JPH02149403A - Process for preparing oxide superconductor and heat-treating apparatus of the superconductor - Google Patents

Process for preparing oxide superconductor and heat-treating apparatus of the superconductor

Info

Publication number
JPH02149403A
JPH02149403A JP63303755A JP30375588A JPH02149403A JP H02149403 A JPH02149403 A JP H02149403A JP 63303755 A JP63303755 A JP 63303755A JP 30375588 A JP30375588 A JP 30375588A JP H02149403 A JPH02149403 A JP H02149403A
Authority
JP
Japan
Prior art keywords
oxide superconductor
precursor
thin film
heat
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63303755A
Other languages
Japanese (ja)
Inventor
Toshio Usui
俊雄 臼井
Kazunori Onabe
和憲 尾鍋
Tsukasa Kono
河野 宰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63303755A priority Critical patent/JPH02149403A/en
Publication of JPH02149403A publication Critical patent/JPH02149403A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain an oxide superconductor having superior characteristics consisting of satisfactorily oriented crystal structure by heat-treating an oxide superconductor or a precursor thereof while generating a temp. gradient in the superconductor or the precursor. CONSTITUTION:A substrate 20 is extended over supporting members 6, 7 after forming a thin film of a precursor of an oxide superconductor on the substrate 20. The supporting member 6 is heated at a desired temp. and an end side of the substrate 20 held in contact with the supporting member 6 is heated uniformly through the supporting member 6 at an almost same temp. as the supporting member 6. On one hand, the supporting member 7 is cooled through a heat transmitting body 9 with a cooling device 8, and another end side of the substrate 20 held in contact with the supporting member 7 is cooled. By heat-treating a thin film of an oxide superconductor or a precursor thereof while generating a temp. gradient in the thin film, a thermal stress exerts on the thin film due to the temp. gradient, but crystals of the thin film tend to transfer to an energetically stable state by reducing the thermal stress. Thus, orientation characteristics of the crystals are improved, and an oxide superconducting thin film having superior critical current characteristics is formed.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、結晶の配向性が良好な酸化物超電導体を得
ることができろ酸化物超電導体の製造方法およびこの製
造方法に用いる熱処理装置に関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a method for producing an oxide superconductor that can obtain an oxide superconductor with good crystal orientation, and a heat treatment apparatus used in this production method. Regarding.

「従来の技術 J 近年に至り、液体窒素温度を超える臨界温度を示す酸化
物超電導体の発見が相次いでなされているが、現在得ら
れている酸化物超電導体は内部に不純物を含んでいたり
、結晶の配向性が悪いなどの原因から、臨界電流特性に
劣る欠点がある。そして特に、この種の酸化物超電導体
は、結晶の特定の方向に電気を流し易い異方性を示すこ
とから、酸化物超電導体の臨界電流特性を向上さ仕ろに
は、結晶の配向性を向上させて結晶構造の整った酸化物
超電導体を生成することが必要とされている。
``Prior Art J'' In recent years, oxide superconductors with critical temperatures exceeding liquid nitrogen temperatures have been discovered one after another, but the oxide superconductors currently available contain impurities inside. Due to factors such as poor crystal orientation, this type of oxide superconductor has the disadvantage of poor critical current characteristics.In particular, this type of oxide superconductor exhibits anisotropy that allows electricity to flow easily in a specific direction of the crystal. In order to improve the critical current characteristics of oxide superconductors, it is necessary to improve crystal orientation to produce oxide superconductors with a well-organized crystal structure.

このような背景から従来、整った結晶構造の酸化物超電
導体を得るために2.スパッタリング法、CVD法(化
学気相成長法)、MBE法(分子線エピタキシー法)あ
るいはレーザ蒸着法などの種々の薄膜製造技術を応用し
て酸化物超電導体を製造することがなされている。
Against this background, in order to obtain an oxide superconductor with a well-ordered crystal structure, 2. Oxide superconductors have been manufactured by applying various thin film manufacturing techniques such as sputtering, CVD (chemical vapor deposition), MBE (molecular beam epitaxy), and laser evaporation.

