JPH0768634B2 - Zinc-based plated steel sheet with excellent corrosion resistance, coating performance and workability - Google Patents

Zinc-based plated steel sheet with excellent corrosion resistance, coating performance and workability

Info

Publication number
JPH0768634B2
JPH0768634B2 JP60146404A JP14640485A JPH0768634B2 JP H0768634 B2 JPH0768634 B2 JP H0768634B2 JP 60146404 A JP60146404 A JP 60146404A JP 14640485 A JP14640485 A JP 14640485A JP H0768634 B2 JPH0768634 B2 JP H0768634B2
Authority
JP
Japan
Prior art keywords
zinc
corrosion resistance
layer
steel sheet
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60146404A
Other languages
Japanese (ja)
Other versions
JPS627890A (en
Inventor
征順 樋口
吉田  誠
正己 大沢
輝明 伊崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60146404A priority Critical patent/JPH0768634B2/en
Publication of JPS627890A publication Critical patent/JPS627890A/en
Publication of JPH0768634B2 publication Critical patent/JPH0768634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、NaCl,CaCl2等の水溶液が存在する苛酷な腐食
環境に曝された場合の耐食性,塗膜性能,加工性にすぐ
れ、建材用,自動車用等に使用される亜鉛又は亜鉛系合
金メッキ鋼板に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is excellent in corrosion resistance, coating film performance and workability when exposed to a severe corrosive environment in which an aqueous solution of NaCl, CaCl 2 or the like exists, and is a building material. Or zinc-based alloy plated steel sheet used for automobiles, automobiles, etc.

(従来技術とその問題点) 従来から自動車用鋼板には防錆被覆層が施されていな
い、いわゆる冷延鋼板が使われて来た。この冷延鋼板は
自動車会社で自動車の各種部材に加工され、組立てられ
た後、燐酸塩処理を施し、次いで塗装される。即ち自動
車に使用されている冷延鋼板は、塗膜によって腐食から
保護されている。しかし近年になって自動車の耐久性向
上、特に腐食に基因する耐久性向上の要求が高くなり、
従来の塗装のみではこの要求に必ずしも対処出来なくな
った。例えば、冬期、道路の凍結を防止するため塩を散
布するカナダにおいては、1985年の自動車の車体腐食に
関するガイドラインとして“10年間孔あきなし”及び
“5年間錆発生なし”を目標にしている。このガイドラ
インは“カナダコード”として知られ、このため車体防
錆に対する目標として各種対策が採られつつある。
(Prior Art and Problems Thereof) So-called cold-rolled steel sheets, which are not provided with an anticorrosion coating layer, have been conventionally used for automobile steel sheets. This cold-rolled steel sheet is processed into various parts for automobiles by an automobile company, assembled, subjected to a phosphate treatment, and then painted. That is, cold-rolled steel sheets used in automobiles are protected from corrosion by a coating film. However, in recent years, the demand for improved durability of automobiles, especially due to corrosion, has increased,
Conventional painting alone cannot always meet this requirement. For example, in Canada, where salt is sprayed to prevent roads from freezing in the winter, 1985 targets "no pitting" and "no rusting for 5 years" as guidelines for car body corrosion in 1985. This guideline is known as the "Canada Code", and as a result, various measures are being taken as a goal for car body rust prevention.

現在、冷延鋼板の耐食性,塗装後の耐食性を向上し、か
つ加工性を損なわずに量産可能なものとして、電気亜鉛
メッキ鋼板が広く使われている。しかし、亜鉛メッキ鋼
板の亜鉛が地鉄よりアノーディック(Anodic)であるた
め、一般的な腐食環境では良好な耐食性を示すが、前述
の様に塩類(NaCl,CaCl2等)を散布する苛酷な腐食環境
では亜鉛の地鉄に対する犠牲防食作用による腐食速度が
大きく、短期間で亜鉛の犠牲防食作用が失なわれる長期
間の防食効果が得られない。
At present, electrogalvanized steel sheets are widely used because they improve the corrosion resistance of cold-rolled steel sheets and the corrosion resistance after painting and can be mass-produced without impairing workability. However, since zinc in galvanized steel is more anodic than base steel, it exhibits good corrosion resistance in general corrosive environments, but as mentioned above, it is harsh to spray salts (NaCl, CaCl 2, etc.). In a corrosive environment, the corrosion rate of zinc against the base metal is high, and the sacrificial corrosion effect of zinc is lost in a short period of time.

耐食性の向上にはメッキ量を増す事が最も簡単な方法で
ある。しかし、メッキ量の増加は電気メッキでは著るし
い生産性の低下とコスト上昇をもたらし、経済的に望ま
しくないばかりでなく、加工性,溶接性等の面でも次の
様な問題がある。即ち、メッキ鋼板を自動車部品に加工
する際、特に絞り加工において、メッキ層が剥離した
り、又その一部が削り取られて(所謂パウダリング)プ
レス金型に堆積し、成品に疵を生じる現象がある。この
様なパウダリングを起すと、金型の手入れで生産性が著
るしく落ちるばかりでなく、成品の性能にも悪影響があ
る所から、メッキ量を少なくする必要がある。一万加工
された各種部材の組立ては、殆んど抵抗溶接(スポット
溶接)が使われ、溶接性の良悪が重視されている。溶接
性には、メッキ量が大きく影響し、メッキ量がある程度
以上に増えると、溶接部の強度不足、外観不良等の欠陥
を生じ易くなり、更には溶接電極寿命の著るしい低下が
生じる。従って、加工性,溶接性の見地から、出来るだ
け低メッキ量である事が望ましい。更に、自動車用亜鉛
メッキ鋼板は最終的には塗装されるが、塗膜欠陥部や塗
膜を浸透した腐食性水溶液に亜鉛が腐食され易いため
に、塗膜面“ふくれ”(所謂プリスター)を発生し、塗
膜が素地から浮き上り剥離するという欠点がある。又、
自動車が走行中、飛石等により塗膜欠陥が生じると、そ
の部分から塗膜下の腐食が広がり、塗膜剥離を生じ易
い。
The easiest way to improve corrosion resistance is to increase the plating amount. However, an increase in the plating amount causes a marked decrease in productivity and an increase in cost in electroplating, which is not only economically undesirable, but also has the following problems in terms of workability and weldability. That is, when a plated steel sheet is processed into an automobile part, particularly in a drawing process, a plating layer is peeled off or a part of it is scraped off (so-called powdering) and deposited on a press die, resulting in a flaw in the product. There is. If such powdering occurs, not only the productivity will be significantly reduced by the maintenance of the mold, but also the performance of the product will be adversely affected. Therefore, it is necessary to reduce the plating amount. For the assembly of various members processed 10,000 times, almost all resistance welding (spot welding) is used, and good or bad weldability is emphasized. The weldability is greatly affected by the plating amount, and if the plating amount increases to a certain extent or more, defects such as insufficient strength of the welded portion and poor appearance are likely to occur, and further, the life of the welding electrode is significantly reduced. Therefore, from the viewpoint of workability and weldability, it is desirable that the amount of plating is as low as possible. Furthermore, galvanized steel sheets for automobiles are finally coated, but zinc is easily corroded by the corrosive aqueous solution that has penetrated the coating film defects and the coating film, so the coating surface "blister" (so-called Prister) However, there is a drawback that the coating film is generated and the coating film floats from the substrate and peels off. or,
When a coating film defect occurs due to flying stones while the automobile is running, corrosion under the coating film spreads from that portion, and the coating film is likely to peel off.

かかる亜鉛メッキ鋼板の欠点の解消を目的に、亜鉛より
も電位が貴(eathodic)、かつ地鉄よりは卑(Anodic)
で、地鉄に対して陽極防食効果があり、塩類による腐食
速度が小さく、更に、塗装性能(特に塗装後耐食性、二
次塗料密着性……塗装部が腐食環境に曝された時の塗膜
の密着性の劣化)、加工性、溶接性に優れるという考え
方に基づいて、例えば、Zn−Fe系(特公昭60−11117号
公報)、Zn−Ni系(特公昭58−11795号公報)、Zn−Fe
−Ni系、Zn−Ni−Co系、Zn−Fe−Cr系等、更には、それ
等を組合せた複層メッキ等多くの亜鉛系合金メッキ鋼板
が開発されている。これ等の亜鉛系合金メッキ鋼板は、
全般的に亜鉛メッキ鋼板に比して優れた性能を有してい
るものの、耐食性、特に、前述の塩類が散布される苛酷
な腐食環境での孔食(Pitting Corrosion)について
は、更に一段の向上が望まれている。
For the purpose of eliminating the drawbacks of galvanized steel sheet, the electric potential is more noble than zinc (eathodic) and less noble than base steel (Anodic).
It has an anodic anticorrosion effect on the base steel, has a low corrosion rate due to salts, and has coating properties (especially corrosion resistance after coating, secondary paint adhesion ... coating film when the coating part is exposed to a corrosive environment. Based on the idea of excellent adhesiveness, workability, and weldability, for example, Zn-Fe system (Japanese Patent Publication No. 60-11117), Zn-Ni system (Japanese Patent Publication No. 58-11795), Zn-Fe
Many zinc-based alloy-plated steel sheets such as -Ni-based, Zn-Ni-Co-based, Zn-Fe-Cr-based, etc., and multi-layer plating combining them have been developed. These zinc alloy plated steel sheets are
Although it has excellent performance as a whole compared to galvanized steel sheet, it has further improved corrosion resistance, especially for pitting corrosion (Pitting Corrosion) in the severe corrosive environment where the above-mentioned salts are sprayed. Is desired.

