JP2520617B2 - Semiconductor crystal growth method and apparatus for implementing the same - Google Patents

Semiconductor crystal growth method and apparatus for implementing the same

Info

Publication number
JP2520617B2
JP2520617B2 JP62001044A JP104487A JP2520617B2 JP 2520617 B2 JP2520617 B2 JP 2520617B2 JP 62001044 A JP62001044 A JP 62001044A JP 104487 A JP104487 A JP 104487A JP 2520617 B2 JP2520617 B2 JP 2520617B2
Authority
JP
Japan
Prior art keywords
semiconductor crystal
substrate
compound semiconductor
molecular beam
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62001044A
Other languages
Japanese (ja)
Other versions
JPS63169718A (en
Inventor
淳二 斉藤
和夫 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62001044A priority Critical patent/JP2520617B2/en
Publication of JPS63169718A publication Critical patent/JPS63169718A/en
Application granted granted Critical
Publication of JP2520617B2 publication Critical patent/JP2520617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 〔概要〕 本発明は、分子線エピタキシャル成長法の実施が可能
な半導体結晶成長装置に於ける基板前処理室内に化合物
半導体結晶基板をセットし、前記基板前処理室内を高真
空に排気し、前記基板前処理室内に所定量の酸素を供給
して大気圧に比較して充分に低い一定の酸素分圧を維持
させながら前記化合物半導体結晶基板を構成する材料の
中で脱離し易い物質が脱離する温度を越えない温度で加
熱して酸化膜を形成し、高真空を維持した状態で前記化
合物半導体結晶基板を成長室に移送して前記脱離し易い
物質の分子線を照射しつつ加熱して前記酸化膜を除去
し、前記化合物半導体結晶基板を必要とされる温度に維
持して目的とする半導体結晶層を分子線エピタキシャル
成長させる方法、及び、そのような方法を実施する装置
を提供し、化合物半導体基板表面から炭素系の汚染物質
を充分に除去することを可能とし、従って、スルー・プ
ットを高める為にバッファ層を薄くしても、該バッファ
層上には欠陥が少ない良質な結晶を成長させることがで
きるものである。
DETAILED DESCRIPTION OF THE INVENTION [Outline] In the present invention, a compound semiconductor crystal substrate is set in a substrate pretreatment chamber in a semiconductor crystal growth apparatus capable of carrying out a molecular beam epitaxial growth method, and the inside of the substrate pretreatment chamber is elevated. It is evacuated to a vacuum, and a predetermined amount of oxygen is supplied into the substrate pretreatment chamber to maintain the oxygen partial pressure that is sufficiently low compared to the atmospheric pressure while decomposing in the material forming the compound semiconductor crystal substrate. An oxide film is formed by heating at a temperature that does not exceed the temperature at which the easily detachable substance is desorbed, and the compound semiconductor crystal substrate is transferred to a growth chamber while maintaining a high vacuum to remove the molecular beam of the easily detachable substance. A method of performing molecular beam epitaxial growth of a target semiconductor crystal layer by heating while irradiating to remove the oxide film and maintaining the compound semiconductor crystal substrate at a required temperature, and such a method are implemented. And a carbon semiconductor contaminant can be sufficiently removed from the surface of the compound semiconductor substrate. Therefore, even if the buffer layer is thinned to enhance the throughput, defects are not formed on the buffer layer. It is possible to grow a good quality crystal with less.

〔産業上の利用分野〕[Industrial applications]

本発明は、化合物半導体基板上にバッファ層を介して
形成された半導体層に半導体装置を作り込む場合に適用
して好結果が得られる半導体結晶成長方法及びその方法
を実施する装置に関する。
The present invention relates to a semiconductor crystal growth method that can be applied to a semiconductor device formed on a compound semiconductor substrate via a buffer layer to obtain a favorable result, and an apparatus for implementing the method.

〔従来の技術〕[Conventional technology]

一般に、化合物半導体装置を製造する場合、化合物半
導体基板上にバッファ層を介して半導体層を成長させ、
その半導体層に素子を作り込むようにしている。
Generally, when manufacturing a compound semiconductor device, a semiconductor layer is grown on a compound semiconductor substrate via a buffer layer,
The element is built in the semiconductor layer.

近年、そのような化合物半導体結晶層を成長するに
は、分子線エピタキシャル成長(molecular beam epi
taxy:MBE)法を適用することが多い。
In recent years, in order to grow such a compound semiconductor crystal layer, molecular beam epitaxy has been used.
taxy: MBE) method is often applied.

このMBE法を実施する装置に於いては、成長室の前室
として基板準備室が設けられていて、そこでは、実際の
結晶層を成長させるに先立ち、化合物半導体基板が例え
ばGaAsである場合、約300〜400〔℃〕程度に加熱するこ
とに依り、大気中でGaAs基板表面に付着した水分を除去
するようにしている。
In the apparatus for carrying out this MBE method, a substrate preparation chamber is provided as a front chamber of the growth chamber, in which a compound semiconductor substrate is, for example, GaAs before growing an actual crystal layer, By heating to about 300 to 400 [° C.], the moisture adhering to the surface of the GaAs substrate is removed in the atmosphere.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

然しながら、前記のような程度の温度に依る加熱で
は、炭化水素など炭素を含む分子は除去することはでき
ない。尚、高真空中でGaAs基板を600〔℃〕以上の高温
で加熱すると、蒸気圧が高いAsの脱離を生じ、表面が荒
れてしまう欠点がある。
However, heating by the above-mentioned temperature cannot remove molecules such as hydrocarbons containing carbon. When the GaAs substrate is heated at a high temperature of 600 ° C. or higher in a high vacuum, As having a high vapor pressure is desorbed and the surface is roughened.

また、GaAs基板表面に炭素原子などが付着した状態
で、その上に半導体結晶層をエピタキシャル成長させた
場合、その炭素原子がアクセプタとして働き、GaAs基板
とエピタキシャル成長半導体結晶層との界面準位を形成
するので、その影響を回避する為には、厚いバッファ層
を形成することが必要となり、それには多くの時間を要
するのでスルー・プットは上がらない。
When a semiconductor crystal layer is epitaxially grown on a GaAs substrate surface with carbon atoms and the like attached thereto, the carbon atom acts as an acceptor to form an interface level between the GaAs substrate and the epitaxially grown semiconductor crystal layer. Therefore, in order to avoid the influence, it is necessary to form a thick buffer layer, and it takes a lot of time, so the through put cannot be increased.

本発明者は、前記諸問題を解消する為、サーマル・エ
ッチング基板前処理法(要すれば、「J.Saito et al
l.,Jpn.J.Appl.Phys.,vol.25,No.8,Aug.1986,pp1216−1
220」を参照)を提供した。
In order to solve the above problems, the present inventor has conducted a thermal etching substrate pretreatment method (if necessary, "J. Saito et al.
l., Jpn.J.Appl.Phys., vol.25, No.8, Aug.1986, pp1216-1
220 ”).

この技術に依れば、基板とエピタキシャル成長半導体
結晶層との界面準位を低減させ、且つ、バッファ層を薄
膜化することが可能である。然しながら、これを実施す
る際、例えば、GaAs基板の場合、Asが脱離して面荒れを
生じないように注意深く制御する必要があった。
According to this technique, the interface state between the substrate and the epitaxially grown semiconductor crystal layer can be reduced and the buffer layer can be thinned. However, when carrying out this, for example, in the case of a GaAs substrate, it was necessary to carefully control so that As would not be desorbed to cause surface roughness.

