JP2013122065A - Method and apparatus for depositing functional thin film - Google Patents

Method and apparatus for depositing functional thin film Download PDF

Info

Publication number
JP2013122065A
JP2013122065A JP2011269984A JP2011269984A JP2013122065A JP 2013122065 A JP2013122065 A JP 2013122065A JP 2011269984 A JP2011269984 A JP 2011269984A JP 2011269984 A JP2011269984 A JP 2011269984A JP 2013122065 A JP2013122065 A JP 2013122065A
Authority
JP
Japan
Prior art keywords
thin film
film
functional thin
substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011269984A
Other languages
Japanese (ja)
Inventor
Tatsuoki Nagaishi
竜起 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011269984A priority Critical patent/JP2013122065A/en
Publication of JP2013122065A publication Critical patent/JP2013122065A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for depositing a functional thin film with excellent crystallinity even if the film is thick, while fully exhibiting the characteristics as a functional thin film.SOLUTION: The method for depositing a functional thin film on a substrate by a vapor phase thin film deposition method, includes heating a film deposition side of the substrate to deposit the functional thin film. The device 1 for depositing the functional thin film on the substrate by the vapor phase thin film deposition method, includes a heating means for heating the film deposition side of the substrate. The vapor phase thin film deposition method is a laser deposition method.

Description

本発明は、膜厚が厚い場合でも、結晶性に優れた機能性薄膜を得ることができる機能性薄膜の成膜方法および成膜装置に関する。   The present invention relates to a functional thin film forming method and a film forming apparatus capable of obtaining a functional thin film having excellent crystallinity even when the film thickness is large.

酸化物超電導薄膜、磁性薄膜、圧電薄膜などの機能性薄膜の成膜に際しては、スパッタ法、MO−CVD法、MB法、レーザ堆積法(パルスレーザデポジッション:PLD法)などの気相薄膜合成法が広く用いられている(例えば非特許文献1、非特許文献2)。   When forming functional thin films such as oxide superconducting thin films, magnetic thin films, and piezoelectric thin films, vapor-phase thin film synthesis such as sputtering, MO-CVD, MB, and laser deposition (pulse laser deposition: PLD) is used. The method is widely used (for example, Non-Patent Document 1 and Non-Patent Document 2).

しかしながら、これらの気相薄膜合成法を用いて機能性薄膜を形成した場合、膜厚が薄い場合には十分にその特性を発揮させることができるが、膜厚が厚い場合には、その特性を十分に発揮させることができない場合があった。例えば、臨界電流値Icを向上させるために酸化物超電導薄膜の膜厚を厚くした場合、膜厚の増加と超電導特性の向上が必ずしも一致しなかった。   However, when a functional thin film is formed by using these vapor phase thin film synthesis methods, the characteristics can be sufficiently exerted when the film thickness is thin. In some cases, it was not possible to make full use. For example, when the thickness of the oxide superconducting thin film is increased in order to improve the critical current value Ic, the increase in the film thickness does not necessarily coincide with the improvement of the superconducting characteristics.

具体的な一例として、PLD法を用いてGdBCO(GdBaCu7−x)酸化物超電導薄膜の形成を行った場合、図4に示すように、膜厚1.3μm程度までは膜厚に対して直線的だったIcの伸びが、その後は徐々に鈍化している。これは、膜厚が厚くなるにつれて臨界電流密度Jcが低下して、膜厚の増加がIcの向上に寄与しなくなっていることを示している。 As a specific example, when a GdBCO (GdBa 2 Cu 3 O 7-x ) oxide superconducting thin film is formed using the PLD method, the film thickness is about 1.3 μm as shown in FIG. On the other hand, the growth of Ic, which was linear, gradually decreased after that. This indicates that the critical current density Jc decreases as the film thickness increases, and the increase in film thickness does not contribute to the improvement of Ic.

このような現象は、膜厚が厚くなるにつれて膜表面の温度が低下して、膜の表面側での結晶性を低下させていることにより発生していることが、膜の断面観察から分かっている。   It can be seen from the cross-sectional observation of the film that this phenomenon occurs because the film surface temperature decreases as the film thickness increases and the crystallinity on the surface side of the film decreases. Yes.

PLD法では、通常、成膜される面とは反対側の面(成膜反対面)(裏面)から基材を加熱しながら成膜材料の蒸着を行い成膜している。   In the PLD method, film formation is usually performed by depositing a film forming material while heating the substrate from a surface opposite to the surface on which the film is formed (surface opposite to the film formation) (back surface).

しかし、このように成膜反対面から基材を加熱する方法の場合、膜厚が厚くなると加熱効率が低下するため、膜厚が厚くなるにつれて膜表面の温度が低下して、膜表面での結晶性が低下して、異相の析出や配向の不十分な結晶が生じ、Jcの低下を招いてしまう。   However, in the case of the method of heating the substrate from the opposite side of the film formation in this way, since the heating efficiency decreases as the film thickness increases, the temperature of the film surface decreases as the film thickness increases. Crystallinity is lowered, resulting in precipitation of heterophases or crystals with insufficient orientation, resulting in a decrease in Jc.

そこで、厚膜の酸化物超電導薄膜を作製する際には、ヒータの温度を順次上昇させて、複数回に分けて成膜して厚膜化することが行われているが、ヒータの温度が高くなりすぎると、テープ線材(基材)の成膜反対面側における負荷が大きくなって、テープ線材の変形を引き起こしたり、テープ線材を構成する金属材料が拡散して、Jcなどを低下させたりする等の不具合が発生していた。   Therefore, when a thick oxide superconducting thin film is manufactured, the temperature of the heater is sequentially increased, and the film is formed in multiple times to increase the thickness. If it is too high, the load on the opposite side of the tape wire (base material) will increase, causing the tape wire to deform, or the metal material constituting the tape wire will diffuse and reduce Jc, etc. There was a problem such as.

具体的な一例として、SUS基板、Cu箔、Niめっきで構成されるクラッド基板の場合には、加熱により、融点の低い銅がNiめっき層に拡散してしまう恐れがある。   As a specific example, in the case of a clad substrate composed of a SUS substrate, Cu foil, and Ni plating, copper having a low melting point may be diffused into the Ni plating layer by heating.