耐食性の向上は、メッキ量の増加により最も簡単に達成
されるが、しかし既に亜鉛メッキ鋼板について述べたよ
うに、Zn系合金メッキ鋼板の場合においても、メッキコ
ストの上昇、加工時のパウダリング、溶接性の劣化等の
問題を生ずるため、出来るだけ低メッキ量である事が望
ましい。
The improvement in corrosion resistance is most easily achieved by increasing the amount of plating, but as already mentioned for galvanized steel sheets, even in the case of Zn-based alloy plated steel sheets, an increase in plating cost, powdering during processing, It is desirable that the amount of plating is as low as possible because it causes problems such as deterioration of weldability.

更に、亜鉛系合金メッキ鋼板の加工性やメッキ密着性を
改善せしめた鋼板を開示するものとして特開昭57−2305
4号公報、特開昭57−85963号公報などがある。
Furthermore, JP-A-57-2305 discloses a steel sheet having improved workability and plating adhesion of a zinc-based alloy-plated steel sheet.
4 and JP-A-57-85963.

しかしながら、従来の亜鉛系合金メッキ鋼板を詳細に検
討してみるに、加工性やメッキ密着性にすぐれているも
のの、更に一層の耐食性向上、特にメッキ原板自体のよ
り一層の耐食性向上と苛酷な成形加工が施される場合の
成形加工性の向上、ひいては成形加工部の耐食性向上が
必要である事が分った。
However, a detailed examination of the conventional zinc-based alloy-plated steel sheet shows that it has excellent workability and plating adhesion, but it has a further improvement in corrosion resistance, in particular, a further improvement in corrosion resistance of the original plating plate itself and severe forming. It has been found that it is necessary to improve the forming workability when the processing is performed, and further, to improve the corrosion resistance of the forming processing part.

(問題点を解決するための手段) 本発明はこれらの状況に対してなされたもので、鋼成分
の更に適正な調整により、メッキ原板自体のより一層の
耐食性向上及び加工性の向上とメッキ層の相互作用或い
は相乗効果による耐孔食性の向上、加工部の耐食性向
上、塗膜性能、特に塗膜欠陥部等における塗装後耐食性
の向上効果が得られる事を見出したものである。
(Means for Solving Problems) The present invention has been made in view of these situations, and by further appropriately adjusting the steel composition, further improvement in corrosion resistance and workability of the plating base plate itself and the plating layer It has been found that the effects of improving the pitting corrosion resistance, improving the corrosion resistance of the processed portion, and improving the coating performance, especially the corrosion resistance after coating in the defective portion of the coating film, can be obtained by the interaction or synergistic effect.

更に本発明は、上記のメッキ原板と亜鉛又は亜鉛系合金
メッキ層の中間層に、Ni系下地被覆層を設ける事によっ
て、鋼成分とメッキ層の相剰効果による性能向上が更に
一層得られる事を見出したものである。
Further, according to the present invention, by providing a Ni-based undercoating layer on the intermediate layer between the above-mentioned plated original plate and the zinc or zinc-based alloy plated layer, it is possible to further improve the performance due to the additive effect of the steel component and the plated layer. Is found.

而して、その要旨は (1)重量%で、 C;0.01%未満,酸可溶Al;0.005〜0.10%,P;0.02〜0.15
%,Cu;0.1%を超えて0.8%以下,さらにTi,Nb,Zr,Vの1
種又は2種以上で0.03〜0.5%を含有する鋼板の片面又
は両面に、亜鉛或いは亜鉛系合金メッキ層を施してなる
耐食性、塗装性能及び加工性に優れた亜鉛系メッキ鋼
板, (2)重量%で、 C;0.01%未満,酸可溶Al;0.005〜0.10%,P;0.02〜0.15
%,Cu;0.1〜0.8%,Ni;1%以下を含有しさらにTi,Nb,Zr,
Vの1種又は2種以上で0.03〜0.5%を含有する鋼板の片
面又は両面に、亜鉛或いは亜鉛系合金メッキ層を施して
なる耐食性,塗装性能及び加工性に優れた亜鉛系メッキ
鋼板, (3)重量%で、 C;0.01%未満,酸可溶Al;0.005〜0.10%,P;0.02〜0.15
%,Cu;0.1〜0.8%を含有し、Ti,Nb,Zr,Vの1種又は2種
以上;0.03〜0.5%を含有する鋼板の片面又は両面に、Ni
系下地被覆層とその上層に亜鉛或いは亜鉛系合金メッキ
層を施してなる耐食性、塗装性能及び加工性に優れた亜
鉛系メッキ鋼板, (4)重量%で、 C;0.01%未満,酸可溶Al;0.005〜0.10%,P;0.02〜0.15
%,Cu;0.1〜0.8%,Ni;1%以下を含有し、さらにTi,Nb,Z
r,Vの1種又は2種以上で、0.03〜0.5%を含有する鋼板
の片面又は両面に、Ni系下地被覆層とその上層に亜鉛或
いは亜鉛系合金メッキ層を施してなる耐食性、塗装性能
及び加工性に優れた亜鉛系メッキ鋼板, である。
Therefore, the gist is (1)% by weight, C; less than 0.01%, acid-soluble Al; 0.005-0.10%, P; 0.02-0.15
%, Cu; 0.1% to 0.8% or less, and Ti, Nb, Zr, V 1
Type or two or more types of steel sheet containing 0.03 to 0.5% zinc or zinc based alloy plated layer on one or both sides, which has excellent corrosion resistance, coating performance and workability, (2) Weight %, C; less than 0.01%, acid-soluble Al; 0.005-0.10%, P; 0.02-0.15
%, Cu; 0.1-0.8%, Ni; 1% or less, Ti, Nb, Zr,
A zinc-based plated steel sheet excellent in corrosion resistance, coating performance and workability, which is obtained by applying a zinc or zinc-based alloy plating layer to one or both sides of a steel sheet containing 0.03 to 0.5% of one or more types of V, ( 3)% by weight, C; less than 0.01%, acid-soluble Al; 0.005-0.10%, P; 0.02-0.15
%, Cu; 0.1 to 0.8%, and one or more of Ti, Nb, Zr, and V; 0.03 to 0.5% on one side or both sides of a steel sheet containing Ni.
Zinc-plated steel sheet with excellent corrosion resistance, coating performance and workability by applying zinc-based or zinc-based alloy plating layer on top of base type undercoating layer, (4)% by weight, C; less than 0.01%, acid soluble Al; 0.005-0.10%, P; 0.02-0.15
%, Cu; 0.1-0.8%, Ni; 1% or less, and Ti, Nb, Z
Corrosion resistance and coating performance obtained by applying a Ni-based undercoating layer and a zinc or zinc-based alloy plating layer on the Ni-based undercoating layer on one or both sides of a steel sheet containing 0.03 to 0.5% of one or more types of r and V And a zinc-based plated steel sheet with excellent workability.

以下に本発明について詳細に説明する。The present invention will be described in detail below.

通常の鋼板製造工程を経て製造された前記鋼板分の鋼板
をメッキ原板として使用する。
A steel plate corresponding to the steel plate manufactured through a normal steel plate manufacturing process is used as a plating original plate.

Cは耐食性及び成形加工性に悪影響を及ぼす元素として
0.01%未満、好ましくは0.006%以下である。すなわ
ち、C含有量が0.01%以上では、セメンタイト或いはチ
タンカーバイト等のカーバイトの結晶粒界等への析出が
多くなり、腐食環境での粒界腐食或いは鋼板の組織の不
均一化によるメッキ原板自体の腐食性が劣化する。
C is an element that adversely affects corrosion resistance and moldability.
It is less than 0.01%, preferably 0.006% or less. That is, when the C content is 0.01% or more, the precipitation of carbide such as cementite or titanium carbide on the crystal grain boundaries increases, and the grain boundary corrosion in the corrosive environment or the nonuniformity of the structure of the steel sheet causes the plating original plate to become uneven. The corrosiveness of itself deteriorates.

また、これらセメンタイト或いは、カーバイトの析出
は、亜鉛及び亜鉛系合金メッキ層の均一析出を阻害し、
メッキ層のピンホール,不メッキを増加せしめ、メッキ
鋼板の耐食性が劣化する。
Further, the precipitation of these cementite or carbide hinders the uniform precipitation of zinc and a zinc-based alloy plating layer,
This increases the number of pinholes and non-plating in the plated layer, which deteriorates the corrosion resistance of the plated steel sheet.

さらに、本発明におけるNi系下地被覆層の均一被覆層の
生成に対しても、ピンホール,不メッキの生成原因にな
り、特にNi系下地被覆層を拡散被覆層として設ける場合
には均一拡散を防げる原因となる。
Further, even for the formation of a uniform coating layer of the Ni-based undercoating layer in the present invention, it causes pinholes and non-plating. Especially, when the Ni-based undercoating layer is provided as a diffusion coating layer, uniform diffusion is not possible. It becomes a cause to prevent.

又、Cの増加は機械的性質劣化の原因となり、成形加工
性を劣化させる原因となり、苛酷な成形加工が行なわれ
る場合には、これらのCの析出物が起点となる原板の割
れ、クラックの発生等が起因となってメッキ層表面或い
は塗膜表面にまで達するクラックの生成原因となり、メ
ッキ鋼板或いは塗装後の耐食性を劣化せしめる。
Further, the increase of C causes deterioration of mechanical properties and deterioration of moldability, and when severe molding is performed, cracks and cracks of the original plate originating from these C precipitates are generated. It causes the generation of cracks reaching the surface of the plating layer or the surface of the coating film due to the occurrence of the cracks, and deteriorates the corrosion resistance of the plated steel sheet or after coating.

次に、本発明における耐食性向上元素としてP,Cuを複合
添加せしめ、場合によってはNiが添加され、さらにこれ
らの成分と複合してTi,Nb,Zr,Vの1種又は2種以上が添
加される。
Next, P and Cu are added in combination as a corrosion resistance improving element in the present invention, Ni is added in some cases, and one or more of Ti, Nb, Zr and V are added in combination with these components. To be done.