本発明は、基板表面に付着している炭化水素や二酸化
炭素などの炭素系の物質を熱処理にて除去し、そして、
スルー・プットを高める為にバッファ層は薄くしても、
その上に、表面欠陥が少ない良質の半導体結晶層を成長
可能とし、しかも、困難な面荒れ防止の制御を不要にし
て特性良好な半導体装置を容易に製造することができる
ようにする。
The present invention removes carbonaceous substances such as hydrocarbons and carbon dioxide adhering to the substrate surface by heat treatment, and
Even if the buffer layer is thin to enhance the through put,
In addition, a good quality semiconductor crystal layer with few surface defects can be grown, and a semiconductor device with good characteristics can be easily manufactured without requiring difficult control of surface roughness.

〔問題点を解決するための手段〕[Means for solving problems]

本発明一実施例を解説する為の図である第1図を参照
して説明する。
An embodiment of the present invention will be described with reference to FIG. 1, which is a drawing for explaining the embodiment.

本発明に於いては、分子線エピタキシャル成長法の実
施が可能な半導体結晶成長装置に於ける基板前処理室3
内にGaAsの半導体結晶基板をセットし、基板前処理室3
内を高真空(約10-7〔Torr〕〜10-9〔Torr〕程度)に排
気し、基板前処理室3内に所定量の酸素を供給して大気
圧に比較して充分に低い一定の酸素分圧(例えば10
-4〔Torr〕)を維持させながら前記半導体結晶基板を構
成する材料の中でAsなど脱離し易い物質が脱離する温度
を越えない温度(例えば温度約400〔℃〕)で加熱して
酸化膜を形成し、高真空を維持した状態で前記化合物半
導体結晶基板を成長室5に移送して前記脱離し易い物質
の分子線を照射しつつ加熱(例えば温度約600〔℃〕程
度)して前記酸化膜を除去し、前記化合物半導体結晶基
板を必要とされる温度に維持して目的とする半導体結晶
層を分子線エピタキシャル成長させている。
In the present invention, the substrate pretreatment chamber 3 in the semiconductor crystal growth apparatus capable of carrying out the molecular beam epitaxial growth method is used.
Set the GaAs semiconductor crystal substrate in the substrate pretreatment chamber 3
The inside is evacuated to a high vacuum (about 10 -7 [Torr] to 10 -9 [Torr]), and a predetermined amount of oxygen is supplied into the substrate pretreatment chamber 3 to maintain a constant level sufficiently lower than atmospheric pressure. Oxygen partial pressure (eg 10
-4 [Torr]) while maintaining the temperature of the semiconductor crystal substrate and heating at a temperature that does not exceed the temperature at which easily desorbable substances such as As are desorbed (for example, a temperature of about 400 [℃]) A film is formed, the compound semiconductor crystal substrate is transferred to the growth chamber 5 while maintaining a high vacuum, and is heated (for example, at a temperature of about 600 [° C.]) while being irradiated with the molecular beam of the easily desorbable substance. The oxide film is removed and the compound semiconductor crystal substrate is maintained at a required temperature to grow a target semiconductor crystal layer by molecular beam epitaxial growth.

〔作用〕[Action]

前記手段を採ると、化合物半導体結晶基板上に付着し
た炭素系及びその他の汚染物は確実に除去されるので、
スルー・プットを高める為にバッファ層を薄くしても、
その上に形成される各化合物半導体結晶層は欠陥が少な
い良質のものとなる。
By adopting the above means, the carbonaceous matter and other contaminants adhering to the compound semiconductor crystal substrate can be reliably removed.
Even if you thin the buffer layer to increase the through put,
Each compound semiconductor crystal layer formed thereon has high quality with few defects.

〔実施例〕〔Example〕

第1図は本発明一実施例を解説する為の半導体結晶成
長装置の要部説明図を表している。
FIG. 1 shows an explanatory view of a main part of a semiconductor crystal growth apparatus for explaining one embodiment of the present invention.

図に於いて、1は基板交換室、1Aは基板出入口、1Bは
排気管、2はゲート・バルブ、3は基板前処理室、3Aは
排気管、4はゲート・バルブ、5は結晶成長室、5Aは排
気管、6は酸素供給源、7はバルブ、8は酸素ボンベ、
9はターボ分子ポンプ、10は基板ホルダ、11は基板加熱
ヒータ、12はSi分子線源、13はGa分子線源、14はAs分子
線源、15は基板ホルダ、16は基板加熱ヒータをそれぞれ
示している。
In the figure, 1 is a substrate exchange chamber, 1A is a substrate inlet / outlet, 1B is an exhaust pipe, 2 is a gate valve, 3 is a substrate pretreatment chamber, 3A is an exhaust pipe, 4 is a gate valve, 5 is a crystal growth chamber. , 5A is an exhaust pipe, 6 is an oxygen supply source, 7 is a valve, 8 is an oxygen cylinder,
9 is a turbo molecular pump, 10 is a substrate holder, 11 is a substrate heater, 12 is a Si molecular beam source, 13 is a Ga molecular beam source, 14 is an As molecular beam source, 15 is a substrate holder, and 16 is a substrate heater. Shows.

ここで、GaAs基板上にn型GaAs層を成長させる場合に
ついて説明する。
Here, the case of growing an n-type GaAs layer on a GaAs substrate will be described.

GaAs基板は、大気中に於いて基板マウント用のモリブ
デン(Mo)・ブロックにIn半田を用いて貼着し、それを
基板出入口1Aを介して基板交換室1に導入し、高真空の
排気を行う。
The GaAs substrate is attached to a molybdenum (Mo) block for mounting a substrate in the atmosphere using In solder, and is introduced into the substrate exchange chamber 1 through the substrate inlet / outlet port 1A, and high vacuum exhaust is performed. To do.

基板交換室1内が10-7〔Torr〕〜10-9〔Torr〕程度に
排気されてからゲート・バルブ2を開いてGaAs基板を基
板前処理室3に移送し、それを基板ホルダ10に装着して
からゲート・バルブ2を閉成する。尚、基板ホルダ10内
に在る基板加熱ヒータ11はGaAs基板を最高800〔℃〕ま
で加熱することができる能力を有している。
After the inside of the substrate exchange chamber 1 is evacuated to about 10 -7 [Torr] to 10 -9 [Torr], the gate valve 2 is opened to transfer the GaAs substrate to the substrate pretreatment chamber 3 and to the substrate holder 10. After mounting, close the gate valve 2. The substrate heater 11 in the substrate holder 10 has the ability to heat the GaAs substrate up to 800 [° C.].

基板前処理室3内はターボ分子ポンプ9の作用で予め
10-7〔Torr〕〜10-9〔Torr〕程度の真空に排気され、ま
た、酸素供給源6から酸素を送入し得る状態になってい
る。
The inside of the substrate pretreatment chamber 3 is previously operated by the action of the turbo molecular pump 9.
It is evacuated to a vacuum of about 10 −7 [Torr] to 10 −9 [Torr], and is in a state where oxygen can be fed from the oxygen supply source 6.

酸素の送入及び排気を行いながら、その酸素分圧を10
-4〔Torr〕に保持しつGaAs基板を約400〔℃〕程度に加
熱し、その状態を約30〔分〕間維持することでGaAs基板
の表面に酸化膜を形成する。
While supplying and exhausting oxygen, the oxygen partial pressure is reduced to 10
While keeping at -4 [Torr], the GaAs substrate is heated to about 400 [° C], and the state is maintained for about 30 [minutes] to form an oxide film on the surface of the GaAs substrate.

基板加熱ヒータ11の電源を切断し、自然降温を行って
約200〔℃〕程度の温度になった際にゲート・バルブ4
を開放してGaAs基板を高真空に排気された成長室5に移
送し、それを基板加熱ヒータ16を有する基板ホルダ15に
装着し、ゲート・バルブ4を閉成する。
When the substrate heater 11 is turned off and the temperature is naturally lowered to about 200 [° C], the gate valve 4
Is opened to transfer the GaAs substrate to the growth chamber 5 which is evacuated to a high vacuum, which is attached to the substrate holder 15 having the substrate heating heater 16, and the gate valve 4 is closed.

成長室5内に於いては、As分子線源14からのAs分子線
を照射しながらGaAs基板を再び加熱して温度を約600
〔℃〕程度以上とし、その状態を約10〔分〕間維持する
ことに依り、表面の酸化膜を除去してしまう。これに依
り、GaAs基板表面の炭素系の汚染物も同時に除去されて
しまう。
In the growth chamber 5, the GaAs substrate is heated again while irradiating the As molecular beam from the As molecular beam source 14 to raise the temperature to about 600.
By keeping the temperature at about [° C.] or higher for about 10 [minutes], the oxide film on the surface is removed. As a result, carbon-based contaminants on the GaAs substrate surface are also removed at the same time.

GaAs基板の温度をGaAs層を成長させるのに必要とされ
る程度、即ち、550〔℃〕に維持し、エピタキシャル成
長を行う。この際、Si分子線源12からのSiをGaAs基板と
同じ濃度である1×1017〔cm-3〕程度にドーピングす
る。尚、この場合の成長速度は1〔μm/時〕、成長層厚
は0.5〔μm〕である。
Epitaxial growth is performed while maintaining the temperature of the GaAs substrate at a temperature required for growing the GaAs layer, that is, 550 [° C.]. At this time, Si from the Si molecular beam source 12 is doped to a concentration of about 1 × 10 17 [cm −3 ] which is the same as that of the GaAs substrate. In this case, the growth rate is 1 [μm / hour] and the growth layer thickness is 0.5 [μm].

第2図はGaAs基板及びエピタキシャル成長GaAs層の界
面近傍に於けるキャリヤ濃度プロファイルを表す線図で
ある。
FIG. 2 is a diagram showing the carrier concentration profile in the vicinity of the interface between the GaAs substrate and the epitaxially grown GaAs layer.

図に於いて、横軸にはGaAs層の表面からの深さを、ま
た、縦軸にはキャリヤ濃度をそれぞれ採ってあり、実線
は本発明一実施例に関する特性線であり、また、破線は
従来例に関する特性線であり、これ等のデータはC−V
測定法に依って得られたもので、試料は、本発明に依る
前処理を施したものと、成長室5内で600〔℃〕の温度
でサーマル・クリーニングを行ったものを用いた。
In the figure, the horizontal axis shows the depth from the surface of the GaAs layer, and the vertical axis shows the carrier concentration. The solid line is the characteristic line relating to one embodiment of the present invention, and the broken line is It is a characteristic line regarding the conventional example, and these data are CV
The samples were obtained by the measurement method, and the samples used were those pretreated according to the present invention and those subjected to thermal cleaning in the growth chamber 5 at a temperature of 600 ° C.

図から判るように、本発明実施例に依るものでは、キ
ャリヤ濃度が深さ方向に略均一であり、キャリヤの空乏
化領域は存在していないが、従来技術に依るものでは、
明らかな空乏化領域が存在していて、これは炭素系物質
の汚染に依るものと判断される。
As can be seen from the figure, in the embodiment of the present invention, the carrier concentration is substantially uniform in the depth direction and there is no carrier depletion region, but in the prior art,
There is an obvious depletion region, which is considered to be due to the contamination of carbonaceous materials.

このようなことから、本発明に依る場合、基板表面に
於ける汚染物質の除去が良好に行われ、そして、結晶欠
陥の導入もなかったことが判る。
From the above, it can be seen that according to the present invention, the contaminants on the surface of the substrate were removed well, and no crystal defects were introduced.

〔発明の効果〕〔The invention's effect〕

本発明に依れば、化合物半導体結晶基板に化合物半導
体結晶層をエピタキシャル成長させるに際し、基板前処
理室を高真空に排気してから大気圧よりも遥に低く且つ
一定である酸素分圧を維持しつつ化合物半導体結晶基板
の表面に熱酸化膜を形成し、その後、高真空を維持した
状態で化合物半導体結晶基板を成長室に移送して、その
熱酸化膜の除去と共に炭素系などの汚染物質も同時に除
去するようにしている。
According to the present invention, when the compound semiconductor crystal layer is epitaxially grown on the compound semiconductor crystal substrate, the substrate pretreatment chamber is evacuated to a high vacuum and then an oxygen partial pressure that is much lower than atmospheric pressure and constant is maintained. Meanwhile, a thermal oxide film is formed on the surface of the compound semiconductor crystal substrate, and then the compound semiconductor crystal substrate is transferred to a growth chamber while maintaining a high vacuum, and the thermal oxide film is removed and contaminants such as carbonaceous substances are also removed. I try to remove them at the same time.

この構成を採ることに依り、化合物半導体結晶基板の
表面荒れを発生させることなく炭素系及び他の汚染物を
除去することができ、従って、薄いバッファ層を用いて
も良質の半導体結晶層を高いスルー・プットで成長させ
ることができる。
By adopting this configuration, it is possible to remove carbonaceous substances and other contaminants without causing the surface roughness of the compound semiconductor crystal substrate, and therefore, even if a thin buffer layer is used, a high quality semiconductor crystal layer can be obtained. Can be grown in through put.

特に、汚染物の除去については、当初、基板前処理室
を超高真空である10-7〔Torr〕〜10-9〔Torr〕に真空引
きをしてから酸素を導入しているので、不純物ガスは充
分に排出され、純度が高い酸素雰囲気中での酸化膜形成
が可能であり、従って、この工程に於ける基板表面の汚
染は少なく、クリーニング効果は大きい。
In particular, regarding the removal of contaminants, since the substrate pretreatment chamber was initially evacuated to an ultrahigh vacuum of 10 -7 [Torr] to 10 -9 [Torr], oxygen was introduced, The gas is sufficiently discharged, and an oxide film can be formed in an oxygen atmosphere of high purity. Therefore, the contamination of the substrate surface in this step is small and the cleaning effect is large.

また、大気圧に比較して充分に低い10-4〔Torr〕の酸
素分圧雰囲気で約400〔℃〕程度の加熱を行って酸化し
ているので、基板表面に付着していた水分は、この工程
で完全に除去され、しかも、化合物半導体結晶基板は高
真空を維持した状態で結晶の成長室へ移送されるので不
純物持込みを著しく少なくすることができる。
In addition, since it is oxidized by heating at about 400 [° C] in an oxygen partial pressure atmosphere of 10 -4 [Torr], which is sufficiently lower than atmospheric pressure, the moisture adhering to the substrate surface is In this step, the compound semiconductor crystal substrate is completely removed, and the compound semiconductor crystal substrate is transferred to the crystal growth chamber while maintaining a high vacuum, so that impurities can be remarkably reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明一実施例の要部説明図、第2図はGaAs基
板及びエピタキシャル成長GaAs層の界面近傍に於けるキ
ャリヤ濃度プロファイルを表す線図をそれぞれ表してい
る。 図に於いて、1は基板交換室、1Aは基板出入口、1Bは排
気管、2はゲート・バルブ、3は基板前処理室、3Aは排
気管、4はゲート・バルブ、5は結晶成長室、5Aは排気
管、6は酸素供給源、7はバルブ、8は酸素ボンベ、9
はターボ分子ポンプ、10は基板ホルダ、11は基板加熱ヒ
ータ、12はSi分子線源、13はGa分子線源、14はAs分子線
源、15は基板ホルダ、16は基板加熱ヒータをそれぞれ示
している。
FIG. 1 is an explanatory view of a main part of one embodiment of the present invention, and FIG. 2 is a diagram showing a carrier concentration profile in the vicinity of an interface between a GaAs substrate and an epitaxially grown GaAs layer. In the figure, 1 is a substrate exchange chamber, 1A is a substrate inlet / outlet, 1B is an exhaust pipe, 2 is a gate valve, 3 is a substrate pretreatment chamber, 3A is an exhaust pipe, 4 is a gate valve, 5 is a crystal growth chamber. , 5A is an exhaust pipe, 6 is an oxygen supply source, 7 is a valve, 8 is an oxygen cylinder, 9
Is a turbo molecular pump, 10 is a substrate holder, 11 is a substrate heater, 12 is a Si molecular beam source, 13 is a Ga molecular beam source, 14 is an As molecular beam source, 15 is a substrate holder, and 16 is a substrate heater. ing.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】分子線エピタキシャル成長法の実施が可能
な半導体結晶成長装置に於ける基板前処理室内に化合物
半導体結晶基板をセットする工程と、 次いで、前記基板前処理室内を高真空に排気する工程
と、 次いで、前記基板前処理室内に所定量の酸素を供給して
大気圧に比較して充分に低い一定の酸素分圧を維持させ
ながら前記化合物半導体結晶基板を構成する材料の中で
脱離し易い物質が脱離する温度を越えない温度で加熱し
て酸化膜を形成する工程と、 次いで、高真空を維持した状態で前記化合物半導体結晶
基板を成長室に移送して前記脱離し易い物質の分子線を
照射しつつ加熱して前記酸化膜を除去する工程と、 次いで、前記化合物半導体結晶基板を必要とされる温度
に維持して目的とする半導体結晶層を分子線エピタキシ
ャル成長させる工程と が含まれてなることを特徴とする半導体結晶成長方法。
1. A step of setting a compound semiconductor crystal substrate in a substrate pretreatment chamber in a semiconductor crystal growth apparatus capable of performing a molecular beam epitaxial growth method, and a step of evacuating the substrate pretreatment chamber to a high vacuum. And then desorbing in the material constituting the compound semiconductor crystal substrate while supplying a predetermined amount of oxygen into the substrate pretreatment chamber and maintaining a constant oxygen partial pressure sufficiently lower than atmospheric pressure. A step of forming an oxide film by heating at a temperature that does not exceed the temperature at which the easy substance desorbs, and then transferring the compound semiconductor crystal substrate to a growth chamber while maintaining a high vacuum to remove the easily desorbable substance. A step of removing the oxide film by heating while irradiating with a molecular beam, and then maintaining the compound semiconductor crystal substrate at a required temperature to form a target semiconductor crystal layer by molecular beam epitaxial growth. And a step of lengthening the semiconductor crystal.
【請求項2】所定量の酸素を供給して大気圧に比較して
充分に低い一定の酸素分圧を維持させることができる酸
素供給系と高真空排気系並びに化合物半導体結晶基板を
保持し且つ前記化合物半導体結晶基板を構成する材料の
中で最も脱離し難い物質が脱離する温度を越えない温度
に加熱する為のホルダが配設されてなる基板前処理室
と、 前記基板前処理室に連なる高真空排気系及び前記化合物
半導体結晶基板を構成する材料の中で脱離し易い物質の
分子線を照射することができる分子線源及び前記化合物
半導体結晶基板を保持し且つ加熱して前記酸化膜の除去
と必要な分子線の照射の下に半導体結晶層を分子線エピ
タキシャル成長させる為のホルダが配設されてなる成長
室と を備えてなることを特徴とする半導体結晶成長装置。
2. An oxygen supply system capable of supplying a predetermined amount of oxygen to maintain a constant oxygen partial pressure sufficiently lower than atmospheric pressure, a high vacuum exhaust system, and a compound semiconductor crystal substrate. A substrate pretreatment chamber provided with a holder for heating to a temperature that does not exceed the desorption temperature of a substance that is the most difficult to desorb among the materials that form the compound semiconductor crystal substrate, and the substrate pretreatment chamber A molecular beam source capable of irradiating a molecular beam of a substance that is easily desorbed among the materials constituting the continuous high vacuum exhaust system and the compound semiconductor crystal substrate and the oxide film by holding and heating the compound semiconductor crystal substrate And a growth chamber provided with a holder for molecular beam epitaxial growth of a semiconductor crystal layer under necessary molecular beam irradiation.
JP62001044A 1987-01-08 1987-01-08 Semiconductor crystal growth method and apparatus for implementing the same Expired - Lifetime JP2520617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62001044A JP2520617B2 (en) 1987-01-08 1987-01-08 Semiconductor crystal growth method and apparatus for implementing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62001044A JP2520617B2 (en) 1987-01-08 1987-01-08 Semiconductor crystal growth method and apparatus for implementing the same

Publications (2)

Publication Number Publication Date
JPS63169718A JPS63169718A (en) 1988-07-13
JP2520617B2 true JP2520617B2 (en) 1996-07-31

Family

ID=11490556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62001044A Expired - Lifetime JP2520617B2 (en) 1987-01-08 1987-01-08 Semiconductor crystal growth method and apparatus for implementing the same

Country Status (1)

Country Link
JP (1) JP2520617B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4724984B2 (en) * 2001-08-27 2011-07-13 ミツミ電機株式会社 Power control circuit and electronic device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047414A (en) * 1983-08-26 1985-03-14 Nippon Telegr & Teleph Corp <Ntt> Method and device for growing thin film
JPS60107821A (en) * 1983-11-16 1985-06-13 Hitachi Ltd Molecular-beam crystal growth device
JPS6243119A (en) * 1985-08-21 1987-02-25 Hitachi Ltd Manufacture of compound semiconductor device

Also Published As

Publication number Publication date
JPS63169718A (en) 1988-07-13

Similar Documents

Publication Publication Date Title
JP2520617B2 (en) Semiconductor crystal growth method and apparatus for implementing the same
JP2704931B2 (en) Method for forming selective growth mask and method for removing same
JPH0779084B2 (en) Semiconductor crystal growth method and apparatus for implementing the same
JPS59116192A (en) Crystal growth method by molecular beam
US5248376A (en) Process for thermal-etching treatment of compound semiconductor substrate used in molecular beam epitaxy and apparatus for performing same
JP2000264792A (en) Forming of silicon carbide single crystal thin film
JP3574494B2 (en) Nitride compound semiconductor crystal growth method and growth apparatus
JPH0243720A (en) Molecular beam epitaxial growth method
JPS635531A (en) Cleaning and flattening of si surface and apparatus therefor
JP2656029B2 (en) Crystal growth equipment
JPH0427116A (en) Method of forming semiconductor heterojunction
JPH053731B2 (en)
JPH01214017A (en) Method and apparatus for molecular beam epitaxial growth
JPH01212296A (en) Growth of iii-v group compound semiconductor crystal on si substrate
JPH0226892A (en) Method and device for molecular beam epitaxial growth
JPH01223721A (en) Method and device for crystal growth
JPH03195016A (en) Thermal cleaning method of si substrate; epitaxial growth and heat treatment apparatus
JP2000082673A (en) Thin-film formation method and device
JPH07235489A (en) Crystal annealing method
JPH04214616A (en) Compound semiconductor crystal growth method and device
JP3077876B2 (en) Surface treatment method for III-V compound semiconductor
JPH0773097B2 (en) Molecular beam crystal growth method
JPH01160899A (en) Method for growing compound semiconductor crystal and apparatus therefor
JPH01145806A (en) Organic metal vapor growth apparatus
JPH01158720A (en) Method and apparatus for growing compound semiconductor crystal