このように、従来の酸化物超電導薄膜の作製においては、複数回の成膜により厚膜化しようとしても、ヒータの温度を十分に上げることができないため、結晶性に優れ、十分に超電導特性を発揮させることができる酸化物超電導薄膜を得ることが困難であった。   As described above, in the production of a conventional oxide superconducting thin film, the temperature of the heater cannot be sufficiently increased even if it is attempted to increase the film thickness by multiple times of film formation. It has been difficult to obtain an oxide superconducting thin film that can be exhibited.

このような問題は、上記した酸化物超電導薄膜以外の機能性薄膜においても同様に生じており、結晶性に優れ、機能性薄膜としての特性を十分に発揮させることができる厚膜の機能性薄膜を得ることが困難であった。   Such a problem also occurs in functional thin films other than the oxide superconducting thin film described above, and is a thick functional thin film that has excellent crystallinity and can fully exhibit the characteristics as a functional thin film. It was difficult to get.

S.R.Foltyn他「Large−area,two−sided superconducting YBa2Cu3O7−x films deposited by pulsed laser deposition」、Appl.Phys.Lett.59(11),9 September 1991、1374−1376S. R. Foltyn et al. “Large-area, two-sided superconducting YBa2Cu3O7-x films deposited by pulsed laser deposition”, Appl. Phys. Lett. 59 (11), 9 September 1991, 1374-1376 H.Kutami他「Progress in research and development on long length coated conductors in Fujikura」、Physica C 469 (2009)、1290−1293H. Kutama et al., "Progress in research and development on long length coated conductors in Fujikura", Physica C 469 (2009), 1290-1293.

以上のため、本発明は、膜厚が厚い場合でも、結晶性に優れ、機能性薄膜としての特性を十分に発揮させることができる機能性薄膜を得ることができる機能性薄膜の成膜方法および成膜装置を提供することを課題とする。   For the above reasons, the present invention provides a method for forming a functional thin film capable of obtaining a functional thin film that is excellent in crystallinity and can sufficiently exhibit the characteristics as a functional thin film even when the film thickness is large, and It is an object to provide a film formation apparatus.

本発明者は、鋭意検討の結果、以下に記載する発明により、上記課題が解決できることを見出し、本発明を完成させるに至った。以下、各請求項毎に説明する。   As a result of intensive studies, the present inventor has found that the above problems can be solved by the invention described below, and has completed the present invention. Hereinafter, each claim will be described.

請求項1に記載の発明は、
気相薄膜合成法を用いて、基材上に機能性薄膜を成膜する機能性薄膜の成膜方法であって、
前記基材の成膜面側から加熱して機能性薄膜の成膜を行う
ことを特徴とする機能性薄膜の成膜方法である。
The invention described in claim 1
A functional thin film forming method for forming a functional thin film on a substrate using a vapor phase thin film synthesis method,
The functional thin film is formed by heating from the film forming surface side of the substrate to form the functional thin film.

本発明者は、成膜に際しての基材(テープ線材)への加熱を、従来のように基材の成膜反対面側(裏面側)から行うのではなく、基材の成膜面側にヒータを配置して行うことに思い至った。   The inventor does not heat the base material (tape wire) during film formation from the side opposite to the film formation side (back side) of the base material as in the prior art, but on the film formation side of the base material. I came up with a heater.

基材の成膜面側から加熱することにより、厚膜の場合であっても、成膜面を十分に加熱することができる。この結果、基材上に、表面まで結晶性に優れた機能性薄膜を作製することができ、機能性薄膜としての特性を十分に発揮させることができる。   By heating from the film formation surface side of the substrate, the film formation surface can be sufficiently heated even in the case of a thick film. As a result, a functional thin film having excellent crystallinity up to the surface can be produced on the substrate, and the characteristics as the functional thin film can be sufficiently exhibited.

また、基材の成膜反対面側における熱負荷が大きくなることがないため、上記した基材の変形や基材を構成する金属材料の拡散を防止することができる。   Moreover, since the thermal load on the opposite side of the film formation of the base material does not increase, it is possible to prevent the deformation of the base material and the diffusion of the metal material constituting the base material.

なお、本請求項の発明にいう「機能性薄膜」とは、薄膜化した機能性材料である。機能性材料は、材料の持つ電気的性質、誘電体特性、磁性、光学特性などの機能を発現させることを目的として製品に組み込まれるタイプの材料を称する。具体的には、酸化物超電導薄膜、ハードディスク等に適用される磁性アモルファス薄膜、薄膜太陽電池等に用いられるアモルファス半導体薄膜、圧電デバイスに用いられる圧電薄膜などの薄膜が挙げられる。   In addition, the “functional thin film” referred to in the present invention is a functional material made into a thin film. The functional material refers to a type of material that is incorporated into a product for the purpose of expressing functions such as electrical properties, dielectric properties, magnetism, and optical properties of the material. Specific examples include thin films such as oxide superconducting thin films, magnetic amorphous thin films applied to hard disks, amorphous semiconductor thin films used in thin film solar cells, and piezoelectric thin films used in piezoelectric devices.

請求項2に記載の発明は、
さらに、前記基材の成膜面と反対側の面からも加熱して機能性薄膜の成膜を行うことを特徴とする請求項1に記載の機能性薄膜の成膜方法である。
The invention described in claim 2
2. The functional thin film forming method according to claim 1, wherein the functional thin film is formed by heating also from a surface opposite to the film forming surface of the substrate.

基材の成膜面側から加熱すると共に、基材の成膜反対面側からも加熱することにより、機能性薄膜内における熱のばらつきを一層抑制することができ好ましい。また、基材の両面にヒータを配置して加熱するため、各ヒータにおける負荷を低減することができる。   Heating from the film-forming surface side of the substrate and heating from the surface opposite to the film-forming surface of the substrate is also preferable because variation in heat in the functional thin film can be further suppressed. Moreover, since a heater is arrange | positioned and heated on both surfaces of a base material, the load in each heater can be reduced.

請求項3に記載の発明は、
前記気相薄膜合成法が、レーザ堆積法であることを特徴とする請求項1または請求項2に記載の機能性薄膜の成膜方法である。
The invention according to claim 3
3. The functional thin film forming method according to claim 1, wherein the vapor phase thin film synthesis method is a laser deposition method.

