JP5544271B2 - Method and apparatus for forming oxide superconductor thin film - Google Patents

Method and apparatus for forming oxide superconductor thin film Download PDF

Info

Publication number
JP5544271B2
JP5544271B2 JP2010234867A JP2010234867A JP5544271B2 JP 5544271 B2 JP5544271 B2 JP 5544271B2 JP 2010234867 A JP2010234867 A JP 2010234867A JP 2010234867 A JP2010234867 A JP 2010234867A JP 5544271 B2 JP5544271 B2 JP 5544271B2
Authority
JP
Japan
Prior art keywords
base material
film
substrate
target
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010234867A
Other languages
Japanese (ja)
Other versions
JP2012087359A (en
Inventor
一臣 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2010234867A priority Critical patent/JP5544271B2/en
Publication of JP2012087359A publication Critical patent/JP2012087359A/en
Application granted granted Critical
Publication of JP5544271B2 publication Critical patent/JP5544271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、レーザー光によってターゲットから叩き出され若しくは蒸発した構成粒子を帯状の基材上に堆積させ、薄膜を形成する成膜方法(レーザー蒸着方法)および成膜装置(レーザー蒸着装置)に関する。   The present invention relates to a film forming method (laser vapor deposition method) and a film forming apparatus (laser vapor deposition apparatus) in which constituent particles hit or evaporated from a target by a laser beam are deposited on a band-shaped substrate to form a thin film.

RE−123系酸化物超電導体(REBa2Cu3O7−x:REはY、Gdなどの希土類元素)は、液体窒素温度(77K)よりも高い臨界温度を有しており、超電導デバイス、超電導変圧器、超伝導限流器、超電導モータ又はマグネット等の超電導機器への応用が期待されている。
RE−123系酸化物超電導体を導電体として使用するためには、テープ状基材などの長尺基材上に、結晶配向性の良好な酸化物超電導体の薄膜を形成する必要がある。これは、この種の希土類酸化物系超電導体の結晶が、その結晶軸のa軸方向とb軸方向には電気を流しやすいが、c軸方向には電気を流し難いという電気的異方性を有しており、長尺基材上に酸化物超電導層を形成する場合、電気を流す方向にa軸あるいはb軸を配向させ、c軸をその他の方向に配向させる必要があるためである。
ところが、一般には、金属テープ自体が多結晶体でその結晶構造も酸化物超電導体と大きく異なるために、金属テープ上に直接、結晶配向性の良好な酸化物超電導体の薄膜を形成することは難しい。そこで、金属テープからなる基材の上に、結晶配向性の優れた多結晶中間薄膜を形成し、この多結晶中間薄膜上に酸化物超電導体の薄膜を形成する手法が検討されている。
RE-123-based oxide superconductor (REBa2Cu3O7-x: RE is a rare earth element such as Y, Gd) has a critical temperature higher than the liquid nitrogen temperature (77K), and superconducting devices, superconducting transformers, super Applications to superconducting equipment such as conduction current limiters, superconducting motors or magnets are expected.
In order to use the RE-123 oxide superconductor as a conductor, it is necessary to form a thin film of an oxide superconductor with good crystal orientation on a long substrate such as a tape-like substrate. This is because an electric anisotropy that this kind of rare earth oxide superconductor crystal easily conducts electricity in the a-axis direction and b-axis direction of its crystal axis but hardly conducts electricity in the c-axis direction. This is because, when an oxide superconducting layer is formed on a long substrate, it is necessary to orient the a-axis or b-axis in the direction in which electricity flows and to orient the c-axis in other directions. .
However, in general, since the metal tape itself is polycrystalline and its crystal structure is significantly different from that of the oxide superconductor, it is not possible to form an oxide superconductor thin film with good crystal orientation directly on the metal tape. difficult. Therefore, a technique for forming a polycrystalline intermediate thin film having excellent crystal orientation on a base material made of a metal tape and forming a thin film of an oxide superconductor on the polycrystalline intermediate thin film has been studied.

本発明者は、金属テープ上に多結晶中間薄膜が形成された基材上に、RE123系酸化物超電導体を成膜して酸化物超電導層を形成する技術として、レーザ光をターゲットに集光照射し、このターゲットの構成粒子を叩き出し若しくは蒸発させて構成粒子のプルームを発生させ、このプルームの粒子を長尺の基材上に堆積させるパルスレーザ蒸着法(PLD法)について研究を行っている(例えば、特許文献1参照。)。   As a technique for forming an oxide superconducting layer by forming a RE123-based oxide superconductor on a base material on which a polycrystalline intermediate thin film is formed on a metal tape, the present inventors focused laser light on a target. Research on pulsed laser deposition method (PLD method) that irradiates, evaporates or evaporates constituent particles of the target to generate a plume of constituent particles, and deposits the particles of the plume on a long substrate. (For example, refer to Patent Document 1).

図11に、特許文献1に記載されたレーザー蒸着装置の一例を示す。このレーザー蒸着装置100は、一方の側で複数の転向部材を同軸的に配列した第1の転向部材群103と、他方の側で複数の転向部材を同軸的に配列した第2の転向部材群104と、転向部材群103、104間に複数レーンを構成するように巻回された基材105に対向するように配されたターゲット107と、ターゲット107にレーザー光Laを照射するレーザー光発光手段108と、ターゲット107に対向する領域111を走行する基材105を支持する基台106と、基材105を転向部材群103、104に向けて送り出す送出リール101と、基材105を巻き取る巻取リール102を備えている。   In FIG. 11, an example of the laser vapor deposition apparatus described in patent document 1 is shown. The laser deposition apparatus 100 includes a first turning member group 103 in which a plurality of turning members are coaxially arranged on one side, and a second turning member group in which a plurality of turning members are coaxially arranged on the other side. 104, a target 107 disposed so as to face the substrate 105 wound so as to form a plurality of lanes between the turning member groups 103 and 104, and a laser light emitting means for irradiating the target 107 with the laser light La 108, a base 106 that supports the base material 105 that travels in the region 111 facing the target 107, a delivery reel 101 that feeds the base material 105 toward the turning member groups 103 and 104, and a winding that winds up the base material 105. A take-up reel 102 is provided.

送出リール101と巻取リール102とは、駆動装置(図示略)により互いに同期して駆動されており、転向部材群103、104によって移動方向が転向した基材105を転向部材群103、104の間で複数列(複数のレーン)とした状態で搬送するための搬送手段を構成している。
レーザー光Laによりターゲット107から叩き出され若しくは蒸発されたターゲット107の構成粒子はプルーム109となり、ターゲット107に対向する領域111を走行する基材105の表面に堆積して薄膜が形成される。また、ターゲット107に対して複数レーンの基材105が対向しているので、一度に蒸着される面積を広く取ることができ、プルーム109内の構成粒子を有効に利用することができる。
The delivery reel 101 and the take-up reel 102 are driven in synchronism with each other by a driving device (not shown), and the base member 105 whose direction of movement is turned by the turning member groups 103 and 104 is used as the turning member group 103 and 104. Conveying means for conveying a plurality of rows (a plurality of lanes) between them is configured.
The constituent particles of the target 107 struck or evaporated from the target 107 by the laser beam La become the plume 109, and are deposited on the surface of the base material 105 traveling in the region 111 facing the target 107 to form a thin film. Moreover, since the base material 105 of a plurality of lanes is opposed to the target 107, the area to be deposited at a time can be increased, and the constituent particles in the plume 109 can be used effectively.

特開2004−263227号公報JP 2004-263227 A

図11に示す従来のレーザー蒸着装置100においては、ターゲット107に対向する領域111を走行する基材105を支持する基台106の内部にヒーター(図示略)が設けられており、基材105の裏面(薄膜が形成される面とは反対側の面)から接触加熱により、成膜される基材105の成膜面の温度を制御している。
結晶配向性の高い超電導層を成膜するためには、成膜される基材の表面(成膜面)を、結晶配向に最適な温度に保つ必要がある。しかしながら、従来のレーザー蒸着装置100では、ヒーターが内蔵された基台106からの接触加熱のため、ターゲット109の移動等の熱外乱による成膜表面の温度変動に対して感度が低く、成膜表面を最適温度にするために、基台106の温度を小まめに制御する必要がある。また、基台106からの接触加熱方式では、基材105の裏面からの加熱であり、基材105の表面である成膜面を急速加熱することが難しく、そのため、基材105を高速で搬送して成膜しようとすると、基材105の加熱が不十分となり、安定的な温度制御が難しいという問題がある。
In the conventional laser vapor deposition apparatus 100 shown in FIG. 11, a heater (not shown) is provided inside a base 106 that supports a base material 105 that travels in a region 111 facing the target 107. The temperature of the film formation surface of the substrate 105 to be formed is controlled by contact heating from the back surface (the surface opposite to the surface on which the thin film is formed).
In order to form a superconducting layer having a high crystal orientation, it is necessary to keep the surface (film formation surface) of the substrate to be formed at an optimum temperature for crystal orientation. However, in the conventional laser deposition apparatus 100, because of the contact heating from the base 106 with a built-in heater, the sensitivity to the temperature fluctuation of the deposition surface due to thermal disturbance such as the movement of the target 109 is low, and the deposition surface Therefore, it is necessary to control the temperature of the base 106 slightly. Further, in the contact heating method from the base 106, the heating is performed from the back surface of the base material 105, and it is difficult to rapidly heat the film forming surface which is the surface of the base material 105. Therefore, the base material 105 is transported at a high speed. When trying to form a film, there is a problem that the heating of the base material 105 becomes insufficient and stable temperature control is difficult.

また、基材105の裏面からの加熱方式では、成膜回数を増やして厚い膜を成膜しようとすると、基材105の裏面からの接触加熱では、厚く積層した膜の表面にまで十分に熱が伝わらないうちに基材105がヒーターから離れてしまうので、基材105の表面温度を一定に保つことが難しいため、結晶配向性の高い超電導層を成膜することが難しいという問題がある。この問題を解決するために、積層毎にヒーターによる加熱温度を上昇させることも考えられるが、加熱温度の上昇に伴い、基材105に形成されている多結晶中間薄膜と成膜される超電導層との界面反応が起こり易くなり、超電導特性が低下してしまうため、単に加熱温度を上昇させるとする解決手段は好ましくない。さらに、生産性を上げるためにターゲット109からの構成粒子の飛散量を増やして、成膜速度を高くすると、基材105の成膜面に堆積する粒子量が多くなり、成膜表面の温度制御が難しくなるという問題もあった。   In addition, in the heating method from the back surface of the base material 105, if an attempt is made to form a thick film by increasing the number of times of film formation, the contact heating from the back surface of the base material 105 can sufficiently heat the surface of the thick laminated film. Since the base material 105 is separated from the heater before the temperature is transmitted, it is difficult to keep the surface temperature of the base material 105 constant, so that it is difficult to form a superconducting layer having high crystal orientation. In order to solve this problem, it is conceivable to increase the heating temperature by the heater for each lamination, but as the heating temperature increases, the superconducting layer formed with the polycrystalline intermediate thin film formed on the base material 105 Therefore, a solution means that merely raises the heating temperature is not preferred. Furthermore, if the amount of constituent particles scattered from the target 109 is increased to increase the productivity and the film formation rate is increased, the amount of particles deposited on the film formation surface of the substrate 105 increases, and the temperature of the film formation surface is controlled. There was also a problem that became difficult.

本発明は、上記事情に鑑みてなされたものであり、良好な膜質及び特性の薄膜を、良好な生産性で成膜可能な成膜装置および成膜方法を提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the film-forming apparatus and film-forming method which can form the thin film of favorable film quality and a characteristic with favorable productivity.