すなわち、上記の如く極低C含有量に鋼成分を規制する
事によって、その耐食性は向上し、その腐食速度が低下
する利点を有する。
That is, by controlling the steel composition to have an extremely low C content as described above, there are advantages that the corrosion resistance is improved and the corrosion rate is decreased.

反面、加工性を向上せしめるTi等が添加された鋼板で
は、鋼中に不可避的に含まれるS成分が原因となり穿孔
腐食を生じ易い。したがって腐食速度を小さくかつ穿孔
腐食を抑制して耐食性を改善するために、P及びCuを必
須成分としして添加する。
On the other hand, in a steel sheet to which Ti or the like that improves workability is added, piercing corrosion is likely to occur due to the S component that is unavoidably contained in the steel. Therefore, in order to reduce the corrosion rate and suppress the piercing corrosion to improve the corrosion resistance, P and Cu are added as essential components.

Pは、Cl-イオンが含有される腐食雰囲気での耐食性向
上元素、特に極低C含有鋼における穿孔腐食を防止する
元素として有効であり、Cuと共存される時に特にその耐
食性向上効果が大きい。
P is effective as an element for improving corrosion resistance in a corrosive atmosphere containing Cl ions, particularly as an element for preventing piercing corrosion in a steel containing extremely low C, and particularly when coexisting with Cu, the effect of improving corrosion resistance is particularly large.

また、鋼板の片面のみに亜鉛又は亜鉛系合金メッキ層が
施されて使用される場合、メッキ層が施されていない鉄
面の燐酸塩結晶の均一生成を助長する効果もある。
In addition, when a zinc or zinc-based alloy plating layer is applied to only one side of a steel sheet for use, it also has an effect of promoting uniform generation of phosphate crystals on the iron surface without the plating layer.

而して、その添加量は0.02〜0.15%で、0.02%未満で
は、耐食性向上効果が得られず、0.15%をこえると加工
性の劣化をもたらす。好ましいPの添加量は0.035〜0.0
7%の範囲である。
The addition amount is 0.02 to 0.15%. If it is less than 0.02%, the effect of improving the corrosion resistance cannot be obtained, and if it exceeds 0.15%, the workability is deteriorated. The preferred amount of P added is 0.035 to 0.0
It is in the range of 7%.

次に、Cuの添加は耐食性向上に対して効果が大きく、Cl
-イオンを含有する腐食雰囲気において、その電位を貴
(カソーディック化)にし、その腐食速度を減少する効
果が極めて大きい。そも添加量は0.1%を超えて0.8%以
下の添加で大きな効果が安定的に得られる。0.1%以下
では耐食性の向上効果が安定的に得られず、0.8%をこ
えると耐食性が更に向上するが、鋼板の製造工程の熱間
圧延工程において、赤熱脆性による割れや鋼板表面にCu
が濃縮し、スケールキズ等を発生し易くなる。本発明に
おいてCuの添加は0.5%以下がよい。
Next, the addition of Cu has a great effect on improving the corrosion resistance.
- in corrosive atmosphere containing ions, the potential of the noble (cathodic reduction), is extremely large effect of reducing the corrosion rate. In the first place, a large effect is stably obtained when the addition amount exceeds 0.1% and 0.8% or less. If 0.1% or less, the effect of improving the corrosion resistance cannot be obtained stably, and if it exceeds 0.8%, the corrosion resistance is further improved.However, in the hot rolling process of the steel plate manufacturing process, cracks due to red hot brittleness and Cu on the steel plate surface are caused.
Are concentrated and scale scratches and the like are likely to occur. In the present invention, the addition of Cu is preferably 0.5% or less.

次に選択的に添加されNiは1%以下が添加されるが、Ni
の単独添加では耐食性向上効果が小さいが、P,Cuとの共
存添加によりその耐食性向上効果が大きく、鋼板製造工
程におけるCuの問題点を解消する効果が大きく、Cu添加
量を拡大するために1%以下、好ましくは0.5%以下を
添加する。
Next, Ni is selectively added, and 1% or less of Ni is added.
The effect of improving the corrosion resistance is small when added alone, but the effect of improving the corrosion resistance is large due to the co-addition with P and Cu, and the effect of solving the problem of Cu in the steel sheet manufacturing process is great, and the amount of Cu added is 1 % Or less, preferably 0.5% or less.

さらに、上記成分の鋼板にTi,Nb,Zr,Vの1種又は2種以
上で0.03〜0.50%含有させ、鋼中のCと結合せしめて、
Cの悪影響を防止する。すなわち、Ti等の微細なカーバ
イトを析出させる事によって、極低C含有量の効果とあ
いまって、耐食性と機械的性質を向上させる。而して、
Tiなどの鋼成分の添加量が0.03%未満では、成形加工性
及び耐食性を向上せしめる効果が小さく、また0.50%を
こえるとその効果が飽和に達し経済的でなくなるととも
に、これらの成分の析出によって素材の硬質化をおこ
し、成形加工性を劣化する傾向にある。好ましい範囲は
0.075〜0.20%である。
Furthermore, 0.03 to 0.50% of one or more of Ti, Nb, Zr, and V is contained in the steel sheet having the above components, and is combined with C in the steel,
Prevent the adverse effect of C. That is, by precipitating fine carbide such as Ti, the corrosion resistance and the mechanical properties are improved together with the effect of the extremely low C content. Therefore,
If the addition amount of steel components such as Ti is less than 0.03%, the effect of improving the formability and corrosion resistance is small, and if it exceeds 0.50%, the effect reaches saturation and becomes uneconomical. It tends to harden the material and deteriorate the moldability. The preferred range is
It is 0.075 to 0.20%.

また、本発明においては、製鋼過程における欠陥(介在
物の析出、表面欠陥)による耐食性劣化を防止するため
に、酸可溶Alの量が0.005〜0.10%の範囲に規制する。
すなわち、鋼中に残存する酸可溶Al(SolAl)量が0.005
%未満の少含有量は、酸化性ガスによる気泡の発生を防
止する事が困難であり、鋼の表面欠陥発生率を著しく高
め、鋼素材の耐食性劣化の起点となる。また、0.10%を
超える過剰な酸可溶Alは、Al系酸化物を鋼表面に点在て
しめて、耐食性劣化の起点或いは本鋼板に対して施され
るメッキ面においては不メッキ、ピンホール等を発生し
て、メッキ層の健全性を損じる。従って、酸可溶Al量は
上記範囲とし、好ましくは0.03〜0.08%である。
Further, in the present invention, in order to prevent deterioration of corrosion resistance due to defects (precipitation of inclusions, surface defects) in the steelmaking process, the amount of acid-soluble Al is regulated within the range of 0.005 to 0.10%.
That is, the amount of acid-soluble Al (SolAl) remaining in the steel is 0.005
When the content is less than%, it is difficult to prevent the generation of bubbles due to the oxidizing gas, the surface defect occurrence rate of steel is remarkably increased, and the corrosion resistance of the steel material is deteriorated. Excessive acid-soluble Al exceeding 0.10% causes Al-based oxides to be scattered on the steel surface, causing no corrosion at the starting point of corrosion resistance deterioration or the plated surface applied to this steel sheet, pinholes, etc. Occurs, and the soundness of the plating layer is impaired. Therefore, the amount of acid-soluble Al is in the above range, preferably 0.03 to 0.08%.

その他鋼中に不可避的に含有される成分については特に
規定されるものではないが、好ましくは各々以下の範囲
で使用される。
Other components that are inevitably contained in the steel are not particularly specified, but they are preferably used in the following ranges.

Sは耐食性に対する悪影響が大きく、0.025%以下が好
ましい。
S has a great adverse effect on the corrosion resistance and is preferably 0.025% or less.

Siは、メッキ層或いはNi系下地被覆処理の均一被覆性を
阻害するので、0.30%以下、好ましくは0.10%以下であ
る。
Si hinders the uniform coverage of the plating layer or the Ni-based undercoating treatment, so it is 0.30% or less, preferably 0.10% or less.

また、Mnについては、0.1〜1.5%の範囲で使用される。
Mnは穿孔腐食を防止する効果があり、耐食性向上の点と
片面メッキ鋼板で使用される場合の鉄面の燐酸塩結晶被
膜の均一生成の点で効果があるが、添加量が増加すると
材質を若干硬質化する傾向があるので好ましくは、0.3
〜0.6%である。
Moreover, about Mn, it is used in the range of 0.1 to 1.5%.
Mn has the effect of preventing piercing corrosion, and is effective in terms of improving corrosion resistance and evenly forming a phosphate crystal film on the iron surface when used on a single-sided steel sheet, but increasing the amount of addition increases the material Since it tends to be slightly hardened, 0.3 is preferable.
~ 0.6%.

以上、述べた鋼成分の鋼板は、従来の鋼板に比して耐食
性及び加工性がすぐれているものの、現在自動車用鋼板
に要求されている耐食性からみれば不充分である。
Although the steel plates having the above-mentioned steel components have excellent corrosion resistance and workability as compared with the conventional steel plates, they are insufficient in view of the corrosion resistance currently required for automobile steel plates.

従って、よりすぐれた耐食性、塗膜性能を付与するため
に、Zn又はZn系合金メッキ層が施される。
Therefore, a Zn or Zn-based alloy plating layer is applied in order to provide better corrosion resistance and coating film performance.

Znは鋼板に対して腐食電位が卑(Anodic)であり、鋼板
に対して犠牲的防食作用を有する金属であり、Znメッキ
層による防食効果は可成り著しい。
Zn is a metal whose corrosion potential is base (Anodic) with respect to a steel sheet and has a sacrificial anticorrosion action on the steel sheet, and the anticorrosion effect of the Zn plating layer is considerably remarkable.