レーザ堆積法は、スパッタ法などの他の気相薄膜合成法と比べて、成膜速度が速いため、より効率的に加熱する必要があるが、本発明においては基材の成膜面側から加熱しているため、より効率的な加熱が可能となり、本発明の効果を顕著に発揮させることができる。   The laser deposition method has a higher film forming speed than other vapor phase thin film synthesizing methods such as a sputtering method, and thus needs to be heated more efficiently. In the present invention, from the film forming surface side of the substrate, Since it heats, more efficient heating is attained and the effect of this invention can be exhibited notably.

請求項4に記載の発明は、
前記機能性薄膜が、酸化物薄膜であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の機能性薄膜の成膜方法である。
The invention according to claim 4
The functional thin film forming method according to any one of claims 1 to 3, wherein the functional thin film is an oxide thin film.

機能性薄膜の内でも、酸化物からなる薄膜は、形成時における成長温度が高温であるため、本発明に係る成膜方法を採用することによる効果が顕著に発揮される。   Among functional thin films, a thin film made of an oxide has a high growth temperature at the time of formation, so that the effect of employing the film forming method according to the present invention is remarkably exhibited.

請求項5に記載の発明は、
前記酸化物薄膜が、酸化物超電導薄膜であることを特徴とする請求項4に記載の機能性薄膜の成膜方法である。
The invention described in claim 5
5. The method for forming a functional thin film according to claim 4, wherein the oxide thin film is an oxide superconducting thin film.

酸化物薄膜の内でも、酸化物超電導薄膜は特に高温での成長が必要である。また、酸化物超電導薄膜は黒色である。これらのため、基材の成膜反対面側からのみ加熱する従来の方法の場合には、成膜面を十分に高温とするために、大きな熱負荷を基材に加える必要があり、基材の変形や金属材料の拡散を招く恐れが高かった。   Among oxide thin films, oxide superconducting thin films need to be grown at high temperatures. The oxide superconducting thin film is black. For these reasons, in the case of the conventional method of heating only from the side opposite to the film formation side of the substrate, it is necessary to apply a large heat load to the substrate in order to make the film formation surface sufficiently hot. There was a high risk of causing deformation and diffusion of metal materials.

しかし、本発明においては、基材の成膜面側から加熱する方法を採用しているため、基材の成膜反対面側から大きな熱負荷を加える必要がなく、上記の問題の発生を回避しながら高い加熱効率で成膜を行うことができる。   However, in the present invention, since the method of heating from the film formation surface side of the substrate is adopted, it is not necessary to apply a large heat load from the film formation opposite surface side of the substrate, and the occurrence of the above problems is avoided. The film can be formed with high heating efficiency.

請求項6に記載の発明は、
気相薄膜合成法を用いて、基材上に機能性薄膜を成膜する機能性薄膜の成膜装置であって、
前記基材の成膜面側から前記基材を加熱する加熱手段を備えている
ことを特徴とする機能性薄膜の成膜装置である。
The invention described in claim 6
A functional thin film forming apparatus for forming a functional thin film on a substrate using a vapor phase thin film synthesis method,
A functional thin film forming apparatus comprising a heating means for heating the base material from the film forming surface side of the base material.

前記したように、基材の成膜面側から加熱することにより、厚膜の場合であっても、基材上に、表面まで結晶性に優れた機能性薄膜を作製することができ、優れた特性の機能性薄膜を提供することができる。   As described above, by heating from the film formation surface side of the substrate, a functional thin film having excellent crystallinity up to the surface can be produced on the substrate even in the case of a thick film. It is possible to provide a functional thin film having different characteristics.

請求項7に記載の発明は、
さらに、前記基材の成膜面と反対側の面から前記基材を加熱する加熱手段を備えていることを特徴とする請求項6に記載の機能性薄膜の成膜装置である。
The invention described in claim 7
The functional thin film deposition apparatus according to claim 6, further comprising a heating unit configured to heat the substrate from a surface opposite to the film deposition surface of the substrate.

前記したように、基材の成膜面側から加熱すると共に、基材の成膜反対面側からも加熱することにより、機能性薄膜内における熱のばらつきを一層抑制することができる。また、基材両側の各ヒータにおける負荷を低減することができる。   As described above, by heating from the film formation surface side of the base material and also from the surface opposite to the film formation side of the base material, variation in heat in the functional thin film can be further suppressed. Moreover, the load on each heater on both sides of the substrate can be reduced.

請求項8に記載の発明は、
前記気相薄膜合成法が、レーザ堆積法であることを特徴とする請求項6または請求項7に記載の機能性薄膜の成膜装置である。
The invention according to claim 8 provides:
8. The functional thin film deposition apparatus according to claim 6, wherein the vapor phase thin film synthesis method is a laser deposition method.

前記したように、レーザ堆積法は、成膜速度が速いため、本発明の装置の効果を顕著に発揮させることができる。   As described above, since the laser deposition method has a high film formation rate, the effect of the apparatus of the present invention can be remarkably exhibited.

本発明によれば、膜厚が厚い場合でも、結晶性に優れ、機能性薄膜としての特性を十分に発揮させることができる機能性薄膜を得ることができる機能性薄膜の成膜方法および成膜装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is thick, the functional thin film formation method and film formation which can obtain the functional thin film which is excellent in crystallinity and can fully exhibit the characteristic as a functional thin film An apparatus can be provided.

本発明の一実施の形態の気相薄膜合成法を用いた機能性薄膜の成膜装置を説明する図である。It is a figure explaining the film-forming apparatus of the functional thin film using the vapor-phase thin film synthesis method of one embodiment of this invention. 実施例および比較例で作製した酸化物超電導線材の構成を示す図である。It is a figure which shows the structure of the oxide superconducting wire produced in the Example and the comparative example. 実施例および比較例の酸化物超電導薄膜のIc値と膜厚との関係を示す図である。It is a figure which shows the relationship between Ic value and film thickness of the oxide superconducting thin film of an Example and a comparative example. 従来技術によって成膜したREBCO酸化物超電導薄膜のIc値と膜厚の関係を示す図である。It is a figure which shows the relationship between Ic value and film thickness of the REBCO oxide superconducting thin film formed by the prior art. 従来の気相薄膜合成法を用いた機能性薄膜の成膜装置を説明する図である。It is a figure explaining the film-forming apparatus of the functional thin film using the conventional vapor-phase thin film synthesis method.

以下、酸化物超電導薄膜を作製する場合を例に挙げて、本発明の実施の形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to an example in which an oxide superconducting thin film is manufactured.