上記課題を解決するため、本発明は以下の構成を採用した。
本発明の成膜装置は、レーザー光によってターゲットから叩き出され若しくは蒸発した構成粒子の噴流であるプルームを生成し、このプルームからの粒子を基材の表面上に堆積させ、該基材上に薄膜を形成する成膜装置であって、前記基材を長手方向に沿って移動させる送出装置及び巻取装置と、前記送出装置と前記巻取装置との間に配置され、該送出装置と該巻取装置の間を移動する前記基材の裏面と接した状態で該基材を保持する基材ホルダと、前記基材ホルダに接した状態にある前記基材の表面と対向配置されたターゲットと、 前記ターゲットにレーザー光を照射するレーザー光発光手段と、前記ターゲットと前記基材ホルダの間に前記基材の表面に対向するように配置され、該基材を表面側から加熱するヒーターと、を少なくとも備え、前記ターゲットと前記基材との距離TS、前記基材と前記ヒーターとの距離SH、前記基材ホルダの中心線と前記ヒーターとの最短距離PHとしたとき、SH=0.55TS〜0.85TS、PH=0.35TS〜0.55TSを満たすことを特徴とする。
本発明の成膜装置において、前記送出装置と前記巻取装置の間に配置された前記基材の移動方向を転向させる転向部材を備え、前記基材は、前記基材ホルダと前記転向部材との間に複数回巻回されて複数の隣接するレーンを構成することもできる。
本発明の成膜装置は、酸化物超電導体薄膜の成膜用であることが好ましい。
In order to solve the above problems, the present invention employs the following configuration.
The film forming apparatus of the present invention generates a plume that is a jet of constituent particles that are struck or evaporated from a target by a laser beam, deposits particles from the plume on the surface of the substrate, and deposits on the substrate. A film forming apparatus for forming a thin film, which is disposed between a feeding device and a winding device for moving the base material along a longitudinal direction, and between the feeding device and the winding device. A base material holder that holds the base material in contact with the back surface of the base material that moves between the winding devices, and a target that is disposed to face the surface of the base material in contact with the base material holder And laser light emitting means for irradiating the target with laser light, a heater disposed between the target and the substrate holder so as to face the surface of the substrate, and heating the substrate from the surface side; , At least be prepared When the distance TS between the target and the base material, the distance SH between the base material and the heater, and the shortest distance PH between the center line of the base material holder and the heater are set to SH = 0.55TS-0. .85TS, PH = 0.35TS to 0.55TS is satisfied.
In the film forming apparatus of the present invention, the film forming apparatus includes a turning member that turns a movement direction of the base material disposed between the feeding device and the winding device, and the base material includes the base material holder and the turning member. A plurality of adjacent lanes can be formed by winding a plurality of times between the lanes.
The film forming apparatus of the present invention is preferably used for forming an oxide superconductor thin film.

本発明の成膜方法は、レーザー光をターゲットの表面に照射して、このターゲットの構成粒子を叩き出し若しくは蒸発させてターゲットの構成粒子の噴流であるプルームを生成させ、このプルームが生成している成膜領域に基材を通過させて、該プルームからの粒子を該基材の表面上に堆積させることにより、該基材上に薄膜を形成する成膜方法であって、前記成膜領域を通過する前記基材を基材ホルダにより保持して、前記ターゲットと前記基材との距離TSで該ターゲットと対向配置し、前記ターゲットと前記基材ホルダの間に、前記基材と前記ヒーターとの距離SH=0.55TS〜0.85TS、前記基材ホルダの中心線と前記ヒーターとの最短距離PH=0.35TS〜0.55TSを満たすようにヒーターを配置し、このヒーターにより前記基材を表面側から加熱しながら前記成膜領域を通過させて該基材上に薄膜を形成することを特徴とする。
本発明の成膜方法において、前記基材を前記成膜領域を複数回通過させて、該成膜領域の通過毎に該基材上に薄膜を形成することもできる。
本発明の成膜方法において、前記ターゲットが酸化物超電導体用材料であり、前記薄膜が酸化物超電導体薄膜であることが好ましい。
The film forming method of the present invention irradiates the target surface with a laser beam to knock out or evaporate the constituent particles of the target to generate a plume which is a jet of the constituent particles of the target. A film forming method for forming a thin film on a substrate by passing the substrate through the film forming region and depositing particles from the plume on the surface of the substrate. The base material passing through the substrate is held by a base material holder, and is disposed to face the target at a distance TS between the target and the base material, and the base material and the heater are interposed between the target and the base material holder. The heater is disposed so as to satisfy the distance SH = 0.55TS to 0.85TS, and the shortest distance PH = 0.35TS to 0.55TS between the center line of the base material holder and the heater. By passing the film formation area while heating the substrate from the surface side and forming a thin film on the substrate by.
In the film forming method of the present invention, the thin film may be formed on the base material every time the film forming region passes through the base material a plurality of times.
In the film forming method of the present invention, the target is preferably an oxide superconductor material, and the thin film is preferably an oxide superconductor thin film.

本発明によれば、所定の位置に配置したヒーターにより、基材の表面側から基材の成膜面を加熱するため、基材の表面(成膜面)の温度を良好な膜質の薄膜を成膜するのに適した最適温度に安定して制御することができる。したがって、成膜面の温度を最適温度に保つことができるので、良好な膜質および特性の薄膜を安定して成膜することができる。
また、本発明によれば、ヒーターにより基材の表面側から成膜面を直接加熱するため、基材を高速に搬送して成膜する場合にも、基材の成膜面を十分に加熱することができるので、成膜面の温度を安定して制御することができる。したがって、良好な膜質および特性の薄膜を、良好な生産性で成膜することができる。また、生産性を上げるためにターゲットからの構成粒子の飛散量を増やして成膜速度を高くする場合にも、基材の表面側から加熱するため、成膜速度の増加により基材の成膜面に堆積する粒子量が多くなっても、成膜表面の温度を安定して制御することができる。
さらに、本発明によれば、基材の表面(成膜面)側から加熱しているため、薄膜の膜厚を厚くするのに伴って成膜表面の温度が徐々に下がることも抑制できるので、温度設定を変化させる必要がない。したがって、本発明において酸化物超電導膜を成膜する場合には、従来の成膜装置のような裏面からの加熱に比べ、中間層(多結晶中間薄膜)と超電導層(酸化物超電導体薄膜)の界面反応を抑制することができる。
According to the present invention, since the film-forming surface of the base material is heated from the surface side of the base material by the heater disposed at a predetermined position, the temperature of the surface of the base material (film-forming surface) is reduced. It can be stably controlled at an optimum temperature suitable for film formation. Therefore, since the temperature of the film formation surface can be maintained at the optimum temperature, a thin film having good film quality and characteristics can be stably formed.
Further, according to the present invention, since the film formation surface is directly heated from the surface side of the substrate by the heater, the film formation surface of the substrate is sufficiently heated even when the substrate is transported at a high speed. Therefore, the temperature of the film formation surface can be stably controlled. Therefore, a thin film having good film quality and characteristics can be formed with good productivity. In addition, in order to increase productivity, the amount of constituent particles scattered from the target is increased to increase the film formation rate, and heating is performed from the surface side of the substrate. Even if the amount of particles deposited on the surface increases, the temperature of the film formation surface can be stably controlled.
Furthermore, according to the present invention, since heating is performed from the surface (film formation surface) side of the substrate, it is possible to suppress the temperature of the film formation surface from gradually decreasing as the film thickness is increased. There is no need to change the temperature setting. Therefore, when an oxide superconducting film is formed in the present invention, the intermediate layer (polycrystalline intermediate thin film) and the superconducting layer (oxide superconductor thin film) are compared with the heating from the back surface as in the conventional film forming apparatus. The interfacial reaction can be suppressed.

本発明の成膜装置により長尺基材上に成膜された酸化物超電導体薄膜を示す概略斜視図である。It is a schematic perspective view which shows the oxide superconductor thin film formed into a film on the elongate base material with the film-forming apparatus of this invention. 本発明の成膜装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the film-forming apparatus of this invention. 図2に示す成膜装置の要部を示す斜視図である。It is a perspective view which shows the principal part of the film-forming apparatus shown in FIG. 図2に示す成膜装置の要部の配置を説明する図である。It is a figure explaining arrangement | positioning of the principal part of the film-forming apparatus shown in FIG. 図5(a)は本発明の成膜装置及び成膜方法を用いて酸化物超電導膜を成膜する場合の成膜領域を通過する基材の温度分布を示す図であり、図5(b)は基材の裏面から加熱する従来の成膜装置及び成膜方法を用いて酸化物超電導膜を成膜する場合の成膜領域を通過する基材の温度分布を示す図である。FIG. 5A is a diagram showing a temperature distribution of a substrate passing through a film formation region when an oxide superconducting film is formed using the film forming apparatus and the film forming method of the present invention. ) Is a diagram showing a temperature distribution of a base material passing through a film forming region when an oxide superconducting film is formed using a conventional film forming apparatus and film forming method for heating from the back surface of the base material. 本発明の成膜装置の他例を示す概略構成図である。It is a schematic block diagram which shows the other example of the film-forming apparatus of this invention. 本発明の成膜装置の他例を示す概略構成図である。It is a schematic block diagram which shows the other example of the film-forming apparatus of this invention. 本発明の成膜装置の他例を示す概略構成図である。It is a schematic block diagram which shows the other example of the film-forming apparatus of this invention. 実施例1および比較例1の結果を示すグラフである。6 is a graph showing the results of Example 1 and Comparative Example 1. 実施例2および比較例2の結果を示すグラフである。It is a graph which shows the result of Example 2 and Comparative Example 2. 従来のレーザー蒸着装置の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the conventional laser vapor deposition apparatus.

以下、本発明に係る成膜方法および成膜装置の一実施形態を図面に基づき説明する。以下に示す実施形態では、長尺基材上に形成される薄膜として、酸化物超電導体薄膜を例に挙げて説明するが、この酸化物超電導体薄膜は、本発明の趣旨をより良く理解させるために具体的に説明するものであり、本発明を限定するものではない。   Hereinafter, an embodiment of a film forming method and a film forming apparatus according to the present invention will be described with reference to the drawings. In the embodiment described below, an oxide superconductor thin film will be described as an example of a thin film formed on a long base material, but this oxide superconductor thin film makes the gist of the present invention better understood. Therefore, the present invention will be specifically described, and the present invention is not limited thereto.

図1は、本発明に係る成膜装置を用いて作製された酸化物超電導体薄膜を示す概略斜視図であり、この酸化物超電導体薄膜23は、長尺テープ状の金属基材21上にイオンビームアシストスパッタリング法等によりGZO(GdZr)、YSZ(イットリア安定化ジルコニア)、酸化マグネシウム(MgO)等の多結晶中間薄膜(中間層)22が形成されてなる長尺基材25上に形成されている。 FIG. 1 is a schematic perspective view showing an oxide superconductor thin film manufactured using a film forming apparatus according to the present invention. This oxide superconductor thin film 23 is formed on a long tape-shaped metal substrate 21. A long base material in which a polycrystalline intermediate thin film (intermediate layer) 22 such as GZO (Gd 2 Zr 2 O 7 ), YSZ (yttria stabilized zirconia), magnesium oxide (MgO) or the like is formed by an ion beam assisted sputtering method or the like. 25 is formed.

酸化物超電導体薄膜23は、YBaCu、GdBaCuに代表されるRE123系の酸化物超電導体等からなり、臨界温度(Tc)が90Kあるいはそれ以上の酸化物超電導体の薄膜である。また、酸化物超電導体薄膜23は、単層構造でもよいし、複数層を積層してなる積層構造であってもよい。 The oxide superconductor thin film 23 is made of an RE123-based oxide superconductor represented by Y 1 Ba 2 Cu 3 O x , Gd 1 Ba 2 Cu 3 O x and the like, and has a critical temperature (Tc) of 90 K or more. It is a thin film of oxide superconductor. The oxide superconductor thin film 23 may have a single layer structure or a stacked structure in which a plurality of layers are stacked.

酸化物超電導体薄膜23の厚みは1〜3μm程度が好ましく、しかも各層の面内均一性が極めて優れたものとなっている。この酸化物超電導体薄膜23では、この薄膜23の各層の結晶のc軸とa軸とb軸は、多結晶中間薄膜22の結晶に整合するようにエピタキシャル成長して結晶化しており、結晶配向性が優れたものとなっている。   The thickness of the oxide superconductor thin film 23 is preferably about 1 to 3 μm, and the in-plane uniformity of each layer is extremely excellent. In this oxide superconductor thin film 23, the c-axis, a-axis, and b-axis of each layer of the thin film 23 are epitaxially grown and crystallized so as to match the crystal of the polycrystalline intermediate thin film 22, and the crystal orientation Is excellent.

