JP2006233247A - Thin film deposition system - Google Patents

Thin film deposition system Download PDF

Info

Publication number
JP2006233247A
JP2006233247A JP2005046720A JP2005046720A JP2006233247A JP 2006233247 A JP2006233247 A JP 2006233247A JP 2005046720 A JP2005046720 A JP 2005046720A JP 2005046720 A JP2005046720 A JP 2005046720A JP 2006233247 A JP2006233247 A JP 2006233247A
Authority
JP
Japan
Prior art keywords
thin film
target
base material
winding member
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005046720A
Other languages
Japanese (ja)
Inventor
Kazutomi Kakimoto
一臣 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005046720A priority Critical patent/JP2006233247A/en
Publication of JP2006233247A publication Critical patent/JP2006233247A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Physical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production apparatus for producing a long-length oxide superconductive wire rod of high quality by preventing deterioration in superconductive properties at the time of forming a film. <P>SOLUTION: The thin film forming apparatus is provided with: a treatment vessel storing long-length base materials 3; at least a pair of winding member groups 5 obtained by coaxially arranging winding members for winding the long-length base materials; a target holder provided adjacently to the long-length base materials wound around these winding member groups; and a laser light emitting means of emitting laser light to a target 9 held by the target holder, and constituted so that vapor deposition particles produced by emitting laser light to the surface of the target are deposited on the surfaces of the long-length base materials wound around the winding member group and arranged in parallel in a state where a plurality of the lines are made close by circulating these winding material groups, wherein the winding member group 25 is constituted so that a plurality of winding members 24, wherein an outer circumferential edge face to be wound with the long-length base materials is flat, are coaxially arranged. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、薄膜形成装置に関し、更に詳しくは、レーザ光をターゲットに照射して、このターゲットから叩き出され若しくは蒸発した蒸着粒子を基材上に堆積させることにより、酸化物超電導体薄膜等の薄膜を形成する際に好適に用いられ、特に、長尺基材を用いた酸化物超電導線材の生産性の効率化及び特性改善を図ることが可能な薄膜形成装置に関する。   The present invention relates to a thin film forming apparatus, and more specifically, by irradiating a target with laser light and depositing vapor deposition particles that have been knocked out or evaporated from the target on a substrate, such as an oxide superconductor thin film or the like. The present invention relates to an apparatus for forming a thin film that can be suitably used for forming a thin film, and that can improve the efficiency and improve the characteristics of an oxide superconducting wire using a long base.

酸化物超電導体を導電体として使用するためには、テープ状基材などの長尺基材上に、結晶配向性の良好な酸化物超電導体の薄膜を形成する必要があるが、一般には、金属テープ自体が多結晶体でその結晶構造も酸化物超電導体と大きく異なるために、金属テープ上に直接、結晶配向性の良好な酸化物超電導体の薄膜を形成させることは難しい。そこで、ハステロイテープなどの金属テープからなる基材の上に、結晶配向性に優れたイットリア安定化ジルコニア(YSZ)などの多結晶中間薄膜を形成し、この多結晶中間薄膜上に、臨界温度が約90Kで、液体窒素(77K)での磁場特性がBi系の酸化物超電導体より優れ、安定性にも優れたYBaCu系の酸化物超電導体の薄膜を成膜する試みが行なわれており、この酸化物超電導体の薄膜を成膜するには、レーザ蒸着法による薄膜の形成方法が採用されている。 In order to use an oxide superconductor as a conductor, it is necessary to form a thin film of an oxide superconductor with good crystal orientation on a long substrate such as a tape-shaped substrate. Since the metal tape itself is polycrystalline and its crystal structure is significantly different from that of the oxide superconductor, it is difficult to form a thin film of an oxide superconductor with good crystal orientation directly on the metal tape. Therefore, a polycrystalline intermediate thin film such as yttria-stabilized zirconia (YSZ) excellent in crystal orientation is formed on a base material made of a metal tape such as hastelloy tape, and the critical temperature is set on the polycrystalline intermediate thin film. A thin film of a Y 1 Ba 2 Cu 3 O x oxide superconductor having a magnetic field characteristic in liquid nitrogen (77K) superior to that of a Bi oxide oxide superconductor and excellent in stability is formed at about 90K. In order to form a thin film of this oxide superconductor, a thin film forming method by a laser vapor deposition method is employed.

ところで、従来のレーザ蒸着法による薄膜の形成方法では、レーザ光をターゲットの表面上の同一経路に沿って往復移動させることにより走査するため、長時間成膜を行うと、レーザ光に偏心が生じることとなり、その結果、ターゲットから叩き出された蒸着粒子の飛行する方向が偏ってしまい、蒸着粒子を多結晶中間薄膜上に均一に堆積させることができず、得られる薄膜の厚みや膜質や結晶配向性にバラツキが生じてしまい、臨界電流密度等の超電導特性が低下してしまう等の問題があった。そこで、本出願人は、長尺基材表面に蒸着粒子を均一に堆積させることができるレーザ蒸着法による薄膜の形成方法として、長尺基材(帯状の基材)を蒸着粒子の堆積領域内を複数回通過させて、この通過毎に前記長尺基材上に前記蒸着粒子を堆積させ、前記長尺基材上に複数層からなる薄膜を成膜する方法を提案している(例えば、特許文献1参照。)。   By the way, in the conventional method for forming a thin film by the laser vapor deposition method, scanning is performed by reciprocating the laser beam along the same path on the surface of the target. As a result, the flying direction of the vapor deposition particles struck from the target is biased, and the vapor deposition particles cannot be uniformly deposited on the polycrystalline intermediate thin film. There has been a problem that the orientation is varied and the superconducting properties such as critical current density are lowered. Therefore, the applicant of the present invention is a method for forming a thin film by laser vapor deposition that can deposit vapor deposition particles uniformly on the surface of a long substrate. A plurality of times, and depositing the vapor deposition particles on the long base material for each passage, and forming a thin film consisting of a plurality of layers on the long base material (for example, (See Patent Document 1).