1.成膜装置
はじめに、本実施の形態の成膜装置について説明する。図1は本実施の形態の気相薄膜合成法を用いた機能性薄膜(酸化物超電導薄膜)の成膜装置を説明する図である。図1において、1は真空チャンバ(図示省略)内に設けられた成膜装置であり、ヒータ11、ヒータ13、スリット12を備えている。また、成膜装置1は、原料ターゲットTにレーザを照射するレーザ照射装置、テープ線材W(基材)をreel to reelで搬送する搬送手段、円盤状の原料ターゲットTを保持し回転させる機構を備えている(いずれも図示省略)。なお、Pは、レーザ光の照射により原料ターゲットTから放出(昇華)された成膜材料が酸素ガスと衝突して発光したレーザプルームである。
1. Film Forming Apparatus First, the film forming apparatus of the present embodiment will be described. FIG. 1 is a diagram for explaining a film forming apparatus for a functional thin film (oxide superconducting thin film) using the vapor phase thin film synthesis method of the present embodiment. In FIG. 1, reference numeral 1 denotes a film forming apparatus provided in a vacuum chamber (not shown), which includes a heater 11, a heater 13, and a slit 12. Further, the film forming apparatus 1 includes a laser irradiation apparatus that irradiates the raw material target T with a laser, a transport unit that transports the tape wire W (base material) in a reel-to-reel manner, and a mechanism that holds and rotates the disk-shaped raw material target T. Provided (both not shown). Note that P is a laser plume in which a film forming material emitted (sublimated) from the source target T by laser beam irradiation collides with oxygen gas and emits light.

レーザ照射装置は、エキシマレーザなどを用いて、回転している円盤状の原料ターゲットTの円盤の中心の外側にレーザ光を照射する。これにより、成膜原料が放出(昇華)され、テープ線材Wの成膜面側(表面)に成膜される。レーザエネルギー(単位:J/パルス)および照射面積(単位:cm)を調整することにより、成膜に適切な照射エネルギー密度(単位:J/cm)が決定される。 The laser irradiation apparatus irradiates laser light to the outside of the center of the rotating disk-shaped raw material target T using an excimer laser or the like. Thereby, the film forming raw material is released (sublimated), and a film is formed on the film forming surface side (surface) of the tape wire W. By adjusting the laser energy (unit: J / pulse) and the irradiation area (unit: cm 2 ), an irradiation energy density (unit: J / cm 2 ) appropriate for film formation is determined.

原料ターゲットTとテープ線材Wとの間隔は、通常70mm程度が好ましい。   The distance between the raw material target T and the tape wire W is usually preferably about 70 mm.

原料ターゲットTのレーザ照射位置から離れた場所では、昇華されてテープ線材Wに付着する際の元素組成比がずれてしまい、良好な超電導特性が得られなくなる恐れがある。このため、原料ターゲットTとテープ線材Wの間には、開口部を有するスリット12が設けられて、成膜領域が制限されるようになっている。   In a place away from the laser irradiation position of the raw material target T, the elemental composition ratio at the time of sublimation and adhering to the tape wire W may be shifted, and good superconducting characteristics may not be obtained. For this reason, between the raw material target T and the tape wire W, the slit 12 which has an opening part is provided, and the film-forming area | region is restrict | limited.

テープ線材Wの長手方向におけるスリット12の開口部の長さLは、レーザの原料ターゲットT上の照射形状に応じて、30〜80mmで適宜設定される。なお、スリット12の開口部両端では、図1に示すように、テープ線材W側に壁を設けて、昇華した成膜原料がヒータ11に付着しないようにすることが好ましい。 The length L 1 of the opening of the slit 12 in the longitudinal direction of the tape wire W, depending on the illumination profile of the laser of raw material target T, is appropriately set in 30 to 80 mm. As shown in FIG. 1, it is preferable to provide a wall on the tape wire W side so that the sublimated film forming material does not adhere to the heater 11 at both ends of the opening of the slit 12.

また、レーザプルームPの位置における加熱が、機能性薄膜の成長を左右するため、前記した壁とヒータ11の端部との間隔dはできる限り小さい方が好ましく、具体的には1mm程度が好ましい。 Further, since the heating at the position of the laser plume P affects the growth of the functional thin film, the distance d 2 between the wall and the end of the heater 11 is preferably as small as possible, specifically about 1 mm. preferable.

テープ線材Wとスリット12の間には、テープ線材Wの搬送経路の成膜ゾーンの前後にテープ線材W表面を加熱するヒータ11が、テープ線材Wから3〜10mmの間隔dを隔てて設けられている。ヒータ11としては、テープ線材Wと原料ターゲットTとの距離を短縮可能であるという観点から薄いヒータが好ましく、例えば、厚みtを10mm程度とすることが可能な抵抗線加熱ヒータなどを用いることが好ましい。 Between the tape wire W and the slit 12, a heater 11 for heating the surface of the tape wire W before and after the film forming zone of the transport path of the tape wire W is provided at a distance d 1 of 3 to 10 mm from the tape wire W. It has been. The heater 11 is preferably a thin heater from the viewpoint that the distance between the tape wire W and the raw material target T can be shortened. For example, a resistance wire heater that can have a thickness t of about 10 mm is used. preferable.

ヒータ11を成膜ゾーンの前後に設けて、成膜直前に基材の表面を有効に加熱するとともに、成膜直後にも加熱を行うことにより、結晶化における加熱処理を、より効率よく行うことができ好ましい。   The heater 11 is provided before and after the film formation zone to effectively heat the surface of the base material immediately before film formation and to perform heat treatment in crystallization more efficiently by heating immediately after film formation. This is preferable.

なお、ヒータ11の大きさは、幅としてはテープ線材Wの幅方向の均熱を得るためにテープ線材Wの幅よりも両側が10mm以上広いことが好ましく、長さ(テープ線材Wの長手方向の長さ)Lとしてはテープ線材Wの移動を考慮すると50〜100mm程度であることが好ましい。 The width of the heater 11 is preferably 10 mm or more wider on both sides than the width of the tape wire W in order to obtain uniform heat in the width direction of the tape wire W, and the length (the longitudinal direction of the tape wire W) it is preferable as a length) L 2 is about 50~100mm considering the movement of the tape wire W.