金属基材21としては、ステンレス鋼、銅、ハステロイ(米国ヘインズ社製商品名)等のニッケル合金等、各種金属材料から適宜選択される長尺の金属テープが好適に用いられ、その厚さは0.1mm程度が好ましい。   As the metal substrate 21, a long metal tape suitably selected from various metal materials such as nickel alloys such as stainless steel, copper, and Hastelloy (trade name, manufactured by Haynes, USA) is preferably used. About 0.1 mm is preferable.

多結晶中間薄膜(中間層)22としては、GdZr(GZO)、イットリア安定化ジルコニア(YSZ)、酸化マグネシウム(MgO)等からなり、立方晶系の結晶構造を有する結晶の集合した微細な結晶粒が多数相互に結晶粒界を介して接合一体化されてなるものが好適に用いられ、その厚さは例えば1μm程度とされる。各結晶粒の結晶軸のc軸は金属基材21の上面(成膜面)に対してほぼ垂直に向けられ、各結晶粒の結晶軸のa軸同士およびb軸同士は、互いに同一方向に向けられて面内配向されている。このような面内配向を実現するためには、成膜法としてIBAD(Ion Beam Assisted Deposition)法が用いられる。 The polycrystalline intermediate thin film (intermediate layer) 22 is made of Gd 2 Zr 2 O 7 (GZO), yttria-stabilized zirconia (YSZ), magnesium oxide (MgO), and the like, and is a collection of crystals having a cubic crystal structure A plurality of fine crystal grains obtained by joining and integrating with each other via a grain boundary is preferably used, and the thickness thereof is, for example, about 1 μm. The c-axis of the crystal axis of each crystal grain is oriented substantially perpendicular to the upper surface (film formation surface) of the metal substrate 21, and the a-axis and the b-axis of each crystal grain are in the same direction. Directed and in-plane oriented. In order to realize such in-plane orientation, an IBAD (Ion Beam Assisted Deposition) method is used as a film forming method.

図2は本発明に係る成膜装置の第1実施形態の一例を示す概略構成図であり、図3は図2に示す成膜装置の要部を示す斜視図であり、図4は図2に示す成膜装置の要部の配置を説明する図である。
本実施形態の成膜装置1は、レーザー光Lによってターゲット7から叩き出され若しくは蒸発した構成粒子の噴流であるプルーム9を生成し、このプルーム9からの構成粒子を長尺基材25上に堆積させ、この構成粒子による薄膜を長尺基材25上に形成する、レーザー蒸着法による成膜装置である。
FIG. 2 is a schematic configuration diagram showing an example of the first embodiment of the film forming apparatus according to the present invention, FIG. 3 is a perspective view showing the main part of the film forming apparatus shown in FIG. 2, and FIG. It is a figure explaining arrangement | positioning of the principal part of the film-forming apparatus shown in FIG.
The film forming apparatus 1 of the present embodiment generates a plume 9 that is a jet of constituent particles struck or evaporated from the target 7 by the laser light L, and the constituent particles from the plume 9 are formed on the long base material 25. This is a film forming apparatus by laser vapor deposition that deposits and forms a thin film of the constituent particles on the long substrate 25.

図2および図3に示す成膜装置1は、長尺基材25を収容する処理容器2と、長尺基材25の移動方向を転向させる転向部材を同軸的に配列してなる転向部材群11と、長尺基材25をその裏面に接した状態で保持し、かつ、長尺基材25の移動方向を転向させる転向部材を同軸的に配列してなる基材ホルダ12と、転向部材群11の上方に配置された長尺基材25を送り出すための送出リール13と、転向部材群11の上方に配置された長尺基材25を巻き取るための巻取リール14と、基材ホルダ12に接した状態にある基材25の表面に対向するように配されたターゲット7と、水平に設置されたターゲット7にレーザー光Lを照射するレーザー光発光手段6と、ターゲット7と基材ホルダ12の間に配置された長尺基材25を表面側から加熱するヒーター8とを少なくとも備えている。   The film forming apparatus 1 shown in FIG. 2 and FIG. 3 is a turning member group in which a processing container 2 that houses a long base material 25 and a turning member that turns the moving direction of the long base material 25 are coaxially arranged. 11 and a base member holder 12 formed by coaxially arranging turning members that hold the long base material 25 in contact with the back surface thereof and turn the moving direction of the long base material 25. A feed reel 13 for feeding out the long base material 25 arranged above the group 11, a take-up reel 14 for taking up the long base material 25 arranged above the turning member group 11, and a base material A target 7 disposed so as to face the surface of the base material 25 in contact with the holder 12, a laser light emitting means 6 for irradiating the target 7 placed horizontally with the laser light L, a target 7 and a base The long base material 25 arranged between the material holders 12 is on the surface side. And at least a heater 8 for al heating.

転向部材群11と基材ホルダ12は離間して対向配置されており、長尺基材25は成膜面側が外側となるように転向部材群11及び基材ホルダ12間に巻回されており、これらの転向部材群11及び基材ホルダ12を周回することにより、ターゲット7の構成粒子の噴流であるプルーム9が生成している成膜領域10にて複数列レーンを構成するように配置されている。転向部材群11、基材ホルダ12、送出リール(送出装置)13及び巻取リール(巻取装置)14を駆動装置(図示略)により互いに同期して駆動させることにより、送出リール13から送り出された長尺基材25が転向部材群11及び基材ホルダ12を周回し、ターゲット7に対向した成膜領域10を複数回通過して、巻取リール14に巻き取られるようになっている。   The turning member group 11 and the base material holder 12 are spaced apart from each other, and the long base material 25 is wound between the turning member group 11 and the base material holder 12 so that the film forming surface side is on the outside. By arranging the turning member group 11 and the substrate holder 12 to circulate, the plurality of lanes are arranged in the film formation region 10 where the plume 9 that is the jet of the constituent particles of the target 7 is generated. ing. The turning member group 11, the base material holder 12, the delivery reel (sending device) 13 and the take-up reel (winding device) 14 are driven from the sending reel 13 by being driven in synchronization with each other by a driving device (not shown). The long base material 25 circulates around the turning member group 11 and the base material holder 12, passes through the film formation region 10 facing the target 7 a plurality of times, and is taken up on the take-up reel 14.

転向部材群11は、同径の転向部材が同軸的に配列してなる構成である。転向部材群11を構成する各転向部材は、円柱状もしくは円板状、半円柱状もしくは半円板状、楕円柱状もしくは楕円板状など、長尺基材25の移動方向を滑らかに転向させる湾曲した側面(湾曲面)を有するものが好ましい。転向部材群11を構成する各転向部材は、搬送される長尺基材25とともに回転する構成でも良く、各転向部材は動かずに、その側面上で長尺基材25が滑っている構成でも良い。転向部材群11を構成する各転向部材を回転させる場合には、長尺基材25の移動速度に合わせて各転向部材を回転させる駆動手段(図示略)を設けても良い。   The turning member group 11 has a configuration in which turning members having the same diameter are coaxially arranged. Each of the diverting members constituting the diverting member group 11 has a curved shape that smoothly turns the moving direction of the long base material 25, such as a columnar shape or a disc shape, a semi-cylindrical shape or a semicircular shape, an elliptical column shape or an elliptical plate shape. Those having a curved side surface (curved surface) are preferred. Each turning member constituting the turning member group 11 may be configured to rotate together with the long base material 25 to be conveyed, or each turning member may not move, and the long base material 25 may slide on the side surface. good. When rotating each turning member constituting the turning member group 11, drive means (not shown) for rotating each turning member in accordance with the moving speed of the long base material 25 may be provided.

基材ホルダ12は、同径の転向部材が同軸的に配列してなる構成であり、基材ホルダ12に長尺基材25をその裏面が接した状態で保持しつつ、各転向部材によって移動方向が転向した状態にある長尺基材25のうち、ターゲット7に対向する部分である成膜領域10を走行する長尺基材25が、ターゲット7から等距離に位置している。
基材ホルダ12を構成する各転向部材は、円柱状もしくは円板状、半円柱状もしくは半円板状、楕円柱状もしくは楕円板状など、長尺基材25の移動方向を滑らかに転向させる湾曲した側面(湾曲面)を有するものが好ましい。これにより、転向部材によって移動方向が転向した状態にある長尺基材25は、ターゲット7に対向する部分において、ターゲット7に向かって凸形状に湾曲するようになる。なお、「円柱状もしくは円板状」等は、転向部材の径と軸方向の長さとの比を特に限定しない趣旨である。
基材ホルダ12を構成する各転向部材は、搬送される長尺基材25とともに回転する構成でも良く、各転向部材は動かずに、その側面上で長尺基材25が滑っている構成でも良い。基材ホルダ11を構成する各転向部材を回転させる場合には、長尺基材25の移動速度に合わせて各転向部材を回転させる駆動手段(図示略)を設けても良い。
The base material holder 12 has a configuration in which turning members having the same diameter are coaxially arranged. The base material holder 12 is moved by each turning member while holding the long base material 25 in contact with the back surface of the base material holder 12. Among the long base materials 25 whose directions are turned, the long base materials 25 that travel in the film forming region 10 that is a portion facing the target 7 are located at an equal distance from the target 7.
Each turning member constituting the base material holder 12 is a columnar shape or a disc shape, a semi-cylindrical shape or a semicircular shape, an elliptical columnar shape or an elliptical plate shape, or the like, for smoothly turning the moving direction of the long base material 25. Those having a curved side surface (curved surface) are preferred. Thereby, the long base material 25 in a state in which the moving direction is turned by the turning member is curved in a convex shape toward the target 7 at a portion facing the target 7. “Cylinder shape or disk shape” is not intended to limit the ratio of the diameter of the turning member to the length in the axial direction.
Each turning member constituting the base material holder 12 may be configured to rotate together with the long base material 25 to be conveyed, or each turning member may not be moved and the long base material 25 may be slid on the side surface. good. When each turning member constituting the substrate holder 11 is rotated, driving means (not shown) for rotating each turning member in accordance with the moving speed of the long substrate 25 may be provided.

基材ホルダ12は、比較的熱容量の大きいものより形成されていることが好ましい。基材ホルダ12が熱容量の大きいものより形成されることにより、ターゲット7の移動などの外乱による温度の変動を抑制することができ、長尺基材25の成膜面の温度をより安定して保持することができる。基材ホルダ12を構成する比較的熱容量の大きい材料としては、熱容量が400J/kg・K以上のものが好ましく、具体的にはインコネル(INCONEL(登録商標);熱容量444J/kg・K)等のニッケル基合金が挙げられる。   The substrate holder 12 is preferably formed from a material having a relatively large heat capacity. By forming the substrate holder 12 with a large heat capacity, it is possible to suppress temperature fluctuations due to disturbances such as movement of the target 7 and to stabilize the temperature of the film formation surface of the long substrate 25 more stably. Can be held. The material having a relatively large heat capacity constituting the substrate holder 12 is preferably a material having a heat capacity of 400 J / kg · K or more, specifically, Inconel (INCONEL (registered trademark); heat capacity 444 J / kg · K) or the like. A nickel base alloy is mentioned.

処理容器2には、排気孔3を介して真空排気装置4が接続され、この真空排気装置4により処理容器2内を所定の圧力に減圧するようになっている。
長尺基材25の移動方向を転向させる転向部材群11、基材ホルダ12、送出リール13および巻取リール14は処理容器2内に収容され、処理容器2内が所定の圧力に減圧されている間は、長尺基材25の長手方向の全体が、処理容器2内の減圧下に置かれるようになっている。
A vacuum exhaust device 4 is connected to the processing container 2 through an exhaust hole 3, and the inside of the processing container 2 is depressurized to a predetermined pressure by the vacuum exhaust device 4.
The turning member group 11, the substrate holder 12, the delivery reel 13 and the take-up reel 14 for turning the moving direction of the long substrate 25 are accommodated in the processing container 2, and the inside of the processing container 2 is depressurized to a predetermined pressure. During the time, the entire length of the long base material 25 is placed under reduced pressure in the processing container 2.