この特許文献1に記載された従来技術において、前記蒸着粒子の堆積領域内に長尺基材3を複数回通過させるために、図6〜図8に示すように、長尺基材3を巻回する巻回部材4を複数個、ロール受け軸21に同軸的に配列してなる一対の巻回部材群5,6を処理容器2内に対向配置し、これら一対の巻回部材群5,6に巻回された長尺基材3を周回させて複数列とし、これらにターゲット9から噴出した蒸着粒子の流れ(以下、プルーム20と記す。)を当てて複数列の長尺基材3の表面に蒸着粒子を堆積させて薄膜形成を行っている。この従来方法によれば、効率よく基材表面に複数層からなる薄膜を成膜することができる。
特開2004−263227号公報
In the prior art described in this patent document 1, in order to pass the elongate base material 3 several times in the deposition area | region of the said vapor deposition particle, as shown in FIGS. 6-8, the elongate base material 3 is wound. A pair of winding member groups 5 and 6 formed by coaxially arranging a plurality of winding members 4 to be rotated coaxially with the roll receiving shaft 21 are disposed opposite to each other in the processing container 2, and the pair of winding member groups 5, The long base material 3 wound around 6 is made to circulate to form a plurality of rows, and the flow of vapor deposition particles ejected from the target 9 (hereinafter referred to as plume 20) is applied to these to form a plurality of rows of the long base materials 3. A thin film is formed by depositing vapor-deposited particles on the surface. According to this conventional method, a thin film consisting of a plurality of layers can be efficiently formed on the surface of the substrate.
JP 2004-263227 A

しかしながら、前述した従来技術にあっては、図8及び図9に示すように、巻回部材4として、外周面の厚さ方向両側に径方向に突出した鍔部22が設けられ、両方の鍔部22間が長尺基材3を導入するガイド溝23となっている円盤状をなすガイド溝付きのロールを用いていたために、図9に示すように巻回部材4の鍔部22が蒸着粒子の長尺基材面方向への拡散が妨げられ、薄膜が安定して成膜できない場合がある。これは、特に酸化物超電導線材の製造において、得られる線材の超電導特性が劣化する原因となっていることが、本発明者の検討から明らかになった。すなわち、ガイド溝付きのロールを巻回部材4として用い、長尺基材3の表面に酸化物超電導体薄膜を成膜した場合、図9に示すように、長尺基材3の幅方向に蒸着粒子の濃淡が生じ、蒸着粒子が増加した薄膜部分では、超電導特性が他部よりも劣化してしまう問題があった。   However, in the above-described prior art, as shown in FIGS. 8 and 9, the winding member 4 is provided with the flange portions 22 projecting in the radial direction on both sides in the thickness direction of the outer peripheral surface. Since the disk-shaped roll with the guide groove forming the guide groove 23 for introducing the long base material 3 between the portions 22 is used, the flange portion 22 of the winding member 4 is deposited as shown in FIG. In some cases, the diffusion of the particles in the direction of the long substrate surface is hindered, and the thin film cannot be stably formed. It has become clear from the study of the present inventors that this is a cause of deterioration of the superconducting properties of the obtained wire, particularly in the production of oxide superconducting wire. That is, when a roll with a guide groove is used as the winding member 4 and an oxide superconductor thin film is formed on the surface of the long base 3, the width of the long base 3 is increased as shown in FIG. There was a problem that the superconducting properties deteriorated in the thin film portion where the density of the vapor deposition particles occurred and the vapor deposition particles increased.

本発明は前記事情に鑑みてなされ、成膜時に超電導特性の劣化を防いで高品質の長尺酸化物超電導線材を製造することができる製造装置の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a manufacturing apparatus capable of manufacturing a high quality long oxide superconducting wire while preventing deterioration of superconducting characteristics during film formation.

前記目的を達成するため、本発明は、長尺基材を収容する処理容器と、該処理容器内に配置され前記長尺基材を巻回する巻回部材を複数個同軸的に配列してなる少なくとも一対の巻回部材群と、これらの巻回部材群に巻回された長尺基材に近接して設けられたターゲットホルダと、該ターゲットホルダに保持されるターゲットにレーザ光を照射するレーザ光発光手段とを備え、前記レーザ光を前記ターゲットの表面に照射し、該ターゲットから叩き出され若しくは蒸発した蒸着粒子を、前記巻回部材群に巻回されこれらの巻回部材群を周回することによって複数列が接近した状態で平行に並べられた長尺基材の表面に堆積させる薄膜形成装置において、前記巻回部材群は、前記長尺基材が巻回される外周端面が平坦な巻回部材を複数個同軸的に配列して構成されていることを特徴とする薄膜形成装置を提供する。   In order to achieve the above object, the present invention comprises a processing container for storing a long base material, and a plurality of winding members that are arranged in the processing container and wind the long base material. A laser beam is irradiated to at least a pair of winding member groups, a target holder provided in the vicinity of the long base material wound around these winding member groups, and a target held by the target holder Laser light emitting means, irradiating the surface of the target with the laser light, and depositing the evaporated particles that have been knocked out or evaporated from the target and wound around the winding member group. In the thin film forming apparatus for depositing on the surface of the long base material arranged in parallel with a plurality of rows approaching each other, the winding member group has a flat outer peripheral end surface on which the long base material is wound Coaxial multiple winding members To provide a thin film forming apparatus characterized by being constructed by arranging.

本発明の薄膜形成装置において、前記巻回部材の近傍に、前記長尺基材の軌道をガイドするガイドローラが設けられたことが好ましい。   In the thin film forming apparatus of the present invention, it is preferable that a guide roller for guiding the track of the long base material is provided in the vicinity of the winding member.

本発明の薄膜形成装置において、前記ターゲットは、酸化物超電導体材料であり、前記薄膜は酸化物超電導体薄膜であることが好ましい。   In the thin film forming apparatus of the present invention, the target is preferably an oxide superconductor material, and the thin film is preferably an oxide superconductor thin film.

本発明の薄膜形成装置は、長尺基材が巻回される外周端面が平坦な巻回部材を複数個同軸的に配列して構成した巻回部材群を用いているので、外周面の厚さ方向両側に径方向に突出した鍔部が設けられた巻回部材を用いた場合と比べ、蒸着粒子が鍔部に堆積することがなく、蒸着粒子の面方向への拡散がスムーズになり、長尺基材の表面に蒸着粒子が均一に付着・堆積するので、幅方向及び長手方向の厚さや特性の変動が少ない均一な薄膜を形成することができる。
特に、長尺基材の表面に酸化物超電導体薄膜を成膜する場合、滑らかな面上にプルームを吹き付ける環境が得られるため、酸化物超電導体薄膜の安定した一定方向への結晶成長が可能となり、超電導特性に優れた酸化物超電導線材を製造することができる。
The thin film forming apparatus of the present invention uses a winding member group configured by coaxially arranging a plurality of winding members having flat outer peripheral end surfaces around which a long base material is wound. Compared to the case of using a winding member provided with ridges projecting in the radial direction on both sides in the vertical direction, the vapor deposition particles do not accumulate on the buttock, and the diffusion of the vapor deposition particles in the surface direction becomes smooth, Since vapor deposition particles uniformly adhere and deposit on the surface of the long base material, a uniform thin film with little variation in thickness and characteristics in the width direction and the longitudinal direction can be formed.
In particular, when an oxide superconductor thin film is formed on the surface of a long substrate, an environment in which a plume is sprayed on a smooth surface is obtained, so that the crystal growth of the oxide superconductor thin film in a stable and constant direction is possible. Thus, an oxide superconducting wire excellent in superconducting characteristics can be manufactured.

