JPH03174307A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH03174307A
JPH03174307A JP1311739A JP31173989A JPH03174307A JP H03174307 A JPH03174307 A JP H03174307A JP 1311739 A JP1311739 A JP 1311739A JP 31173989 A JP31173989 A JP 31173989A JP H03174307 A JPH03174307 A JP H03174307A
Authority
JP
Japan
Prior art keywords
target
vapor deposition
laser
oxide superconductor
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1311739A
Other languages
Japanese (ja)
Inventor
Kazunori Onabe
和憲 尾鍋
Nobuyuki Sadakata
伸行 定方
Tsukasa Kono
河野 宰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI, Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Priority to JP1311739A priority Critical patent/JPH03174307A/en
Publication of JPH03174307A publication Critical patent/JPH03174307A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To always obtain a homogeneous oxide superconducting film having a regulated compsn. and preventing a change of the quality or thickness with the lapse of time by irradiating plural parts of the surface of a target with laser beams when an oxide superconducting film is produced by vapor deposition with laser. CONSTITUTION:A target 3 made of an oxide superconductor or similar in compsn. to the superconductor is set in a vapor deposition chamber 1a and irradiated with laser beams generated from laser 7. By this irradiation, a surface part of the target 3 is scooped off and the generated particles are deposited on a substrate 2 set near the target 3 to produce an oxide superconductor. In this method, the target 3 is irradiated with laser beams through a condenser 9 and reflecting mirrors 8, 10, at least one among the mirrors 8, 10 and the lens 9 is tilted to the optical axis during irradiation to irradiate plural parts of the surface of the target 3 with laser beams and vapor deposition is carried out.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、超電導マグネット、超電導送電、医療用機
4、超電導エネルギー貯蔵、超電導素子用などとして応
用開発が進められている酸化物超電導体の製造方法に関
する。
Detailed Description of the Invention "Field of Industrial Application" This invention applies to oxide superconductors, which are being developed for applications such as superconducting magnets, superconducting power transmission, medical equipment, superconducting energy storage, and superconducting devices. Regarding the manufacturing method.

「従来の技術」 従来、酸化物系の超電導体を製造する方法として、真空
蒸着法、スパッタリング法、レーザビーム、MBE法(
分子線エピタキシー法)、CVD法(化学気相成長法)
、IVD法(イオン気相成長法)などの成膜法が知られ
ている。また、これらの各種の成膜方法において、均質
で超電導特性の良好な酸化物超電導膜を製造できる方法
として、真空成膜プロセスを用い、熱あるいは高周波プ
ラズマ、イオンビームなどのエネルギーをターゲットに
照射してターゲットから叩き出された粒子を基板上に堆
積させる技術が主流となっている。
"Conventional technology" Conventionally, methods for manufacturing oxide-based superconductors include vacuum evaporation, sputtering, laser beam, MBE (
molecular beam epitaxy method), CVD method (chemical vapor deposition method)
, IVD (ion vapor deposition) and other film forming methods are known. In addition, among these various film formation methods, a vacuum film formation process is used to produce an oxide superconducting film that is homogeneous and has good superconducting properties, and the target is irradiated with energy such as heat, high-frequency plasma, or ion beam. The mainstream technology is to deposit particles ejected from a target onto a substrate.

このような各種の成膜法において、緻密な膜の生成が可
能であって、成膜速度の速い技術として、レーザ蒸着法
が注目されている。このレーザ蒸着法は、目的とする酸
化物超電導体の組成と同一あるいは近似した組成のター
ゲットを用い、このり−ゲットにレーザビームを照射し
てターゲットの表面部分をえぐり取り、この蒸発粒子を
乱打上に堆積させることで酸化物超電導体を製造する方
法であり、他の成膜性に比較して以下に説明する利点か
あることで知られている。
Among these various film-forming methods, laser evaporation is attracting attention as a technique that can produce dense films and has a high film-forming rate. This laser vapor deposition method uses a target with a composition that is the same as or similar to the composition of the target oxide superconductor, irradiates the target with a laser beam to gouge out the surface of the target, and randomly bombards the evaporated particles. This is a method of manufacturing an oxide superconductor by depositing it on top of the oxide superconductor, and is known to have the following advantages over other film-forming methods.