また、本実施の形態においては、テープ線材Wの成膜反対面側(裏面)にも、ヒータ13が設けられている。ヒータ13としては、ランプヒータなどが好ましく使用される。   In the present embodiment, the heater 13 is also provided on the side opposite to the film formation (back surface) of the tape wire W. A lamp heater or the like is preferably used as the heater 13.

2.機能性薄膜の成膜方法
次に、上記の構成の成膜装置を用いた機能性薄膜の成膜方法について説明する。
2. Next, a method for forming a functional thin film using the film forming apparatus having the above-described configuration will be described.

まず、10〜60Pa程度の酸素ガス雰囲気に設定された真空チャンバ内に、reel to reelで数十メートルから数百メートルの長さのテープ線材Wを、成膜面を下側にして所定のスピードで導入する。真空チャンバ内には、予め、原料ターゲットTが、テープ線材Wの成膜面に対向して設置されている。   First, in a vacuum chamber set in an oxygen gas atmosphere of about 10 to 60 Pa, a tape wire W having a length of several tens to several hundreds of meters in a reel-to-reel direction with a predetermined surface with the film-forming surface facing down. Introduced in. In the vacuum chamber, the raw material target T is previously installed facing the film-forming surface of the tape wire W.

次に、テープ線材Wを表面からはヒータ11、裏面からはヒータ13により加熱し、酸化物超電導薄膜の成膜に適した所定の温度(約650〜750℃程度)になるように各ヒータの投入パワーを調整する。   Next, the tape wire W is heated by the heater 11 from the front surface and the heater 13 from the back surface, and each heater is heated to a predetermined temperature (about 650 to 750 ° C.) suitable for forming the oxide superconducting thin film. Adjust the input power.

そして、テープ線材Wを所定の速度で移動させながら、原料ターゲットTにレーザを照射して成膜材料を昇華させ、テープ線材Wの成膜面上に所定の厚さの酸化物超電導薄膜を成膜する。   Then, while moving the tape wire W at a predetermined speed, the raw material target T is irradiated with a laser to sublimate the film forming material, and an oxide superconducting thin film having a predetermined thickness is formed on the film forming surface of the tape wire W. Film.

本実施の形態においては、テープ線材Wを成膜面側から加熱しているため、膜厚が厚い場合でも、成膜面を十分に加熱することができ、基材上に、表面まで結晶性に優れた機能性薄膜を作製することができ、機能性薄膜としての特性を十分に発揮させることができる。   In the present embodiment, since the tape wire W is heated from the film formation surface side, the film formation surface can be sufficiently heated even when the film thickness is large, and the surface of the substrate is crystalline up to the surface. It is possible to produce a functional thin film having excellent characteristics and to sufficiently exhibit the characteristics as a functional thin film.

また、基材の成膜反対面側からも加熱しているため、薄膜内における熱のばらつきを一層抑制することができ、より安定した成膜が可能となる。また、表面、裏面の各ヒータにおける負荷をより低減することができる。   In addition, since the substrate is also heated from the side opposite to the film formation, the variation in heat in the thin film can be further suppressed, and more stable film formation is possible. Moreover, the load on each heater on the front surface and the back surface can be further reduced.

以上のように本実施の形態を採用することにより、厚膜であっても、基材上に、表面まで結晶性に優れた機能性薄膜(酸化物超電導薄膜)を作製することができる。   As described above, by employing this embodiment, a functional thin film (oxide superconducting thin film) having excellent crystallinity can be formed on a substrate even on a thick film.

以下、実施例により、本発明をより具体的に説明する。本実施例は、PLD法を用いてGdBCO(GdBaCu7−x)酸化物超電導薄膜を成膜し、酸化物超電導線材を作製した例である。 Hereinafter, the present invention will be described more specifically by way of examples. This example is an example in which a GdBCO (GdBa 2 Cu 3 O 7-x ) oxide superconducting thin film is formed using a PLD method to produce an oxide superconducting wire.

(実施例)
図2に示す構成の酸化物超電導線材を以下の手順により作製した。
(Example)
An oxide superconducting wire having the configuration shown in FIG. 2 was produced by the following procedure.

(1)下地基材(テープ線材)の作製
まず、100μm厚のステンレス基板に配向銅(Cu)を貼り合わせた後、ニッケル(Ni)めっきを施し、120μm厚の配向金属基板を作製した。次に、配向金属基板にRFスパッタ法を用いて、中間層を形成した。具体的には、シード層として0.14μm厚のCeO膜、Ni拡散防止層として0.3μm厚のYSZ膜、超電導層との整合層として0.07μm厚のCeO膜を形成し、幅30mm、長さ150mのテープ線材(基材)を作製した。
(1) Preparation of base substrate (tape wire) First, oriented copper (Cu) was bonded to a 100 μm-thick stainless steel substrate, and then nickel (Ni) plating was performed to prepare an oriented metal substrate having a thickness of 120 μm. Next, an intermediate layer was formed on the oriented metal substrate by RF sputtering. Specifically, to form a 0.14μm thick CeO 2 film, YSZ film 0.3μm thick as Ni diffusion preventing layer, 0.07 .mu.m thick CeO 2 film as a matching layer between the superconducting layer as a seed layer, the width A tape wire (base material) of 30 mm and a length of 150 m was produced.

(2)酸化物超電導薄膜の成膜
図1に示した成膜装置1を用いてGdBCO酸化物超電導薄膜を成膜した。レーザには248nmの波長のエキシマレーザを使用し、レーザエネルギーを原料ターゲットT上で0.75J/パルスとし、照射面積を0.25cmにすることで、3J/cm程度の照射エネルギー密度とした。なお、原料ターゲットTにはGdBCOの焼結体を使用した。
(2) Formation of oxide superconducting thin film A GdBCO oxide superconducting thin film was formed using the film forming apparatus 1 shown in FIG. The laser is an excimer laser having a wavelength of 248 nm, the laser energy as 0.75 J / pulse on raw material target T, by the irradiation area 0.25 cm 2, and irradiation energy density of about 3J / cm 2 did. The raw material target T was a GdBCO sintered body.