しかし、自動車用のメッキ鋼板としては前記した様に
“10年間孔あきなし”かつ“5年間錆発生なし”という
高度の耐食性と共に、塗装性能,溶接性に優れている事
が必要であり、かかる総合的な性能という見地からすれ
ば、従来のメッキ原板を用いたZnメッキ層では充分な性
能のものが得られなかった。
However, as mentioned above, plated steel sheets for automobiles are required to have excellent coating performance and weldability as well as a high level of corrosion resistance of "no piercing for 10 years" and "no rusting for 5 years". From the viewpoint of overall performance, the Zn plating layer using the conventional plating original plate could not provide sufficient performance.

この原因について種々検討を加えたところ、亜鉛メッキ
層とメッキ原板・地鉄との間のカップル腐食電流が極め
て大きく、メッキ欠陥部、加工時のキズ付き部、加工に
よるメッキ層クラック発生部、或いは端面等で亜鉛メッ
キ層の犠牲防食作用による亜鉛メッキ層の著しい溶解を
生じ、メッキ量を厚くしなければ充分な耐食性が得られ
ないこと、同様に、塗装後の性能に対しても、地鉄に達
する塗膜欠陥部において、従来のメッキ原板を用いた亜
鉛メッキ層を有する鋼板は、Znの著しい犠牲防食能によ
るZnの溶解作用により、Znの腐食生成物が多く生成され
塗膜フクレ(所謂、ブリスター)の生成,塗膜剥離が著
しく生じ易くなり、その塗膜密着性,塗装後耐食性が著
しく劣ることが判った。
As a result of various studies on the cause of this, the couple corrosion current between the zinc plating layer and the plating base plate / base iron was extremely large, and the plating defect part, the scratched part during processing, the plating layer cracked part due to processing, or The galvanized layer is remarkably melted by the sacrificial anticorrosive action of the galvanized layer on the end face, etc., and sufficient corrosion resistance cannot be obtained unless the plating amount is made thick. In the coating film defect portion reaching up to, a steel plate having a galvanized layer using a conventional plating original plate, a large amount of Zn corrosion products are generated due to the dissolution action of Zn due to the remarkable sacrificial anticorrosion ability of Zn, and coating blisters (so-called , Blisters) and peeling of the coating film are apt to occur, and the adhesiveness of the coating film and the corrosion resistance after coating are remarkably inferior.

Znメッキ層及びZn−16%Fe合金メッキ層と本発明メッキ
原板との5%NaCl水溶液中におけるカップル腐食電流の
一例を示す第1図から知られるように、本発明のメッキ
原板を用いる事によって、亜鉛メッキ層と地鉄との間の
カップル腐食電流を減少せしめ、亜鉛メッキ層の犠牲防
食作用の軽減による亜鉛の腐食速度を減少せしめ、その
耐食性及び塗膜性能は著しく向上する。
As is known from FIG. 1 showing an example of a couple corrosion current in a 5% NaCl aqueous solution of a Zn plating layer or a Zn-16% Fe alloy plating layer and a plating base plate of the present invention, by using the plating base plate of the present invention , The couple corrosion current between the galvanized layer and the base metal is reduced, the corrosion rate of zinc is reduced by reducing the sacrificial anticorrosive action of the galvanized layer, and its corrosion resistance and coating performance are significantly improved.

本発明は、メッキ原板の耐食性及び加工性がすぐれてい
るため、亜鉛メッキ層の犠牲防食能が減少しても、メッ
キ欠陥部や端面部の腐食性を充分に確保し、加工時のク
ラックも生じにくくなる。
Since the present invention has excellent corrosion resistance and workability of the plated original plate, even if the sacrificial anticorrosive ability of the zinc plating layer is reduced, the corrosion resistance of the plating defect portion and the end face portion is sufficiently secured, and cracks during processing are also generated. Less likely to occur.

またメッキ層が消失しても、メッキ原板の耐食性によ
り、耐食寿命を延長する。
Even if the plating layer disappears, the corrosion resistance of the original plating plate extends the corrosion resistance life.

以上のように本発明は、メッキ原板とメッキ層の相剰効
果により、その耐食性,塗装性能等にすぐれた性能向上
効果が得られ、しかも、メッキ層を厚くする必要がない
ので、溶接性,加工時のメッキ密着性にすぐれているた
め自動車用防錆鋼板に適応できる。
As described above, the present invention provides an excellent effect of improving the corrosion resistance, coating performance, etc. of the original plating plate and the plating layer due to the additional effect, and since it is not necessary to thicken the plating layer, weldability, It has excellent plating adhesion during processing and can be applied to rustproof steel sheets for automobiles.

さらに本発明においては、Znメッキ層より更に腐食速度
が小さく、また地鉄に対する犠牲防食作用を有するZn系
合金メッキ層を設ける事によって、更に一層の耐食性
能,塗膜性能を向上せしめる事が可能である。
Furthermore, in the present invention, the corrosion rate is further smaller than that of the Zn plating layer, and by providing the Zn-based alloy plating layer having a sacrificial anticorrosion effect on the base iron, it is possible to further improve the corrosion resistance performance and the coating film performance. Is.

本発明におけるZn系合金メッキには、Znに対してNi,Co,
Cr,Fe,Moの1種又は2種以上を含有せしめた合金メッキ
層が施される。すなわち、亜鉛メッキ層より電位的に貴
な合金メッキ層のため、その腐食速度が小さく、腐食環
境に長期間曝された場合のメッキ層の耐食寿命が延長さ
れ、原板の腐食性向上効果とあいまって一段とその耐食
寿命が延長される。また、塗膜欠陥部等におけるメッキ
層の溶解速度が小さいため、腐食生成物の生成も少な
く、ブリスターの生成、塗膜剥離がより生じにくくなる
等の利点を有する。
Zn-based alloy plating in the present invention, Zn, Ni, Co,
An alloy plating layer containing one or more of Cr, Fe and Mo is applied. In other words, the alloy plating layer, which is more noble than the zinc plating layer, has a low corrosion rate, prolongs the corrosion resistance life of the plating layer when exposed to a corrosive environment for a long time, and combines it with the effect of improving the corrosiveness of the original plate. The corrosion resistance life is further extended. In addition, since the dissolution rate of the plated layer in the coating film defect portion is low, the generation of corrosion products is small, and the formation of blisters and the peeling of the coating film are less likely to occur.

而して、これらの効果を得るためには、本発明において
は、Znに対して各々、Ni(8〜30%),Co(8〜30%),
Fe(8〜30%),Cr(1〜8%),Mo(3〜30%)が単独
で添加される。また、これらの2種以上の複合添加の場
合には、Znに対して各単独添加量の下限値以上が含有さ
れるとともに、上限は各単独添加量の上限値以下でかつ
総和が30%以下がよい。30%をこえると腐食速度の減少
効果が飽和するとともに、合金メッキ層のピンホールが
増加する傾向にあり耐食性から必ずしも有利でなく、加
工により合金メッキ層にCrackが生成され易くなるなど
の問題を生じ好ましくない。
Therefore, in order to obtain these effects, in the present invention, Ni (8-30%), Co (8-30%),
Fe (8-30%), Cr (1-8%), Mo (3-30%) are added alone. In addition, in the case of the composite addition of two or more of these, not less than the lower limit value of each individual addition amount is contained with respect to Zn, and the upper limit is not more than the upper limit value of each individual addition amount and the total amount is 30% or less. Is good. When it exceeds 30%, the effect of reducing the corrosion rate is saturated, and the pinholes in the alloy plating layer tend to increase, which is not necessarily advantageous in terms of corrosion resistance, and there is a problem that cracks are easily generated in the alloy plating layer during processing. It is not preferred.

尚、本発明におけるメッキ鋼板には、最表面層に耐食性
を劣化せしめない程度の付着量(亜鉛又は亜鉛系合金メ
ッキ層の付着量の1/4以下程度)でリン酸塩処理性を向
上せしめ、ひいては塗装性能を向上せしめるFe含有率の
高い(Fe濃度80%以上)Zn−Fe,Zn−Fe−Ni,Zn−Fe−P
系被膜層を設けてもよい。
In the plated steel sheet of the present invention, the phosphate treatment property should be improved by the amount of adhesion (about 1/4 or less of the amount of zinc or zinc-based alloy plating layer) that does not deteriorate the corrosion resistance of the outermost surface layer. Higher Fe content (80% or more of Fe concentration), which improves the coating performance, Zn-Fe, Zn-Fe-Ni, Zn-Fe-P
A system coating layer may be provided.

而して、本発明においては、更に耐食性能,塗膜性能を
向上せしめるために、メッキ原板と亜鉛又は亜鉛合金メ
ッキ層との中間層として、Ni系下地被覆層を設ける。こ
のNi系下地被覆層は、Zn又はZn系合金メッキ層との重畳
効果によりピンホールを減少させ耐食性を向上させる。
Thus, in the present invention, in order to further improve the corrosion resistance and the coating film performance, a Ni-based undercoating layer is provided as an intermediate layer between the plating original plate and the zinc or zinc alloy plating layer. This Ni-based undercoat layer reduces pinholes and improves corrosion resistance due to the effect of overlapping with the Zn or Zn-based alloy plating layer.

また、Ni系下地被覆層を構成する金属或いは合金は、Zn
又はZn系合金メッキ層と比較的拡散速度が速く、塗装焼
付け作業等においてZn−Ni系合金層が生成易く、地鉄に
達するピンホールの減少による耐食性向上効果が得られ
る。
Further, the metal or alloy forming the Ni-based undercoat layer is Zn
Alternatively, the diffusion rate is relatively high with respect to the Zn-based alloy plating layer, the Zn-Ni-based alloy layer is likely to be formed during coating and baking work, and the effect of improving the corrosion resistance can be obtained by reducing pinholes reaching the base iron.