■述常のスパッタリング法ではターゲット組成と生成膜
の組成がかなりずれる傾向があるが、レーザ蒸着法にお
いては、用いたターゲットの組成と生成膜の組成とのず
れが少ないので、目的の組成の酸化物超電導膜を(すや
すい利点がある。
■In conventional sputtering methods, the target composition and the composition of the produced film tend to deviate considerably, but in the laser evaporation method, there is little difference between the composition of the target used and the composition of the produced film, so the target composition can be oxidized. The superconducting film has the advantage of being easy to clean.

■a常のスパッタリング法においては、厚さ1μ−程度
の酸化物超電導膜を製造するためにIO時間程度の処理
時間を必要とするが、レーザ蒸着法においては厚さ数μ
m程度の酸化物超電導膜を1時間程度で製造できる利点
がある。
■a In the usual sputtering method, a processing time of about IO hours is required to produce an oxide superconducting film with a thickness of about 1 μm, but in the laser evaporation method, a process time of about IO hours is required to produce an oxide superconducting film with a thickness of about 1 μm.
This method has the advantage that an oxide superconducting film of about 100 yen can be manufactured in about 1 hour.

■蒸着法やスパッタリング法においては、蒸発源や1!
極などを真空雰囲気中に配置する必要があるが、レーザ
蒸着法では、レーザ光を処理装置の外部から導くことが
でき、レーザ発行装置などを処理装置の外部に設けるこ
とができるので、処理!!2の内部を質の良い真空条件
に保つこと力(容易であって、種々の気相雰囲気で成膜
できる利点がある。
■In vapor deposition and sputtering methods, evaporation sources and 1!
Although it is necessary to place the electrodes etc. in a vacuum atmosphere, with the laser evaporation method, the laser light can be guided from outside the processing equipment, and the laser emitting device etc. can be installed outside the processing equipment, so the processing can be done easily! ! It is easy to maintain the inside of the chamber under a high-quality vacuum condition (it has the advantage of being easy to form a film in various gaseous atmospheres).

「発明が解決しようとする課題J ところが、前記レーザ蒸着法で乱打上に酸化物超ffi
導体の模を形成する場合、ターゲット表面のレーザビー
ムを照射した部分から構成粒子を叩き出して蒸着を行っ
ている間に、ターゲットの16射部分が順次えぐり取ら
れて消耗し、その結果、放出されるターゲット粒子と、
基板上に蒸着される模の[と、膜厚が成膜中に経時変化
を起こす問題があった。
``Problem to be solved by the inventionJ'' However, the laser vapor deposition method has problems with oxide superffi.
When forming a conductor pattern, the constituent particles are ejected from the part of the target surface irradiated with the laser beam, and during vapor deposition, the 16 irradiated parts of the target are successively gouged out and consumed, resulting in release. target particles,
There was a problem in that the thickness of the film deposited on the substrate changed over time during film formation.

本発明は前記課題を解決するためになされたしので、膜
質や膜厚に経時変化を起こすことなく、常に安定した膜
質と膜厚を有する酸化物超電導体を製造する方法を提O
(することを目的とする。
The present invention has been made to solve the above problems, and therefore provides a method for manufacturing an oxide superconductor that always has stable film quality and film thickness without causing changes in film quality and film thickness over time.
(The purpose is to