ところが、前述の方法で製造した薄膜は、アモルファス
状態のものが多く1.超電導特性も低いものであるため
に、通常、成膜後に熱処理して薄膜の結晶化を行い、特
性の良好な酸化物超電導薄膜を得るようにしている。こ
こで前記熱処理を行うには、処理装置の内部の試料近く
に電熱ヒータを設けておくか、電熱ヒータを備えた電気
炉を用0し、これらの電熱ヒータを作動させて試料を加
熱することで行なっている。
However, most of the thin films produced by the above-mentioned method are in an amorphous state.1. Since the superconducting properties are also low, the thin film is usually crystallized by heat treatment after film formation to obtain an oxide superconducting thin film with good properties. To perform the heat treatment, an electric heater is provided near the sample inside the processing device, or an electric furnace equipped with an electric heater is used, and these electric heaters are activated to heat the sample. It is carried out in

「発明が解決しようとする課題」 ところが、試料近くに電熱ヒータを配置した場合、ある
いは、同一処理容器内に電熱ヒータを配した場合、電熱
ヒータの構成材料の成分が蒸発して処理容器の内部に飛
び出し、この成分が超電導薄膜に影響を及ぼして超電導
薄膜の特性を劣化さける問題がある。また、電熱ヒータ
に通電した場合、電熱ヒータがノイズを発生させるため
に、このノイズが処理装置の制御装置などに対するノイ
ズ源となって制御装置に影響を及ぼすおそれがあった。
``Problem to be Solved by the Invention'' However, when an electric heater is placed near a sample or when placed in the same processing container, components of the constituent materials of the electric heater evaporate and cause damage to the inside of the processing container. There is a problem in that these components can affect the superconducting thin film and deteriorate the properties of the superconducting thin film. Further, when the electric heater is energized, the electric heater generates noise, and this noise may become a noise source for the control device of the processing device and affect the control device.

なお、前述の各種の成膜技術と熱処理技術を応用して酸
化物超電導体を製造した場合であっても、結晶の配向性
を十分に揃えることか困難であるなどの原因から、現在
、十分に高い臨界電流値を示す酸化物超電導体を得るこ
とが困難な状態である。
Even when oxide superconductors are manufactured by applying the various film formation techniques and heat treatment techniques mentioned above, there are currently difficulties in achieving sufficient crystal orientation. It is difficult to obtain oxide superconductors that exhibit high critical current values.

本発明は、前記課題を解決するためになされたしので、
配向性の良好な結晶構造を何する高特性の酸化物超電導
体を製造する方法と熱処理装置の提供を目的とする。
The present invention has been made to solve the above problems, and therefore,
The object of the present invention is to provide a method and a heat treatment apparatus for producing a high-performance oxide superconductor having a crystal structure with good orientation.

[課題を解決するための手段] 請求項1に記載した発明は前記課題を解決するために、
酸化物超電導体またはその前駆体を熱処理するに際し、
酸化物超電導体またはその前駆体に温度勾配を与えた状
態で熱処理するものである。
[Means for solving the problem] In order to solve the problem, the invention described in claim 1 has the following features:
When heat treating an oxide superconductor or its precursor,
The oxide superconductor or its precursor is heat-treated under a temperature gradient.

請求項2に記載した発明はnfi記課題を解決するため
に、中空の処理容器と、この処理容器内に設すられて酸
化物超電導体またはその前駆体を支持する支持部材と、
この支持部材に支持された酸化物超電導体またはその前
駆体あるいは前記支持部材に光を照射して酸化物超電導
体またはその前駆体を部分加熱する加熱装置と、前記加
熱部分以外の部分の温度上昇を抑制する冷却手段とを具
備してなるしのである。
In order to solve the above problems, the invention described in claim 2 includes: a hollow processing container; a support member provided in the processing container to support an oxide superconductor or its precursor;
A heating device that partially heats the oxide superconductor or its precursor by irradiating the oxide superconductor or its precursor supported by the support member or the support member with light, and increases the temperature of a portion other than the heated portion. It also includes a cooling means for suppressing this.

「作用」 酸化物超電導体またはその前駆体に温度勾配を与えた状
態で熱処理がなされるので、熱処理時に酸化物超電導体
またはその前駆体の内部にM応力が発生し、これにより
酸化物超電導体またはその前駆体の結晶は熱応力を減少
させてエネルギー的に安定な単結晶の状態になろうとす
る。従って熱処理により結晶が均一に配向し、整った結
晶構造の臨界電流特性の良好な酸化物超電導体が生成す
る。
"Operation" Since heat treatment is performed with a temperature gradient applied to the oxide superconductor or its precursor, M stress is generated inside the oxide superconductor or its precursor during heat treatment, which causes the oxide superconductor to Alternatively, the precursor crystal attempts to reduce thermal stress and become an energetically stable single crystal state. Therefore, the heat treatment causes the crystals to be uniformly oriented, producing an oxide superconductor with a well-ordered crystal structure and good critical current characteristics.

また、前駆体の一部を光で加熱して池の部分を冷却装置
で冷却するならば1.酸化物超電導体またはその前駆体
は温度勾配を与えられた状態で熱処理される。さらに、
加熱装置の出力と冷却装置の出力を適宜調節するならば
、所望の温度勾配が酸化物超電導体またはその前駆体に
与えられる。
Also, if a part of the precursor is heated with light and the pond part is cooled with a cooling device, 1. The oxide superconductor or its precursor is heat-treated under a temperature gradient. moreover,
By appropriately adjusting the output of the heating device and the output of the cooling device, a desired temperature gradient can be provided to the oxide superconductor or its precursor.