ターゲット7は、成膜する薄膜の組成に合わせて適宜材料が選択される。薄膜として臨界温度(Tc)が90Kあるいはそれ以上の酸化物超電導体薄膜23を成膜する場合は、所望の酸化物超電導体薄膜23と同等または近似した組成、あるいは、成膜中に逃避しやすい成分を多く含有させた複合酸化物の焼結体、あるいは酸化物超電導体などの板体等がターゲット7として使用される。
この酸化物超電導体としては、YBaCu、GdBaCuに代表されるRE123系の酸化物超電導体等が好ましい。このターゲット7の形状としては、例えば、円板状、矩形状等のものが用いられる。
A material for the target 7 is appropriately selected according to the composition of the thin film to be formed. When the oxide superconductor thin film 23 having a critical temperature (Tc) of 90 K or higher is formed as a thin film, the composition is the same as or close to that of the desired oxide superconductor thin film 23 or is easily escaped during film formation. A sintered body of a complex oxide containing a large amount of components or a plate body such as an oxide superconductor is used as the target 7.
The oxide superconductor is preferably an RE123-based oxide superconductor represented by Y 1 Ba 2 Cu 3 O x , Gd 1 Ba 2 Cu 3 O x , or the like. As the shape of the target 7, for example, a disk shape, a rectangular shape or the like is used.

ターゲット7にレーザー光Lを照射するレーザー光発光手段6は、ターゲット7からその構成粒子を叩き出し若しくは蒸発させることができるレーザー光Lを発生するものであれば良い。レーザーの波長、出力、照射エネルギー等は、ターゲット7の材質や成膜速度等に応じて、適宜設定することが可能である。ターゲット27にレーザ光Lを照射するレーザ光発光手段6としては、Ar−F(193nm)、Kr−F(248nm)、Xe−Cl(308nm)などのエキシマレーザー、YAGレーザー、CO2レーザーなどのいずれのものを用いても良い。 The laser light emitting means 6 for irradiating the target 7 with the laser light L may be any one that generates the laser light L that can knock out or evaporate the constituent particles from the target 7. The wavelength, output, irradiation energy, and the like of the laser can be appropriately set according to the material of the target 7, the film formation speed, and the like. The laser light emitting means 6 for irradiating the target 27 with the laser light L includes an excimer laser such as Ar-F (193 nm), Kr-F (248 nm), and Xe-Cl (308 nm), a YAG laser, a CO 2 laser, and the like. Any one may be used.

処理容器2には、レーザー光発光手段6のレーザ光Lを取り込むための窓5が設けられている。本実施形態においては、レーザ光発光手段6は処理容器2の外側に設置されているが、処理容器2の内側に配置することも可能である。
レーザー光Lは、その照射位置を移動させる手段(図示略)により、レーザー光Lの照射位置をターゲット7の表面上で移動可能とされていることが好ましい。このようにレーザー光Lの照射位置をターゲット7の表面上で移動可能とすることにより、ターゲット7が局所的に削られて、ターゲット7の寿命が短くなることを防止することができる。また、ターゲット7の表面上でレーザー光Lの照射位置を移動可能とすることにより、ターゲット7からのプルーム9を複数発生させて、ターゲット7の構成粒子が基材25上に堆積する成膜領域10を広くすることができ、基材ホルダ12上で複数列とされた長尺基材25に達する構成粒子の濃度の均一性を高め、均一な膜厚、膜質および特性の薄膜を効率よく成膜することができる。
The processing container 2 is provided with a window 5 for taking in the laser light L of the laser light emitting means 6. In the present embodiment, the laser light emitting means 6 is installed outside the processing container 2, but it can also be arranged inside the processing container 2.
It is preferable that the irradiation position of the laser light L can be moved on the surface of the target 7 by means (not shown) for moving the irradiation position of the laser light L. Thus, by making the irradiation position of the laser beam L movable on the surface of the target 7, it is possible to prevent the target 7 from being locally cut and shortening the life of the target 7. Further, by making the irradiation position of the laser beam L movable on the surface of the target 7, a plurality of plumes 9 from the target 7 are generated, and a film forming region in which the constituent particles of the target 7 are deposited on the substrate 25. 10 can be widened, the uniformity of the concentration of the constituent particles reaching the long base material 25 formed in a plurality of rows on the base material holder 12 is improved, and a thin film having a uniform film thickness, film quality and characteristics is efficiently formed. Can be membrane.

ターゲット7はターゲットホルダ(図示略)により固定され、ターゲット移動機構(図示略)によって、平行な面に沿って移動可能に設けられている。さらに、ターゲット7は、ターゲット7の中心を軸として回転可能に設けられていることが好ましい。このように、ターゲット7を移動可能及び回転可能に設けるならば、長時間の成膜を継続して実施しても、ターゲット7の表面がほぼ均一に削られるので、ターゲット7表面の形状乱れによってプルーム9の大きさが変わる不具合を防止することができ、長尺基材25の長手方向に均一な膜厚、膜質および特性の薄膜を形成することが可能となる。   The target 7 is fixed by a target holder (not shown), and is provided so as to be movable along a parallel plane by a target moving mechanism (not shown). Further, the target 7 is preferably provided so as to be rotatable about the center of the target 7 as an axis. As described above, if the target 7 is provided so as to be movable and rotatable, the surface of the target 7 is scraped almost uniformly even if the film formation is continued for a long time. A problem that the size of the plume 9 is changed can be prevented, and a thin film having a uniform film thickness, film quality, and characteristics can be formed in the longitudinal direction of the long substrate 25.

ターゲット7と基材ホルダ12との間には、基材ホルダ12に保持された長尺基材25の表面に対向するようにヒーター8が配置されている。ヒーター8は、ターゲット7からのプルーム9が形成された成膜領域10以外の部分に設けられており、図2〜4に示す成膜装置1においては、2個のヒーター8、8が、成膜領域10を挟んで対向配置されている。
ヒーター8は、赤外線などにより、長尺基材25をその表面側から非接触で直接加熱することができる。ヒーター8は、例えば通電式の加熱ヒーターが挙げられる。なお、図2および図3に示す例では、2個のヒーター8が設けられた例を示しているが、本発明はこれに限定されず、後述する位置関係を満たすように配置されていれば、3個以上のヒーターを有する構成とすることも可能である。また、複数のヒーター8、8は、成膜領域10を中心として対称に配されている例に限定されず、後述する位置関係を満たしていれば、成膜領域10を中心として非対称に配されていてもよい。
A heater 8 is disposed between the target 7 and the substrate holder 12 so as to face the surface of the long substrate 25 held by the substrate holder 12. The heater 8 is provided in a portion other than the film formation region 10 where the plume 9 from the target 7 is formed. In the film formation apparatus 1 shown in FIGS. 2 to 4, the two heaters 8 and 8 are formed. Oppositely arranged across the membrane region 10.
The heater 8 can directly heat the long base material 25 from its surface side in a non-contact manner by infrared rays or the like. Examples of the heater 8 include an energizing heater. 2 and 3 show an example in which two heaters 8 are provided. However, the present invention is not limited to this, and may be arranged so as to satisfy the positional relationship described later. A configuration having three or more heaters is also possible. The plurality of heaters 8 and 8 are not limited to the example in which the heaters 8 and 8 are arranged symmetrically with respect to the film formation region 10, and are arranged asymmetrically with respect to the film formation region 10 as long as the positional relationship described later is satisfied. It may be.

図4は、本実施形態の成膜装置1のヒーター8の配置を説明する模式図である。図4に示すように、ヒーター8は、ターゲット7と長尺基材25との距離TS、長尺基材25とヒーター8との距離SH、基材ホルダ12の中心線A1とヒーター8との最短距離PHとしたとき、SH=0.55TS〜0.85TS、PH=0.35TS〜0.55TSを満たすように配置されている。ターゲット7と長尺基材25との距離TSは、具体的には、80〜150mmの範囲に設定することが好ましい。ターゲット7と長尺基材25との距離TSを前記範囲に設定することにより、ターゲット7からの構成粒子を長尺基材25の成膜面上に安定して配向させることができる。
ここで、長尺基材25とヒーター8との距離SHとは、長尺基材25とヒーター8との最短距離を表し、基材ホルダ12の中心線A1(以下、「基材ホルダ中心線A1」と略称することがある。)とヒーター8との最短距離PHとは、基材ホルダ中心線A1とヒーター8の端部8aとの距離を表し、成膜装置1が複数個のヒーター8を有する場合は、成膜領域10に最も近いヒーター8の端部8aと基材ホルダ中心線A1との距離を表す。
FIG. 4 is a schematic diagram for explaining the arrangement of the heaters 8 of the film forming apparatus 1 of the present embodiment. As shown in FIG. 4, the heater 8 includes a distance TS between the target 7 and the long base material 25, a distance SH between the long base material 25 and the heater 8, and a center line A <b> 1 of the base material holder 12 and the heater 8. When the shortest distance PH is set, they are arranged to satisfy SH = 0.55TS to 0.85TS and PH = 0.35TS to 0.55TS. Specifically, the distance TS between the target 7 and the long base material 25 is preferably set in the range of 80 to 150 mm. By setting the distance TS between the target 7 and the long base material 25 within the above range, the constituent particles from the target 7 can be stably oriented on the film formation surface of the long base material 25.
Here, the distance SH between the long base material 25 and the heater 8 represents the shortest distance between the long base material 25 and the heater 8, and the center line A1 of the base material holder 12 (hereinafter referred to as “base material holder center line”). The shortest distance PH between the heater 8 and the heater 8 represents the distance between the base material holder center line A1 and the end 8a of the heater 8, and the film forming apparatus 1 includes a plurality of heaters 8. Is the distance between the end 8a of the heater 8 closest to the film formation region 10 and the substrate holder center line A1.

このような関係を満たすようにヒーター8を配置することにより、長尺基材25の表面を効率的に加熱し、長尺基材25の表面(成膜面)の温度を容易に安定させることができ、良好な膜質および特性の薄膜を成膜することができる。
長尺基材25とヒーター8との距離SHを0.55TS以上とすることにより、ヒーター8と長尺基材25との距離が近くなり、長尺基材25の表面温度が高くなってしまい、後述する中間層と酸化物超電導薄膜が界面反応を起こすことを抑制することができる。また、長尺基材25とヒーター8との距離SHを0.85TS以下とすることにより、長尺基材25とヒーター8とが離れすぎてしまい、長尺基材25の搬送速度を速くした場合に、長尺基材25の表面温度を所望の温度に制御することが難しくなることを抑制することができる。
By arranging the heater 8 so as to satisfy such a relationship, the surface of the long base material 25 is efficiently heated, and the temperature of the surface (film formation surface) of the long base material 25 is easily stabilized. Thus, a thin film having good film quality and characteristics can be formed.
By setting the distance SH between the long base material 25 and the heater 8 to 0.55 TS or more, the distance between the heater 8 and the long base material 25 becomes close, and the surface temperature of the long base material 25 becomes high. It is possible to suppress an interface reaction between the intermediate layer and the oxide superconducting thin film described later. Further, by setting the distance SH between the long base material 25 and the heater 8 to 0.85 TS or less, the long base material 25 and the heater 8 are separated too much, and the transport speed of the long base material 25 is increased. In this case, it can be suppressed that it is difficult to control the surface temperature of the long base material 25 to a desired temperature.

また、基材ホルダ中心線A1とヒーター8との最短距離PHを0.35TS以上とすることにより、ターゲット7の構成粒子の噴流であるプルーム9を阻害せず、構成粒子を長尺基材25の表面に到達させて薄膜を形成することができる。さらに、基材ホルダ中心線A1とヒーター8との最短距離PHを0.55TS以下とすることにより、成膜領域10の長尺基材25の表面を効率的に加熱し、長尺基材25の表面(成膜面)の温度を所望の温度に制御することができる。   Further, by setting the shortest distance PH between the base material holder center line A1 and the heater 8 to 0.35 TS or more, the plume 9 which is a jet of constituent particles of the target 7 is not hindered, and the constituent particles are made of the long base material 25. A thin film can be formed by reaching the surface. Further, by setting the shortest distance PH between the substrate holder center line A1 and the heater 8 to 0.55 TS or less, the surface of the long substrate 25 in the film forming region 10 is efficiently heated, and the long substrate 25 The temperature of the surface (film formation surface) can be controlled to a desired temperature.

図5は、図11に示す従来の成膜装置のように基材の裏面から加熱を行う場合と、本実施形態の成膜装置1により長尺基材25の表面側から加熱を行う場合の基材ホルダと長尺基材と成膜される薄膜との温度分布を模式的に示した図である。図5では、金属基材上に中間層(他結晶中間薄膜)が形成された長尺基材上に、超電導薄膜(酸化物超電導体薄膜)を成膜する場合を例として示している。   FIG. 5 shows a case where heating is performed from the back surface of the base material as in the conventional film forming apparatus shown in FIG. 11 and a case where heating is performed from the front surface side of the long base material 25 by the film forming apparatus 1 of the present embodiment. It is the figure which showed typically the temperature distribution of the base material holder, the elongate base material, and the thin film formed into a film. FIG. 5 shows an example in which a superconducting thin film (oxide superconductor thin film) is formed on a long base material on which an intermediate layer (other crystal intermediate thin film) is formed on a metal base material.

図5(b)に示すように、従来の成膜装置では、ヒーターが内蔵された基材ホルダとの接触加熱により、長尺基材の裏面から加熱を行っていたため、成膜される基材表面まで熱が伝わるのに若干の時間を要し、成膜表面の温度が良好な膜質の薄膜を成膜するのに適した最適温度よりも低くなってしまうという問題があった。また、長尺基材が成膜領域を複数回通過するようにして薄膜(超電導薄膜)の膜厚を厚くしていくほど、長尺基材の裏面からの加熱では、成膜面の温度を最適温度に保つことが難しくなり、積層毎に数℃ずつ成膜温度を上げるなどの温度制御を行う必要があった。   As shown in FIG.5 (b), in the conventional film-forming apparatus, since it heated from the back surface of the elongate base material by contact heating with the base-material holder with which the heater was incorporated, the base material formed into a film There was a problem that it took some time for the heat to be transferred to the surface, and the temperature of the film formation surface became lower than the optimum temperature suitable for forming a thin film with good film quality. In addition, as the thickness of the thin film (superconducting thin film) is increased so that the long base material passes through the film formation region several times, the heating of the back surface of the long base material increases the temperature of the film formation surface. It became difficult to maintain the optimum temperature, and it was necessary to perform temperature control such as increasing the film formation temperature by several degrees C. for each lamination.

これに対し、本実施形態の成膜装置1は、所定の位置に配置したヒーター8により、長尺基材25の表面側から長尺基材25の成膜面を加熱するため、図5(a)に示すように、長尺基材25の表面(成膜面)の温度を良好な膜質の薄膜を成膜するのに適した最適温度に安定して制御することができる。したがって、長尺基材25の表面(成膜面)の温度を安定して最適温度に保つことができるので、良好な膜質および特性の薄膜を安定して成膜することができる。
また、長尺基材25の表面(成膜面)側から加熱しているため、薄膜(超電導薄膜)の膜厚を厚くするのに伴って成膜表面の温度が徐々に下がることも抑制できるので、温度設定を変化させる必要がない。したがって、従来の成膜装置のように、成膜温度を上昇させることにより起こる中間層と超電導薄膜との界面反応を抑制することができる。そのため、特性を低下させることなく、厚い酸化物超電導膜を成膜することが可能となる。
さらに、本実施形態の成膜装置1では、ヒーター8により長尺基材25の表面側から成膜面を直接加熱するため、長尺基材25を高速に搬送して成膜する場合にも、長尺基材25の成膜面を十分に加熱することができるので、成膜面の温度を安定して制御することができる。したがって、良好な膜質および特性の薄膜を、良好な生産性で成膜することができる。また、生産性を上げるためにレーザー光発光手段6からのレーザー光Lの発振周波数を増加させて、ターゲット7からの構成粒子の飛散量を増やして、成膜速度を高くする場合にも、長尺基材25の表面側から加熱するため、成膜速度の増加により長尺基材25の成膜面に堆積する粒子量が多くなっても、成膜表面の温度を安定して制御することができる。
On the other hand, the film forming apparatus 1 of the present embodiment heats the film forming surface of the long base material 25 from the surface side of the long base material 25 by the heater 8 arranged at a predetermined position. As shown to a), the temperature of the surface (film-forming surface) of the elongate base material 25 can be stably controlled to the optimum temperature suitable for forming a thin film with good film quality. Therefore, since the temperature of the surface (film formation surface) of the long base material 25 can be stably maintained at the optimum temperature, a thin film having good film quality and characteristics can be stably formed.
Further, since heating is performed from the surface (film formation surface) side of the long base material 25, it is possible to suppress the temperature of the film formation surface from gradually decreasing as the film thickness of the thin film (superconducting thin film) is increased. So there is no need to change the temperature setting. Therefore, the interface reaction between the intermediate layer and the superconducting thin film caused by raising the film forming temperature can be suppressed as in the conventional film forming apparatus. Therefore, it is possible to form a thick oxide superconducting film without deteriorating characteristics.
Furthermore, in the film forming apparatus 1 of the present embodiment, the film forming surface is directly heated from the surface side of the long base material 25 by the heater 8, so that the long base material 25 is transported at high speed to form a film. Since the film formation surface of the long base 25 can be sufficiently heated, the temperature of the film formation surface can be stably controlled. Therefore, a thin film having good film quality and characteristics can be formed with good productivity. Also, in order to increase productivity, the oscillation frequency of the laser light L from the laser light emitting means 6 is increased, the amount of constituent particles scattered from the target 7 is increased, and the deposition rate is increased. Since the heating is performed from the surface side of the long substrate 25, the temperature of the film forming surface can be stably controlled even if the amount of particles deposited on the film forming surface of the long substrate 25 increases due to an increase in the film forming speed. Can do.

次に、本発明の成膜方法の一実施形態として、成膜装置1を用いた成膜方法の一例について説明する。
以下、本発明の成膜装置1を用いた成膜方法の一実施形態として、長尺基材25の上にYBaCuからなる酸化物超電導体薄膜23を形成する場合の成膜方法について説明する。
ハステロイ(米国ヘインズ社製商品名)からなる長尺テープ状の金属基材21上にGdZr(GZO)からなる多結晶中間薄膜(中間層)22が形成された長尺基材25を、多結晶中間薄膜22側がターゲット7側になるように基材ホルダ12及び転向部材群11間に図3に示すように巻回する。また、酸化物超電導体のターゲットとしてYBaCuからなる長方形状のターゲット7をセットする。
Next, an example of a film forming method using the film forming apparatus 1 will be described as an embodiment of the film forming method of the present invention.
Hereinafter, as an embodiment of a film forming method using the film forming apparatus 1 of the present invention, an oxide superconductor thin film 23 made of Y 1 Ba 2 Cu 3 O x is formed on a long substrate 25. A film forming method will be described.
A long base material in which a polycrystalline intermediate thin film (intermediate layer) 22 made of Gd 2 Zr 2 O 7 (GZO) is formed on a long tape-like metal base material 21 made of Hastelloy (trade name, manufactured by Haynes, USA) 25 is wound between the substrate holder 12 and the turning member group 11 so that the polycrystalline intermediate thin film 22 side becomes the target 7 side as shown in FIG. Also sets a rectangular target 7 consisting of Y 1 Ba 2 Cu 3 O x as a target of an oxide superconductor.

次いで、処理容器2内を真空排気手段4により所定の圧力に減圧する。ここで必要に応じて処理容器2内に酸素ガスを導入して処理容器2内を酸素雰囲気としても良い。
次いで、送出リール13、転向部材群11、基材ホルダ12及び巻取リール14を同時に駆動し、長尺基材25を送出リール13から巻取リール14に向けて所定の速度にて移動させる。同時に、ヒーター8を作動させて、長尺基材25の表面側から成膜面を加熱し、長尺基材34の表面(成膜面)温度を所望の温度に制御する。ヒーター8により加熱される長尺基材25の表面(成膜面)の温度制御は、処理容器2内の適所に複数の温度センサを設置しておき、成膜領域10を走行する長尺基材25の表面(成膜面)の温度が均一になるようにヒーター8をON/OFF制御すること等によって行うことができる。
Next, the inside of the processing container 2 is depressurized to a predetermined pressure by the vacuum exhaust means 4. Here, oxygen gas may be introduced into the processing container 2 as necessary to make the processing container 2 have an oxygen atmosphere.
Next, the delivery reel 13, the turning member group 11, the base material holder 12 and the take-up reel 14 are simultaneously driven, and the long base material 25 is moved from the send reel 13 toward the take-up reel 14 at a predetermined speed. At the same time, the heater 8 is operated to heat the film formation surface from the surface side of the long base material 25 and to control the surface (film formation surface) temperature of the long base material 34 to a desired temperature. The temperature control of the surface (film formation surface) of the long substrate 25 heated by the heater 8 is performed by installing a plurality of temperature sensors at appropriate positions in the processing container 2 and running through the film formation region 10. This can be done by ON / OFF control of the heater 8 so that the temperature of the surface (film formation surface) of the material 25 becomes uniform.

次いで、レーザー光発光手段6によりレーザー光Lをターゲット7に照射する。この際、レーザー光Lによりターゲット7から叩き出され若しくは蒸発される構成粒子は、その放射方向の断面積が拡大したプルーム9となり、成膜領域10を走行する長尺基材25の表面上を覆う。さらに、この際、レーザー光Lの照射位置を振幅させたり、ターゲット7を水平方向に移動させることにより、ターゲット7の表面に照射するレーザー光Lの位置を移動させることが好ましい。これにより成膜領域10において基材ホルダ12に保持されて複数レーンを構成する長尺基材25の表面に達する構成粒子の濃度を均一にすることができる。   Next, the target 7 is irradiated with the laser light L by the laser light emitting means 6. At this time, the constituent particles that are struck or evaporated from the target 7 by the laser light L become a plume 9 whose radial cross-sectional area is enlarged, and on the surface of the long base material 25 that runs in the film formation region 10. cover. Further, at this time, it is preferable to move the position of the laser light L irradiated on the surface of the target 7 by amplifying the irradiation position of the laser light L or moving the target 7 in the horizontal direction. As a result, the concentration of the constituent particles that reach the surface of the long base material 25 that is held by the base material holder 12 and forms a plurality of lanes in the film formation region 10 can be made uniform.

次に、長尺基材25を、基材ホルダ12に長尺基材25の裏面が接しつつ、長手方向に移動する状態で、成膜領域10内を通過させる。長尺基材25は、基材ホルダ12、転向部材群11間を周回する毎に成膜領域10を通過し、この通過毎に長尺基材25の表面上に酸化物超電導体からなる薄膜である酸化物超電導体薄膜31が成膜される。   Next, the long base material 25 is allowed to pass through the film formation region 10 while moving in the longitudinal direction while the back surface of the long base material 25 is in contact with the base material holder 12. The long base material 25 passes through the film forming region 10 every time it circulates between the base material holder 12 and the turning member group 11, and a thin film made of an oxide superconductor on the surface of the long base material 25 for each passage. An oxide superconductor thin film 31 is formed.

本実施形態の成膜方法によれば、所定の位置にヒーター8を配し、このヒーター8により長尺基材25の表面側より成膜面を直接加熱することにより、長尺基材25の表面(成膜面)の温度を良好な膜質の薄膜を成膜するのに適した最適温度に安定して制御しながら成膜することができる。したがって、長尺基材25の表面(成膜面)の温度を安定して最適温度に保つことができるので、良好な膜質および特性の薄膜を安定して成膜することができる。
また、本実施形態の成膜方法では、ヒーター8により長尺基材25の表面側から成膜面を直接加熱するため、長尺基材25を高速に搬送して成膜する場合にも、長尺基材25の成膜面を十分に加熱することができるので、成膜面の温度を安定して制御しながら成膜することができる。したがって、良好な膜質および特性の薄膜を、良好な生産性で成膜することができる。
According to the film forming method of the present embodiment, the heater 8 is arranged at a predetermined position, and the film forming surface is directly heated from the surface side of the long base material 25 by the heater 8. It is possible to form a film while stably controlling the temperature of the surface (deposition surface) to an optimum temperature suitable for forming a thin film with good film quality. Therefore, since the temperature of the surface (film formation surface) of the long base material 25 can be stably maintained at the optimum temperature, a thin film having good film quality and characteristics can be stably formed.
Further, in the film forming method of the present embodiment, since the film forming surface is directly heated from the surface side of the long base material 25 by the heater 8, even when the long base material 25 is transported at high speed to form a film, Since the film formation surface of the long substrate 25 can be sufficiently heated, the film formation can be performed while stably controlling the temperature of the film formation surface. Therefore, a thin film having good film quality and characteristics can be formed with good productivity.