rsmを解決するための手段J 本発明は前記課題を解決するために、蒸着処理室内に酸
化物超電導体または酸化物超電導体と近似組成のターゲ
ットを設置し、このターゲットにレーザビームを照射し
てターゲットの表面部分をえぐり取り、発生させた粒子
をターゲットの近傍に設置した乱打上に堆積させて酸化
物超電導体を製造する方法において、レーザビームを集
光レンズと反射ミラーを介してターゲットに照Q(する
とともに1曲射中に反射ミラーと集光レンズの少なくと
も1つを光軸に対し傾斜させてターゲットの表面の)U
 l!を部分にレーザビームを照射して蒸着を行うもの
である。
Means for Solving rsm J In order to solve the above-mentioned problem, the present invention installs an oxide superconductor or a target having a composition similar to the oxide superconductor in a vapor deposition chamber, and irradiates this target with a laser beam. In the method of manufacturing oxide superconductors by gouging out the surface of a target and depositing the generated particles on a scattering surface placed near the target, a laser beam is irradiated onto the target through a condensing lens and a reflecting mirror. Q (and at least one of the reflecting mirror and the condensing lens is tilted with respect to the optical axis during one curvature of the target surface) U
l! The vapor deposition is performed by irradiating the area with a laser beam.

「作用」 ターゲット表面の複数部分から粒子を叩き出すのでター
ゲットの局部的な消耗が防止される。また、ターゲット
表面の複数部分から叩き出した粒子を堆積させるので、
組成の整った均質な酸化物超電導体の膜が得られる。更
に、安定したターゲット粒子の放出を長時間維持できる
ので、安定した成膜ができるとともに、品質の安定した
大きな面積の膜が得られる。また、レーザ蒸着法である
ので、成膜時間が短くなるとともに、緻密な酸化物超電
導体の膜が得られる。
``Operation'' Particles are ejected from multiple parts of the target surface, preventing local wear and tear on the target. In addition, since particles ejected from multiple parts of the target surface are deposited,
A homogeneous oxide superconductor film with a uniform composition can be obtained. Furthermore, since stable release of target particles can be maintained for a long time, stable film formation is possible, and a film with stable quality and large area can be obtained. Furthermore, since the method is a laser vapor deposition method, the film formation time is shortened and a dense oxide superconductor film can be obtained.

「実施例j 第1図は本発明方法を実施するために使用する装置の一
例を示すもので、■は処理室4を示し、この処理容器!
の内部の蒸着処理室1aには基板2とターゲット3が設
置されている。
Embodiment j Figure 1 shows an example of an apparatus used to carry out the method of the present invention, where ■ indicates a processing chamber 4, and this processing container!
A substrate 2 and a target 3 are installed in a vapor deposition processing chamber 1a inside.

処理容器1は排気孔1bを介して図示時の真空排気装置
に接続されて内部を真空排気できる上うになっている。
The processing container 1 is connected to the illustrated vacuum evacuation device through an exhaust hole 1b so that the inside can be evacuated.

蒸着処理室1aの底部には基台4が設けられ、この基台
4の上面に基板(基材)2が水平に設置されるとともに
、基板2の斜め上方側に、支持板5によって支持された
ターゲット3が傾斜状態で設けられている。
A base 4 is provided at the bottom of the vapor deposition chamber 1a, and a substrate (substrate) 2 is installed horizontally on the top surface of the base 4, and is supported by a support plate 5 diagonally above the substrate 2. A target 3 is provided in an inclined state.

