and a storage means for storing data regarding the crystal of the oxide superconductor and control data output by the control means. Equipment for producing superconducting thin films.
JP1284358A 1989-10-31 1989-10-31 Method and device for forming high-quality oxide superconducting thin film Pending JPH03146402A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1284358A JPH03146402A (en) 1989-10-31 1989-10-31 Method and device for forming high-quality oxide superconducting thin film
CA002029038A CA2029038C (en) 1989-10-31 1990-10-31 Process and system for preparing a superconducting thin film of oxide
US07/604,896 US5143896A (en) 1989-10-31 1990-10-31 Process and system for preparing a superconducting thin film of oxide
EP90403092A EP0426570B1 (en) 1989-10-31 1990-10-31 Process and system for preparing a superconducting thin film of oxide
DE69024916T DE69024916T2 (en) 1989-10-31 1990-10-31 Method and system for producing a superconducting thin film from oxide
US07/946,735 US5350737A (en) 1989-10-31 1992-08-28 MBE process for preparing oxide superconducting films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1284358A JPH03146402A (en) 1989-10-31 1989-10-31 Method and device for forming high-quality oxide superconducting thin film

Publications (1)

Publication Number Publication Date
JPH03146402A true JPH03146402A (en) 1991-06-21

Family

ID=17677558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1284358A Pending JPH03146402A (en) 1989-10-31 1989-10-31 Method and device for forming high-quality oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JPH03146402A (en)

Similar Documents

Publication Publication Date Title
KR910007382B1 (en) Superconductor material and method of manufacturing super-conductor film
US5350737A (en) MBE process for preparing oxide superconducting films
JPH0761920B2 (en) Superconducting material manufacturing method
WO1992017406A1 (en) Production method for oxide superconductor film
JPH0354116A (en) Compound oxide superconducting thin film and production thereof
JP3144104B2 (en) Preparation method of high quality oxide superconducting thin film
JPH03146402A (en) Method and device for forming high-quality oxide superconducting thin film
JP3579690B2 (en) A method and apparatus for producing a composite oxide thin film and a composite oxide thin film produced by the method.
JPH03146403A (en) Formation of oxide superconducting thin film
JPH03146404A (en) Method and device for forming high-quality oxide superconducting thin film
JP2639544B2 (en) Single crystal thin film of LaA Lower 2 Cu 3 Lower O 7 Lower 3 x with three-layer perovskite structure and LaA Lower 2 Cu Lower 3 O Lower 7 Lower 7 x thin film manufacturing method
Salvato et al. Superconducting and structural properties of BSCCO thin films by molecular beam epitaxy
JPH03146406A (en) Formation of oxide superconducting thin film
JP3809669B2 (en) Chemical vapor deposition
JPH0196015A (en) Formation of superconducting thin film
JP2541037B2 (en) Oxide superconducting thin film synthesis method
JPH05194095A (en) Production of thin-film electric conductor
JPH05319822A (en) Method for producing thin film oxide electric conductor and device therefor
JPH05319820A (en) Production of thin film oxide electric conducting body
JP2835235B2 (en) Method of forming oxide superconductor thin film
JPH08325019A (en) Production of bismuth layer compound
JPH01161616A (en) Forming device for superconductor thin film
JPH05267570A (en) Manufacture of dielectric thin film and device thereof
JPH02255533A (en) Production of bi-containing superconducting thin film
JPH05194097A (en) Production of thin-film electric conductor