而して、このNi系下地被覆層は、Ni,Ni−Co合金,Ni−P
合金,Ni−Fe合金,Ni拡散処理層で、その厚さは0.01〜1
μがよい。これは、その厚さが0.01μ未満では、下地被
覆層の均一被覆効果が不足し、上記のピンホール減少効
果が得られない傾向にある。また、厚さが1μをこえる
場合は、上記効果が飽和するとともに、下地被覆層が加
工により割れを発生する傾向にあるので好ましくないか
らである。
Thus, this Ni-based undercoat layer is made of Ni, Ni-Co alloy, Ni-P
Alloy, Ni-Fe alloy, Ni diffusion treatment layer, the thickness is 0.01-1
μ is good. If the thickness is less than 0.01 μm, the uniform coating effect of the undercoating layer tends to be insufficient, and the above-mentioned pinhole reducing effect tends not to be obtained. On the other hand, when the thickness exceeds 1 μ, the above effect is saturated and the undercoat layer tends to crack due to processing, which is not preferable.

また、これらNi系下地被覆層のうち、Ni拡散被覆層を設
ける方法が特にすぐれている。この拡散層は上記の如き
下地被覆層を設けてから冷延鋼板の加熱焼鈍工程等を利
用して拡散処理層が設けられるが、本発明の鋼成分との
複合効果により、メッキ原板表面がNi濃度の高い電気的
に貴なメッキ原板となり、原板に高度の耐食性が得られ
る。それと同時に、亜鉛メッキ層とのカップル腐食電流
が減少し、メッキ層のメッキ欠陥部や端面等で犠牲溶解
による腐食速度を減少する。その結果、メッキ鋼板の耐
食寿命の延長或いは塗装後においても地鉄に達する塗膜
欠陥部や端面等において亜鉛メッキ層等の腐食速度の減
少に基づく、塗膜下腐食が著しく抑制され、塗装後耐食
性,経時後の塗料密着性の向上効果は更に期待できる。
Among these Ni-based undercoat layers, the method of providing a Ni diffusion coating layer is particularly excellent. The diffusion layer is provided with the undercoating layer as described above, and then the diffusion treatment layer is provided by utilizing the heating and annealing process of the cold-rolled steel sheet and the like. It becomes a plated original plate with high concentration and is electrically noble, and a high degree of corrosion resistance can be obtained for the original plate. At the same time, the couple corrosion current with the zinc plating layer is reduced, and the corrosion rate due to sacrificial dissolution is reduced at the plating defect portion, the end surface, etc. of the plating layer. As a result, the corrosion resistance of the plated steel sheet is extended or the undercoat corrosion is significantly suppressed due to the decrease in the corrosion rate of the galvanized layer, etc. at the coating defect portion or the end surface that reaches the base metal even after coating. Further improvement of corrosion resistance and paint adhesion after aging can be expected.

次に本発明においてメッキ原板に対して施されるNi系下
地被覆層,亜鉛メッキ層或いは亜鉛合金メッキ層を設け
る方法及びその付着量については、特に規制されるもの
ではないが、その被覆層を設ける方法については例えば
以下の様な方法が用いられ、また付着量については以下
の範囲が好ましい。
Next, in the present invention, the method for providing the Ni-based undercoating layer, the zinc plating layer or the zinc alloy plating layer applied to the original plating plate and the amount of deposition thereof are not particularly limited, but the coating layer For example, the following method is used as the method for providing the layer, and the following range is preferable for the attached amount.

すなわち、Ni系下地処理法としては、 (1)ニッケル下地処理;硫酸ニッケル−塩化ニッケル
−ホウ酸系浴を用いた電気メッキ法 (2)ニッケル−コバルト合金下地処理;目的とする組
成のニッケル,コバルトイオンを含有する硫酸ニッケル
−硫酸コバルト−塩化ニッケル−塩化コバルト−ホウ酸
系浴を用いた電気メッキ法 (3)ニッケル−鉄合金下地処理;目的とする組成のニ
ッケル,鉄イオンを含有する硫酸ニッケル−硫酸鉄−ホ
ウ酸系浴を用いた電気メッキ法 (4)ニッケル−P合金下地処理;目的とする組成のニ
ッケル,Pイオンを含有する硫酸ニッケル−塩化ニッケル
−次亜リン酸ソーダー−リン酸系浴を用いた電気メッキ
法 等が行なわれる。
That is, as the Ni-based undercoating method, (1) nickel undercoating; electroplating method using nickel sulfate-nickel chloride-boric acid-based bath (2) nickel-cobalt alloy undercoating; nickel having a desired composition, Electroplating Method Using Nickel Sulfate-Cobalt Sulfate-Nickel Chloride-Cobalt Chloride-Boric Acid-Based Bath Containing Cobalt Ion (3) Nickel-iron alloy substrate treatment; sulfuric acid containing nickel and iron ions having a desired composition Electroplating Method Using Nickel-Iron Sulfate-Boric Acid Bath (4) Nickel-P Alloy Substrate Treatment; Nickel Sulfate-Nickel Chloride-Sodium Hypophosphite-Phosphorus Containing Nickel and P Ion of Desired Composition An electroplating method using an acid bath is performed.

又、Ni系下地被覆をNi系拡散処理層にする場合は、上記
のNi及びNi合金を電気メッキ法でメッキ原板に施すか或
いはNiイオン若しくはNiイオンと他の合金化元素イオン
を含有する水溶液をメッキ原板表面に塗布して、各々加
熱拡散処理が施される。
When the Ni-based undercoat is used as the Ni-based diffusion-treated layer, the above Ni and Ni alloys are applied to the plating original plate by the electroplating method or an aqueous solution containing Ni ions or Ni ions and other alloying element ions. Is applied to the surface of the original plating plate and subjected to a heat diffusion treatment.

例えば、上記のNiメッキ後或いは酢酸ニッケル−界面活
性剤水溶液、若しくは酢酸ニッケル−リン酸アンチモン
−界面活性剤水溶液をロールコーターで塗布・乾燥後に
各々非酸化性雰囲気で加熱拡散処理(例えば、650〜900
℃の温度で30〜180秒間の加熱処理)が行なわれる。
For example, after the above Ni plating or nickel acetate-surfactant aqueous solution, or nickel acetate-antimony phosphate-surfactant aqueous solution is applied and dried by a roll coater, and then each heat diffusion treatment in a non-oxidizing atmosphere (for example, 650 ~ 900
A heat treatment is performed at a temperature of ℃ for 30 to 180 seconds).

この拡散被覆層は、冷間圧延のままの鋼板(As Cold
材)及び冷間圧延後焼鈍された鋼板(フルフィニッシュ
材)のいずれかを用いて、脱脂,酸洗等の表面清浄化,
活性化処理後に電気メッキ法或いは水溶液塗布法によ
り、Ni系被覆層を設けて加熱拡散処理を行なってもよ
い。しかしながら、冷間圧延のままの鋼板にNi系被覆層
を設け、原板の焼鈍と同時に拡散処理を行なうのが、冷
間圧延材の有する加工歪により、Ni系被覆層と鋼板の相
互拡散が一層促進されるので短時間の加熱処理で目的と
する拡散層が生成され、経済的工業的にも有利である。
This diffusion coating is a cold rolled steel plate (As Cold
Material) or a steel sheet (full finish material) that has been annealed after cold rolling, for surface cleaning such as degreasing and pickling,
After the activation treatment, the Ni-based coating layer may be provided by the electroplating method or the aqueous solution coating method to perform the heat diffusion treatment. However, the Ni-based coating layer is provided on the as-cold-rolled steel sheet, and the diffusion treatment is performed simultaneously with the annealing of the original plate. Since it is promoted, a target diffusion layer is produced by a short heat treatment, which is economically and industrially advantageous.

また、亜鉛或いは亜鉛系合金メッキ層は、本発明のメッ
キ原板を表面清浄化,活性化処理後或いはNi系下地処理
層を設けてから、溶融メッキ法,電気メッキ法,真空蒸
着法等により、片面又は両面にその用途に対応して設け
られる。
Further, the zinc or zinc-based alloy plating layer is prepared by subjecting the plating original plate of the present invention to surface cleaning, activation treatment or after providing a Ni-based undercoating layer, by a hot dipping method, an electroplating method, a vacuum deposition method, or the like. It is provided on one side or both sides according to its use.

溶融メッキ法による亜鉛メッキ層を設ける場合には、フ
ラックス法、ガス還元方式法いずれの方法でもよく、メ
ッキ密着性を確保するために少量のAlを含有するメッキ
浴を用いて被覆される。また、電気メッキ法により亜鉛
又は亜鉛系合金メッキ層を設ける場合は、通常の電気メ
ッキ法において用いられる電解メッキ浴を用いて被覆層
が設けられる。例えば、その一例を挙げれば、(硫酸亜
鉛−硫酸ソーダ)系水溶液の電解による亜鉛メッキ層の
被覆,(硫酸亜鉛−硫酸ニッケル−硫酸アンモン)系水
溶液の電解によるZn−Ni合金メッキ層の被覆,(硫酸亜
鉛−硫酸ニッケル−硫酸コバルト−硫酸アンモン)系水
溶液の電解によるZn−Ni−Co合金メッキ層の被覆,(硫
酸亜鉛−硫酸鉄)系水溶液の電解によるZn−Fe合金メッ
キ層の被覆処理等が、可溶性陽極或いは不溶性陽極を用
いて行なわれる。而して、これら亜鉛又は亜鉛系合金メ
ッキ層の厚さは、各々均一被覆性の確保による耐食性の
点から、その厚さは1.5μ以上、好ましく3μ以上であ
る。また、被覆層の密着性,成形加工性,溶接性等の面
から、その厚さは亜鉛メッキ層は25μ、好ましくは15μ
以下、また亜鉛合金メッキ層の場合には15μ、好ましく
は8μ以下である。
When the galvanized layer is formed by the hot dip plating method, either the flux method or the gas reduction method may be used, and the galvanizing bath containing a small amount of Al is used for coating in order to secure the plating adhesion. When the zinc or zinc-based alloy plating layer is provided by the electroplating method, the coating layer is provided by using the electrolytic plating bath used in the usual electroplating method. For example, as one example, coating of a zinc plating layer by electrolysis of a (zinc sulfate-sodium sulfate) -based aqueous solution, coating of a Zn-Ni alloy plating layer by electrolysis of a (zinc sulfate-nickel sulfate-ammonium sulfate) -based aqueous solution, Coating of Zn-Ni-Co alloy plating layer by electrolysis of (zinc sulfate-nickel sulfate-cobalt sulfate-ammonium sulfate) aqueous solution, coating treatment of Zn-Fe alloy plating layer by electrolysis of (zinc sulfate-iron sulfate) aqueous solution Etc. using a soluble or insoluble anode. Thus, the thickness of each of these zinc or zinc-based alloy plating layers is 1.5 μm or more, preferably 3 μm or more, from the viewpoint of corrosion resistance by ensuring uniform coverage. In addition, the thickness of the coating layer is 25μ for the galvanized layer, preferably 15μ, from the aspects of adhesion, forming workability, weldability, etc. of the coating layer.
In the case of a zinc alloy plating layer, it is 15μ or less, preferably 8μ or less.