前記ターゲット3は、形成しようとする酸化物超電導体
の膜と同等または近似した組成、あるいは、成膜中に逃
避しやすい成分を多く含有させた複合酸化物の焼結体、
または、酸化物超電導体のバルクなどから形成されてい
る。現在知られている臨界温度の高い酸化物超電導体と
して具体的には、Y −B a−Cu−0系、B i−
9r−Ca−Cu−0系、T IB a−Ca−Cu−
0系などがあるので、ターゲット3としてこれらの系の
ものなどを用いることができる。なお、酸化物超電導体
を構成する元素の中で蒸気圧が高く、蒸着の際に飛散し
やすい元素らあるので、このような元素を含むターゲッ
ト3を使用する場合は、蒸気圧の高い元素を目的とする
所定の割合よりも多く含むターゲットを用いれば良い。
The target 3 is a sintered body of a composite oxide having a composition equivalent to or similar to that of the oxide superconductor film to be formed, or containing a large amount of components that easily escape during film formation.
Alternatively, it is formed from the bulk of an oxide superconductor. Specifically, currently known oxide superconductors with high critical temperatures include Y-Ba-Cu-0 system, B i-
9r-Ca-Cu-0 system, T IB a-Ca-Cu-
Since there are 0 series, etc., those of these series can be used as the target 3. Note that among the elements constituting the oxide superconductor, some elements have high vapor pressure and are easily scattered during vapor deposition, so when using target 3 containing such elements, use elements with high vapor pressure. It is sufficient to use a target containing more than the desired predetermined ratio.

前記基台4は加熱ヒータを内蔵したもので、基板2を所
望の温度に加熱できるようになっている。
The base 4 has a built-in heater, and can heat the substrate 2 to a desired temperature.

一方、処理容器lの側方には、レーザ発光装置7と第1
反射鏡8と集光レンズ9と第2反射鐙lOが設けられ、
レンズ発光装h!17が発生させたレーザビームを処理
容器1のOpj壁に取り付けられた透明窓11を介して
ターゲット3に集光照射できるようになっている。レー
ザ発光装置7はターゲラ!・3から構成粒子を叩き出す
ことができるものであれば、YAGレーザ、CO,レー
ザ、エキシマレーザなどのいずれのものを使用しても良
い。また、第2反射鏡!0はその中心軸10aを中心に
所定角度上下左右に回動自在に(即ち、第1反射鏡8O
の光軸に対する傾斜角度を変更できるように)図示略の
支持機構により支持されていて、例えば、第2反射鏡!
0を第1図の矢印に示す方向に必要角度傾斜させること
ができるようになっている。
On the other hand, a laser emitting device 7 and a first
A reflecting mirror 8, a condensing lens 9, and a second reflecting stirrup lO are provided,
Lens light emitting device h! The target 3 can be condensed and irradiated with a laser beam generated by the laser beam 17 through a transparent window 11 attached to the Opj wall of the processing container 1 . The laser emitting device 7 is Targera! - Any laser such as YAG laser, CO laser, excimer laser, etc. may be used as long as it can eject the constituent particles from the laser. Also, the second reflector! 0 is rotatable vertically and horizontally at a predetermined angle around its central axis 10a (i.e., the first reflecting mirror 8O
For example, the second reflecting mirror is supported by a support mechanism (not shown) so that the inclination angle with respect to the optical axis of the second reflecting mirror can be changed.
0 can be tilted at a required angle in the direction shown by the arrow in FIG.

また、処理容器!の上方にはレーザ発光装置12と集光
レンズ13が設けられ、処理容器Iの天井壁に取り付け
られた透明窓14を介してレーザビームを基板2に集光
照射し、基板2を加熱できるようになっている。
Also, a processing container! A laser emitting device 12 and a condensing lens 13 are provided above, and a laser beam is condensed and irradiated onto the substrate 2 through a transparent window 14 attached to the ceiling wall of the processing container I, so that the substrate 2 can be heated. It has become.

次に第1図に示す装置を用いて本発明方法を実施する場
合について説明する。
Next, the case where the method of the present invention is implemented using the apparatus shown in FIG. 1 will be explained.