ヒータ11には厚みが10mmの抵抗線加熱ヒータを用いた。ヒータ11とテープ線材W(基材)との距離dは10mmとした。スリット12の開口部の長さLは65mmとした。スリット12のテープ線材W側に設けた壁からヒータ11の端部までの距離dは1mmとした。ヒータ11の大きさは、幅方向を50mmとし、テープ線材の長手方向の長さLはテープ線材が移動するために90mmとした。また、真空チャンバ内は20Paの酸素ガスで保持した。 As the heater 11, a resistance wire heater having a thickness of 10 mm was used. The distance d 1 between the heater 11 and the tape wire W (substrate) was 10 mm. The length L 1 of the opening of the slit 12 was set to 65 mm. The distance d 2 from the walls provided on the tape wire W side of the slit 12 to the end portion of the heater 11 was set to 1 mm. The size of the heater 11, the width direction and 50 mm, longitudinal length L 2 of the tape wire was 90mm for tape wire is moved. The vacuum chamber was held with 20 Pa oxygen gas.

テープ線材Wをreel to reelで原料ターゲットTが設置された真空チャンバに導入し、ヒータ11の投入パワーを3kW、ヒータ13の投入パワーを0.4kWとして、テープ線材Wの表裏両面から加熱することにより、酸化物超電導薄膜を成膜する表面(成膜面)側の温度が700℃程度になるように調整した。   The tape wire W is introduced into the vacuum chamber in which the raw material target T is installed on a reel-to-reel basis, and the heating power of the heater 11 is 3 kW and the charging power of the heater 13 is 0.4 kW. Thus, the temperature on the surface (deposition surface) side on which the oxide superconducting thin film was formed was adjusted to about 700 ° C.

テープ線材Wを10m/時の速度で移動させながら、エキシマレーザを原料ターゲットTに照射してターゲット材料を昇華させ、テープ線材Wの表面上にGdBCO酸化物超電導薄膜を成膜した。   While moving the tape wire W at a speed of 10 m / hour, the target material T was irradiated with an excimer laser to sublimate the target material, and a GdBCO oxide superconducting thin film was formed on the surface of the tape wire W.

(3)安定化層および保護層の形成
所定の方法を用いて、GdBCO酸化物超電導薄膜上に2μm厚の銀(Ag)安定化層を形成した後、スリッターを用いて線幅4mmで6条の線材にスリットした。その後、得られた各条線材の外周に20μm厚のCu保護層を形成し、実施例の酸化物超電導線材を得た。
(3) Formation of stabilization layer and protective layer A predetermined method is used to form a 2 μm thick silver (Ag) stabilization layer on the GdBCO oxide superconducting thin film, and then a 6 mm strip with a slit width of 4 mm is used. Slit into the wire. Thereafter, a 20 μm-thick Cu protective layer was formed on the outer periphery of each of the obtained wire rods to obtain oxide superconducting wires of Examples.

(比較例)
図5に示したテープ線材Wの裏面側から加熱する従来の成膜装置2を用い、ヒータ23の投入パワーを膜厚に応じて3.5〜4kWと変化させながら、テープ線材Wの裏面側から加熱したこと以外は実施例と同様にしてGdBCO酸化物超電導薄膜を成膜し、さらに、安定化層および保護層を形成し、比較例の酸化物超電導線材を得た。
(Comparative example)
Using the conventional film forming apparatus 2 that heats from the back side of the tape wire W shown in FIG. 5, while changing the input power of the heater 23 to 3.5 to 4 kW according to the film thickness, the back side of the tape wire W A GdBCO oxide superconducting thin film was formed in the same manner as in the example except that it was heated from above, and a stabilization layer and a protective layer were further formed to obtain an oxide superconducting wire of a comparative example.

上記より、実施例の場合、比較例に比べて小さなヒータの投入パワーであるにも拘わらず、テープ線材表面を成膜に適した約700℃程度に加熱できることが確認できた。   From the above, it was confirmed that in the case of the example, the surface of the tape wire could be heated to about 700 ° C. suitable for film formation even though the heater power was smaller than that of the comparative example.

(酸化物超電導線材の評価)
(1)評価方法
実施例および比較例の酸化物超電導線材について、77.3Kの温度下、通電法によりIc値を測定した。
(Evaluation of oxide superconducting wire)
(1) Evaluation method About the oxide superconducting wire of an Example and a comparative example, Ic value was measured by the electricity supply method under the temperature of 77.3K.

(2)評価結果
評価結果を図3に示す。図3において、縦軸はIc値(A/cm:線材幅4mmでの実測値を1cm幅に換算)であり、横軸は酸化物超電導薄膜の膜厚(μm)である。また、実線が実施例の評価結果であり、破線が比較例の評価結果(図4と同一のデータ)である。
(2) Evaluation results The evaluation results are shown in FIG. In FIG. 3, the vertical axis is the Ic value (A / cm: the actual measurement value at the wire rod width of 4 mm is converted to 1 cm width), and the horizontal axis is the film thickness (μm) of the oxide superconducting thin film. In addition, the solid line is the evaluation result of the example, and the broken line is the evaluation result of the comparative example (the same data as FIG. 4).

図3より、比較例の場合、酸化物超電導薄膜の膜厚が約1.3mm以上ではIc値が膜厚に比例して増加せず、Jcが低下していることが分かる。これに対して、実施例の場合、Ic値が膜厚に比例して増大しており、Jcが低下していないことが分かる。   From FIG. 3, it can be seen that in the comparative example, when the thickness of the oxide superconducting thin film is about 1.3 mm or more, the Ic value does not increase in proportion to the thickness, and Jc decreases. On the other hand, in the case of the example, it can be seen that the Ic value increases in proportion to the film thickness, and Jc does not decrease.

そして、500A/cmのIcを得るためには、比較例の場合には2.8μmの膜厚を必要とするのに対して、実施例の場合には1.8μmの膜厚で同等のIc値が得られることが分かる。また、実施例の場合には、2.2μmの膜厚で600A/cmのIc値を得ることができることも分かる。   In order to obtain Ic of 500 A / cm, in the case of the comparative example, a film thickness of 2.8 μm is required, whereas in the case of the example, an equivalent Ic of 1.8 μm is obtained. It can be seen that the value is obtained. In the case of the example, it can also be seen that an Ic value of 600 A / cm can be obtained with a film thickness of 2.2 μm.