以下、本発明の実施の形態を図面を参照して説明する。
図1〜図6は、本発明の薄膜形成装置の一実施形態を説明する図であり、図1は薄膜形成装置の要部側面図、図2は図1中のA部の平面図、図3は図2中のC−C’部の断面図、図4は図1中のB部断面図、図5は本発明の薄膜形成装置により製造される酸化物超電導線材の一例を示す断面図、図6は薄膜形成装置の一例を示す構成図である。なお、本実施形態では、図5に示すように、テープ形状の長尺基材3上に酸化物超電導体からなる超電導層33を形成してなる酸化物超電導線材30を製造する場合を例示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 6 are diagrams for explaining an embodiment of a thin film forming apparatus according to the present invention. FIG. 1 is a side view of a main part of the thin film forming apparatus, and FIG. 2 is a plan view of a portion A in FIG. 3 is a cross-sectional view of CC ′ portion in FIG. 2, FIG. 4 is a cross-sectional view of B portion in FIG. 1, and FIG. 5 is a cross-sectional view showing an example of an oxide superconducting wire manufactured by the thin film forming apparatus of the present invention. FIG. 6 is a block diagram showing an example of a thin film forming apparatus. In addition, in this embodiment, as shown in FIG. 5, the case where the oxide superconducting wire 30 which forms the superconducting layer 33 which consists of an oxide superconductor on the tape-shaped long base material 3 is illustrated is illustrated. ing.

本実施形態の薄膜形成装置は、長尺基材3が巻回される外周端面が平坦な巻回部材24を複数個、ロール受け軸21に同軸的に配列して構成された巻回部材群25を用いたこと以外は、特許文献1に開示されている従来公知の薄膜形成装置と同様に構成することができる。図6に示す薄膜形成装置1は、長尺基材3を収容する処理容器2と、処理容器2内に配置され長尺基材3を巻回する巻回部材24を複数個、ロール受け軸21に同軸的に配列してなる一対の巻回部材群25,6と、これらの巻回部材群25,6に巻回された長尺基材3に近接して設けられたターゲットホルダ10と、ターゲットホルダ10に保持されるターゲット9にレーザ光12を照射するレーザ光発光手段11とを備え、レーザ光12をターゲット9の表面に照射し、ターゲットから叩き出され若しくは蒸発した蒸着粒子を、巻回部材群25,6に巻回されこれらの巻回部材群25,6を周回することによって複数列が接近した状態で平行に並べられた長尺基材3の表面に堆積させるように構成されている。   The thin film forming apparatus according to the present embodiment includes a winding member group configured by coaxially arranging a plurality of winding members 24 having a flat outer peripheral end surface around which the long base material 3 is wound on the roll receiving shaft 21. Except for using 25, it can be configured in the same manner as a conventionally known thin film forming apparatus disclosed in Patent Document 1. A thin film forming apparatus 1 shown in FIG. 6 includes a processing container 2 that houses a long base material 3 and a plurality of winding members 24 that are arranged in the processing container 2 and wind the long base material 3. A pair of winding member groups 25 and 6 arranged coaxially with the target member 10, and a target holder 10 provided in the vicinity of the long base material 3 wound around the winding member groups 25 and 6. And a laser light emitting means 11 for irradiating the target 9 held by the target holder 10 with the laser light 12, and irradiating the surface of the target 9 with the laser light 12, and depositing the evaporated particles which have been struck or evaporated from the target, It is configured to be deposited on the surface of the long base material 3 which is wound around the winding member groups 25 and 6 and circulates around these winding member groups 25 and 6 in a state in which a plurality of rows approach each other. Has been.

前記処理容器2には、外部からレーザ光12を容器内に導入するための透明窓13と、容器内部を減圧状態に維持する真空排気装置15が接続された排気口14が設けられている。また、処理容器2内には、長尺基材3の送出リール7と、成膜を終えた酸化物超電導線材を巻き取るための巻取リール8が設けられている。長尺線材3は、送出リール7から引き出されて一対の巻回部材群25,6の間に巻回され、多数の巻回部材24を順次通過した後、巻取リール8に巻き取られるように設けられている。また、これらの巻回部材群25,6の間には、長尺基材3を成膜適温に加熱するためのヒータ内蔵基台19が配置されている。   The processing container 2 is provided with a transparent window 13 for introducing laser light 12 from the outside into the container, and an exhaust port 14 connected to a vacuum exhaust device 15 for maintaining the inside of the container in a decompressed state. Further, in the processing container 2, a delivery reel 7 for the long base material 3 and a take-up reel 8 for taking up the oxide superconducting wire after film formation are provided. The long wire 3 is pulled out from the delivery reel 7 and wound between the pair of winding member groups 25 and 6, and after passing through a large number of winding members 24, the long wire 3 is wound around the winding reel 8. Is provided. Between these winding member groups 25 and 6, a heater built-in base 19 for heating the long base material 3 to an appropriate film formation temperature is disposed.

処理容器2内に設けられたターゲットホルダ10は、ターゲット9の中心を軸として回転可能で且つ横移動(往復移動)可能に設けられている。このように、ターゲット9を回転可能且つ横移動可能に設けたことにより、長時間の成膜を継続して実施しても、ターゲット9の表面がほぼ均一に削られ、ターゲット9表面の形状乱れによってプルーム20の方向が変わる不具合を防止でき、長尺基材3の長手方向に均一な膜厚の超電導層33を形成することができる。   The target holder 10 provided in the processing container 2 is provided so as to be able to rotate around the center of the target 9 and to move laterally (reciprocate). As described above, by providing the target 9 so as to be rotatable and laterally movable, the surface of the target 9 is scraped almost uniformly even when film formation is continued for a long time, and the shape of the surface of the target 9 is disturbed. Therefore, the problem of changing the direction of the plume 20 can be prevented, and the superconducting layer 33 having a uniform film thickness can be formed in the longitudinal direction of the long base 3.

ターゲットホルダ10に取り付けられたターゲット9は、形成しようとする超電導層33と同等または近似した組成、あるいは、成膜中に逃避しやすい成分を多く含有させた複合酸化物の焼結体あるいは酸化物超電導体などの板体からなっている。従って、酸化物超電導体のターゲット9は、YBaCu、YBaCu、YBaCuなる組成、(Bi,Pb)CaSrCuなる組成、あるいはTlBaCaCu、TlBaCaCu、TlBaCaCuなる組成などに代表される臨界温度の高い超電導層33と同一の組成か近似した組成のものを用いることが好ましい。 The target 9 attached to the target holder 10 has a composition equivalent to or close to that of the superconducting layer 33 to be formed, or a composite oxide sintered body or oxide containing many components that are easily escaped during film formation. It consists of a plate such as a superconductor. Accordingly, the oxide superconductor target 9 has a composition of Y 1 Ba 2 Cu 3 O x , Y 2 Ba 4 Cu 8 O x , Y 3 Ba 3 Cu 6 O x , (Bi, Pb) 2 Ca 2 Sr 3. Cu 4 O x having a composition, or Tl 2 Ba 2 Ca 2 Cu 3 O x, Tl 1 Ba 2 Ca 2 Cu 3 O x, Tl 1 Ba 2 Ca 3 Cu 4 O x having a composition of critical temperature typified It is preferable to use the same composition as that of the high superconducting layer 33 or a composition similar to it.

このターゲット9にレーザ光12を照射するレーザ光発光手段11としては、ターゲット9から蒸着粒子を叩き出すことができるレーザ光12を発生するものであれば、Ar−F(193nm)、Kr−F(248nm)などのエキシマレーザ、YAGレーザ、CO2レーザなどのいずれのものを用いても良い。レーザ光発光手段11から照射されるレーザ光12は、反射ミラー16,18や集光レンズ17などの必要な光学系を経て、処理容器2に設けられた透明窓13を通して該容器内に入り、ターゲット9の表面に照射される。 The laser light emitting means 11 for irradiating the target 9 with the laser light 12 may be Ar-F (193 nm), Kr-F as long as the laser light 12 capable of knocking vapor deposition particles from the target 9 is generated. Any excimer laser such as (248 nm), YAG laser, CO 2 laser or the like may be used. The laser beam 12 emitted from the laser beam emitting means 11 passes through necessary optical systems such as the reflection mirrors 16 and 18 and the condenser lens 17 and enters the container through the transparent window 13 provided in the processing container 2. The surface of the target 9 is irradiated.

レーザの照射出力の調整は、レーザ光発光手段11に電力を供給する増幅装置(図示略)の出力を調整することにより行うことができる。また、レーザの照射周波数は、1秒間当たりに間欠的に発振されるレーザのパルスの数を示すものであり、この調整は、レーザ光発光手段11に電力を一定の周波数をもって間欠的に供給するか、レーザ光12が通過する経路のどこかに、回転セクタ等の機械的シャッタを設け、この機械的シャッタを一定の周波数をもって作動させることにより、調整することができる。   The adjustment of the laser irradiation output can be performed by adjusting the output of an amplifying device (not shown) that supplies power to the laser light emitting means 11. The laser irradiation frequency indicates the number of laser pulses intermittently oscillated per second. This adjustment supplies power to the laser light emitting means 11 intermittently at a constant frequency. Alternatively, it can be adjusted by providing a mechanical shutter such as a rotating sector somewhere in the path through which the laser beam 12 passes and operating this mechanical shutter at a constant frequency.

一対の巻回部材群25,6のうち、少なくとも一方の巻回部材群25は、長尺基材3が巻回される外周端面が平坦な巻回部材24を複数個、ロール受け軸21に同軸的に配列して構成されている。この巻回部材24は、外周端面に鍔部や溝などの凹凸のない円盤状をなしており、図4に示すように、その外周端面に長尺基材3を巻回した状態で、長尺基材3の表面(成膜面)が最外側となる。この巻回部材24に長尺基材3を巻回して成膜する場合、図1に示すようにプルーム20を当てると、巻回部材24の外周端面が平坦であることから、蒸着粒子は図4に示すように長尺基材3の面方向にスムーズに拡散され、均一に堆積される。   Among the pair of winding member groups 25, 6, at least one winding member group 25 includes a plurality of winding members 24 having a flat outer peripheral end surface around which the long base material 3 is wound. They are arranged coaxially. The winding member 24 has a disk shape with no irregularities such as a flange or a groove on the outer peripheral end surface. As shown in FIG. 4, a long base material 3 is wound around the outer peripheral end surface. The surface (film formation surface) of the scale substrate 3 is the outermost side. When the long base material 3 is wound around the winding member 24 to form a film, when the plume 20 is applied as shown in FIG. 1, the outer peripheral end surface of the winding member 24 is flat. As shown in FIG. 4, it is smoothly diffused in the surface direction of the long base material 3 and deposited uniformly.

この巻回部材24の近傍には、長尺基材3の軌道をガイドするための複数のガイドローラ28が設けられている。本実施形態において、これらのガイドローラ28は、図2及び図3に示すように、長尺基材3の両側に対をなすように設けられ、長尺基材3の両端をガイド溝29によりガイドすることにより、長尺基材3の軌道を確保している。   In the vicinity of the winding member 24, a plurality of guide rollers 28 for guiding the track of the long base material 3 are provided. In the present embodiment, as shown in FIGS. 2 and 3, these guide rollers 28 are provided so as to form a pair on both sides of the long base 3, and both ends of the long base 3 are guided by guide grooves 29. By guiding, the track of the long base material 3 is secured.

次に、前述したように構成された本実施形態の薄膜形成装置1を用い、長尺基材3の表面に酸化物超電導体からなる超電導層33を成膜し、図5に示す断面構造を有する酸化物超電導線材30を製造する方法を説明する。   Next, using the thin film forming apparatus 1 of the present embodiment configured as described above, a superconducting layer 33 made of an oxide superconductor is formed on the surface of the long base material 3, and the cross-sectional structure shown in FIG. A method for manufacturing the oxide superconducting wire 30 will be described.

この長尺基材3は、ハステロイ等の金属テープ状の基材31上にイオンビームアシストスパッタリング法等によってGdZr、CeO、YSZなどからなる1層又は2層以上の多結晶中間薄膜32を形成してなるものである。 This long base material 3 is made of one or two or more layers of polycrystals made of Gd 2 Zr 2 O 7 , CeO 2 , YSZ or the like on a metal tape-like base material 31 such as Hastelloy by ion beam assisted sputtering. The intermediate thin film 32 is formed.

この基材31の構成材料としては、ステンレス鋼、銅、または、ハステロイなどのニッケル合金などの各種金属材料から適宜選択される長尺の金属テープを用いることができる。この基材31の厚みは、0.01〜0.5mm、好ましくは0.02〜0.15mmとされる。基材31の厚みが0.5mm以上では、後述する超電導層33の膜厚に比べて厚く、オーバーオール(酸化物超電導導体全断面積)あたりの臨界電流密度としては低下してしまう。一方、基材31の厚みが0.01mm未満では、基材31の強度が低下し、超電導層33の補強効果を消失してしまう。   As a constituent material of the base material 31, a long metal tape appropriately selected from various metal materials such as stainless steel, copper, or a nickel alloy such as hastelloy can be used. The base material 31 has a thickness of 0.01 to 0.5 mm, preferably 0.02 to 0.15 mm. If the thickness of the base material 31 is 0.5 mm or more, it is thicker than the film thickness of the superconducting layer 33 described later, and the critical current density per overall (oxide superconducting conductor total cross-sectional area) is lowered. On the other hand, if the thickness of the base material 31 is less than 0.01 mm, the strength of the base material 31 is lowered and the reinforcing effect of the superconducting layer 33 is lost.

多結晶中間薄膜32は、立方晶系の結晶構造を有する結晶の集合した微細な結晶粒が多数相互に結晶粒界を介して接合一体化されてなるものであり、各結晶粒の結晶軸のc軸は基材1の上面(成膜面)に対してほぼ直角に向けられ、各結晶粒の結晶軸のa軸どうしおよびb軸どうしは、互いに同一方向に向けられて面内配向されている。多結晶中間薄膜32の厚みは、0.1〜1.0μmとされる。多結晶中間薄膜32の厚みを1.0μmを超えて厚くしてももはや効果の増大は期待できず、経済的にも不利となる。一方、多結晶中間薄膜32の厚みが0.1μm未満であると、薄すぎて超電導層33を十分支持できない恐れがある。この多結晶中間薄膜32の構成材料としてはGdZr、CeO、YSZの他に、MgO、SrTiO3等を用いることができる。 The polycrystalline intermediate thin film 32 is formed by joining and integrating a large number of fine crystal grains in which crystals having a cubic crystal structure are joined to each other via a crystal grain boundary. The c-axis is oriented substantially perpendicular to the upper surface (deposition surface) of the substrate 1, and the a-axis and the b-axis of each crystal grain are oriented in the same plane in the same direction. Yes. The thickness of the polycrystalline intermediate thin film 32 is 0.1 to 1.0 μm. Even if the thickness of the polycrystalline intermediate thin film 32 exceeds 1.0 μm, an increase in the effect can no longer be expected, which is economically disadvantageous. On the other hand, if the thickness of the polycrystalline intermediate thin film 32 is less than 0.1 μm, the superconducting layer 33 may not be sufficiently supported because it is too thin. As a constituent material of the polycrystalline intermediate thin film 32, MgO, SrTiO 3 or the like can be used in addition to Gd 2 Zr 2 O 7 , CeO 2 , YSZ.

成膜後に得られる酸化物超電導体からなる超電導層33は、YBaCu、YBaCu、YBaCuなる組成、(Bi,Pb)CaSrCuなる組成、あるいはTlBaCaCu、TlBaCaCu、TlBaCaCuなる組成などに代表される臨界温度の高い酸化物超電導体からなるものである。この超電導層33の厚みは、0.5〜5μm程度で、かつ均一な厚みとなっている。また、超電導層33の膜質は均一となっており、超電導層33の結晶のc軸とa軸とb軸も多結晶中間薄膜32の結晶に整合するようにエピタキシャル成長して結晶化しており、結晶配向性が優れたものとなっている。 The superconducting layer 33 made of an oxide superconductor obtained after the film formation is composed of Y 1 Ba 2 Cu 3 O x , Y 2 Ba 4 Cu 8 O x , Y 3 Ba 3 Cu 6 O x , (Bi, Pb). 2 Ca 2 Sr 3 Cu 4 O x , or Tl 2 Ba 2 Ca 2 Cu 3 O x , Tl 1 Ba 2 Ca 2 Cu 3 O x , Tl 1 Ba 2 Ca 3 Cu 4 O x It is made of an oxide superconductor having a high critical temperature. The thickness of the superconducting layer 33 is about 0.5 to 5 μm and has a uniform thickness. Further, the film quality of the superconducting layer 33 is uniform, and the c-axis, a-axis, and b-axis of the crystal of the superconducting layer 33 are epitaxially grown and crystallized so as to match the crystal of the polycrystalline intermediate thin film 32. The orientation is excellent.

図6に示す薄膜形成装置1を用いて長尺基材3の上に超電導層33を成膜するには、送出リール20に巻回されている長尺基材3を引き出しながら、一対の巻回部材群25,6に順次巻回し、その後巻取リール8に巻き取り可能に固定する。これによって、一対の巻回部材群25,6に巻回された長尺基材3がこれらの巻回部材群25,6を周回し、プルーム20が当たる部分に長尺基材3が複数列並んで移動するようになる。また、ターゲットホルダ10にターゲット9を取り付ける。その後、真空排気装置15を駆動し、処理容器2内を減圧する。この際、必要に応じて処理容器2内に酸素ガスを導入して容器内を酸素雰囲気としても良い。   In order to form the superconducting layer 33 on the long base 3 using the thin film forming apparatus 1 shown in FIG. 6, a pair of windings are taken out while pulling out the long base 3 wound on the delivery reel 20. The winding members 25 and 6 are sequentially wound, and then fixed to the take-up reel 8 so as to be rewound. Accordingly, the long base material 3 wound around the pair of winding member groups 25 and 6 circulates around the winding member groups 25 and 6, and the long base materials 3 are arranged in a plurality of rows at the portion where the plume 20 hits. Move side by side. Further, the target 9 is attached to the target holder 10. Thereafter, the vacuum exhaust device 15 is driven, and the inside of the processing container 2 is depressurized. At this time, oxygen gas may be introduced into the processing container 2 as necessary to make the inside of the container an oxygen atmosphere.

次に、一対の巻回部材群25,6の間に設けられたヒータ内蔵基台19のヒータに通電し、これらの巻回部材群25,6に巻回された長尺基材3が所定の成膜適温になるように加熱しておく。   Next, the heater of the heater built-in base 19 provided between the pair of winding member groups 25 and 6 is energized, and the long base material 3 wound around these winding member groups 25 and 6 is predetermined. The film is heated to an appropriate film formation temperature.

次に、送出リール7から長尺基材3を送り出しつつ、レーザ光発光手段11からレーザ光12を発生させ、透明窓13を通してレーザ光12を処理容器2内に導入し、ターゲット9に照射する。この時、レーザ光11の照射位置をターゲット9の表面上で移動させる走査を行いながらレーザ光12をターゲット9に照射してもよい。また、ターゲット9は、回転及び横方向に往復移動させている。このターゲット9の回転運動によりレーザ光12は円状の軌跡を描くので、ターゲット9表面は円状に削られ、また、前記往復運動によりレーザ光12はターゲット9の径方向に動くことで、ターゲット9の円周側から中心側にかけても削られるので、異なる場所のターゲット9の構成材料が叩き出されるか蒸発する。   Next, the laser beam 12 is generated from the laser beam emission means 11 while feeding the long base material 3 from the delivery reel 7, the laser beam 12 is introduced into the processing container 2 through the transparent window 13, and the target 9 is irradiated. . At this time, the target 9 may be irradiated with the laser beam 12 while performing scanning that moves the irradiation position of the laser beam 11 on the surface of the target 9. The target 9 is rotated and reciprocated in the lateral direction. Since the laser beam 12 draws a circular trajectory by the rotational movement of the target 9, the surface of the target 9 is cut into a circular shape, and the laser beam 12 moves in the radial direction of the target 9 by the reciprocating motion. 9 is also scraped from the circumferential side to the center side, so that the constituent material of the target 9 at different locations is knocked out or evaporated.

ターゲット9から叩き出され若しくは蒸発した蒸着粒子は、その放射方向の断面積が拡大したプルーム20となり、一対の巻回部材群25,6に巻回され、多数の巻回部材4間を周回することによって複数列に並んで移動している長尺基材3の表面に付着、堆積される。これによって長尺基材3の表面に酸化物超電導体からなる超電導層33が成膜される。   The vapor deposition particles knocked out or evaporated from the target 9 become a plume 20 having an enlarged radial sectional area, wound around a pair of winding member groups 25 and 6, and circulates between a large number of winding members 4. By this, it adheres and is deposited on the surface of the long base material 3 that is moving side by side in a plurality of rows. As a result, a superconducting layer 33 made of an oxide superconductor is formed on the surface of the long base 3.

このレーザ光12の照射エネルギーは200〜400mJの範囲であることが好ましい。レーザ光12の照射エネルギーが200mJ未満であると、ターゲット9に与える熱エネルギーが小さすぎてターゲット9の蒸着粒子を十分に叩き出し若しくは蒸発させることができず、超電導層33の成膜速度が低下してしまい効率的でないからであり、また、レーザ光12の出力が400mJを越えると、ターゲット9に与えるエネルギーが大きすぎてターゲット9に割れ等が生じる虞があるからである。   The irradiation energy of the laser beam 12 is preferably in the range of 200 to 400 mJ. When the irradiation energy of the laser beam 12 is less than 200 mJ, the thermal energy applied to the target 9 is too small to sufficiently eject or evaporate the vapor deposition particles of the target 9, and the deposition rate of the superconducting layer 33 is reduced. This is because it is not efficient, and when the output of the laser beam 12 exceeds 400 mJ, the energy applied to the target 9 is too large and the target 9 may be cracked.

さらに、レーザ光12の照射周波数は10〜200Hzの範囲であることが好ましい。レーザ光12の照射周波数が10Hz未満であると、照射出力を400mJとしても、ターゲット9に与えるエネルギーが小さすぎて、ターゲット9の蒸着粒子を十分に叩き出すことができず、超電導層33の成膜速度が低下してしまい効率的でないからであり、また、レーザ光12の照射周波数が200Hzを越えると、照射出力を200mJとしても、ターゲット9に与えるエネルギーが大きすぎてターゲット9に割れ等が生じる虞があるからである。   Furthermore, the irradiation frequency of the laser beam 12 is preferably in the range of 10 to 200 Hz. If the irradiation frequency of the laser beam 12 is less than 10 Hz, even if the irradiation output is set to 400 mJ, the energy given to the target 9 is too small, and the vapor deposition particles of the target 9 cannot be knocked out sufficiently, and the superconducting layer 33 is formed. This is because the film speed decreases and is not efficient, and when the irradiation frequency of the laser beam 12 exceeds 200 Hz, even if the irradiation output is 200 mJ, the energy applied to the target 9 is too large and the target 9 is cracked. This is because it may occur.

このように、長尺基材3が巻回部材群25,6を周回する間に、長尺基材3はプルーム20と接する領域を複数回通過することになる。長尺基材3がプルーム20と接する領域を通過する毎に、酸化物超電導体からなる薄膜が順次成膜されるので、その結果、多結晶中間薄膜30上に各層の厚みが略一定となるような積層構造の超電導層33が成膜され、図5に示す酸化物超電導線材30が得られる。超電導層33の成膜後、得られた酸化物超電導線材30は、巻取リール8に巻き取られる。   Thus, while the long base material 3 circulates the winding member groups 25 and 6, the long base material 3 passes through the region in contact with the plume 20 a plurality of times. Each time the long base material 3 passes through a region in contact with the plume 20, a thin film made of an oxide superconductor is sequentially formed. As a result, the thickness of each layer is substantially constant on the polycrystalline intermediate thin film 30. The superconducting layer 33 having such a laminated structure is formed, and the oxide superconducting wire 30 shown in FIG. 5 is obtained. After the superconducting layer 33 is formed, the obtained oxide superconducting wire 30 is taken up on the take-up reel 8.

この薄膜形成装置1は、長尺基材3が巻回される外周端面が平坦な巻回部材24を複数個同軸的に配列して構成した巻回部材群25を用いているので、図9に示すように外周面の厚さ方向両側に径方向に突出した鍔部22が設けられた巻回部材4を用いた場合と比べ、蒸着粒子が鍔部に堆積することがなく、蒸着粒子の面方向への拡散がスムーズになり、長尺基材3の表面に蒸着粒子が均一に付着・堆積するので、幅方向及び長手方向の厚さや特性の変動が少ない均一な薄膜を形成することができる。   Since this thin film forming apparatus 1 uses a winding member group 25 configured by coaxially arranging a plurality of winding members 24 each having a flat outer peripheral end surface around which the long base material 3 is wound. Compared to the case of using the winding member 4 provided with the flanges 22 projecting in the radial direction on both sides in the thickness direction of the outer peripheral surface, the vapor deposition particles are not deposited on the flanges. Since diffusion in the surface direction becomes smooth and vapor deposition particles adhere and deposit uniformly on the surface of the long base material 3, it is possible to form a uniform thin film with little variation in thickness and characteristics in the width direction and longitudinal direction. it can.

また、この巻回部材24の近傍に、長尺基材3の軌道をガイドするガイドローラ28を設けたことで、外周端面が平坦な巻回部材24を用いても長尺基材3の軌道を十分確保できる。また、ガイド部にガイドローラ28を用いることで、このガイド部での摩擦を殆ど無くすことができ、長尺基材3を傷めるおそれがない。   Further, by providing a guide roller 28 for guiding the track of the long base material 3 in the vicinity of the winding member 24, the track of the long base material 3 can be used even when the winding member 24 having a flat outer peripheral end surface is used. Can be secured sufficiently. Further, by using the guide roller 28 for the guide portion, friction at the guide portion can be almost eliminated, and there is no possibility of damaging the long base material 3.

本実施形態の薄膜形成装置1によれば、長尺基材3の表面に酸化物超電導体からなる超電導層33を成膜する場合、滑らかな面上にプルーム20を吹き付ける環境が得られるため、超電導層33を安定した一定方向への結晶成長が可能となり、超電導特性に優れた酸化物超電導線材30を製造することができる。   According to the thin film forming apparatus 1 of the present embodiment, when the superconducting layer 33 made of an oxide superconductor is formed on the surface of the long base material 3, an environment in which the plume 20 is sprayed on a smooth surface is obtained. The superconducting layer 33 can be stably grown in a certain direction, and the oxide superconducting wire 30 having excellent superconducting characteristics can be manufactured.

なお、前述した実施形態は本発明の例示に過ぎず、本発明は本実施形態に限定されるものではなく、各種の変更や修正が可能である。
例えば、前述した実施形態では、薄膜として酸化物超電導体からなる超電導層33を成膜する装置を例示しているが、本発明の薄膜形成装置は、他のレーザ蒸着が可能な材料、例えば、各種のセラミックス材料や金属材料などの成膜用に適用することができる。
また、長尺基材3はテープ状に限定されず、断面円形の線材等であっても良い。
The above-described embodiment is merely an example of the present invention, and the present invention is not limited to the present embodiment, and various changes and modifications can be made.
For example, in the above-described embodiment, an apparatus for forming the superconducting layer 33 made of an oxide superconductor as a thin film is illustrated. However, the thin film forming apparatus of the present invention is a material that can be used for other laser deposition, for example, It can be applied to film formation of various ceramic materials and metal materials.
Moreover, the elongate base material 3 is not limited to tape shape, A cross-section circular wire etc. may be sufficient.

[比較例]
図6に示す薄膜形成装置において、図9に示すように外周端面に鍔部が設けられた巻回部材4を複数個同軸的に配列してなる巻回部材群5,6を有する従来の薄膜形成装置を用い、テープ状の長尺基材の表面にYBaCuからなる超電導層を成膜した。線速を10m/時間とし、約10時間の連続成膜で厚さ1μmのYBaCuからなる超電導層を成膜し、全長100mの酸化物超電導線材を製造した。得られた酸化物超電導線材の臨界電流(Ic)は100m全長でIc=250Aであった。成膜開始時の該線材の臨界電流はIc=350Aと高かったものの、成膜後半から徐々に特性低下が見られ、成膜終了時の臨界電流はIc=250Aとなっていた。
このIc特性劣化の原因を調べるため、得られた酸化物超電導線材の超電導層をXRD分析した。その結果、成膜後半から徐々に特性低下が見られた部分の超電導層は、a軸配向粒子が成膜開始時のものよりも増加していることが判明した。
[Comparative example]
In the thin film forming apparatus shown in FIG. 6, a conventional thin film having winding member groups 5 and 6 formed by coaxially arranging a plurality of winding members 4 provided with flanges on the outer peripheral end face as shown in FIG. Using a forming apparatus, a superconducting layer made of Y 1 Ba 2 Cu 3 O x was formed on the surface of a tape-like long substrate. A superconducting layer made of Y 1 Ba 2 Cu 3 O x having a thickness of 1 μm was formed by continuous film formation for about 10 hours at a line speed of 10 m / hour, and an oxide superconducting wire having a total length of 100 m was manufactured. The critical current (Ic) of the obtained oxide superconducting wire was 100 m and Ic = 250A. Although the critical current of the wire at the start of film formation was as high as Ic = 350 A, the characteristics gradually decreased from the latter half of the film formation, and the critical current at the end of film formation was Ic = 250 A.
In order to investigate the cause of this Ic characteristic deterioration, the superconducting layer of the obtained oxide superconducting wire was subjected to XRD analysis. As a result, it was found that in the superconducting layer where the characteristic was gradually lowered from the latter half of the film formation, the number of a-axis oriented particles increased from that at the start of film formation.

[実施例]
一方、図6に示す薄膜形成装置において、図4に示すように外周端面が平坦な巻回部材24を複数個同軸的に配列してなる巻回部材群25を有する本発明に係る薄膜形成装置を作製し、前記比較例と同様にしてテープ状の長尺基材の表面にYBaCuからなる超電導層を成膜した。線速を10m/時間とし、約10時間の連続成膜で厚さ1μmのYBaCuからなる超電導層を成膜し、全長100mの酸化物超電導線材を製造した。得られた酸化物超電導線材の臨界電流(Ic)は100m全長でIc=400Aであり、比較例よりも高特性の酸化物超電導線材を製造することができた。
また、これよりも長い約50時間連続成膜実験においても、本発明に係る薄膜形成装置により、500m全長でIc=380Aの酸化物超電導線材を製造することができた。
[Example]
On the other hand, in the thin film forming apparatus shown in FIG. 6, as shown in FIG. 4, the thin film forming apparatus according to the present invention has a winding member group 25 in which a plurality of winding members 24 whose outer peripheral end surfaces are flat are arranged coaxially. A superconducting layer made of Y 1 Ba 2 Cu 3 O x was formed on the surface of the tape-like long base material in the same manner as in the comparative example. A superconducting layer made of Y 1 Ba 2 Cu 3 O x having a thickness of 1 μm was formed by continuous film formation for about 10 hours at a line speed of 10 m / hour, and an oxide superconducting wire having a total length of 100 m was manufactured. The critical current (Ic) of the obtained oxide superconducting wire was Ic = 400 A over the entire length of 100 m, and an oxide superconducting wire having higher characteristics than the comparative example could be produced.
Also, in the continuous film formation experiment for about 50 hours longer than this, the oxide superconducting wire having Ic = 380A with a total length of 500 m could be produced by the thin film forming apparatus according to the present invention.

本発明の薄膜形成装置の第1実施形態を示す要部側面図である。It is a principal part side view which shows 1st Embodiment of the thin film forming apparatus of this invention. 図1中のA部の平面図である。It is a top view of the A section in FIG. 図2中のC−C’部の断面図である。It is sectional drawing of the C-C 'part in FIG. 図1中のB部の断面図である。It is sectional drawing of the B section in FIG. 本発明の薄膜形成装置により製造される酸化物超電導線材の一例を示す断面図である。It is sectional drawing which shows an example of the oxide superconducting wire manufactured with the thin film forming apparatus of this invention. 本発明の薄膜形成装置の一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the thin film forming apparatus of this invention. 従来の薄膜形成装置の要部側面図である。It is a principal part side view of the conventional thin film forming apparatus. 従来の薄膜形成装置の要部平面図である。It is a principal part top view of the conventional thin film forming apparatus. 図8のD部の断面図である。It is sectional drawing of the D section of FIG.

符号の説明Explanation of symbols

1…薄膜形成装置、2…処理容器、3…長尺基材、4…巻回部材、5,6…巻回部材群、7…送出リール、8…巻取リール、9…ターゲット、10…ターゲットホルダ、11…レーザ光発光手段、12…レーザ光、13…透明窓、14…排気口、15…真空排気装置、16,18…反射ミラー、17…集光レンズ、19…ヒータ内蔵基台、20…プルーム、21…ロール受け軸、22…鍔部、23…ガイド溝、24…巻回部材、25…巻回部材群、28…ガイドローラ、29…ガイド溝、30…酸化物超電導線材、31…基材、32…多結晶中間薄膜、33…超電導層(酸化物超電導体薄膜)。
DESCRIPTION OF SYMBOLS 1 ... Thin film forming apparatus, 2 ... Processing container, 3 ... Long base material, 4 ... Winding member, 5,6 ... Winding member group, 7 ... Sending reel, 8 ... Winding reel, 9 ... Target, 10 ... Target holder, 11 ... laser light emitting means, 12 ... laser light, 13 ... transparent window, 14 ... exhaust port, 15 ... vacuum exhaust device, 16, 18 ... reflecting mirror, 17 ... condensing lens, 19 ... base with built-in heater 20 ... plume, 21 ... roll bearing shaft, 22 ... collar, 23 ... guide groove, 24 ... winding member, 25 ... winding member group, 28 ... guide roller, 29 ... guide groove, 30 ... oxide superconducting wire 31 ... Base material, 32 ... Polycrystalline intermediate thin film, 33 ... Superconducting layer (oxide superconductor thin film).

Claims (3)

長尺基材を収容する処理容器と、該処理容器内に配置され前記長尺基材を巻回する巻回部材を複数個同軸的に配列してなる少なくとも一対の巻回部材群と、これらの巻回部材群に巻回された長尺基材に近接して設けられたターゲットホルダと、該ターゲットホルダに保持されるターゲットにレーザ光を照射するレーザ光発光手段とを備え、前記レーザ光を前記ターゲットの表面に照射し、該ターゲットから叩き出され若しくは蒸発した蒸着粒子を、前記巻回部材群に巻回されこれらの巻回部材群を周回することによって複数列が接近した状態で平行に並べられた長尺基材の表面に堆積させる薄膜形成装置において、
前記巻回部材群は、前記長尺基材が巻回される外周端面が平坦な巻回部材を複数個同軸的に配列して構成されていることを特徴とする薄膜形成装置。
A processing container for storing a long base material, at least a pair of winding member groups in which a plurality of winding members that are arranged in the processing container and wind the long base material are coaxially arranged, and these A target holder provided in the vicinity of the long base material wound around the winding member group, and laser light emitting means for irradiating the target held by the target holder with laser light, the laser light Is irradiated on the surface of the target, and the vapor deposition particles struck or evaporated from the target are wound around the winding member group and are rotated around the winding member group so that a plurality of rows approach each other in parallel. In the thin film forming apparatus for depositing on the surface of the long base material arranged in
The winding member group is configured by coaxially arranging a plurality of winding members having flat outer peripheral end surfaces around which the long base material is wound.
前記巻回部材の近傍に、前記長尺基材の軌道をガイドするガイドローラが設けられたことを特徴とする請求項1に記載の薄膜形成装置。   The thin film forming apparatus according to claim 1, wherein a guide roller that guides a track of the long base material is provided in the vicinity of the winding member. 前記ターゲットは、酸化物超電導体材料であり、前記薄膜は酸化物超電導体薄膜であることを特徴とする請求項1又は2に記載の薄膜形成装置。
The thin film forming apparatus according to claim 1, wherein the target is an oxide superconductor material, and the thin film is an oxide superconductor thin film.
JP2005046720A 2005-02-23 2005-02-23 Thin film deposition system Withdrawn JP2006233247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005046720A JP2006233247A (en) 2005-02-23 2005-02-23 Thin film deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005046720A JP2006233247A (en) 2005-02-23 2005-02-23 Thin film deposition system

Publications (1)

Publication Number Publication Date
JP2006233247A true JP2006233247A (en) 2006-09-07

Family

ID=37041238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005046720A Withdrawn JP2006233247A (en) 2005-02-23 2005-02-23 Thin film deposition system

Country Status (1)

Country Link
JP (1) JP2006233247A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501313A (en) * 2009-07-28 2013-01-10 ユニバーシティー オブ ヒューストン システム Superconducting material with prefabricated nanostructures to improve flux pinning

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501313A (en) * 2009-07-28 2013-01-10 ユニバーシティー オブ ヒューストン システム Superconducting material with prefabricated nanostructures to improve flux pinning
US8926868B2 (en) 2009-07-28 2015-01-06 University Of Houston System Superconductive article with prefabricated nanostructure for improved flux pinning

Similar Documents

Publication Publication Date Title
US20100216646A1 (en) Method of patterning oxide superconducting films
JP2011060668A (en) Manufacturing method of long oxide superconductor by laser vapor deposition method
JP2006233266A (en) Thin film deposition apparatus
JP5452141B2 (en) Film forming method and film forming apparatus
JP2004263227A (en) Thin film deposition method and deposition system
JP2003055095A (en) Thin film deposition process
JP2006233247A (en) Thin film deposition system
JP5544271B2 (en) Method and apparatus for forming oxide superconductor thin film
JP2006233246A (en) Thin film forming apparatus
JP3877903B2 (en) Thin film formation method
JP2011146234A (en) Method of manufacturing oxide superconducting film
JP4619697B2 (en) Oxide superconducting conductor and manufacturing method thereof
JP4574380B2 (en) Manufacturing method and manufacturing apparatus for oxide superconducting wire
JP3874965B2 (en) Thin film formation method
JP2020139189A (en) Film deposition apparatus, film deposition method, and manufacturing method of superconducting wire rod using the same
JP5658891B2 (en) Manufacturing method of oxide superconducting film
JP4593300B2 (en) Manufacturing method and manufacturing apparatus for oxide superconducting wire
JP4519540B2 (en) Method for manufacturing oxide superconductor and oxide superconductor
JP4004598B2 (en) Method for forming thin film of oxide superconductor
JP2010121204A (en) Film deposition method and film deposition apparatus
JP2005113220A (en) Polycrystal thin film, its production method, and oxide superconductor
JP5492681B2 (en) Superconducting wire and manufacturing method thereof, superconducting coil and manufacturing method thereof
JP5624840B2 (en) Manufacturing method of oxide superconductor
JP2010123516A (en) Method of manufacturing substrate for oxide superconductor, method of manufacturing oxide superconductor, and device for forming cap layer for oxide superconductor
JP5216699B2 (en) Laser deposition equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513