基板2とターゲット3を蒸着処理室Ia内に第1図に示
すようにセットしたならば、蒸着処理室Iaを真空排気
する。ここで必要に応じて蒸着処理室1aに酸素ガスを
導入して蒸着処理室1aを酸素雰囲気としても良い。ま
た、基台4の加熱ヒータを作動させるか、あるいは、レ
ーザ発光装y112からレーザビームを基板2に照射し
て基板2を所望の温度に加熱する。
After the substrate 2 and target 3 are set in the vapor deposition chamber Ia as shown in FIG. 1, the vapor deposition chamber Ia is evacuated. Here, if necessary, oxygen gas may be introduced into the vapor deposition processing chamber 1a to create an oxygen atmosphere in the vapor deposition processing chamber 1a. Further, the substrate 2 is heated to a desired temperature by activating the heater on the base 4 or by irradiating the substrate 2 with a laser beam from the laser emitting device y112.

次にレーザ発光装置7から発生させたレーザビームを第
1反射鏡8と集光レンズ9と第1反射鏡8Oと透明窓1
1を介して蒸着処理室Ia内に導き、ターゲット3の表
面に集光照射する。この際に、集光レンズ9の位置調節
を行ってターゲット3の表面にレーザビームの焦点を合
わせる。 レーザビームが照射されたターゲット3は表
面部分がえぐり取られるか蒸発されて構成粒子が叩き出
され、その粒子は基板2上に堆積する。粒子が堆積され
る基板2は加熱されているので、堆積層は堆積と同時に
熱処理される。
Next, the laser beam generated from the laser emitting device 7 is transmitted to the first reflecting mirror 8, the condensing lens 9, the first reflecting mirror 8O, and the transparent window 1.
1 into the vapor deposition processing chamber Ia, and the surface of the target 3 is irradiated with focused light. At this time, the position of the condensing lens 9 is adjusted to focus the laser beam on the surface of the target 3. The surface portion of the target 3 irradiated with the laser beam is gouged out or evaporated to knock out constituent particles, and the particles are deposited on the substrate 2 . Since the substrate 2 on which the particles are deposited is heated, the deposited layer is heat treated simultaneously with the deposition.

レーザビームの照射を所定時間続行するとターゲット3
の表面部分の1箇所のみが厚さ方向にえぐり取られるの
で、叩き出される粒子の組成に変動を生じるおそれがあ
る。
If the laser beam irradiation continues for a predetermined time, target 3
Since only one portion of the surface portion of the material is gouged out in the thickness direction, there is a risk that the composition of the ejected particles may vary.

そこで、所定時間、レーザビームの照射を行ったならば
、第2反射鏡10を数°程度動かしてその頷斜角度を変
える。この燥作によりレーザビームはターゲット3の他
の場所にJ+、<1射されるのでターゲット3の他の部
分の表面から再び粒子を叩き出してこの粒子を基板2上
に堆積させることができる。また、この後、所定時間毎
にターゲット3に対するレーザビームの照射位置を変え
て順次粒子の叩き出しを行って基板2上に粒子の堆積を
行う。
Therefore, after the laser beam has been irradiated for a predetermined period of time, the second reflecting mirror 10 is moved by several degrees to change its nodding angle. As a result of this drying, the laser beam is irradiated onto other parts of the target 3 by J+<1, so that particles can be ejected from the surface of other parts of the target 3 and deposited on the substrate 2. Thereafter, the irradiation position of the laser beam on the target 3 is changed at predetermined time intervals to sequentially knock out the particles, thereby depositing the particles on the substrate 2.

このようにレーザビームの照射位置を適宜変えることで
ターゲット3の表面の種々の部分の粒子を叩き出すこと
ができるので、ターゲット3の表面部分から常に均一な
組成の粒子を叩き出すことができる。
In this way, by appropriately changing the irradiation position of the laser beam, particles from various parts of the surface of the target 3 can be ejected, so that particles of a uniform composition can always be ejected from the surface part of the target 3.

このように叩き出された粒子は、十分に活仕化された状
態であるので、基板2上に緻密に堆積する。堆積された
膜は基台4の加熱ヒータあるいはレーザビームによって
加熱されて熱部p1されるので、緻密で結晶構造の整っ
た優れた酸化物超電導膜が得られる。
The particles ejected in this way are in a sufficiently activated state, and therefore are densely deposited on the substrate 2. The deposited film is heated by the heater on the base 4 or by a laser beam to form the hot part p1, so that an excellent oxide superconducting film with a dense and well-organized crystal structure can be obtained.

ところで前記実施例では第1反射鏡8Oを傾斜させるこ
とでレーザビームのター゛ゲット3に対する照射位置を
変更したが、第1反射鏡8と集光しンズ9と第2反射鏡
IOの少むくとも1つを光軸に対して傾斜さU゛ること
でレーザビームの1(a対位置を変更することもできる
。また、ターゲット3にレーザビームを照射する場合、
ターゲット3を一定の周期で振動させてターゲット3の
全面に均一にレーザビームを照射するようにして成膜を
行っても良い。
By the way, in the embodiment described above, the irradiation position of the laser beam on the target 3 was changed by tilting the first reflecting mirror 8O, but the first reflecting mirror 8, the condensing lens 9, and the second reflecting mirror IO are small. The position of the laser beam 1 (a) can also be changed by tilting both of them with respect to the optical axis.Also, when irradiating the target 3 with the laser beam,
Film formation may be performed by vibrating the target 3 at a constant cycle and uniformly irradiating the entire surface of the target 3 with the laser beam.

なお、第1図の2点鎖線に示すように基台4の左右に送
出ローラ20と巻取ローラ21を設け、送出ローラ20
から送り出したテープ状の基材を基台4に送り、巻取ロ
ーラ2Iで巻き取りっつレー9′蒸着を行うようにする
ならば、長尺の基材上に酸化物超電導体の膜を有する超
電導導体を製造することができる。
Note that, as shown by the two-dot chain line in FIG.
If the tape-shaped base material sent out from the base material is sent to the base 4 and then taken up by the take-up roller 2I for vapor deposition, it is possible to deposit the oxide superconductor film on the long base material. It is possible to manufacture a superconducting conductor having

前記長尺の超電導導体を製造する場合、前述の場合と同
様に第2反射鏡IOを傾斜させて蒸着することで長尺の
基材の全長にわたり厚さと質の均一な酸化物超電導体の
膜を有する超電導導体を製造することができる。
When manufacturing the long superconducting conductor, the second reflecting mirror IO is deposited at an angle in the same way as in the above case, so that a film of the oxide superconductor is uniform in thickness and quality over the entire length of the long base material. It is possible to manufacture a superconducting conductor having the following properties.

「製造例」 第1図に示す構成の蒸着装置を用い、基板として5rT
iOs製の縦10II+m、 fl 10111厚さ0
.51の基板を用いるとともに、ターゲットとしてY 
o、s13 a+、mc uso t−6なる組成の酸
化物超電導体からなる円板状ターゲットを用いた。また
、蒸着処理室の内部を10″’Torr1.:排気し、
基板を640℃に加熱しつつレーザ蒸着を行った。ター
ゲット熱射用のレーザビームには波長193nmのAr
l;’レーザを用いた。
"Manufacturing Example" Using a vapor deposition apparatus with the configuration shown in Figure 1, 5rT was used as the substrate.
Made by iOS, length 10II+m, fl 10111 thickness 0
.. 51 substrate was used, and Y was used as the target.
A disk-shaped target made of an oxide superconductor having the following compositions: o, s13 a+, mc uso t-6 was used. In addition, the inside of the vapor deposition processing chamber was evacuated to 10'' Torr1.
Laser deposition was performed while heating the substrate to 640°C. The laser beam for target heat radiation uses Ar with a wavelength of 193 nm.
l;' A laser was used.

得られた酸化物超電導体について、臨界温度を測定する
とともに、液体窒素で冷却して臨界電流密度を測定した
The critical temperature of the obtained oxide superconductor was measured, and the critical current density was measured after cooling with liquid nitrogen.

臨界温度        88 K 臨界電流密度 2 X 10 ’A/am”(77K、
0 ’l’)以上のようjこ本発明方法を実施すること
で優れた臨界温度と臨界電流密度を示す酸化物超電導体
を得ることができた。
Critical temperature 88 K Critical current density 2 x 10'A/am" (77K,
By carrying out the method of the present invention as described above, it was possible to obtain an oxide superconductor exhibiting excellent critical temperature and critical current density.

「発明の効果」 以上説明したように本発明は、レーザビームをターゲッ
ト表面の複数部分に照射してターゲットの表面の複数部
分の粒子の叩き出しを行って基材上に酸化物超電導体の
膜の堆積を行うので、ターゲット表面の局部的な消耗を
防止しつつ均一で緻密な酸化物超電導体の膜を形成する
ことができる。
"Effects of the Invention" As explained above, the present invention irradiates a plurality of parts of the target surface with a laser beam to knock out particles from the plurality of parts of the target surface, thereby forming an oxide superconductor film on a base material. , it is possible to form a uniform and dense oxide superconductor film while preventing local wear on the target surface.

また、ターゲットの複数部分にレーザビームを朋Q(す
るので常に安定的にターゲット粒子を放出させることが
でき、長時間にわたり、安定した成膜処理ができる効果
がある。
In addition, since the laser beam is applied to multiple parts of the target, the target particles can be emitted stably at all times, which has the effect of allowing stable film formation over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に用いて好適なレーザ蒸着装
置の一例を示す構成図である。 ■・・・処地容4、Ia・・・蒸着処理室、!b・・・
排気孔、2・・・基板、3・・・ターゲット、4・・・
基台、5・・・支持板、7.12・・・レーザ発光装置
、8・・・第1反月(鎧、9.13・・・集光レンズ、
10・・・第2反射境、It。 +4・・・透明窓。
FIG. 1 is a configuration diagram showing an example of a laser vapor deposition apparatus suitable for use in carrying out the method of the present invention. ■... Location 4, Ia... Vapor deposition processing chamber! b...
Exhaust hole, 2... substrate, 3... target, 4...
Base, 5... Support plate, 7.12... Laser emitting device, 8... First antimoon (armor, 9.13... Condensing lens,
10...Second reflection boundary, It. +4...Transparent window.

Claims (1)

【特許請求の範囲】 蒸着処理室内に酸化物超電導体または酸化物超電導体と
近似組成のターゲットを設置し、このターゲットにレー
ザビームを照射してターゲットの表面部分をえぐり取り
、発生させた粒子をターゲットの近傍に設置した基材上
に堆積させて酸化物超電導体を製造する方法において、 レーザビームを集光レンズと反射ミラーを介してターゲ
ットに照射するとともに、照射中に反射ミラーと集光レ
ンズの少なくとも1つを光軸に対し傾斜させてターゲッ
トの表面の複数部分にレーザビームを照射して蒸着を行
うことを特徴とする酸化物超電導体の製造方法。
[Claims] An oxide superconductor or a target having a composition similar to that of the oxide superconductor is installed in a vapor deposition chamber, and the target is irradiated with a laser beam to gouge out the surface of the target to remove the generated particles. In a method of manufacturing oxide superconductors by depositing them on a substrate placed near a target, a laser beam is irradiated onto the target via a condensing lens and a reflective mirror, and during irradiation, the reflective mirror and condensing lens are 1. A method for producing an oxide superconductor, characterized in that vapor deposition is performed by irradiating a plurality of portions of the surface of a target with a laser beam while at least one of the laser beams is tilted with respect to an optical axis.
JP1311739A 1989-11-30 1989-11-30 Production of oxide superconductor Pending JPH03174307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1311739A JPH03174307A (en) 1989-11-30 1989-11-30 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311739A JPH03174307A (en) 1989-11-30 1989-11-30 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH03174307A true JPH03174307A (en) 1991-07-29