以上の結果より、本発明を採用することにより、膜厚が厚い場合でも、結晶性に優れた酸化物超電導薄膜が得られ、Jcが低下せず、厚膜化により高Ic値化が可能となることが確認できた。また、同等のIc値を得るために必要な膜厚を低減することができるため、成膜コストの低減が可能となることが確認できた。   From the above results, by adopting the present invention, an oxide superconducting thin film excellent in crystallinity can be obtained even when the film thickness is large, Jc does not decrease, and a high Ic value can be achieved by increasing the film thickness. It was confirmed that In addition, it was confirmed that the film formation cost can be reduced because the film thickness required to obtain an equivalent Ic value can be reduced.

以上、本発明を実施の形態に基づいて説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることができる。   While the present invention has been described based on the embodiments, the present invention is not limited to the above embodiments. Various modifications can be made to the above-described embodiments within the same and equivalent scope as the present invention.

1、2 成膜装置
11、13、23 ヒータ
12、22 スリット
P レーザプルーム
T 原料ターゲット
W テープ線材
ヒータとテープ線材との間隔
壁とヒータの端部との間隔
スリットの開口部の長さ
ヒータの長さ
1, 2, Film formation apparatus 11, 13, 23 Heater 12, 22 Slit P Laser plume T Raw material target W Tape wire d 1 Space between heater and tape wire d 2 Space between wall and end of heater L 1 Opening of slit Part length L 2 Heater length

Claims (8)

気相薄膜合成法を用いて、基材上に機能性薄膜を成膜する機能性薄膜の成膜方法であって、
前記基材の成膜面側から加熱して機能性薄膜の成膜を行う
ことを特徴とする機能性薄膜の成膜方法。
A functional thin film forming method for forming a functional thin film on a substrate using a vapor phase thin film synthesis method,
A method for forming a functional thin film, wherein the functional thin film is formed by heating from the film forming surface side of the substrate.
さらに、前記基材の成膜面と反対側の面からも加熱して機能性薄膜の成膜を行うことを特徴とする請求項1に記載の機能性薄膜の成膜方法。   2. The method for forming a functional thin film according to claim 1, wherein the functional thin film is formed by heating also from a surface opposite to the film forming surface of the substrate. 前記気相薄膜合成法が、レーザ堆積法であることを特徴とする請求項1または請求項2に記載の機能性薄膜の成膜方法。   The method for forming a functional thin film according to claim 1 or 2, wherein the vapor-phase thin film synthesis method is a laser deposition method. 前記機能性薄膜が、酸化物薄膜であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の機能性薄膜の成膜方法。   The method for forming a functional thin film according to any one of claims 1 to 3, wherein the functional thin film is an oxide thin film. 前記酸化物薄膜が、酸化物超電導薄膜であることを特徴とする請求項4に記載の機能性薄膜の成膜方法。   The method for forming a functional thin film according to claim 4, wherein the oxide thin film is an oxide superconducting thin film. 気相薄膜合成法を用いて、基材上に機能性薄膜を成膜する機能性薄膜の成膜装置であって、
前記基材の成膜面側から前記基材を加熱する加熱手段を備えている
ことを特徴とする機能性薄膜の成膜装置。
A functional thin film forming apparatus for forming a functional thin film on a substrate using a vapor phase thin film synthesis method,
A functional thin film deposition apparatus comprising heating means for heating the substrate from the film deposition surface side of the substrate.
さらに、前記基材の成膜面と反対側の面から前記基材を加熱する加熱手段を備えていることを特徴とする請求項6に記載の機能性薄膜の成膜装置。   The functional thin film deposition apparatus according to claim 6, further comprising heating means for heating the base material from a surface opposite to the film formation surface of the base material. 前記気相薄膜合成法が、レーザ堆積法であることを特徴とする請求項6または請求項7に記載の機能性薄膜の成膜装置。   The functional thin film deposition apparatus according to claim 6 or 7, wherein the vapor phase thin film synthesis method is a laser deposition method.
JP2011269984A 2011-12-09 2011-12-09 Method and apparatus for depositing functional thin film Pending JP2013122065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011269984A JP2013122065A (en) 2011-12-09 2011-12-09 Method and apparatus for depositing functional thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011269984A JP2013122065A (en) 2011-12-09 2011-12-09 Method and apparatus for depositing functional thin film

Publications (1)

Publication Number Publication Date
JP2013122065A true JP2013122065A (en) 2013-06-20

Family

ID=48774208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011269984A Pending JP2013122065A (en) 2011-12-09 2011-12-09 Method and apparatus for depositing functional thin film

Country Status (1)

Country Link
JP (1) JP2013122065A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133505A1 (en) * 2014-03-07 2015-09-11 住友電気工業株式会社 Oxide superconducting thin film wire and method for producing same
JP2019218603A (en) * 2018-06-20 2019-12-26 株式会社アルバック Film deposition apparatus and film deposition method

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145769A (en) * 1986-12-08 1988-06-17 Mitsubishi Electric Corp Laser coating device
JPH01309956A (en) * 1988-05-09 1989-12-14 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Production of oxide superconductor
JPH03174306A (en) * 1989-11-30 1991-07-29 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Production of oxide superconductor
JPH03174307A (en) * 1989-11-30 1991-07-29 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Production of oxide superconductor
JPH06172981A (en) * 1992-11-30 1994-06-21 Mitsubishi Electric Corp Laser thin film forming device
US5415901A (en) * 1992-06-01 1995-05-16 Matsushita Electric Industrial Co., Ltd. Laser ablation device and thin film forming method
JPH0870144A (en) * 1994-08-26 1996-03-12 Sumitomo Electric Ind Ltd Manufacture of superconductor parts
JPH08264525A (en) * 1995-03-20 1996-10-11 Olympus Optical Co Ltd Deposition of laminar compound thin film of bismuth
EP0819782A1 (en) * 1996-07-16 1998-01-21 Toyota Jidosha Kabushiki Kaisha Process of forming a thin film by laser ablation
JP2003096559A (en) * 2001-09-21 2003-04-03 Shin Meiwa Ind Co Ltd Apparatus and method for film deposition
JP2004035958A (en) * 2002-07-04 2004-02-05 Shin Meiwa Ind Co Ltd Film deposition system
US20090169868A1 (en) * 2002-01-29 2009-07-02 Vanderbilt University Methods and apparatus for transferring a material onto a substrate using a resonant infrared pulsed laser
US20090215630A1 (en) * 2008-02-27 2009-08-27 Fujikura Ltd. Oxide target for laser vapor deposition and method of manufacturing the same
JP2010121205A (en) * 2008-10-23 2010-06-03 Fujikura Ltd Film deposition method and film deposition apparatus
JP2011060668A (en) * 2009-09-11 2011-03-24 Fujikura Ltd Manufacturing method of long oxide superconductor by laser vapor deposition method