なお、本発明の成膜装置は、上記実施形態の成膜装置1の構成に限定されるものではなく、ヒーターの配置が図4に示す位置関係を満たしている限り適宜変更可能である。
例えば、図6に示すように、複数のヒーター8B(図6に示す例では8個)を、対向する基材ホルダ12の曲面に沿うように配置してもよく、必要に応じて基材ホルダ12及びヒーター8Bを覆うように囲み部材17を設けてもよい。囲み部材17を設ける場合は、囲み部材17の側壁部にレーザ光Lを取り込むための窓17aを、囲み部材17の底面部にターゲット7からのプルーム9を長尺基材25まで行き渡らせるための開口部16を、囲み部材17の上面部に長手方向に移動する長尺基材25を通すための窓17b、17cを設ける構成とする。この際、囲み部材17の開口部16を形成する開口縁部17A、17Aは、成膜領域10の最近接位置に配置されたヒーター8Bの成膜領域10側端部とほぼ同等の位置とすることが好ましい。このような配置とすることにより、開口縁部17A、17Aによりターゲット7からのプルーム9が阻害されることを抑止できる。
In addition, the film-forming apparatus of this invention is not limited to the structure of the film-forming apparatus 1 of the said embodiment, As long as the arrangement | positioning of a heater satisfy | fills the positional relationship shown in FIG. 4, it can change suitably.
For example, as shown in FIG. 6, a plurality of heaters 8 </ b> B (eight in the example shown in FIG. 6) may be arranged along the curved surface of the opposing base material holder 12, and the base material holder is necessary. The enclosing member 17 may be provided to cover 12 and the heater 8B. When the enclosing member 17 is provided, a window 17 a for taking in the laser light L into the side wall portion of the enclosing member 17, and a plume 9 from the target 7 to the long base material 25 on the bottom surface portion of the enclosing member 17. The opening 16 is provided with windows 17b and 17c for allowing the long base material 25 that moves in the longitudinal direction to pass through the upper surface of the surrounding member 17. At this time, the opening edge portions 17A and 17A that form the opening portion 16 of the surrounding member 17 are set to substantially the same positions as the end portions on the film forming region 10 side of the heater 8B disposed at the closest position of the film forming region 10. It is preferable. By setting it as such an arrangement | positioning, it can suppress that the plume 9 from the target 7 is inhibited by opening edge part 17A, 17A.

なお、転向部材群11を省略して、ターゲット7に対向する基材ホルダ12に対し、複数本の長尺基材25を複数組の送出リール13および巻取リール14で搬送するようにし、複数列とされた各長尺基材25が、成膜領域10を1回通過する構成とすることも可能である。
また、基材を複数列とする代わりに、図7に示すように、長尺基材25の幅を広くすることもできる。この場合は、複数の転向部材が同軸的に配置されてなる基板ホルダ12ではなく、長尺基材34の幅またはそれ以上の軸方向の長さを有する一つの転向部材よりなる基材ホルダ12Aを用いることができる。
さらに、送出リール13と巻取リール14の役割を入れ替え可能にして、リールに巻き取った長尺基材25を再度ターゲットに対向する位置に送出できるように構成し、長尺基材25の一端側のリールと、長尺基材25の他端側のリールとの間で、長尺基材25の往復動作を繰り返すことにより、厚い膜を成膜することが可能である。
The turning member group 11 is omitted, and a plurality of long substrates 25 are conveyed to the substrate holder 12 facing the target 7 by a plurality of sets of delivery reels 13 and take-up reels 14. It is also possible to adopt a configuration in which each long base material 25 arranged in a row passes through the film formation region 10 once.
Moreover, instead of making a base material into multiple rows | lines, as shown in FIG. 7, the width | variety of the elongate base material 25 can also be enlarged. In this case, the substrate holder 12 is not a substrate holder 12 in which a plurality of turning members are arranged coaxially, but a substrate holder 12A made of one turning member having an axial length equal to or greater than the width of the long substrate 34. Can be used.
Further, the roles of the delivery reel 13 and the take-up reel 14 can be interchanged so that the long base material 25 wound up on the reel can be sent again to a position facing the target. It is possible to form a thick film by repeating the reciprocating operation of the long base material 25 between the side reel and the reel on the other end side of the long base material 25.

また、上記した実施形態では、ターゲット7に対向配置された基材ホルダ12が円筒状であり、この基材ホルダ12と転向部材群11との間に長尺基材25が巻回される例を示したが、本発明はこれに限定されない。例えば、図8に示すような装置構成とすることもできる。なお、図8に示す成膜装置1Bにおいて、図2に示す成膜装置1と同一または類似の構成要素には同一または類似の符号を付してある。   Further, in the above-described embodiment, the base material holder 12 disposed to face the target 7 is cylindrical, and the long base material 25 is wound between the base material holder 12 and the turning member group 11. However, the present invention is not limited to this. For example, an apparatus configuration as shown in FIG. In the film forming apparatus 1B shown in FIG. 8, the same or similar components as those in the film forming apparatus 1 shown in FIG.

図8に示す成膜装置1Bは、長尺基材25の移動方向を転向する転向部材を複数個同軸的に配列してなり、離間して対向配置された一対の転向部材群11a、11bと、転向部材群11aの外側に配置された長尺基材25を送り出すための送出リール13Bと、転向部材群11bの外側に配置された長尺基材25を巻き取るための巻取リール14Bと、転向部材群11a、11bの間に配置され、転向部材群11a、11bの巻回により複数列とされた長尺基材25を支持する基板ホルダ12Bと、基材ホルダ12Bに接した状態にある基材25の表面に対向するように配されたターゲット7と、ターゲット7にレーザ光Lを照射するレーザ光発光手段6と、ターゲット7と基材ホルダ12Bの間に配置された長尺基材25を表面側から加熱するヒーター8とを少なくとも備えて構成されている。転向部材群11a、11b、送出リール13B及び巻取リール14Bを駆動装置(図示略)により互いに同期して駆動させることにより、送出リール13Bから送り出された長尺基材25が転向部材群11a、11bを周回する毎に成膜領域10を通過し、この通過毎に長尺基材25の表面上にターゲット7の構成粒子を堆積させて薄膜を形成し、巻取リール14Bに巻き取られるようになっている。成膜装置1Bにおいて、送出リール13B、巻取リール14B、転向部材群11a、11bは、上記第1実施形態の送出リール13、巻取リール14、転向部材群11と、夫々、同様である。   A film forming apparatus 1B shown in FIG. 8 includes a pair of turning member groups 11a and 11b that are coaxially arranged with a plurality of turning members that turn the long base material 25 in the moving direction, and are arranged opposite to each other. A feeding reel 13B for feeding out the long base material 25 arranged outside the turning member group 11a, and a take-up reel 14B for taking up the long base material 25 arranged outside the turning member group 11b; The substrate holder 12B is disposed between the turning member groups 11a and 11b and supports the long base members 25 formed in a plurality of rows by winding the turning member groups 11a and 11b, and in contact with the base material holder 12B. A target 7 disposed so as to face the surface of a certain base material 25, laser light emitting means 6 for irradiating the target 7 with laser light L, and a long base disposed between the target 7 and the base material holder 12B Heating the material 25 from the surface side It is configured to include at least a heater 8 that. By turning the turning member groups 11a and 11b, the sending reel 13B and the take-up reel 14B in synchronization with each other by a driving device (not shown), the long base material 25 fed from the sending reel 13B is turned to the turning member group 11a, It passes through the film forming region 10 every time it circulates 11b, and each time it passes, the constituent particles of the target 7 are deposited on the surface of the long base material 25 to form a thin film, which is wound around the take-up reel 14B. It has become. In the film forming apparatus 1B, the delivery reel 13B, the take-up reel 14B, and the turning member groups 11a and 11b are the same as the feed reel 13, the take-up reel 14 and the turning member group 11 of the first embodiment, respectively.

図8に示す成膜装置1Bは、基材ホルダ12Bは転向部材群11a、11bの間に配されており、転向部材群11a、11bの間を長手方向に移動する長尺基材25を、その裏面に接した状態で保持している。基材ホルダ12Bは、ターゲット7側の面が緩やかに膨出した湾曲形状をしている。基材ホルダ12Bを構成する材質は、上記第1実施形態の基材ホルダ12と同様である。
長尺基材25は、成膜面が外側となるように転向部材群11a、11bに巻回されており、ターゲット7からのプルーム9が生成された成膜領域10にて、基材ホルダ12Bに保持されて複数列レーンを構成するように配置されている。
In the film forming apparatus 1B shown in FIG. 8, the base material holder 12B is disposed between the turning member groups 11a and 11b, and the long base material 25 that moves in the longitudinal direction between the turning member groups 11a and 11b. It is held in contact with the back surface. The base material holder 12B has a curved shape in which the surface on the target 7 side bulges gently. The material which comprises the base-material holder 12B is the same as that of the base-material holder 12 of the said 1st Embodiment.
The long base material 25 is wound around the turning member groups 11a and 11b so that the film formation surface is on the outside, and the base material holder 12B is formed in the film formation region 10 where the plume 9 from the target 7 is generated. Are arranged so as to form a plurality of lanes.

ヒーター8は、上記第1実施形態と同様に、ターゲット7と長尺基材25との距離TS、長尺基材25とヒーター8との距離SH、基材ホルダ12Bの中心線A1とヒーター8との最短距離PHとしたとき、SH=0.55TS〜0.85TS、PH=0.35TS〜0.55TSを満たすように配置されている。そのため、上記した成膜装置1と同様に、ヒーター8により長尺基材25の表面側から長尺基材25の成膜面を加熱して長尺基材25の表面(成膜面)の温度を安定して最適温度に保つことができるので、良好な膜質および特性の薄膜を安定して成膜することができる。また、ヒーター8により長尺基材25の表面側から成膜面を直接加熱するため、長尺基材25を高速に搬送して成膜する場合にも、長尺基材25の成膜面を十分に加熱することができるので、成膜面の温度を安定して制御することができる。したがって、良好な膜質および特性の薄膜を、良好な生産性で成膜することができる。   As in the first embodiment, the heater 8 includes the distance TS between the target 7 and the long base 25, the distance SH between the long base 25 and the heater 8, the center line A1 of the base holder 12B and the heater 8 Are set so as to satisfy SH = 0.55TS to 0.85TS and PH = 0.35TS to 0.55TS. Therefore, similarly to the film formation apparatus 1 described above, the film formation surface of the long base material 25 is heated by the heater 8 from the surface side of the long base material 25 and the surface (film formation surface) of the long base material 25 is heated. Since the temperature can be stably maintained at the optimum temperature, a thin film having good film quality and characteristics can be stably formed. In addition, since the film formation surface is directly heated from the surface side of the long base material 25 by the heater 8, the film formation surface of the long base material 25 is also used when the long base material 25 is transported at high speed. Can be sufficiently heated, so that the temperature of the film formation surface can be stably controlled. Therefore, a thin film having good film quality and characteristics can be formed with good productivity.

本発明の成膜方法および成膜装置は、酸化物超電導体薄膜の成膜用として、好適に用いることができる。
また上述した実施形態では、酸化物超電導体薄膜を形成する場合に、本発明の成膜方法及び成膜装置を適用した例を詳述したが、例えば、IBAD法により形成された多結晶中間薄膜上にCeO中間層を形成し、次いで酸化物超電導体薄膜を形成する場合においては、本発明の成膜方法及び成膜装置をCeO中間層の形成にも使用することが可能である。
The film forming method and film forming apparatus of the present invention can be suitably used for forming an oxide superconductor thin film.
In the above-described embodiment, the example in which the film forming method and the film forming apparatus of the present invention are applied when forming an oxide superconductor thin film has been described in detail. For example, a polycrystalline intermediate thin film formed by an IBAD method is used. In the case where the CeO 2 intermediate layer is formed thereon and then the oxide superconductor thin film is formed, the film forming method and film forming apparatus of the present invention can also be used for forming the CeO 2 intermediate layer.

以上、本発明の成膜方法及び成膜装置について説明してきたが、本発明は上記の例に限定されるものではなく、必要に応じて適宜変更が可能である。   As described above, the film forming method and the film forming apparatus of the present invention have been described, but the present invention is not limited to the above examples, and can be appropriately changed as necessary.

以下、実施例を示して本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to these Examples.

以下に示す実施例では、図2および図3に示す本発明の成膜装置を用い、比較例では、図11に示す成膜装置を用いて、長尺基材上にY−Ba−Cu−O系(YBaCu)の酸化物超電導体薄膜を成膜した。なお、実施例および比較例において、レーザーは一定エリアをスキャンし、レーン数は図7に示す如く1レーンとし、成膜を複数回繰り返すことにより膜厚1μmの酸化物超電導薄膜を成膜した。
長尺基材としては、実施例および比較例のいずれも共通に、幅10mm、厚さ0.1mmのハステロイ(米国ヘインズ社製商品名)テープ上に、IBAD法によりGdZr(GZO)からなる厚さ1μmの多結晶中間薄膜(中間層)を形成したものを用いた。
In the examples shown below, the film forming apparatus of the present invention shown in FIGS. 2 and 3 is used, and in the comparative example, the film forming apparatus shown in FIG. 11 is used to form Y-Ba-Cu- on a long substrate. An O-based (Y 1 Ba 2 Cu 3 O x ) oxide superconductor thin film was formed. In the examples and comparative examples, the laser scanned a certain area, the number of lanes was 1 lane as shown in FIG. 7, and the oxide superconducting thin film having a thickness of 1 μm was formed by repeating the film formation a plurality of times.
As the long base material, both the examples and the comparative examples are commonly used on a Hastelloy (trade name, manufactured by Haynes, USA) tape having a width of 10 mm and a thickness of 0.1 mm by the IBAD method using Gd 2 Zr 2 O 7 ( A polycrystalline intermediate thin film (intermediate layer) having a thickness of 1 μm made of GZO was used.

(実施例1)
線速(長尺基材の搬送速度)40m/hで、レーザー発振器(レーザー光発光手段)の台数の増減により、ターゲットに照射するレーザー光の発振周波数を調整し、ターゲットからの構成粒子の濃度を調整することで、長尺基材の表面への単位面積当たりの成膜レートを変化させて成膜を行い、得られた酸化物超電導体薄膜の臨界電流値Ic(A)を測定した。なお、ターゲットと長尺基材との距離TS=100mm、長尺基材とヒーターとの距離SH=70mm、基材ホルダの中心線とヒーターとの最短距離PH=45mmとして、長尺基材の成膜面の温度を約800℃に制御して成膜を行った。
Example 1
Adjust the oscillation frequency of the laser beam irradiated to the target by increasing or decreasing the number of laser oscillators (laser light emitting means) at a linear speed (conveying speed of the long base material) of 40 m / h, and the concentration of constituent particles from the target Was adjusted to change the film formation rate per unit area on the surface of the long base material, and the critical current value Ic (A) of the obtained oxide superconductor thin film was measured. Note that the distance TS between the target and the long base material = 100 mm, the distance SH between the long base material and the heater SH = 70 mm, and the shortest distance PH between the center line of the base material holder and the heater = 45 mm. Film formation was performed by controlling the temperature of the film formation surface to about 800 ° C.

(比較例1)
ヒーターが内蔵された基台への接触加熱により、長尺基材の裏面から加熱を行ったこと以外は実施例1と同様にして成膜を行い、得られた酸化物超電導体薄膜の臨界電流値Ic(A)を測定した。
(Comparative Example 1)
Film formation was performed in the same manner as in Example 1 except that heating was performed from the back surface of the long base material by contact heating to a base with a built-in heater, and the critical current of the obtained oxide superconductor thin film was obtained. The value Ic (A) was measured.

実施例1および比較例1の結果を図9に示す。
図9の結果より、従来の成膜装置を用いて成膜した比較例1では、レーザー発振周波数が300Hzを超えると急速に臨界電流値Icが低下していた。これに対し、本発明の成膜装置1を用いて成膜した実施例1では、レーザー発振周波数1200Hzまで臨界電流値Icが維持されていた。ただし、レーザー発振周波数1800Hzとした成膜では、レーザーエネルギーがターゲットに集中しすぎたためにターゲット表面が歪により破壊され、正常なプルームが発生せず、安定した状態で成膜ができなかったために臨界電流値Icが低下したものであり、成膜装置1により安定成膜できる成膜レートの限界に達したものではない。この結果より、本発明によれば、高い成膜レートで成膜した場合にも、良好な超電導特性の酸化物超電導体薄膜を形成することができることが明らかである。
The results of Example 1 and Comparative Example 1 are shown in FIG.
From the result of FIG. 9, in Comparative Example 1 formed using a conventional film forming apparatus, the critical current value Ic rapidly decreased when the laser oscillation frequency exceeded 300 Hz. On the other hand, in Example 1 formed using the film forming apparatus 1 of the present invention, the critical current value Ic was maintained up to the laser oscillation frequency of 1200 Hz. However, in the film formation with a laser oscillation frequency of 1800 Hz, the laser energy was excessively concentrated on the target, so the target surface was destroyed by strain, a normal plume was not generated, and the film could not be formed in a stable state. The current value Ic is reduced, and it does not reach the limit of the film forming rate at which the film forming apparatus 1 can stably form a film. From this result, it is clear that according to the present invention, an oxide superconductor thin film having good superconducting characteristics can be formed even when a film is formed at a high film formation rate.

(実施例2)
ターゲットに照射するレーザー光の発振周波数を300Hzとし、線速(長尺基材の搬送速度)を変化させて成膜を行い、得られた酸化物超電導体薄膜の臨界電流値Ic(A)を測定した。なお、ターゲットと長尺基材との距離TS=100mm、長尺基材とヒーターとの距離SH=70mm、基材ホルダの中心線とヒーターとの最短距離PH=45mmとして、長尺基材の成膜面の温度を約800℃に制御して成膜を行った。
(Example 2)
The film was formed with the oscillation frequency of the laser light applied to the target set to 300 Hz and the linear velocity (conveying speed of the long base material) changed, and the critical current value Ic (A) of the obtained oxide superconductor thin film was determined. It was measured. Note that the distance TS between the target and the long base material = 100 mm, the distance SH between the long base material and the heater SH = 70 mm, and the shortest distance PH between the center line of the base material holder and the heater = 45 mm. Film formation was performed by controlling the temperature of the film formation surface to about 800 ° C.

(比較例2)
ヒーターが内蔵された基台への接触加熱により、長尺基材の裏面から加熱を行ったこと以外は実施例1と同様にして成膜を行い、得られた酸化物超電導体薄膜の臨界電流値Ic(A)を測定した。
(Comparative Example 2)
Film formation was performed in the same manner as in Example 1 except that heating was performed from the back surface of the long base material by contact heating to a base with a built-in heater, and the critical current of the obtained oxide superconductor thin film was obtained. The value Ic (A) was measured.

実施例2および比較例2の結果を図10に示す。
図10の結果より、従来の成膜装置を用いて成膜した比較例2では、線速が40m/hを越えると急速に臨界電流値Icが低下していた。これに対し、本発明の成膜装置1を用いて成膜した実施例2では、線速160m/hまでは臨界電流値Ic>300Aであり、線速240m/hにおいても臨界電流値Icが約280Aであった。
この結果より、速い線速で成膜した場合にも、超電導特性を低下させることなく酸化物超電導体薄膜を形成することができており、本発明によれば、良好な生産性で良好な超電導特性の酸化物超電導体薄膜を成膜することができることが明らかである。
The results of Example 2 and Comparative Example 2 are shown in FIG.
From the results of FIG. 10, in Comparative Example 2 formed using a conventional film forming apparatus, the critical current value Ic rapidly decreased when the linear velocity exceeded 40 m / h. On the other hand, in Example 2 formed using the film forming apparatus 1 of the present invention, the critical current value Ic> 300 A up to a linear speed of 160 m / h, and the critical current value Ic is also at a linear speed of 240 m / h. About 280A.
As a result, even when a film is formed at a high linear velocity, an oxide superconductor thin film can be formed without deteriorating the superconducting properties. According to the present invention, a good superconductivity can be achieved with good productivity. It is clear that a characteristic oxide superconductor thin film can be formed.

図9及び図10の結果より、従来の成膜装置では、レーザー発振器(レーザー光発光手段)の台数を増やして成膜レートを上げると、成膜面の温度を所望の温度に制御することが難しく、成膜温度を安定にすることができないため、レーザー周波数が300Hzを超えると、成膜される酸化物超電導体薄膜の膜質が低下し、超電導特性Icが低下していた。また、単位面積の成膜レートを下げた場合にも、線速を上げていくと、長尺基材の裏面からの加熱であるため、長尺基材の成膜面まで伝熱する前に長尺基材が成膜領域を通過してしまうため、所定の成膜温度を安定に保つことができず、40m/hを超える線速での成膜は難しかった。
これに対し、本発明の成膜装置1では、長尺基材の表面側から成膜面を直接加熱するため、成膜レートを上げた場合にも、成膜面の温度を所定の温度に安定して保つことができ、良好な膜質および超電導特性の酸化物超電導薄膜を製造することができた。また、本発明の成膜装置1は、従来の成膜装置のような基材裏面側からの加熱ではなく、基材表面側から成膜面を直接加熱するため、線速を上げた場合にも、成膜面を所望の温度に安定して制御することができ、良好な膜質および超電導特性の酸化物超電導薄膜を、良好な生産性で製造することができた。
From the results of FIGS. 9 and 10, in the conventional film forming apparatus, when the number of laser oscillators (laser light emitting means) is increased and the film forming rate is increased, the temperature of the film forming surface can be controlled to a desired temperature. Since it is difficult and the film formation temperature cannot be stabilized, when the laser frequency exceeds 300 Hz, the film quality of the oxide superconductor thin film formed is deteriorated and the superconducting property Ic is deteriorated. In addition, even when the film formation rate of the unit area is lowered, if the linear velocity is increased, it is heating from the back surface of the long base material. Since the long substrate passes through the film formation region, the predetermined film formation temperature cannot be kept stable, and film formation at a linear speed exceeding 40 m / h is difficult.
On the other hand, in the film forming apparatus 1 of the present invention, since the film forming surface is directly heated from the surface side of the long base material, the temperature of the film forming surface is kept at a predetermined temperature even when the film forming rate is increased. An oxide superconducting thin film having good film quality and superconducting characteristics can be produced, which can be maintained stably. In addition, the film forming apparatus 1 of the present invention is not heated from the back side of the substrate as in the conventional film forming apparatus, but directly heats the film forming surface from the substrate surface side. However, the film formation surface could be stably controlled at a desired temperature, and an oxide superconducting thin film having good film quality and superconducting characteristics could be produced with good productivity.

(実施例3)
線速80m/h、レーザー発振周波数600Hz、ターゲットと長尺基材との距離TS=100mmとし、長尺基材とヒーターとの距離SHおよび基材ホルダの中心線とヒーターとの最短距離PHを表1に示す位置となるようにヒーターを配置し、長尺基材の成膜面の温度を約800℃に制御して成膜を行った。得られた酸化物超電導体薄膜の臨界電流値Ic(A)を測定した。結果を表1に併記した。
(Example 3)
The linear velocity is 80 m / h, the laser oscillation frequency is 600 Hz, the distance between the target and the long base material is TS = 100 mm, the distance SH between the long base material and the heater, and the shortest distance PH between the center line of the base material holder and the heater. The heater was arranged so as to be in the position shown in Table 1, and the film was formed by controlling the temperature of the film forming surface of the long base material to about 800 ° C. The critical current value Ic (A) of the obtained oxide superconductor thin film was measured. The results are also shown in Table 1.

Figure 0005544271
Figure 0005544271

表1の結果より、本発明の成膜装置1において、長尺基材とヒーターとの距離SH=0.55TS〜0.85TS、基材ホルダの中心線とヒーターとの最短距離PH=0.35TS〜0.55TSの関係を満たすようにヒーターを配置して成膜することにより、良好な超電導特性の酸化物超電導体薄膜を形成できることが確認された。   From the results of Table 1, in the film forming apparatus 1 of the present invention, the distance SH = 0.55TS to 0.85TS between the long base material and the heater, and the shortest distance PH = 0. It was confirmed that an oxide superconductor thin film having good superconducting characteristics can be formed by forming a film by arranging a heater so as to satisfy the relationship of 35 TS to 0.55 TS.

(実施例4)
線速80m/h、レーザー発振周波数600Hz、ターゲットと長尺基材との距離TS、長尺基材とヒーターとの距離SH、および基材ホルダの中心線とヒーターとの最短距離PHを表2に示す位置となるようにヒーターを配置し、長尺基材の成膜面の温度を約800℃に制御して成膜を行った。得られた酸化物超電導体薄膜の臨界電流値Ic(A)を測定した。結果を表2に併記した。
Example 4
Table 2 shows linear velocity 80 m / h, laser oscillation frequency 600 Hz, distance TS between the target and the long base material, distance SH between the long base material and the heater, and the shortest distance PH between the center line of the base material holder and the heater. The heater was arranged so as to be in the position shown in FIG. 5 and the film was formed by controlling the temperature of the film forming surface of the long base material to about 800 ° C. The critical current value Ic (A) of the obtained oxide superconductor thin film was measured. The results are shown in Table 2.

Figure 0005544271
Figure 0005544271

表2の結果より、本発明の成膜装置1において、長尺基材とヒーターとの距離SH=0.55TS〜0.85TS、基材ホルダの中心線とヒーターとの最短距離PH=0.35TS〜0.55TSの関係を満たすようにヒーターを配置して成膜することにより、良好な超電導特性の酸化物超電導体薄膜を形成できることが確認された。特に、ターゲットと長尺基材との距離TSを80〜150mmの範囲として成膜することにより、より良好な超電導特性の酸化物超電導薄膜を形成できることが確認された。   From the results of Table 2, in the film forming apparatus 1 of the present invention, the distance SH = 0.55TS to 0.85TS between the long base material and the heater, and the shortest distance PH = 0. It was confirmed that an oxide superconductor thin film having good superconducting characteristics can be formed by forming a film by arranging a heater so as to satisfy the relationship of 35 TS to 0.55 TS. In particular, it was confirmed that an oxide superconducting thin film having better superconducting characteristics can be formed by forming a film with the distance TS between the target and the long base material in the range of 80 to 150 mm.

本発明は、レーザー光をターゲットに照射して、このターゲットの構成粒子を叩き出し若しくは蒸発させ、この構成粒子を帯状の基材上に堆積させることにより薄膜を形成する成膜方法及び成膜装置に広く適用可能である。   The present invention relates to a film forming method and a film forming apparatus for forming a thin film by irradiating a target with laser light, knocking out or evaporating constituent particles of the target, and depositing the constituent particles on a belt-like substrate. Widely applicable to.

1、1B…成膜装置、2…処理容器、4…真空排気装置、6…レーザー光発光手段、7…ターゲット、8、8B…ヒーター、9…プルーム、10…成膜領域、11、11a、11b…転向部材群、12、12A、12B…基材ホルダ、13、13B…送出ロール、14、14B…巻取ロール、21…金属基材、22…多結晶中間薄膜(中間層)、23…薄膜(酸化物超電導体薄膜)、25…長尺基材(基材)、L…レーザー光。   DESCRIPTION OF SYMBOLS 1, 1B ... Film-forming apparatus, 2 ... Processing container, 4 ... Vacuum exhaust apparatus, 6 ... Laser light emission means, 7 ... Target, 8, 8B ... Heater, 9 ... Plume, 10 ... Film-forming area | region, 11, 11a, 11b ... Turning member group, 12, 12A, 12B ... Base material holder, 13, 13B ... Delivery roll, 14, 14B ... Winding roll, 21 ... Metal base material, 22 ... Polycrystalline intermediate thin film (intermediate layer), 23 ... Thin film (oxide superconductor thin film), 25 ... long base material (base material), L ... laser light.

Claims (4)

レーザー光によってターゲットから叩き出され若しくは蒸発した構成粒子の噴流であるプルームを生成し、このプルームからの粒子を基材の表面上に堆積させ、該基材上に酸化物超電導体薄膜を形成する成膜装置であって、
前記基材を長手方向に沿って移動させる送出装置及び巻取装置と、
前記送出装置と前記巻取装置との間に配置され、該送出装置と該巻取装置の間を移動する前記基材の裏面と接した状態で該基材を保持する基材ホルダと、
前記基材ホルダに接した状態にある前記基材の表面と対向配置されたターゲットと、
前記ターゲットにレーザー光を照射するレーザー光発光手段と、
前記ターゲットと前記基材ホルダの間に前記基材の表面に対向するように配置され、該基材を表面側から加熱するヒーターと、
を少なくとも備え、
前記ターゲットと前記基材との距離TS、前記基材と前記ヒーターとの距離SH、前記基材ホルダの中心線と前記ヒーターとの最短距離PHとしたとき、SH=0.55TS〜0.85TS、PH=0.35TS〜0.55TSを満たすことを特徴とする酸化物超電導体薄膜の成膜装置。
A plume that is a jet of constituent particles struck or evaporated from a target by a laser beam is generated, and particles from this plume are deposited on the surface of the substrate to form an oxide superconductor thin film on the substrate. A film forming apparatus,
A feeding device and a winding device for moving the substrate along the longitudinal direction;
A base material holder disposed between the feeding device and the winding device, and holding the base material in contact with the back surface of the base material moving between the feeding device and the winding device;
A target disposed opposite to the surface of the substrate in contact with the substrate holder;
Laser light emitting means for irradiating the target with laser light;
A heater disposed between the target and the substrate holder so as to face the surface of the substrate, and heating the substrate from the surface side;
Comprising at least
When the distance TS between the target and the substrate, the distance SH between the substrate and the heater, and the shortest distance PH between the center line of the substrate holder and the heater, SH = 0.55TS to 0.85TS. , PH = 0.35TS to 0.55TS is satisfied, A film forming apparatus for an oxide superconductor thin film.
前記送出装置と前記巻取装置の間に配置された前記基材の移動方向を転向させる転向部材を備え、
前記基材は、前記基材ホルダと前記転向部材との間に複数回巻回されて複数の隣接するレーンを構成することを特徴とする請求項1に記載の酸化物超電導体薄膜の成膜装置。
A turning member for turning the moving direction of the base material disposed between the feeding device and the winding device;
2. The oxide superconductor thin film according to claim 1, wherein the base material is wound a plurality of times between the base material holder and the turning member to form a plurality of adjacent lanes. apparatus.
レーザー光を酸化物超電導体用材料からなるターゲットの表面に照射して、このターゲットの構成粒子を叩き出し若しくは蒸発させてターゲットの構成粒子の噴流であるプルームを生成させ、このプルームが生成している成膜領域に基材を通過させて、該プルームからの粒子を該基材の表面上に堆積させることにより、該基材上に酸化物超電導体薄膜を形成する成膜方法であって、
前記成膜領域を通過する前記基材を基材ホルダにより保持して、前記ターゲットと前記基材との距離TSで該ターゲットと対向配置し、
前記ターゲットと前記基材ホルダの間に、前記基材と前記ヒーターとの距離SH=0.55TS〜0.85TS、前記基材ホルダの中心線と前記ヒーターとの最短距離PH=0.35TS〜0.55TSを満たすようにヒーターを配置し、
このヒーターにより前記基材を表面側から加熱しながら前記成膜領域を通過させて該基材上に前記酸化物超電導体薄膜を形成することを特徴とする酸化物超電導体薄膜の成膜方法。
The surface of the target made of an oxide superconductor material is irradiated with laser light, and the constituent particles of the target are knocked out or evaporated to generate a plume that is a jet of the target constituent particles. A film forming method for forming an oxide superconductor thin film on the substrate by passing the substrate through the film forming region and depositing particles from the plume on the surface of the substrate,
Holding the base material passing through the film-forming region by a base material holder, and disposing the target at a distance TS between the target and the base material,
Between the target and the substrate holder, a distance SH = 0.55TS to 0.85TS between the substrate and the heater, and a shortest distance PH = 0.35TS between the center line of the substrate holder and the heater Arrange the heater to meet 0.55TS,
Method of forming the oxide superconductor thin film and forming said oxide superconductor thin film on the film formation region is passed through a by on the substrate while heating the substrate from the surface side by the heater.
前記基材を前記成膜領域を複数回通過させて、該成膜領域の通過毎に該基材上に前記酸化物超電導体薄膜を形成することを特徴とする請求項に記載の酸化物超電導体薄膜の成膜方法。 4. The oxide according to claim 3 , wherein the oxide superconductor thin film is formed on the base material every time the film formation region passes through the base material a plurality of times . A method for forming a superconductor thin film.
JP2010234867A 2010-10-19 2010-10-19 Method and apparatus for forming oxide superconductor thin film Active JP5544271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010234867A JP5544271B2 (en) 2010-10-19 2010-10-19 Method and apparatus for forming oxide superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010234867A JP5544271B2 (en) 2010-10-19 2010-10-19 Method and apparatus for forming oxide superconductor thin film

Publications (2)

Publication Number Publication Date
JP2012087359A JP2012087359A (en) 2012-05-10
JP5544271B2 true JP5544271B2 (en) 2014-07-09

Family

ID=46259314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010234867A Active JP5544271B2 (en) 2010-10-19 2010-10-19 Method and apparatus for forming oxide superconductor thin film

Country Status (1)

Country Link
JP (1) JP5544271B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI530399B (en) 2011-12-27 2016-04-21 Nitto Denko Corp Transparent gas barrier film, transparent gas barrier film manufacturing method, organic EL element, solar cell and thin film battery (1)
JP2014154361A (en) * 2013-02-08 2014-08-25 Nitto Denko Corp Manufacturing method for transparent gas barrier film, manufacturing apparatus for transparent gas barrier film, and organic electro-luminescence device
JP2015026529A (en) * 2013-07-26 2015-02-05 株式会社フジクラ Oxide superconductive cable

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5452141B2 (en) * 2008-10-23 2014-03-26 株式会社フジクラ Film forming method and film forming apparatus

Also Published As

Publication number Publication date
JP2012087359A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
US8420575B2 (en) Underlying layer of alignment film for oxide superconducting conductor and method of forming same, and device for forming same
JP2011060668A (en) Manufacturing method of long oxide superconductor by laser vapor deposition method
JP5544271B2 (en) Method and apparatus for forming oxide superconductor thin film
JP5452141B2 (en) Film forming method and film forming apparatus
WO2011043407A1 (en) Ion beam assisted sputtering device and ion beam assisted sputtering method
JP2006233266A (en) Thin film deposition apparatus
JP2004263227A (en) Thin film deposition method and deposition system
JP2003055095A (en) Thin film deposition process
JP2011146234A (en) Method of manufacturing oxide superconducting film
JP5297770B2 (en) Manufacturing method of base material for oxide superconducting conductor, manufacturing method of oxide superconducting conductor, and apparatus for forming cap layer for oxide superconducting conductor
JP4619697B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP2010121204A (en) Film deposition method and film deposition apparatus
JP5658891B2 (en) Manufacturing method of oxide superconducting film
JP4593300B2 (en) Manufacturing method and manufacturing apparatus for oxide superconducting wire
JP2012021210A (en) Film deposition system and method
JP5941636B2 (en) Manufacturing method of base material for oxide superconducting conductor and manufacturing method of oxide superconducting conductor
JP4519540B2 (en) Method for manufacturing oxide superconductor and oxide superconductor
JP5624840B2 (en) Manufacturing method of oxide superconductor
JP2005113220A (en) Polycrystal thin film, its production method, and oxide superconductor
JP2006233247A (en) Thin film deposition system
JP2012084430A (en) Oxide superconductor manufacturing method
JP2014110125A (en) Oxide superconductive wire and method of producing the same
JP2013234350A (en) Apparatus and method for manufacturing substrate with intermediate layer for oxide superconductive wire rod
WO2005008688A1 (en) Process for producing oxide superconductive wire
JP2017022171A (en) Oxide superconducting conductor manufacturing method and manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140512

R151 Written notification of patent or utility model registration

Ref document number: 5544271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250