「実施例」 第1図は本発明の方法を実施する場合に用いる装置の一
例を示すもので、この例の装置は、内部を真空排気可能
な構造とした処理容器1とこの処理容器1に接続された
加熱装置2を具備して構成されている。
``Example'' Figure 1 shows an example of an apparatus used to carry out the method of the present invention. It is configured to include a heating device 2 connected thereto.

前記処理容器lは、その側壁に形成された排気孔1aを
介して真空排気装置3に接続されるとともに、導入管5
を介して反応ガス供給源4に接続されている。前記導入
管5は処理容器1の側壁を貫通して処理容器lの中央部
まで延出されている。
The processing container l is connected to a vacuum exhaust device 3 through an exhaust hole 1a formed in its side wall, and is connected to an inlet pipe 5.
It is connected to the reaction gas supply source 4 via. The introduction pipe 5 passes through the side wall of the processing container 1 and extends to the center of the processing container l.

なお、前記真空排気装置3は処理容器1の内部を真空排
気できるものであり18反応ガス供給源4は純酸素ガス
あるいは酸素ガスを含む不活性ガスなどを処理容器1の
内部に供給するものである。
The evacuation device 3 is capable of evacuating the inside of the processing container 1, and the reaction gas supply source 4 is used to supply pure oxygen gas or an inert gas containing oxygen gas to the inside of the processing container 1. be.

また、処理容器lの中央部には、ステンレス綱あるいは
銅などの良熱伝導性の金属材料からなる11型の支持部
材6.7が互いに離間して設置されている。これらの支
持部材6.7は後述する酸化物超電導体の前駆体を処理
容器の内部で支持するためのらので、支持部材6,7は
、後述の熱処理時の高温に耐える材料であって熱伝導性
の良好な金属材料から形成することが好ましい。なお、
支持部材6.7の形状は図面に示すような側面IJ型に
限るものではなく、後述の前駆体を支持できる形状であ
れば任意の形状で良い。従って前駆体を把持てきるよう
なチャック状のものなどでら良い。
Further, in the center of the processing container 1, support members 6.7 of type 11 made of a metal material with good thermal conductivity such as stainless steel or copper are installed spaced apart from each other. These supporting members 6 and 7 are used to support the precursor of the oxide superconductor described later inside the processing container, so the supporting members 6 and 7 are made of materials that can withstand high temperatures during the heat treatment described later. It is preferable to form it from a metal material with good conductivity. In addition,
The shape of the support member 6.7 is not limited to the side face IJ type shown in the drawings, but may be any shape as long as it can support the precursor described later. Therefore, a chuck-like material that can hold the precursor is sufficient.

一方、第1図の右側の支持部材7の上方にはクライオス
タットなどの冷却装置8が設置されるとともに、この冷
却装置8と前記支持部材7はヒートシンクあるいはヒー
トバイブなどの伝熱部材9て接続されている。前記冷却
袋@8は内部に液体窒素などの冷媒を収容可能あるいは
循環可能に形成されたものである。なおこの例では、冷
却装置8と支持部材7とが離間して設置しているが、冷
却装置8を支持部材7に直接接触させて設け、伝熱部材
9を省略しても差し支えない。
On the other hand, a cooling device 8 such as a cryostat is installed above the support member 7 on the right side of FIG. ing. The cooling bag @8 is formed so that a refrigerant such as liquid nitrogen can be housed or circulated therein. In this example, the cooling device 8 and the support member 7 are installed separately, but the cooling device 8 may be provided in direct contact with the support member 7 and the heat transfer member 9 may be omitted.

更に支持部材6.7の下方には、支持部材6.7と離間
してシャッター板lOが設置されるとともに、処理容器
lの側部には5.前記シャッター板lOに接続された調
整つまみ11が形成されている。
Further, a shutter plate lO is installed below the support member 6.7 and apart from the support member 6.7, and a shutter plate lO is installed on the side of the processing container l. An adjustment knob 11 connected to the shutter plate IO is formed.

0η記シヤツター板10は支持部材6の下方にしはり孔
10aを設けてなるもので、前記調整つまみ11を回転
させることてしぼり孔10aの開口面積を」、11節で
きろようになっている。
The shutter plate 10 is provided with an aperture hole 10a below the support member 6, and by rotating the adjustment knob 11, the opening area of the aperture hole 10a can be adjusted to 11 sections.