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145769A (en) * 1986-12-08 1988-06-17 Mitsubishi Electric Corp Laser coating device
JPH01309956A (en) * 1988-05-09 1989-12-14 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Production of oxide superconductor
JPH03174306A (en) * 1989-11-30 1991-07-29 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Production of oxide superconductor
JPH03174307A (en) * 1989-11-30 1991-07-29 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Production of oxide superconductor
US5415901A (en) * 1992-06-01 1995-05-16 Matsushita Electric Industrial Co., Ltd. Laser ablation device and thin film forming method
US6110291A (en) * 1992-11-30 2000-08-29 Mitsubishi Denki Kabushiki Kaisha Thin film forming apparatus using laser
JPH06172981A (en) * 1992-11-30 1994-06-21 Mitsubishi Electric Corp Laser thin film forming device
JPH0870144A (en) * 1994-08-26 1996-03-12 Sumitomo Electric Ind Ltd Manufacture of superconductor parts
US5952271A (en) * 1994-08-26 1999-09-14 Sumitomo Electric Industries, Ltd. Method for manufacturing oxide superconducting films via laser ablation followed by laser material processing
JPH08264525A (en) * 1995-03-20 1996-10-11 Olympus Optical Co Ltd Deposition of laminar compound thin film of bismuth
EP0819782A1 (en) * 1996-07-16 1998-01-21 Toyota Jidosha Kabushiki Kaisha Process of forming a thin film by laser ablation
JP2003096559A (en) * 2001-09-21 2003-04-03 Shin Meiwa Ind Co Ltd Apparatus and method for film deposition
US20090169868A1 (en) * 2002-01-29 2009-07-02 Vanderbilt University Methods and apparatus for transferring a material onto a substrate using a resonant infrared pulsed laser
JP2004035958A (en) * 2002-07-04 2004-02-05 Shin Meiwa Ind Co Ltd Film deposition system
US20090215630A1 (en) * 2008-02-27 2009-08-27 Fujikura Ltd. Oxide target for laser vapor deposition and method of manufacturing the same
JP2010121205A (en) * 2008-10-23 2010-06-03 Fujikura Ltd Film deposition method and film deposition apparatus
JP2011060668A (en) * 2009-09-11 2011-03-24 Fujikura Ltd Manufacturing method of long oxide superconductor by laser vapor deposition method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133505A1 (en) * 2014-03-07 2015-09-11 住友電気工業株式会社 Oxide superconducting thin film wire and method for producing same
CN105940465A (en) * 2014-03-07 2016-09-14 住友电气工业株式会社 Oxide superconducting thin film wire and method for producing same
KR20160130378A (en) * 2014-03-07 2016-11-11 스미토모 덴키 고교 가부시키가이샤 Oxide superconducting thin film wire and method for producing same
JPWO2015133505A1 (en) * 2014-03-07 2017-04-06 住友電気工業株式会社 Oxide superconducting thin film wire and manufacturing method thereof
US9978481B2 (en) 2014-03-07 2018-05-22 Sumitomo Electric Industries, Ltd. Oxide superconducting thin film wire and method for producing same
KR102266022B1 (en) * 2014-03-07 2021-06-16 스미토모 덴키 고교 가부시키가이샤 Oxide superconducting thin film wire and method for producing same
JP2019218603A (en) * 2018-06-20 2019-12-26 株式会社アルバック Film deposition apparatus and film deposition method
JP7093684B2 (en) 2018-06-20 2022-06-30 株式会社アルバック Film forming equipment and film forming method

Similar Documents

Publication Publication Date Title
Oke et al. Atomic layer deposition and other thin film deposition techniques: from principles to film properties
Ding et al. Preparation and characterization of pulsed laser deposited CdTe thin films at higher FTO substrate temperature and in Ar+ O2 atmosphere
KR101664465B1 (en) Oxide superconductor cabling and method of manufacturing oxide superconductor cabling
CN108658121B (en) Method for realizing gradient doping of zinc oxide nanowire array
Khamlich et al. Morphological and crystallographic properties of rare earth oxides coatings deposited by double dual beam-PLD
JP2013122065A (en) Method and apparatus for depositing functional thin film
US20160056361A1 (en) Nano-Composite Thermo-Electric Energy Converter and Fabrication Method Thereof
RU2696182C1 (en) High-temperature superconducting tape manufacturing method and tape
Ming et al. Study of Ar+ O 2 deposition pressures on properties of pulsed laser deposited CdTe thin films at high substrate temperature
JP5544271B2 (en) Method and apparatus for forming oxide superconductor thin film
JP2008130255A (en) Superconducting wire and manufacturing method therefor
Il’in et al. Fabrication and Electrical Characteristics of Asymmetric Rings Made of HTS YBCO Films Obtained by Pulsed Laser Deposition
JP2013079437A (en) Film forming method and film forming apparatus using laser ablation
JP2014234544A (en) Manufacturing method and apparatus of functional thin film
JP2011146234A (en) Method of manufacturing oxide superconducting film
JP3565881B2 (en) Stabilizer composite superconductor and method of manufacturing the same
Nehra et al. Preparation and characterization of vacuum thermal evaporated trilayer Cu/Se/Al thin films
Daryapurkar et al. Growth of pseudocubic perovskite-type SrRuO 3 thin films on quartz substrate using pulsed laser deposition method
JPH04182317A (en) Formation of oxide superconducting thin film
JP5658891B2 (en) Manufacturing method of oxide superconducting film
Lavanya et al. Ti Doped Cu2O Thin Films: DC Magnetron Sputtering and Structural and Optical Studies
JP5122045B2 (en) Oxide superconductor and manufacturing method thereof
JP3856995B2 (en) Oxide superconducting thin film manufacturing apparatus and oxide superconducting thin film manufacturing method
JPH01260717A (en) Method and apparatus for manufacture of metal oxide superconducting material layer
Zhou et al. Optimizing Laser‐Induced Voltage Signal in SnO2 Thin Films by Changing Oxygen Pressure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150629