Family

ID=18020894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311739A Pending JPH03174307A (en) 1989-11-30 1989-11-30 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH03174307A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469603A2 (en) * 1990-08-01 1992-02-05 Sumitomo Electric Industries, Limited A device for forming a compound oxide superconducting thin film
EP0702416A1 (en) * 1994-09-16 1996-03-20 Sumitomo Electric Industries, Ltd Method and apparatus for depositing superconducting layer onto the substrate surface via off-axis laser ablation
US5607899A (en) * 1994-02-25 1997-03-04 Sumitomo Electric Industries, Ltd. Method of forming single-crystalline thin film
US5952271A (en) * 1994-08-26 1999-09-14 Sumitomo Electric Industries, Ltd. Method for manufacturing oxide superconducting films via laser ablation followed by laser material processing
JP2013122065A (en) * 2011-12-09 2013-06-20 Sumitomo Electric Ind Ltd Method and apparatus for depositing functional thin film
CN107884918A (en) * 2017-11-13 2018-04-06 中国科学院合肥物质科学研究院 High energy ultraviolet laser gatherer under a kind of high-intensity magnetic field

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0469603A2 (en) * 1990-08-01 1992-02-05 Sumitomo Electric Industries, Limited A device for forming a compound oxide superconducting thin film
US5478398A (en) * 1990-08-01 1995-12-26 Sumitomo Electric Industries, Ltd. Device for forming a compound oxide superconductor thin film
US5607899A (en) * 1994-02-25 1997-03-04 Sumitomo Electric Industries, Ltd. Method of forming single-crystalline thin film
US5952271A (en) * 1994-08-26 1999-09-14 Sumitomo Electric Industries, Ltd. Method for manufacturing oxide superconducting films via laser ablation followed by laser material processing
EP0702416A1 (en) * 1994-09-16 1996-03-20 Sumitomo Electric Industries, Ltd Method and apparatus for depositing superconducting layer onto the substrate surface via off-axis laser ablation
JP2013122065A (en) * 2011-12-09 2013-06-20 Sumitomo Electric Ind Ltd Method and apparatus for depositing functional thin film
CN107884918A (en) * 2017-11-13 2018-04-06 中国科学院合肥物质科学研究院 High energy ultraviolet laser gatherer under a kind of high-intensity magnetic field

Similar Documents

Publication Publication Date Title
JPH0217685A (en) Manufacture of metal oxide superconducting material layer using laser vaporization
US6037313A (en) Method and apparatus for depositing superconducting layer onto the substrate surface via off-axis laser ablation
US6489587B2 (en) Fabrication method of erbium-doped silicon nano-size dots
JPH03174307A (en) Production of oxide superconductor
JPH03174306A (en) Production of oxide superconductor
JPH01309956A (en) Production of oxide superconductor
JPH03122283A (en) Apparatus for coating surface of base sheet
JPH03174305A (en) Production of oxide superconductor
JPH03226565A (en) Laser vapor deposition
JP2001140059A (en) Film deposition method by laser evaporation
JPH04175204A (en) Production of oxide superconductor by physical vacuum deposition method
JPH07331422A (en) Laser abrasion device
JP3376181B2 (en) Method for preparing thin film of TFE-based polymer
JPH06194497A (en) Highly heat resistant soft x-ray multilayer film reflector employing bn
JPH02197565A (en) Target for laser vapor deposition apparatus
JP2853164B2 (en) Manufacturing method of oxide superconducting film
JPH04175206A (en) Method and apparatus for production of oxide superconducting thin film
JPH01215963A (en) Formation of thin superconducting film
JP3705874B2 (en) Oxide superconductor manufacturing equipment
JPH06220633A (en) Deposited thin film forming device
JPH0318500Y2 (en)
JP3299769B2 (en) Superconductor manufacturing method
JPH02104660A (en) Laser-beam sputtering method
JPH0446082A (en) Formation of high-quality oxide superconducting thin film
JPH03229860A (en) Laser vapor deposition device