以上の様に、本発明の鋼成分を有する鋼板と亜鉛系メッ
キ層、或いはNi系下地層と亜鉛系メッキ層とで構成され
ているメッキ鋼板は、腐食環境に曝された場合に、前記
した様にメッキ原板と被覆層の複合効果によって、 (1)メッキ欠陥,成形加工時の加工疵部或いは端面部
において、メッキ層の犠牲防食作用による溶解速度が軽
減される事によって、メッキ層の腐食寿命が延長されま
た塗装されて使用される場合には塗膜下腐食の軽減によ
る経時後の塗料密着性の向上,塗装後耐食性の向上効果
が得られる。
As described above, the plated steel sheet composed of the steel sheet having the steel component of the present invention and the zinc-based plating layer, or the Ni-based underlayer and the zinc-based plating layer, when exposed to a corrosive environment, has been described above. As described above, due to the combined effect of the original plating plate and the coating layer, (1) the plating layer is corroded by reducing the dissolution rate due to the sacrificial anticorrosive action of the plating layer at the plating defect, the processing flaw portion or the end surface portion during molding. When the product is used with extended life and painted, the effect of improving paint adhesion after aging and corrosion resistance after painting is obtained by reducing undercoat corrosion.

(2)鋼成分において、C含有量を極低含有量に規制し
た鋼板を用いるために、他の耐食性向上元素の添加効果
と相まって、メッキ原板自体の耐食性向上効果,カーバ
イドの析出抑制によるメッキ層の不メッキ発生の減少に
よる耐食性向上効果及び加工性の向上によるメッキ層表
面或いは塗膜表面に達するクラックの発生防止効果によ
る耐食性の向上効果が得られる。
(2) In the steel composition, in order to use a steel sheet in which the C content is regulated to an extremely low content, in addition to the effect of adding other corrosion resistance improving elements, the effect of improving the corrosion resistance of the original plating plate itself and the plating layer by suppressing the precipitation of carbide It is possible to obtain the effect of improving the corrosion resistance by reducing the occurrence of non-plating and the effect of improving the corrosion resistance by the effect of preventing the generation of cracks reaching the surface of the plating layer or the coating film by improving the workability.

このように、本発明は、メッキ原板と被覆層の複合効果
により、極めて優れた効果が得られる所から、メッキ層
の付着厚さ低減が可能となり、自動車用防錆鋼板に要求
させる溶接性,成形加工時のメッキ被覆層の粉末状剥離
(所謂、パウダリング)の減少等の相剰効果も得られ
る。
Thus, the present invention, by the combined effect of the original plating plate and the coating layer, it is possible to obtain an extremely excellent effect, it is possible to reduce the adhesion thickness of the plating layer, the weldability required for automotive rust-preventive steel sheet, It is also possible to obtain a complementary effect such as reduction of powdery peeling (so-called powdering) of the plating coating layer during molding.

(実施例) 以下に、本発明の実施例を比較例とともに説明する。(Example) Below, the Example of this invention is demonstrated with a comparative example.

第1表に示す、P,Cu,Ni,Ti,Nb等の含有量を中心に変化
させた鋼成分の鋼板を用い、下記に示す被覆法により亜
鉛系メッキ層或いはNi系下地被覆層と亜鉛系メッキ層を
設けた。
Using steel plates with steel components that are changed mainly in the contents of P, Cu, Ni, Ti, Nb, etc. shown in Table 1, a zinc-based plating layer or a Ni-based undercoat layer and zinc are applied by the following coating method. A system plating layer was provided.

すなわち、電気メッキ法による亜鉛メッキ層は、冷延鋼
板(フルフィニッシュ材)を(3%NaOH+0.3%界面活
性剤)系脱脂浴を用い、脱脂,水洗後に10%H2SO4水溶
液を用いて50℃で電流密度20A/dm2で、陽極酸洗1秒,
陰極酸洗1秒間づつの電解酸洗,水洗を行なって、表面
清浄化,活性化処理を行なった。その後、(350g/の
硫酸亜鉛−80g/硫酸ソーダ)系電解浴を用いて、60
℃,40A/dm2の電流密度で所定厚さの亜鉛メッキ層を設け
た。
That is, the galvanized layer by the electroplating method uses a cold rolled steel sheet (full finish material) in a (3% NaOH + 0.3% surfactant) type degreasing bath, and after degreasing and washing with water, a 10% H 2 SO 4 aqueous solution is used. Anodic pickling for 1 second at a current density of 20 A / dm 2 at 50 ℃
Cathodic pickling was carried out by electrolytic pickling and water washing for 1 second each for surface cleaning and activation. Then, using a (350 g / zinc sulfate-80 g / sodium sulfate) -based electrolytic bath, 60
A zinc plating layer having a predetermined thickness was provided at a current density of 40 A / dm 2 at ℃.

一方、溶融メッキ法による、亜鉛メッキ層或いは亜鉛を
至成分とする亜鉛との共晶組織を有する亜鉛合金メッキ
層については、冷間圧延のままのAs Cold材を用いて、
無酸化炉方式による溶融亜鉛メッキ装置を用いて、Zn−
0.2%Al系メッキ浴及び第1表に示す亜鉛系合金メッキ
浴を用いて、各々所定厚さの亜鉛系メッキ層を設けた。
さらに、Ni系下地被覆層を設ける場合においては、電気
メッキ法による下地被覆層の場合には前記の電気メッキ
法と同一方法で、Ni系の電解浴組成を用いて所定厚さの
Ni系下地被覆層を施して亜鉛系メッキ層を設けた。
On the other hand, the hot-dip galvanizing method or the zinc alloy plating layer having a eutectic structure with zinc containing zinc as the main component is formed by using the cold rolled As Cold material,
Zn-
A 0.2% Al-based plating bath and a zinc-based alloy plating bath shown in Table 1 were used to form zinc-based plating layers each having a predetermined thickness.
Furthermore, in the case of providing a Ni-based undercoat layer, in the case of the undercoat layer by electroplating, the same method as the above electroplating method is used, and a Ni-based electrolytic bath composition of a predetermined thickness is used.
A Ni-based undercoat layer was applied to provide a zinc-based plating layer.

Ni系拡散被覆層の場合には、As Cold材を用い、その表
面を電気メッキの場合と同方法で清浄,活性化後に溶融
メッキにおける無酸化炉を用いて、加熱拡散をAs Cold
材の焼鈍と同時に行なって拡散層を設けた。而して、そ
の後亜鉛系メッキ層を施した。
In the case of the Ni-based diffusion coating layer, As Cold material is used, and the surface is cleaned and activated by the same method as in the case of electroplating.
The material was annealed simultaneously with the annealing of the material to provide a diffusion layer. After that, a zinc-based plating layer was applied.

その後、無処理材のまま或いはCrO3−SiO2系浴を用いた
クロメート処理及びフルディップ型式も燐酸塩処理を行
なって、各々所定の被覆量を設けて、下記の評価試験を
行なった。
Then, the untreated material was subjected to a chromate treatment using a CrO 3 —SiO 2 system bath and a phosphate treatment for a full dip type, and a predetermined coating amount was provided for each, and the following evaluation test was performed.

その性能評価試験結果を示す第2表から判るように、本
発明の鋼板は比較例鋼板に比して、耐食性能及び塗装性
能において極めてすぐれた特性を有する。
As can be seen from Table 2 showing the results of the performance evaluation test, the steel sheet of the present invention has extremely excellent properties in corrosion resistance and coating performance as compared with the comparative example steel sheet.

○評価試験法 (I)無塗装材の耐食性 塩水噴霧試験後の耐食性 評価材に対して、地鉄に達するスクラッチ疵を入れ、塩
水噴霧試験360時間後の孔食深さにより、その耐食寿命
を評価した。評価基準は以下の通りである。
○ Evaluation test method (I) Corrosion resistance of unpainted material Corrosion resistance after salt spray test Scratch flaws reaching the base metal were put into the evaluation material, and the corrosion resistance life was determined by the pitting depth after 360 hours of salt spray test. evaluated. The evaluation criteria are as follows.