一方、処理容器lの底部には、加熱装置2が接続されて
いる。この加熱装置2は、内部に赤外線ランプなどの熱
源ランプ13を備えた反射ボックス14と、この反射ホ
ックス14に取り付けられた石英ロッドなとの導光体1
5を主体として構成されている。前記反射ボックス14
の内面に)よ、曲面状の反射ミラー16が形成されると
としに、前記導光体15の一端は熱源ランプ13に対向
するように反射ボックス14に取り付けられ、導光体1
5の先端部は前記処理容器1の底部壁を11通して前記
シャッター板10のしぼり孔10aに近接されている。
On the other hand, a heating device 2 is connected to the bottom of the processing container l. This heating device 2 includes a reflection box 14 equipped with a heat source lamp 13 such as an infrared lamp inside, and a light guide 1 such as a quartz rod attached to the reflection box 14.
It is mainly composed of 5. The reflection box 14
A curved reflection mirror 16 is formed on the inner surface of the light guide 1. One end of the light guide 15 is attached to the reflection box 14 so as to face the heat source lamp 13.
The tip end of 5 passes through the bottom wall 11 of the processing container 1 and is close to the throttle hole 10a of the shutter plate 10.

なお、導光体15はその一端側から入射された光を他端
側に導(もので、この例では導光体15に石英ロッドを
用いたが、この導光体15は光を導く構造のものであれ
は良いので単芯あるいはバンドル構造の先ファイバなど
を用いても良い。
Note that the light guide 15 guides light incident from one end to the other end. In this example, a quartz rod is used for the light guide 15, but this light guide 15 has a structure that guides light. Any type of fiber may be used, so a single-core fiber or a fiber with a bundle structure may be used.

次に前記構造の装置を用いて本発明方法を実施する場合
について説明する。
Next, a case will be described in which the method of the present invention is implemented using the apparatus having the above structure.

本発明方法の実施に先立ち、従来知られている方法を用
いて酸化物超電導体の前駆体を製造する。
Prior to carrying out the method of the present invention, a precursor of an oxide superconductor is produced using a conventionally known method.

この例の場合、膜状の酸化物超電導体を用いるので、M
gOあるいはS rT io 、などからなる基板20
上に、CVD法、MOCVD法、レーザ蒸着法、スパッ
タリング法、MBE法などの手段を用いて酸化物超電導
体の前駆体薄膜を形成する。
In this example, since a film-like oxide superconductor is used, M
A substrate 20 made of gO or S rT io , etc.
A precursor thin film of an oxide superconductor is formed thereon using a method such as a CVD method, an MOCVD method, a laser evaporation method, a sputtering method, or an MBE method.

次いでこの前駆体薄膜を熱処理する。This precursor thin film is then heat treated.

前述の方法で基板20上に酸化物超電導体の前駆体薄膜
を形成したならば、この基板20を第1図に示すように
支持部材6.7にまたがるように設置する。なお、この
ように支持部材6.7に設置するものは、前記成膜法で
製造された超電導特性を示す酸化物超電導体の薄膜であ
っても良い。
Once the oxide superconductor precursor thin film has been formed on the substrate 20 by the method described above, the substrate 20 is placed so as to straddle the support member 6.7 as shown in FIG. Note that what is installed on the support member 6.7 in this manner may be a thin film of an oxide superconductor that exhibits superconducting properties and is manufactured by the film forming method described above.

次に処理容器lの内部を排気するとともに、導入管5か
ら酸素ガスあるいは酸素ガスを含む不活性ガスを処理容
器lの内部に供給する。この場合、処理容器lの内部を
真空排気しても良い。
Next, the inside of the processing container 1 is evacuated, and oxygen gas or an inert gas containing oxygen gas is supplied into the processing container 1 from the introduction pipe 5. In this case, the inside of the processing container 1 may be evacuated.

次に熱源ランプ13に通電してこれを発光させてこの光
を反射ミラー16で反射さ仕て導光体15に送り、更に
導光体15を介して処理容器lの内部側に送り、支持部
材6の下面に集光照射する。
Next, the heat source lamp 13 is energized to emit light, and this light is reflected by the reflecting mirror 16 and sent to the light guide 15, and further sent to the inside of the processing container l via the light guide 15, and is supported. The lower surface of the member 6 is irradiated with focused light.

ここで調整つまみ11を回してシャッター板IOの開口
面積を調節し、導光体15から支持部材6の下面に照射
される光を調節する。
Here, the adjustment knob 11 is turned to adjust the opening area of the shutter plate IO, and the light irradiated from the light guide 15 to the lower surface of the support member 6 is adjusted.

以上の操作により支持部材6を所望の温度に加熱するこ
とができ、支持部材6を介して支持部材6に接触した基
板20の一端側を支持部材6と同程度の温度に均一に加
熱することができろ。一方、支持部材7は伝熱体9を介
して冷却装置8で冷却され、支持部材7に接触している
基板20の他端側は冷却される。従って基板20は支持
部材6に接触した部分側が高温、例えば第2図に示すよ
うにT 2℃に加熱され、支持部材7に接触した部分側
が低温、例えば第2図にテすように11℃に加熱された
状態で熱処理される。
By the above operations, the support member 6 can be heated to a desired temperature, and one end side of the substrate 20 that is in contact with the support member 6 via the support member 6 can be uniformly heated to the same temperature as the support member 6. Be able to do it. On the other hand, the support member 7 is cooled by the cooling device 8 via the heat transfer body 9, and the other end side of the substrate 20 that is in contact with the support member 7 is cooled. Therefore, the part of the substrate 20 that is in contact with the support member 6 is heated to a high temperature, for example, T2°C as shown in FIG. It is heat treated in a heated state.

なお、熱処理温度は、基板上に形成された酸化物超電導
体の前駆体薄膜の種類によって適宜設定する。即ち、試
料20の高温側の温度は酸化物超電導体の溶融温度ある
いは分解温度よりも低い温度であることが必要であり、
低温側の温度は酸化物超電導体の結晶化温度よりも高い
温度であることか必要である。従って高温側の温度はY
−BaCu−0系の酸化物超電導体の前駆体薄膜を用い
ろ場合は、酸化物超電導体が分解するおそれのある温度
以下、即ち、950°C以下が好ましく、BiS r−
Ca−Cu−0系の酸化物超電導体の前駆体薄膜では酸
化物超電導体が溶融するおそれのある温度以下、即ち、
870℃以下が好ましい。また、低温側の温度はいずれ
の系の場合も400℃以上が好ましい。
Note that the heat treatment temperature is appropriately set depending on the type of precursor thin film of the oxide superconductor formed on the substrate. That is, the temperature on the high temperature side of the sample 20 needs to be lower than the melting temperature or decomposition temperature of the oxide superconductor.
The temperature on the low temperature side needs to be higher than the crystallization temperature of the oxide superconductor. Therefore, the temperature on the high temperature side is Y
- When using a precursor thin film of a BaCu-0 based oxide superconductor, the temperature is preferably below the temperature at which the oxide superconductor may decompose, that is, below 950°C;
In the precursor thin film of Ca-Cu-0 based oxide superconductor, the temperature is below the temperature at which the oxide superconductor may melt, that is,
The temperature is preferably 870°C or lower. Moreover, the temperature on the low-temperature side is preferably 400° C. or higher in any system.

なおまた、熱処理時に与える温度勾配は大きいほうが好
ましいが、前述した高温側の最高温度と低温側の最低温
度の規制が生じるのでこの規制から生じる範囲内に設定
される。更に、熱処理時間は結晶の配向性を十分に行う
ことが必要であることから、2〜3時間程度以−りの長
い時間が好ましいが、数10分以上であっても差し支え
ない。
Furthermore, although it is preferable that the temperature gradient given during the heat treatment be large, since the maximum temperature on the high temperature side and the minimum temperature on the low temperature side are regulated as described above, it is set within the range resulting from these regulations. Further, since it is necessary to achieve sufficient crystal orientation, the heat treatment time is preferably about 2 to 3 hours or longer, but may be several tens of minutes or more.

以上説明したように酸化物超電導体またはその前駆体の
薄膜に温度勾配を与えつつ熱処理するならば、lAλ度
勾配により薄膜に熱応力か作用し、薄膜の結晶はこの熱
応力を減少させてエネルギー的に安定な状態に移行しよ
うとする。従って薄膜の結晶はエネルギー的に安定な単
結晶状態に移行しようとして結晶の配向性が向上し、臨
界電流特性の優秀な酸化物超電導薄膜が生成する。
As explained above, if a thin film of an oxide superconductor or its precursor is heat-treated while applying a temperature gradient, thermal stress acts on the thin film due to the lAλ degree gradient, and the crystals of the thin film reduce this thermal stress and generate energy. attempts to move to a stable state. Therefore, the crystals in the thin film tend to transition to an energetically stable single crystal state, improving crystal orientation and producing an oxide superconducting thin film with excellent critical current characteristics.

また、前記結晶配列の際に、酸素ガスか導入管5によっ
て供給されるために、熱処理後に酸化物超電導体の結晶
が正方品から斜方晶に変態する場合に酸素不足を生じる
ことがないので臨界温度ら十分に高い超電導体の薄膜が
得られる。
Furthermore, since oxygen gas is supplied through the inlet pipe 5 during the crystal alignment, oxygen deficiency will not occur when the crystals of the oxide superconductor transform from tetragonal to orthorhombic crystals after heat treatment. A thin film of a superconductor with a sufficiently high critical temperature can be obtained.

なお、前記構造の装置は、外部から光エネルギーによっ
て基板20を加熱する構造であり、処理容器1の内部に
電熱ヒータなどの汚染源が存在しないので、酸化物超電
導薄膜を汚染することなく熱処理ができる。さらに、光
を導光体15によって処理容器1の内部に導く構造であ
るので、処理容器の側壁が透明ではなくとも光エネルギ
ーを用いて処理容器1の内部の基板20を加熱すること
ができる。また、導光体15を処理容器lの側壁を貫通
させて設けているが11貫通部分を気密構造にすると処
理容器1を簡単に密閉構造にすることができる。
Note that the apparatus having the above structure has a structure in which the substrate 20 is heated by light energy from the outside, and there is no contamination source such as an electric heater inside the processing chamber 1, so that heat treatment can be performed without contaminating the oxide superconducting thin film. . Furthermore, since the structure is such that light is guided into the processing container 1 by the light guide 15, the substrate 20 inside the processing container 1 can be heated using optical energy even if the side wall of the processing container is not transparent. Further, although the light guide 15 is provided to penetrate the side wall of the processing container 1, the processing container 1 can be easily made into a sealed structure by making the portion through which the light guide 15 passes through an airtight structure.

なお、酸化物超電導体の結晶においてはCu原子と0原
子が形成する而と平行な方向(即ち、酸化物超電導体の
結晶のa軸とb軸か作る面と平行な面)に沿って電流を
流し易い異方性を有することが知られているが、この例
のように熱処理した場合は、前記a、b軸と垂直な軸、
即ち、結晶のC軸が基板に対して垂直に向いた状態で結
晶配向するので、電流を流し易い方向は基板に対して平
行な方向になる。
In addition, in the crystal of the oxide superconductor, the current flows along the direction parallel to the plane formed by the Cu atoms and the zero atoms (that is, the plane parallel to the plane formed by the a-axis and b-axis of the crystal of the oxide superconductor). It is known that the axes perpendicular to the a and b axes,
That is, since the crystal is oriented with the C-axis of the crystal perpendicular to the substrate, the direction in which current can easily flow is parallel to the substrate.

ところで第1図に示す装置においては、支持部材6を加
熱して間接的に基板20の一端側を加熱するように構成
したが、加熱装置2の導光体15の位置としぼり孔10
aの位置を変更して基板20の一端側を直接光で加熱で
きるように構成しても良い。
By the way, in the apparatus shown in FIG. 1, the support member 6 is heated to indirectly heat one end side of the substrate 20.
The configuration may be such that the position of a is changed so that one end of the substrate 20 can be directly heated with light.

また、第1図に示す装置を用いて基板に温度勾配をつけ
た場合、その温度勾配を制御し把握する場合について以
下に説明する。
Further, when a temperature gradient is created on a substrate using the apparatus shown in FIG. 1, a case in which the temperature gradient is controlled and grasped will be described below.

iQ記温度勾配を制御するには、基板裏面側に第3図に
符号A 、B 、C、Dで示すような位置に熱電対を取
り付けてこれらの測定結果を把握し、熱源ランプ13の
出力を調節すれば良い。
To control the temperature gradient in iQ, attach thermocouples to the back side of the board at the positions shown by symbols A, B, C, and D in FIG. All you have to do is adjust it.

熱源ランプに赤外線ランプを用い、第3図に示すように
熱電対を取り付けて基板温度を測定したところ、赤外線
ランプ電流を3 A、6 A、8 Aに設定することに
より、基板のA部分と8部分とC部分とD部分において
第4図に示すように、語文勾配を与え得ることを実証で
きtこ。
Using an infrared lamp as the heat source lamp and attaching a thermocouple as shown in Figure 3, the substrate temperature was measured. By setting the infrared lamp current to 3 A, 6 A, and 8 A, As shown in Fig. 4, we can demonstrate that it is possible to give a sentence gradient in parts 8, C, and D.

「製造例」 高周波スパッタリング装置を用い、MgOあるいはS 
rT io sからなる幅10 mm、長さ10mm。
"Production example" Using high frequency sputtering equipment, MgO or S
rT io s, width 10 mm, length 10 mm.

17さ0.5mmの基板の上に、l O−3torrの
圧力下においてスパッタリングを行ってB izP b
o、as ryCas Cu30 Xなる組成、あるい
は、Y 、B a、Cu307−8なる組成の厚さ2μ
mの酸化物超電導体の耐駆体薄膜を作製した。
BizP b was sputtered onto a 0.5 mm substrate with a diameter of 17 mm under a pressure of 1 O-3 torr.
o, asryCas Cu30X composition, or Y, Ba, Cu307-8 thickness 2μ
A precursor thin film of an oxide superconductor of m was prepared.

次にこれらの基板に対し、第2図に示すように右側端部
をTloCとなるように、左側端部をT2°Cとなるよ
うに温度差を与えた状態で熱処理を行って酸化物超電導
薄膜を得た。また、比較の1こめに、冷却装置を作動さ
せずにT 、= T 2に設定して熱処理することによ
り酸化物超電導薄膜を製造した。
Next, these substrates are heat-treated with a temperature difference such that the right end becomes TloC and the left end becomes T2°C, as shown in Figure 2, to create oxide superconductivity. A thin film was obtained. In addition, as a first comparison, an oxide superconducting thin film was manufactured by heat treatment at T, = T2 without operating the cooling device.

なお、前記熱処理において Bi系の前駆体薄膜に対し
ては処理容器の内部を7%O,ガスを含むArガス雰囲
気でl気圧に設定して3時間加熱する熱処理を行い、Y
系の前駆体薄膜には02ガス雰囲気で1気圧に設定して
3時間加熱する熱処理を行った。
In the above heat treatment, the Bi-based precursor thin film was heated for 3 hours in an Ar gas atmosphere containing 7% O and gas in the inside of the processing container.
The precursor thin film of the system was heat-treated in an O2 gas atmosphere at a pressure of 1 atm for 3 hours.

熱処理後に得られた酸化物超電導薄膜の77Kにおける
臨界電流密度と、加熱温度T + 、 T *の値、お
よびT、とT、の温度差ΔTを第1表に示す。
Table 1 shows the critical current density at 77 K of the oxide superconducting thin film obtained after the heat treatment, the values of the heating temperatures T + and T *, and the temperature difference ΔT between T and T.

(以下、余白) 第1表 第1表に示す結果から、Y系の薄膜とBi系の薄膜の双
方において温度勾配を与えた状態て熱処理したしののほ
うが臨界電流密度か高く、しから温度勾配が大きいほど
臨界電流密度の向上効果が大きいことが判明した。
(Hereinafter, blank space) From the results shown in Table 1, it is clear that the critical current density is higher for the Y-based thin film and the Bi-based thin film that were heat-treated with a temperature gradient applied to both. It was found that the larger the gradient, the greater the effect of improving the critical current density.

「発明の効果」 以上説明したように本発明の方法は、酸化物超電導体ま
たはその前駆体に温度勾配を与えた状態で熱処理するの
で、温度勾配がつけられた酸化物超電導体またはその前
駆体には熱応力が作用し、その結晶はこの熱応力を解消
するように配向するので、配向性の良好な結晶構造を有
ケる酸化物超電導体が得られる。従って臨界電流密度の
高い優れた酸化物超電導体を得ることができる。また、
温度勾配の割合を調節することにより所望の結晶配向性
の酸化物超電導体を得ろことができろ。
"Effects of the Invention" As explained above, the method of the present invention heat-treats the oxide superconductor or its precursor with a temperature gradient. Since thermal stress acts on the crystals and the crystals are oriented to eliminate this thermal stress, an oxide superconductor having a crystal structure with good orientation can be obtained. Therefore, an excellent oxide superconductor with a high critical current density can be obtained. Also,
By adjusting the rate of temperature gradient, it is possible to obtain an oxide superconductor with a desired crystal orientation.

また、本発明の装置を用いることにより酸化物超電導体
またはその前駆体に温度勾配を与えた状態で熱処理でき
るので、臨界電流密度の高い優れた酸化物超電導体を得
ろことができる。更に、加熱装置の出力と冷却装置の出
力を調節することにより所望の温度差を与えつつ熱処理
することができる。更にまた、処理容器の内部に電熱ヒ
ータなどの汚染源を設けることなく酸化物超電導体また
その前駆体を加熱できるので、電熱ヒータの原子で前駆
体を汚染することなく熱処理できる効果がある。
Further, by using the apparatus of the present invention, an oxide superconductor or its precursor can be heat-treated with a temperature gradient applied to it, making it possible to obtain an excellent oxide superconductor with a high critical current density. Further, by adjusting the output of the heating device and the output of the cooling device, heat treatment can be performed while providing a desired temperature difference. Furthermore, since the oxide superconductor or its precursor can be heated without providing a contamination source such as an electric heater inside the processing container, there is an effect that heat treatment can be performed without contaminating the precursor with atoms of the electric heater.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示す構成図、第2図は
基板を示す平面図、第3図は基板裏面に取り付けた熱電
対の位置を示す平面図、第4図は熱電対を取り付けた基
板の各部分の温度と赤外線ランプ電流の関係を示す図で
ある。 ・処理容器、 排気装置、 ・・支持部材、 伝熱部材、 Oa・・しぼり孔、 5・・・導光体、 6・・・反射ミラー 加熱装置、 ・・・反応ガス供給源、 冷却装置、 0・・・ンヤッター仮、 3・・熱源ランプ、 20・・基板。
Fig. 1 is a configuration diagram showing an embodiment of the device of the present invention, Fig. 2 is a plan view showing the board, Fig. 3 is a plan view showing the position of the thermocouple attached to the back of the board, and Fig. 4 is the thermocouple. FIG. 3 is a diagram showing the relationship between the temperature of each part of the board to which the infrared lamp is attached and the infrared lamp current.・Processing container, exhaust device, ・・support member, heat transfer member, Oa・・throttle hole, 5・・light guide, 6・・reflection mirror heating device, ・・reactive gas supply source, cooling device, 0... Nyatter temporary, 3... Heat source lamp, 20... Board.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化物超電導体またはその前駆体を熱処理するに
際し、酸化物超電導体またはその前駆体に温度勾配を与
えた状態で熱処理することを特徴とする酸化物超電導体
の製造方法。
(1) A method for producing an oxide superconductor, which comprises heat-treating the oxide superconductor or its precursor in a state where a temperature gradient is applied to the oxide superconductor or its precursor.
(2)中空の処理容器と、この処理容器内に設けられて
酸化物超電導体またはその前駆体を支持する支持部材と
、この支持部材に支持された酸化物超電導体またはその
前駆体あるいは前記支持部材に光を照射して酸化物超電
導体またはその前駆体を部分加熱する加熱装置と、前記
加熱部分以外の部分の温度上昇を抑制する冷却手段とを
具備してなることを特徴とする酸化物超電導体の熱処理
装置。
(2) A hollow processing container, a support member provided in the processing container to support the oxide superconductor or its precursor, and the oxide superconductor or its precursor supported by the support member, or the support An oxide comprising: a heating device that partially heats an oxide superconductor or its precursor by irradiating the member with light; and a cooling means that suppresses a temperature rise in a portion other than the heated portion. Heat treatment equipment for superconductors.
JP63303755A 1988-11-30 1988-11-30 Process for preparing oxide superconductor and heat-treating apparatus of the superconductor Pending JPH02149403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63303755A JPH02149403A (en) 1988-11-30 1988-11-30 Process for preparing oxide superconductor and heat-treating apparatus of the superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63303755A JPH02149403A (en) 1988-11-30 1988-11-30 Process for preparing oxide superconductor and heat-treating apparatus of the superconductor

Publications (1)

Publication Number Publication Date
JPH02149403A true JPH02149403A (en) 1990-06-08

Family

ID=17924884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63303755A Pending JPH02149403A (en) 1988-11-30 1988-11-30 Process for preparing oxide superconductor and heat-treating apparatus of the superconductor

Country Status (1)

Country Link
JP (1) JPH02149403A (en)

Similar Documents

Publication Publication Date Title
JP2757284B2 (en) Method for producing metal oxide superconducting material layer by laser evaporation
JP3835685B2 (en) Superconductor magnesium diboride thin film, manufacturing method and manufacturing apparatus thereof
US5350738A (en) Method of manufacturing an oxide superconductor film
Liao et al. Growth of beta barium borate (β-BaB2O4) thin films for nonlinear optical applications
JPH04104901A (en) Production of oxide superconducting thin film
JPH01309956A (en) Production of oxide superconductor
JP3351477B2 (en) Solid laser crystal thin film forming method and solid laser crystal thin film forming apparatus
JPH02149403A (en) Process for preparing oxide superconductor and heat-treating apparatus of the superconductor
Wu et al. In situ growth of Y1Ba2Cu3O7− x superconducting thin films using a pulsed neodymium: yttrium aluminum garnet laser with CO2 laser heated substrates
JPH02149402A (en) Process and device for preparing oxide superconductor
US5248659A (en) Process for preparing a superconducting thin oxide film
JPH02149664A (en) Device for producing oxide superconductor
KR970009739B1 (en) Method of manufacture for superconductor thin film
JP3844630B2 (en) Target holder
JPH0248404A (en) Method for forming superconducting thin film and apparatus therefor
Tang et al. Preparation of Tl2Ba2Ca2Cu3O10 thin films via low-temperature Tl-diffusion
Sonnenberg et al. The Influence of Processing Parameters on the Development of Biaxially Aligned Zirconia Thin Films Deposited by Ion Beam Assisted Deposition
JP3856995B2 (en) Oxide superconducting thin film manufacturing apparatus and oxide superconducting thin film manufacturing method
JP3536915B2 (en) Method for producing composite oxide single crystal thin film
JPH04175206A (en) Method and apparatus for production of oxide superconducting thin film
KR100466825B1 (en) Fabricating Technology for Thin Film Deposition system using pulsed Laser
JPH0450104A (en) Production of high-quality oxide superconducting thin film and equipment therefor
JP3705874B2 (en) Oxide superconductor manufacturing equipment
JPH03174305A (en) Production of oxide superconductor
JPH0446081A (en) Formation of oxide superconducting thin film