◎……穿孔腐食部の板厚減少量 0.25mm以下 ○…… 〃 0.35mm以下 △…… 〃 0.40mm以下 ×…… 〃 0.40mmをこえる場合 サイクリックコロジョンテストによる耐食性(A) 0.8mmの板厚の評価材を用いて、 (i)塩水噴霧(5%NaCl 35℃×4時間)→(ii)乾
燥(70℃ 湿度60%2時間)→(iii)湿潤(49℃ 湿
度98%2時間)→(iv)冷却(−20℃×2時間)→
(i)塩水噴霧 ((i)〜(iv)が1サイクル) の条件のサイクリックコロジョンテスト60サイクル後の
穿孔腐食深さの測定により、以下の評価基準でその耐食
寿命の評価を行なった。
◎ …… Decrease in thickness of pierced corrosion part 0.25mm or less ○ …… 〃 0.35mm or less △ …… 〃 0.40mm or less × …… When it exceeds 〃0.40mm Corrosion resistance (A) 0.8mm Using the plate thickness evaluation material, (i) salt spray (5% NaCl 35 ° C x 4 hours) → (ii) dry (70 ° C humidity 60% 2 hours) → (iii) wet (49 ° C humidity 98% 2) Time) → (iv) cooling (-20 ° C x 2 hours) →
(I) Salt spray ((i) to (iv) is 1 cycle) The cyclic corrosion test under the conditions of 60 cycles was performed to measure the pitting corrosion depth, and the corrosion resistance was evaluated according to the following evaluation criteria. .

◎……最大穿孔腐食深さ 0.3 mm未満 ○…… 〃 0.40mm未満 △…… 〃 0.50mm未満 ×…… 〃 0.50mm以上〜孔明き発生 サイクリックコロジョンテストによる耐食性(B) 0.8mmの板厚の評価材を用いて、470×470mmのブランク
サイズから200×200mm角,絞り深さ100mmの角筒絞り材
を用いて、上記項のサイクリックコロジョンテスト、
50サイクル後の穿孔腐食深さの測定により、加工部の耐
食寿命の評価を行なった。
◎ …… Maximum perforation corrosion depth less than 0.3 mm ○ …… 〃 less than 0.40 mm △ …… 〃 less than 0.50 mm × …… 〃 more than 0.50 mm ~ perforation occurred Corrosion resistance by cyclic corosion test (B) 0.8 mm plate Using a thick evaluation material, a blank size of 470 × 470 mm to a square cylinder drawing material of 200 × 200 mm square and a drawing depth of 100 mm, and using the cyclic corosion test of the above item,
The corrosion resistance life of the processed part was evaluated by measuring the pitting corrosion depth after 50 cycles.

評価基準は以下の方法によった。The evaluation criteria were as follows.

◎……最大穿孔腐食深さ 0.20mm未満 ○…… 〃 0.25mm未満 △…… 〃 0.30mm未満 ×…… 〃 0.30mm以上〜 (II)塗装材の耐食性能 サイクリックコロジョンテストによる塗装性能
(A) 評価材に対して、各々付着量2〜2.5g/m2の燐酸塩結晶
被覆層を生成させ、次いで、カチオン電着塗装を20μ厚
さ施してから、地鉄に達するスクラッチ疵を入れて前記
項のサイクリックコロジョンテスト条件で75サイクル
後のスクラッチ部の塗膜フクレ巾及びスクラッチ部の最
大穿孔腐食深さの測定を行なった。
◎ …… Maximum perforation corrosion depth less than 0.20 mm ○ …… 〃 less than 0.25 mm △ …… 〃 less than 0.30 mm × …… 〃 0.30 mm or more ~ (II) Corrosion resistance of coating materials Coating performance by cyclic corosion test ( A) A phosphate crystal coating layer with a coating weight of 2 to 2.5 g / m 2 was formed on each of the evaluation materials, and then 20 μm thick of cationic electrodeposition coating was applied, and then scratch flaws reaching the base steel were put in. Then, the coating film swell width of the scratch portion and the maximum pitting corrosion depth of the scratch portion were measured after 75 cycles under the cyclic corosion test conditions described in the above item.

上記試験により、塗膜欠陥部を対象とした、その経時後
の塗料密着性及び塗装後耐食性を中心とした評価を行な
った。
By the above-mentioned test, the coating film defective portion was evaluated mainly with respect to the paint adhesion after aging and the corrosion resistance after coating.

◎……スクラッチ部からの片側最大フクレ巾5mm以下
で、かつ最大穿孔腐食深さ0.1mm以下 ○……スクラッチ部からの片側最大フクレ巾7.0mm以下
で、かつ最大穿孔腐食深さ0.2mm以下 △……スクラッチ部からの片側最大フクレ巾8.5mm以下
で、かつ最大穿孔腐食深さ0.3mm以下 ×……スクラッチ部からの片側最大フクレ巾8.5mm超ま
たは最大穿孔腐食深さ0.3mm超 サイクリックコロジョンテストによる塗装性能
(B) 0.8mm板厚の前記項のカチオン電着材を用いて、バル
ジ加工により20%の変形加工した後に、前記項のサイ
クリックコロジョンテストの条件で50サイクルテスト後
に、加工による塗膜欠陥部からの腐食を対象とした評価
テストを実施した。
◎ ... Maximum swell width on one side from scratch of 5mm or less and maximum pitting corrosion depth of 0.1mm or less ○ …… Maximum swell width of 7.0mm or less on one side from scratch and maximum pitting corrosion depth of 0.2mm or less △ ...... Maximum swell width of 8.5 mm or less on one side from the scratch part and maximum piercing corrosion depth of 0.3 mm or less × …… Maximum swell width of one side from the scratch part is over 8.5 mm or maximum piercing corrosion depth is over 0.3 mm Cyclic roller Coating performance by the John test (B) After using the cationic electrodeposition material of the above item of 0.8 mm thickness to perform 20% deformation processing by bulging, after 50 cycles test under the conditions of the cyclic corosion test of the above item An evaluation test was carried out for corrosion from the coating film defect portion due to processing.

評価基準は以下の方法によった ◎……穿孔腐食深さ 0.05mm未満 ○…… 〃 0.10mm未満 △…… 〃 0.15mm未満 ×…… 〃 0.15mm以上 屋外曝露試験による塗装性能 前記項のカチオン電着材を用いて、地鉄に達するスク
ラッチ疵を入れて、5%NaCl水を1回/1日評価材に散布
して、2年間の屋外曝露テストを実施した後、その穿孔
腐食深さ測定及び評価材の端面からの腐食状況を観察し
て、以下の評価基準によりその耐食性を評価した。
The evaluation criteria were as follows: ∙ Corrosion depth of pierce less than 0.05mm ∃ 〃 less than 0.10mm △ …… 〃 less than 0.15mm × …… 〃 0.15mm or more Coating performance by outdoor exposure test Cation of the above item After using scratches that reach the base metal using electrodeposited material, spray 5% NaCl water once a day on the evaluation material, conduct an outdoor exposure test for 2 years, and then determine the pitting corrosion depth. The corrosion state from the end face of the measurement and evaluation material was observed, and its corrosion resistance was evaluated according to the following evaluation criteria.

◎……最大穿孔腐食深さ0.25mm未満で、端面部からの腐
食殆んどなし、 ○……最大穿孔腐食深さ0.25mm以上〜0.40mm未満で、端
面部からの腐食若干発生 △……最大穿孔腐食深さ0.40mm以上〜0.60mm未満で、端
面部からの腐食が可成り発生 ×……最大穿孔腐食深さ0.60mm以上〜部分的に孔食発
生、また端面部からの腐食により端面の初期の形状殆ん
どなし、 成形加工性 0.8mm×480×480mmのブランクサイズから、しわ押え圧
力20Tで、200×200mmサイズ,絞り深さ125mmの角筒絞り
を行ない、その割れ発生状況、表面のカジリ発生状況を
相対的に比較して、その成形加工性を評価した。
◎ …… The maximum pitting corrosion depth is less than 0.25 mm, almost no corrosion from the end face part ○ …… The maximum piercing corrosion depth is 0.25 mm or more and less than 0.40 mm, some corrosion from the end face part △ …… Corrosion from the end face is possible when the maximum piercing corrosion depth is 0.40 mm or more and less than 0.60 mm ........ The maximum piercing corrosion depth is 0.60 mm or more and partial pitting corrosion occurs, or the end face is caused by corrosion from the end face. The initial shape of the product has almost no molding processability. From a blank size of 0.8 mm × 480 × 480 mm, a rectangular tube drawing of 200 × 200 mm size, drawing depth of 125 mm was performed with a wrinkle holding pressure of 20 T. The forming processability was evaluated by relatively comparing the occurrence of surface galling.

◎……非常にすぐれている ○……可成り良好 △……可成り劣る ×……非常に劣る ◎ …… Excellent ○ …… Satisfactory good △ …… Satisfactory inferior × …… Very inferior

【図面の簡単な説明】[Brief description of drawings]

第1図はZnメッキ層及びZn−16%Fe合金メッキ層と本発
明メッキ原板との5%NaCl水溶液中におけるカップル腐
食電流の一例を示すグラフである。
FIG. 1 is a graph showing an example of a couple corrosion current in a 5% NaCl aqueous solution of a Zn plating layer, a Zn-16% Fe alloy plating layer and a plating base plate of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C25D 5/26 M (72)発明者 伊崎 輝明 福岡県北九州市八幡東区枝光1−1―1 新日本製鐵株式会社八幡製鐵所内 (56)参考文献 特開 昭59−23894(JP,A) 特開 昭57−171692(JP,A) 特開 昭55−141555(JP,A) 特開 昭57−104656(JP,A) 特開 昭55−24943(JP,A) 特開 昭55−110794(JP,A) 特開 昭56−166390(JP,A) 特開 昭58−45396(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location C25D 5/26 M (72) Inventor Teruaki Izaki 1-1-1 Edemitsu, Hachimanto-ku, Kitakyushu, Fukuoka Nippon Steel Co., Ltd. Yawata Works (56) Reference JP 59-23894 (JP, A) JP 57-171692 (JP, A) JP 55-141555 (JP, A) JP JP-A-57-104656 (JP, A) JP-A-55-24943 (JP, A) JP-A-55-110794 (JP, A) JP-A-56-166390 (JP, A) JP-A-58-45396 (JP , A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C;0.01%未満,可溶性Al;0.005
〜0.10%,P;0.02〜0.15%,Cu;0.1%を超えて0.8%以下
を含有し、さらにTi,Nb,Zr,Vの1種または2種以上で0.
03〜0.5%を含有する鋼板の片面または両面に、亜鉛或
いは亜鉛系合金メッキ層を施してなる耐食性,塗装性能
及び加工性に優れた亜鉛系メッキ鋼板。
1. By weight%, C; less than 0.01%, soluble Al; 0.005
.About.0.10%, P; 0.02 to 0.15%, Cu; 0.1% to more than 0.8% and further contains Ti, Nb, Zr, V of 1 or 2 or more and 0.
A zinc-based plated steel sheet with excellent corrosion resistance, coating performance and workability, which is obtained by applying a zinc or zinc-based alloy plating layer on one or both sides of a steel sheet containing 03 to 0.5%.
【請求項2】重量%で、C;0.01%未満,可溶性Al;0.005
〜0.10%,P;0.02〜0.15%,Cu;0.1%を超えて0.8%以下,
Ni;1%以下を含有し、さらにTi,Nb,Zr,Vの1種または2
種以上で0.03〜0.5%を含有する鋼板の片面または両面
に、亜鉛或いは亜鉛系合金メッキ層を施してなる耐食
性,塗装性能及び加工性に優れた亜鉛系メッキ鋼板。
2. C, less than 0.01% by weight, soluble Al; 0.005
~ 0.10%, P; 0.02-0.15%, Cu; over 0.1% and 0.8% or less,
Ni: Contains 1% or less, and further contains one or two of Ti, Nb, Zr and V.
A zinc-based plated steel sheet with excellent corrosion resistance, coating performance and workability, which is obtained by applying a zinc or zinc-based alloy plating layer on one or both sides of a steel sheet containing 0.03 to 0.5% of a kind or more.
【請求項3】重量%で、C;0.01%未満,可溶性Al;0.005
〜0.10%,P;0.02〜0.15%,Cu;0.1%を超えて0.8%以下
を含有し、さらにTi,Nb,Zr,Vの1種または2種以上で0.
03〜0.5%を含有する鋼板の片面または両面に、Ni系下
地被覆層とその上層に亜鉛或いは亜鉛系合金メッキ層を
施してなる耐食性,塗装性能及び加工性に優れた亜鉛系
メッキ鋼板。
3. By weight%, C; less than 0.01%, soluble Al; 0.005
.About.0.10%, P; 0.02 to 0.15%, Cu; 0.1% to more than 0.8% and further contains Ti, Nb, Zr, V of 1 or 2 or more and 0.
Zinc-based plated steel sheet with excellent corrosion resistance, coating performance and workability, which is obtained by applying a Ni-based undercoating layer and a zinc or zinc-based alloy plating layer on the Ni-based undercoating layer on one or both sides of a steel sheet containing 03 to 0.5%.
【請求項4】重量%で、C;0.01%未満,可溶性Al;0.005
〜0.10%,P;0.02〜0.15%,Cu;0.1%を超えて0.8%以下,
Ni;1%以下を含有し、さらにTi,Nb,Zr,Vの1種または2
種以上で0.03〜0.5%を含有する鋼板の片面または両面
に、Ni系下地被覆層とその上層に亜鉛或いは亜鉛系合金
メッキ層を施してなる耐食性,塗装性能及び加工性に優
れた亜鉛系メッキ鋼板。
4. By weight%, C; less than 0.01%, soluble Al; 0.005
~ 0.10%, P; 0.02-0.15%, Cu; over 0.1% and 0.8% or less,
Ni: Contains 1% or less, and further contains one or two of Ti, Nb, Zr and V.
Zinc-based plating with excellent corrosion resistance, coating performance and workability by applying a Ni-based undercoating layer and a zinc or zinc-based alloy plating layer on the Ni-based undercoating layer on one or both sides of a steel sheet containing 0.03 to 0.5% steel sheet.
JP60146404A 1985-07-03 1985-07-03 Zinc-based plated steel sheet with excellent corrosion resistance, coating performance and workability Expired - Fee Related JPH0768634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60146404A JPH0768634B2 (en) 1985-07-03 1985-07-03 Zinc-based plated steel sheet with excellent corrosion resistance, coating performance and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60146404A JPH0768634B2 (en) 1985-07-03 1985-07-03 Zinc-based plated steel sheet with excellent corrosion resistance, coating performance and workability

Publications (2)

Publication Number Publication Date
JPS627890A JPS627890A (en) 1987-01-14
JPH0768634B2 true JPH0768634B2 (en) 1995-07-26

Family

ID=15406934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60146404A Expired - Fee Related JPH0768634B2 (en) 1985-07-03 1985-07-03 Zinc-based plated steel sheet with excellent corrosion resistance, coating performance and workability

Country Status (1)

Country Link
JP (1) JPH0768634B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3001286B2 (en) * 1991-05-23 2000-01-24 新日本製鐵株式会社 Manufacturing method of high strength hot-dip galvanized steel sheet with excellent hole expandability
FR2715295B1 (en) * 1994-01-24 1996-04-12 Oreal A keratin fiber oxidation dye composition comprising a paraphenylenediamine derivative and a metaphenylenediamine derivative, and dyeing process using such a composition.
FR2717383B1 (en) * 1994-03-21 1996-04-19 Oreal Composition for dyeing oxidation of keratin fibers comprising a derivative of paraphenylenediamine and a cationic or amphoteric substantive polymer and use.
JP2001316860A (en) * 2000-05-11 2001-11-16 Sumitomo Metal Ind Ltd Attractive electrogalvanized steel sheet and manufacturing method
JP5609494B2 (en) * 2010-09-29 2014-10-22 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549113A (en) * 1977-06-23 1979-01-23 Nippon Steel Corp Highly anti-corrosive steel plate for automoviles
JPS5524943A (en) * 1978-08-09 1980-02-22 Kawasaki Steel Corp Manufacture of high tensile hot galvanized steel plate for press processing
JPS55110794A (en) * 1979-02-16 1980-08-26 Nippon Steel Corp Preparation of zn based alloy coated steel plate
JPS55141555A (en) * 1979-04-18 1980-11-05 Kawasaki Steel Corp Production of high tension galvanized steel sheet for press machining
JPS609588B2 (en) * 1980-04-01 1985-03-11 新日本製鐵株式会社 Pitting corrosion resistant low alloy steel
JPS56166390A (en) * 1980-05-28 1981-12-21 Nippon Steel Corp Zn-co type alloy coated steel plate of superior corrosion resistance
JPS5714748A (en) * 1980-07-01 1982-01-26 Dainippon Pharmaceut Co Ltd Kit for quantitative determination of valproic acid and its method for quantitative determination
JPS5776176A (en) * 1980-10-28 1982-05-13 Nippon Steel Corp Manufacture of high preformance hot-galvanized steel plate
JPS57104656A (en) * 1980-12-22 1982-06-29 Nippon Kokan Kk <Nkk> Manufacture of high-tensile steel with low galvanizing crack sensitivity
JPS57171692A (en) * 1981-04-15 1982-10-22 Kawasaki Steel Corp Surface treatment steel plate having high corrosion resistance
JPS5819442A (en) * 1981-07-27 1983-02-04 Nippon Kokan Kk <Nkk> Manufacture of high strength cold rolled steel plate for working by continuous annealing
JPS5845396A (en) * 1981-09-11 1983-03-16 Nippon Steel Corp Ni-zn alloy plated steel plate for fuel vessel
JPS58117890A (en) * 1982-01-06 1983-07-13 Kawasaki Steel Corp Highly corrosion resistant surface treated steel plate
JPS5923894A (en) * 1982-07-29 1984-02-07 Sumitomo Metal Ind Ltd Plate steel sheet with superior corrosion resistance and its manufacture
JPS6115948A (en) * 1984-07-02 1986-01-24 Kawasaki Steel Corp High-tension cold-rolled steel sheet for deep drawing

Also Published As

Publication number Publication date
JPS627890A (en) 1987-01-14

Similar Documents

Publication Publication Date Title
KR101736737B1 (en) HOT-DIP Al-Zn ALLOY COATED STEEL SHEET AND METHOD FOR PRODUCING SAME
JPS59170288A (en) Zinc alloy plated steel sheet having superior corrosion resistance and coatability
JPS6160914B2 (en)
JPS5815554B2 (en) Plated steel materials for cationic electrodeposition coating
JPH0768634B2 (en) Zinc-based plated steel sheet with excellent corrosion resistance, coating performance and workability
JPH072997B2 (en) Zinc-based plated steel sheet with excellent corrosion resistance and paintability
JPS6320315B2 (en)
JP3126622B2 (en) Rustproof steel plate for fuel tank
JP3895900B2 (en) High corrosion resistance composite electroplated steel sheet and method for producing the same
JPS5925992A (en) Surface treated steel sheet having high corrosion resistance and its production
JPH0548313B2 (en)
JP3261951B2 (en) Zinc-based electroplated steel sheet and its manufacturing method
JPH0617259A (en) High corrosion resistant surface treated aluminum sheet
JPS61246058A (en) High corrosion-resistant coated steel plate for fuel vessel
JPS61194195A (en) Highly-corrosion resistant two-layer plated steel plate
JPS642195B2 (en)
JPH0520514B2 (en)
JPS61257494A (en) Surface treated steel plate having high corrosion resistance
JPH0324293A (en) Multi-ply plated steel sheet excellent in workability, corrosion resistance and water-resistant adhesion
JPH0536516B2 (en)
JPS61252148A (en) Coated steel plate having excellent corrosion resistance
JPS58224740A (en) Weldable painted steel plate
JPH0617260A (en) Manufacture of galvanizing coated aluminum material excellent in adhesion
JP3358468B2 (en) Zinc-based composite plated metal sheet and method for producing the same
JPH0689475B2 (en) Steel plate for fuel container

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees