JPH0536516B2 - - Google Patents

Info

Publication number
JPH0536516B2
JPH0536516B2 JP63207784A JP20778488A JPH0536516B2 JP H0536516 B2 JPH0536516 B2 JP H0536516B2 JP 63207784 A JP63207784 A JP 63207784A JP 20778488 A JP20778488 A JP 20778488A JP H0536516 B2 JPH0536516 B2 JP H0536516B2
Authority
JP
Japan
Prior art keywords
plating
phase
alloy
hot
steel sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63207784A
Other languages
Japanese (ja)
Other versions
JPH0257697A (en
Inventor
Nobukazu Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20778488A priority Critical patent/JPH0257697A/en
Publication of JPH0257697A publication Critical patent/JPH0257697A/en
Publication of JPH0536516B2 publication Critical patent/JPH0536516B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> この発明は、十分な耐食性や塗装性を有するこ
とは勿論、優れたプレス加工性及びスポツト溶接
性をも示すところの、自動車用防錆鋼板として好
適な表面処理鋼板に関するものである。 <従来技術とその課題> 近年、自動車車体の防錆性能に対する要求は一
段と厳しくなつてきており、所謂“10−5−2”
の防錆目標(孔あき腐食10年保証、外面錆5年保
証、エンジンルーム内の表面錆2年保証)が掲げ
られるに至つて自動車用防錆鋼板の更なる防錆性
能向上策は緊急の課題となつていた。 従来、自動車用防錆鋼板としては「Zn−Ni合
金電気メツキ鋼板(メツキ付着量:20〜40g/
m2)」、「Zn−Fe合金電気メツキ鋼板(メツキ付着
量:20〜40g/m2)」或いは「Zn電気メツキ鋼板
(メツキ付着量:20〜100g/m2)」が使用されて
いたが、上述のような防錆要求の高度化に伴つて
メツキの厚目付化が検討された。ところが、電気
メツキの厚目付化は電力大量使用に伴う多大な製
造コストアツプにつながるものであることから、
自動車用防錆鋼板にも電気メツキ鋼板に比較して
厚目付が容易である溶融メツキ(溶融亜鉛メツ
キ、合金化溶融亜鉛メツキ、溶融亜鉛−アルミニ
ウム合金メツキ)鋼板の採用が検討させるように
なつてきた。 しかしながら、溶融メツキ鋼板には次のような
問題が指摘されており、これを自動車用防錆鋼板
に適用するにはその克服が不可欠であつた。 即ち、「溶融亜鉛メツキ鋼板」や「溶融亜鉛−
アルミニウム合金メツキ鋼板」では、プレス加工
時にメツキ被膜が金型に焼付いて摺動抵抗が増大
し部分的にメツキ被膜がむしり取られる所謂“フ
レーキング”と称する現象が発生し、脱落したメ
ツキ層の破片がプレス金肩に堆積して成形品に押
し込み疵を作る等のトラブルが生じることがあつ
た。 また、溶融亜鉛メツキ鋼板を加熱処理すること
によつてZn−Fe合金とした「合金化溶融亜鉛メ
ツキ鋼板」では、合金化度が低い場合には溶融亜
鉛メツキ鋼板と同様のフレーキングの問題が発生
し、また合金化度が高い場合には厳しい加工を受
けるとメツキ層が崩壊し粉末状に剥離・脱落する
所謂“パウダリング”と称される製品欠陥が発生
して、加工後の耐食性を劣化せしめると同時に剥
離・脱落したメツキ層の破片がプレス金型に堆積
して、やはり成形品に押し込み疵を作る等のトラ
ブルが生じがちであつた。その上、「合金化溶融
亜鉛メツキ鋼板」では、カチオン電着塗装の際に
“電着塗装ブツ”と称される凹凸欠陥が生じ易く、
特に約230V以上の電着条件でこの傾向が強かつ
た。 しかも、「溶融亜鉛メツキ鋼板」、「合金化溶融
亜鉛メツキ鋼板」及び「溶融亜鉛−アルミニウム
合金メツキ鋼板」ともスポツト溶接における連続
打点の際のチツプ寿命が300〜3000点と短い。特
に、目付量が増大するにつれてスポツト溶接機の
チツプの損傷が激しくなり、チツプをドレツシン
グする頻度や交換する頻度が高くなつて作業性に
問題がある。 そこで、溶融メツキ鋼板に見られる上記問題を
解決すべく、以下のような提案がなされた。 (a) Fe−Zn系合金(Zn≦40%:以降、成分割合
を表わす%は重量%とする)の上層メツキを施
す〔特開昭56−133488号、特開昭56−142885
号〕、 (b) Fe−P合金(P:0.0003〜0.5%)の上層メ
ツキを施す〔特開昭59−211592号、特開昭62−
29084号〕、 (c) Fe−B合金(B:0.001〜3%)又はFe−S
合金(S:0.001〜0.41%)の上層メツキを施
す〔特開昭62−253796号〕、 (d) Zn又はZn−Ni合金の上層メツキを施す〔特
開昭61−207597号〕。 しかし、上記(a)〜(c)項に示す如きFe−Zn合金、
Fe−P合金、Fe−B合金等のFe系上層メツキを
施す対策では、化成処理性や耐クレータリング性
等の塗装性は向上するが、Fe系メツキ固有の問
題として「メツキ付着量が多い場合に赤錆を発生
易い」との不都合が指摘された。また、加工性の
面からは、合金化度の低い合金化溶融亜鉛メツキ
鋼板ではフレーキングに対して多少の効果が認め
られるものの、パウダリング現象に対して改善効
果がないばかりか、スポツト溶接性を劣化すると
言う問題もあつた。 このスポツト溶接性の劣化原因は次のように考
えられる。即ち、一般にスポツト溶接の電極チツ
プ材質としてCu−Cr合金(Cu含有量:数%)が
用いられるが、連続スポツト溶接の進行に伴つて
メツキ被膜成分のZnやFe及び母材のFeがチツプ
表面から熱拡散するためにCu−Zn−Feの脆い合
金となり、それ故にチツプの損傷を促進する。 一方、上記(d)項に示したZn又はZn−Ni合金の
上層メツキを施す対策は特に加工性の改善を狙つ
たものであるが、ここで言う「加工性の改善」と
は「パウダリング性の改善」を意味するものであ
り、“Znメツキ”又は“Ni含有率が30wt%以下
のZn−Ni合金メツキ”のような延性のあるメツ
キを上層メツキとして施すことを特徴としてい
る。そして、この対策では『“Ni含有率が30wt%
以下のZn−Ni合金メツキ”とはη相とγ相の2
相から構成され、適度な延性を有するものであ
る』としているが、純粋にη相とγ相の2相から
成るZn−Ni合金メツキの安定形成範囲は“Ni含
有量が10wt%を下回る範囲であることが学術的
に明らかであり(例えば「金属表面技術」Vol.31
(1980)、No.7、第771頁を参照されたい)、この対
策は結局Ni含有率が10wt%を下回るZn−Ni合金
メツキを上層メツキとして施すことを主眼とした
ものに他ならない。しかしながら、Znメツキ又
はη+γの2相から成るZn−Ni合金メツキの上
メツキを施す対策では確かに延性があるが故にパ
ウダリングの抑制効果は得られるかも知れない
が、表面がZnリツチな被膜となるためプレス成
形時に工具との摺動による類似焼付現象、即ちカ
ジリ現象が発生してメツキ被膜のフレーキングを
生じ易いとの問題があり、その意味からは加工性
改善対策として十分なものではなかつた。 <課題を解決するための手段> 本発明は、従来の自動車用防錆鋼板に指摘され
ていた前記問題点を解消し、十分な耐食性並びに
塗装性を有することは勿論、加工性やスポツト溶
接性にも優れた表面処理鋼板を提供すべく案出さ
れたものであり、 「第1図に示される如く、鋼板1の少なくとも
片面に、溶融亜鉛メツキの下層2と、片面当り
0.5〜20g/m2の“γ相単相のZn−Ni合金メツ
キ”又は“γ相とα相との混相のZn−Ni合金メ
ツキ”から成る上層3とで構成されるメツキ層を
設けて表面処理鋼板を構成することにより、優れ
た耐プレス摺動性並びにスポツト溶接性をも付与
した点」に特徴を有するものである。 ここで、「溶融亜鉛系メツキ」は鋼板に所望の
防錆性能を付与する上で欠かせないものである
が、この「溶融亜鉛系メツキ」は溶融亜鉛メツ
キ、合金化溶融亜鉛メツキ(例えば合金化度が
Fe含有割合で5〜15%のもの)及び溶融亜鉛−
アルミニウム合金(例えばAl含有割合:4〜60
%)メツキ等の何れであつても良い。 上記のように、本発明は、少なくとも片面に溶
融亜鉛メツキを施した鋼板において、プレス加工
時におけるメツキの摺動特性が高いが故のメツキ
のフレーキング防止、スポツト溶接性における連
続打点時のチツプ電極の寿命向上、及びカチオン
電着塗装時のクレータリング(合金化溶融亜鉛メ
ツキ鋼板等に目立つ)への対策を目的として、
“γ相単相”又は“γ相+α相の混相”のZn−Ni
合金メツキを片面当り0.5〜20g/m2施すことを
特徴としているが、このZn−Ni合金メツキは、
Ni含有率が10〜16%でγ単相(Ni5Zn21又は
Ni3Zn22)を、またNi含有率が16〜80%で〔γ相
+Znを固溶したα相〕の2相を実現することが
可能であるが、この場合、γ単相或いは〔γ+
α〕2相を安定して得る上で留意すべき点は、
Niイオン(Ni2+)、Znイオン(Zn2+)を含有し
た硫酸系電気メツキ浴中のNi2+、Zn2+濃度を Ni2+:50〜65g/、 Zn2+:10〜40g/ に調整すると共に、その濃度比を Ni2+/Zn2+≧1.8 に規制することである。そして、γ単相又は〔γ
+α〕2相構造ではメツキ被膜の硬度の上昇に伴
つてメツキの摺動特性が向上して摩擦係数が低下
し、プレス加工時にメツキ被膜が金型工具へ焼付
くのを抑制する効果を発揮するのでフレーキング
に対して非常に有利である。 これに対して、η相を有する〔η+γ〕2相或
いはη相単相のZn−Ni合金メツキでは、η相が
柔らかいが故にメツキの摺動特性として摩擦係数
が上昇するのでフレーキングには不利振である
(例えば「鉄と鋼」’87−S417頁を参照された
い)。 また、γ単相又は〔γ+α〕2相のZn−Ni合
金メツキは他のZnメツキやZn−Fe合金メツキと
比較して連続スポツト溶接に有利である。なぜな
ら、前述したように、一般に、連続スポツト溶接
の進行につれてメツキ中のFeやZnがスポツト溶
接チツプ(Cu−数%合金、Al2O3分散Cu)を構
成するCu中に拡散する傾向があり、脆いCu−Zn
或いはCu−Fe合金を形成してチツプの形状崩れ
の原因を作つて連続打点性の寿命を低下させがち
であるが、Zn−Ni合金メツキの場合には、Niが
Cu中に拡散することによつてFe、Znの拡散を抑
制し前記脆い合金の形成を防ぐので、チツプの損
傷が少なくなり連続打点性の向上をもたらすから
である。 更に、Zn−Ni合金メツキの耐クレータリング
性は合金化溶融亜鉛メツキ鋼板に比較して優れて
おり、特にγ相又はγ+α相から成るZn−Ni合
金メツキはη相を有するZn−Ni合金メツキより
もクレータの発生する電圧が高い。 Zn−Ni合金メツキたるメツキ上層の目付量を
0.5〜20g/m2と限定したのは、該目付量が0.5
g/m2未満では所望の耐プレス摺動性、スポツト
溶接性及び塗装性改善効果を確保することができ
ず、一方、上記目付量が20g/m2を超えてもより
以上の改善効果は得られずに経済的な不利を招く
からである。 なお、γ単相又は〔γ+α〕2相を有するZn
−Ni合金メツキとしては、Co、Mo、Cr、Mn、
Fe、Cd、Cu、In、Ag、Pb及びSnの1種又は2
種以上を0.01〜1%の範囲で含有していても良
く、これによつて本発明の効果は何ら損なわれる
ことがない。 特に、Coについては、Zn−Ni合金メツキ液の
原料としてNiSO4を使用する場合には不可避的に
1%程度は含有されており、合金メツキ皮膜中に
も0.1%程度は含有されるのが普通である。 続いて、この発明を実施例によつて更に具体的
に説明する。 <実施例> まず、板厚:0.8mmの“溶融亜鉛メツキ鋼板”
及び“合金化の異なる合金化溶融亜鉛メツキ鋼
板”と第1表に示すようなZn−Ni系合金電気メ
ツキ液を準備した。
<Industrial Application Field> The present invention relates to a surface-treated steel sheet suitable as a rust-preventing steel sheet for automobiles, which not only has sufficient corrosion resistance and paintability, but also exhibits excellent press workability and spot weldability. It is something. <Prior art and its challenges> In recent years, the requirements for rust prevention performance of automobile bodies have become even more severe, and the so-called "10-5-2"
As rust prevention targets have been set (10-year warranty on perforation corrosion, 5-year warranty on external rust, and 2-year warranty on surface rust in the engine room), further measures to improve the rust-prevention performance of automotive rust-proof steel plates are urgently needed. This had become an issue. Conventionally, the rust-proof steel sheet for automobiles was "Zn-Ni alloy electroplated steel sheet (plating amount: 20 to 40 g/
m 2 ), "Zn-Fe alloy electroplated steel sheet (plating amount: 20 to 40 g/m 2 )" or "Zn electroplating steel sheet (plating amount: 20 to 100 g/m 2 )" were used. However, as rust prevention requirements have become more sophisticated as mentioned above, thicker plating has been considered. However, thicker electroplating leads to a significant increase in manufacturing costs due to the use of a large amount of electricity.
The adoption of hot-dip plated (hot-dip galvanized, alloyed hot-dip galvanized, hot-dip zinc-aluminum alloy plated) steel sheets, which are easier to apply thick coatings than electroplated steel sheets, is being considered for rust-proof steel sheets for automobiles. Ta. However, the following problems have been pointed out with hot-dip galvanized steel sheets, and it is essential to overcome these problems in order to apply them to rust-proof steel sheets for automobiles. In other words, "hot-dip galvanized steel sheet" and "hot-dip galvanized steel sheet"
With "Aluminum Alloy Plated Steel Sheet", during press working, the plating film is baked into the mold, increasing sliding resistance, and the plating film is partially peeled off, a phenomenon called "flaking", which causes pieces of the plating layer to fall off. This sometimes caused problems such as deposits on the press metal shoulders and the formation of indentation flaws in the molded products. In addition, "alloyed hot-dip galvanized steel sheets" made into Zn-Fe alloy by heat-treating hot-dip galvanized steel sheets have the same flaking problem as hot-dip galvanized steel sheets when the degree of alloying is low. In addition, when the degree of alloying is high, the plating layer collapses and peels off and falls off in the form of powder when subjected to severe processing, resulting in a product defect called "powdering", which impairs corrosion resistance after processing. At the same time as deterioration occurred, fragments of the plating layer that peeled off and fell off were deposited on the press mold, which tended to cause problems such as indentation flaws in the molded product. Furthermore, in "alloyed hot-dip galvanized steel sheets", uneven defects called "electrodeposition coating spots" are likely to occur during cationic electrodeposition coating.
This tendency was particularly strong under electrodeposition conditions of about 230V or higher. Furthermore, "hot-dip galvanized steel sheets,""alloyed hot-dip galvanized steel sheets," and "hot-dip zinc-aluminum alloy-plated steel sheets" all have a short chip life of 300 to 3,000 points during continuous spot welding. In particular, as the basis weight increases, the chips of the spot welding machine become more severely damaged, and the frequency of dressing and replacing the chips increases, causing problems in workability. Therefore, in order to solve the above-mentioned problems observed in hot-dip galvanized steel sheets, the following proposals have been made. (a) Applying upper layer plating of Fe-Zn alloy (Zn≦40%; hereinafter, % representing the component ratio is expressed as weight %) [JP-A-56-133488, JP-A-56-142885
(b) Top layer plating of Fe-P alloy (P: 0.0003 to 0.5%) [JP-A No. 59-211592, JP-A No. 62-
No. 29084], (c) Fe-B alloy (B: 0.001-3%) or Fe-S
Applying upper layer plating of alloy (S: 0.001 to 0.41%) [JP-A-62-253796], (d) Applying upper-layer plating of Zn or Zn-Ni alloy [JP-A-61-207597]. However, Fe-Zn alloys as shown in items (a) to (c) above,
Countermeasures such as applying Fe-based upper layer plating such as Fe-P alloy and Fe-B alloy improve paintability such as chemical conversion treatment and cratering resistance, but a problem unique to Fe-based plating is that ``a large amount of plating adheres.'' The problem was pointed out that "red rust is likely to occur in some cases." In addition, from the viewpoint of workability, although some effect on flaking is observed in alloyed hot-dip galvanized steel sheets with a low degree of alloying, they not only have no improvement effect on the powdering phenomenon, but also have poor spot weldability. There was also the problem that it deteriorated. The cause of this deterioration in spot weldability is thought to be as follows. In other words, Cu-Cr alloy (Cu content: several percent) is generally used as the electrode tip material for spot welding, but as continuous spot welding progresses, Zn and Fe from the plating film and Fe from the base metal are deposited on the chip surface. Thermal diffusion from the copper alloy leads to a brittle alloy of Cu-Zn-Fe, thus promoting chip damage. On the other hand, the countermeasure of applying upper layer plating of Zn or Zn-Ni alloy shown in item (d) above is particularly aimed at improving workability, but "improving workability" here refers to "powdering It is characterized by applying a ductile plating such as "Zn plating" or "Zn-Ni alloy plating with a Ni content of 30 wt% or less" as the upper layer plating. And, with this measure, ``Ni content is 30wt%.''
The following “Zn-Ni alloy plating” refers to the two phases of η phase and γ phase.
However, the stable formation range of Zn-Ni alloy plating that consists of two pure phases, η phase and γ phase, is ``a range where the Ni content is less than 10 wt%.'' It is academically clear that
(1980), No. 7, p. 771), this countermeasure is nothing but a measure that focuses on applying a Zn--Ni alloy plating with a Ni content of less than 10 wt% as the upper layer plating. However, top plating of Zn plating or Zn-Ni alloy plating consisting of two phases of η + γ may be effective in suppressing powdering due to its ductility; Therefore, there is a problem that a similar seizure phenomenon, that is, a galling phenomenon, occurs due to sliding with the tool during press forming, which tends to cause flaking of the plating film, and in that sense, it is not a sufficient measure to improve workability. Ta. <Means for Solving the Problems> The present invention solves the problems pointed out in conventional rust-proof steel sheets for automobiles, and has not only sufficient corrosion resistance and paintability but also good workability and spot weldability. ``As shown in Figure 1, a lower layer 2 of hot-dip galvanization is applied to at least one side of a steel plate 1, and
A plating layer consisting of an upper layer 3 consisting of a "γ phase single phase Zn-Ni alloy plating" or "a mixed phase Zn-Ni alloy plating of γ phase and α phase" of 0.5 to 20 g/m 2 is provided. It is characterized by having excellent press sliding resistance and spot weldability by composing a surface-treated steel sheet. Here, "molten zinc plating" is indispensable for imparting the desired rust prevention performance to steel sheets, but this "molten zinc plating" can be applied to hot-dip galvanizing, alloyed hot-dip galvanizing (for example, alloyed hot-dip galvanizing). The degree of
Fe content of 5 to 15%) and molten zinc
Aluminum alloy (e.g. Al content: 4-60
%) It may be any of the following. As described above, the present invention aims to prevent flaking of the plating due to the high sliding properties of the plating during press working, and to reduce chips during continuous dots in spot weldability, in steel sheets that are hot-dip galvanized on at least one side. In order to improve the life of the electrode and prevent cratering (visible on alloyed hot-dip galvanized steel sheets, etc.) during cationic electrodeposition coating,
“γ phase single phase” or “γ phase + α phase mixed phase” Zn-Ni
It is characterized by applying alloy plating of 0.5 to 20g/ m2 per side, but this Zn-Ni alloy plating is
Ni content is 10~16% and γ single phase (Ni 5 Zn 21 or
Ni 3 Zn 22 ), or with a Ni content of 16 to 80%, it is possible to realize two phases [γ phase + α phase with solid solution of Zn], but in this case, γ single phase or [γ +
α] Points to keep in mind in stably obtaining two phases are:
The concentration of Ni 2+ and Zn 2+ in the sulfuric acid electroplating bath containing Ni ions (Ni 2+ ) and Zn ions (Zn 2+ ) is Ni 2+ : 50 to 65 g /, Zn 2+ : 10 to 40 g / and regulate the concentration ratio to Ni 2+ /Zn 2+ ≧1.8. Then, γ single phase or [γ
+α] In the two-phase structure, as the hardness of the plating film increases, the sliding characteristics of the plating improve and the friction coefficient decreases, which has the effect of suppressing the plating film from sticking to the mold tool during press processing. Therefore, it is very advantageous against flaking. On the other hand, Zn-Ni alloy plating with two phases [η + γ] having η phase or single phase η phase is disadvantageous for flaking because the friction coefficient increases as a sliding property of the plating because the η phase is soft. (For example, see "Tetsu to Hagane"'87-S417). Furthermore, γ single-phase or [γ+α] two-phase Zn-Ni alloy plating is more advantageous for continuous spot welding than other Zn platings or Zn-Fe alloy platings. This is because, as mentioned above, as continuous spot welding progresses, Fe and Zn in the plating generally tend to diffuse into the Cu constituting the spot welding chip (Cu-several percent alloy, Al 2 O 3 dispersed Cu). , brittle Cu−Zn
Alternatively, a Cu-Fe alloy is formed, which causes the chip to lose its shape and shorten the continuous dot life. However, in the case of Zn-Ni alloy plating, Ni
This is because diffusion into Cu suppresses the diffusion of Fe and Zn and prevents the formation of the brittle alloy, which reduces chip damage and improves continuous dot performance. Furthermore, the cratering resistance of Zn-Ni alloy plating is superior to that of alloyed hot-dip galvanized steel sheets, and in particular, Zn-Ni alloy plating consisting of γ phase or γ + α phase is superior to Zn-Ni alloy plating having η phase. The voltage at which the crater is generated is higher than that of the crater. The basis weight of the upper layer of Zn-Ni alloy plating is
The area weight is limited to 0.5 to 20g/ m2 when the area weight is 0.5
If the area weight is less than 20g/ m2 , it will not be possible to achieve the desired improvement in press sliding resistance, spot weldability, and paintability. This is because they will not be able to obtain it and will be at an economic disadvantage. In addition, Zn with γ single phase or [γ + α] two phases
−Ni alloy plating includes Co, Mo, Cr, Mn,
One or two of Fe, Cd, Cu, In, Ag, Pb and Sn
It is also possible to contain more than 0.01% of these species in the range of 0.01% to 1% without impairing the effects of the present invention. In particular, when NiSO 4 is used as a raw material for Zn-Ni alloy plating liquid, it inevitably contains about 1% of Co, and about 0.1% of Co is also contained in the alloy plating film. It's normal. Next, the present invention will be explained in more detail with reference to Examples. <Example> First, a “hot-dip galvanized steel plate” with a plate thickness of 0.8 mm.
and "alloyed hot-dip galvanized steel sheets with different alloying" and Zn--Ni alloy electroplating liquids as shown in Table 1 were prepared.

【表】 次に、上記各溶融メツキ鋼板に脱脂、酸洗処理
を施した後、第1表に示したメツキ液を用いると
共に、そのNi2+濃度とZn2+濃度を変化させて電
気メツキを行うことにより、溶融メツキ層上に0
〜20g/m2の目付量でη、η+γ、γ、γ+αの
各相を有するZn−Ni合金メツキ層を施した。 なお、γ、γ+αの各相を有するZn−Ni合金
メツキ層の形成に際しては、浴中のNi2+、Zn2+
濃度 Ni2+:50〜65g/、 Zn2+:10〜40g/ にあつて、その濃度比が Ni2+/Zn2+≧1.8 となるように調整した。 次いで、このようにして作成された表面処理鋼
板について、メツキのパウダリング性及びフレー
キング性をチエツクするためのビート付ハツト成
形試験、メツキ面と工具面との摺動特性調査、ス
ポツト溶接性調査、塗装性調査、塗装後耐食性調
査及び塗膜密着性調査をそれぞれ実施した。 これらの結果を第2表に示す。 なお、前記各試験及び調査は次の要領で実施し
た。 ビード付ハツト成形試験 第1図aに示すビード付のハツト成形によつて
得た成形品について、第1図bで示すようなビツ
ド側壁部におけるメツキのパウダリング及びフレ
ーキングをセロハン接着テープでチエツクすると
共に、第1図cで示す如く金型ビード部に堆積し
た金属粉を同様にテープチエツクした。そして、
その評価は、「金型ビード部へのメツキ剥離片の
付着状況」については ◎…メツキ剥離片の付着なし、 ○…メツキ剥離片の付着微小、 △…メツキ剥離片の付着小、 ×…メツキ剥離片の付着多 で表示し、また「成形品の壁部のテープ剥離状
況」についても、同じく ◎…メツキ剥離片の付着なし、 ○…メツキ剥離片の付着微小、
[Table] Next, after degreasing and pickling each hot-dip galvanized steel sheet, electroplating was performed using the plating solution shown in Table 1 and varying the Ni 2+ and Zn 2+ concentrations. By doing this, 0
A Zn--Ni alloy plating layer having each phase of η, η+γ, γ, and γ+α was applied with a basis weight of ~20 g/m 2 . In addition, when forming the Zn-Ni alloy plating layer having each phase of γ and γ+α, Ni 2+ and Zn 2+ in the bath are
The concentrations were adjusted to Ni 2+ : 50 to 65 g/, Zn 2+ : 10 to 40 g/, and the concentration ratio was Ni 2+ /Zn 2+ ≧1.8. Next, the surface-treated steel sheets prepared in this way were subjected to a beat forming test to check the powdering and flaking properties of the plating, an investigation of the sliding characteristics between the plating surface and the tool surface, and a spot weldability investigation. , paintability investigation, post-painting corrosion resistance investigation, and paint film adhesion investigation were conducted. These results are shown in Table 2. In addition, each of the above-mentioned tests and investigations were conducted in the following manner. Beaded Hat Molding Test The molded product obtained by beaded hat molding shown in Figure 1a was checked for powdering and flaking of the plating on the side wall of the bead as shown in Figure 1b using cellophane adhesive tape. At the same time, as shown in FIG. 1c, metal powder deposited on the bead of the mold was similarly checked with a tape. and,
Regarding the "adhesion status of peeled plating pieces to the mold bead", ◎...no peeled plating pieces adhered, ○...slight adhesion of peeled plating pieces, △...slight adhesion of peeled plating pieces, ×...plating It is indicated by the amount of peeling pieces attached, and the "situation of tape peeling from the wall of the molded product" is also the same.

【表】 △…メツキ剥離片の付着小、 ×…メツキ剥離片の付着多 で表示した。 摺動特性調査 メツキ面と工具面との摺動特性調査には、第2
図に示すような、バウデン試験を改良した“改良
バウデン試験法”によりメツキ面の摩擦係数を求
める方法を採用し、それによつて摺動特性を評価
した。 スポツト溶接性調査 スポツト溶接性の試験は、CF型電極(Cu−Cr
合金製)を用い、加圧力:200Kg−f、スクイズ
時間:20〓、通電時間:10〓、保持時間:15〓及
び溶接電流:11kAで、1点/1秒で1分間に20
打点のピツチなる条件で連続打点性のテストを行
い、ナゲツト径が4√ t(=3.6mm、但しtは板
厚で0.8mm)以下の時点をもつて連続打点の寿命
とした。 塗装性調査 浸漬型リン酸亜鉛処理(日本パーカライジング
社製のパルボンド〔商品名〕による処理〕を施し
た後、カチオン電着塗料(関西ペイント社製のエ
レクトロン9450〔商品名〕)に浸漬し、各設定電圧
で急激に通電を行い、クレータリングの発生する
電圧を求めることにより電着塗装性を評価した。 塗装後耐食性調査 塗装後耐食性については、リン酸亜鉛処理及び
電着塗装を施した後、更にメラミンアルキツド系
の中塗り及び上塗りを施した塗装板(70mm×150
mm、総合膜厚100μm)にクロスカツトを入れ、
これを半年間屋外暴露テスト(この間、週2回の
塩水散布を実施)して“クロスカツト部からの赤
錆発生具合”及び“クロスカツト部からの塗膜の
クリープ幅”を求めて評価した。なお、塗装後耐
食性は ◎…赤錆なし、 ○…赤錆僅かに発生、 △…赤錆発生少、 ×…赤錆発生大 で表示した。 塗膜密着性調査 カチオン電着塗装、中塗り、上塗りの塗装を施
した後、50℃の温水(イオン交換水)中に10日間
浸漬してから1mm間隔のゴバン目を入れたものに
ついて、100マスのテープ剥離テストを実施し、
この時の塗膜の残存率でもつて塗膜密着性を評価
した。 前記第2表に示される結果からも明らかなよう
に、本発明に係る表面処理鋼板は何れの特性調査
においても優れた成績を示しており、最近の自動
車用防錆鋼板に対する厳しい要求をも十分に満足
するのに対して、本発明で規定する条件を満たさ
ない比較鋼板は十分な特性を有しないことが分か
る。 なお、ここではメツキ第1層が“合金化溶融亜
鉛メツキ”又は“溶融亜鉛メツキ”及び“5%
Al−Zn合金メツキ”の例について説明したが、
これに代えて例えばAlを4〜60%含む溶融亜鉛
−アルミニウム合金メツキを施したものについて
も、その上層として本発明に係るγ相単相又は
〔γ+α〕2相のZn−Ni合金メツキを0.5〜20
g/m2の目付量で施せば、同様に優れた加工性、
スポツト溶接性、塗装性を備えた表面処理が得ら
れることは言うまでもない。 <効果の総括> 以上に説明した如く、この発明によれば、耐
食・防錆性は勿論、プレス加工性、スポツト溶接
性並びに塗装性等の諸特性が共に優れた表面処理
鋼板を提供することができ、自動車用防錆鋼板等
に適用してその性能を更に向上させることが可能
となるなど、産業上極めて有用な効果がもたらさ
れる。
[Table] △...Small adhesion of peeled plating pieces, ×...More adhesion of peeled plating pieces. Sliding characteristics investigation In order to investigate the sliding characteristics between the plating surface and the tool surface,
As shown in the figure, a method was adopted to determine the friction coefficient of the plated surface using the "improved Bauden test method," which is an improved version of the Bauden test, and the sliding characteristics were evaluated using this method. Spot weldability investigation The spot weldability test was conducted using a CF type electrode (Cu-Cr
(made of alloy), pressing force: 200Kg-f, squeeze time: 20〓, energization time: 10〓, holding time: 15〓, and welding current: 11kA, 20 times per minute at 1 point / 1 second.
Continuous dot performance was tested under the conditions of the dot pitch, and the life of continuous dots was defined as the point when the nugget diameter was 4√t (=3.6 mm, where t was 0.8 mm in plate thickness) or less. Paintability investigation After applying immersion zinc phosphate treatment (processing using Palbond [trade name] manufactured by Nippon Parkerizing Co., Ltd.), each coat was dipped in cationic electrodeposition paint (Electron 9450 [trade name] manufactured by Kansai Paint Co., Ltd.). Electrodeposition paintability was evaluated by rapidly applying electricity at a set voltage and determining the voltage at which cratering occurred. Post-painting corrosion resistance investigation As for post-painting corrosion resistance, after applying zinc phosphate treatment and electrodeposition painting, Furthermore, a painted board (70 mm x 150
mm, total film thickness 100 μm),
This was subjected to an outdoor exposure test for half a year (during which time salt water was sprayed twice a week) and evaluated by determining the degree of red rust generation from the cross-cuts and the creep width of the coating film from the cross-cuts. The corrosion resistance after painting was expressed as: ◎...No red rust, ○...Slight red rust, △...Little red rust, ×...Great red rust. Paint film adhesion investigation: After applying cationic electrodeposition, intermediate coating, and top coating, the coating was immersed in warm water (ion-exchanged water) at 50°C for 10 days, and then 100% Conducted mass tape peeling test,
The paint film adhesion was also evaluated based on the residual rate of the paint film at this time. As is clear from the results shown in Table 2 above, the surface-treated steel sheet according to the present invention has shown excellent results in all property tests, and has satisfactorily met the strict requirements for recent automotive rust-proof steel sheets. It can be seen that the comparative steel sheets that do not satisfy the conditions specified in the present invention do not have sufficient properties. In addition, here, the plating first layer is "alloyed hot-dip galvanizing" or "hot-dip galvanizing" and "5%
I explained the example of "Al-Zn alloy plating", but
Alternatively, for example, in the case of a molten zinc-aluminum alloy plating containing 4 to 60% Al, a γ-phase single-phase or [γ+α] two-phase Zn-Ni alloy plating according to the present invention is applied as an upper layer. ~20
If applied with a basis weight of g/m 2 , excellent workability and
Needless to say, a surface treatment with spot weldability and paintability can be obtained. <Summary of Effects> As explained above, according to the present invention, it is possible to provide a surface-treated steel sheet that has excellent properties such as not only corrosion resistance and rust prevention properties but also press workability, spot weldability, and paintability. This brings about extremely useful effects industrially, such as making it possible to further improve the performance of rust-proof steel plates for automobiles and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る表面処理鋼板の概略構
成図である。第2図は、ビード付ハツト成形試験
の概要説明図であり、第2図aは成形工程を、そ
して第2図b及び第2図cはそれぞれセロハンテ
ープ評価部を示している。第3図は、改良型パウ
デン試験法の概要説明図である。 図面において、1……鋼板、2……溶融メツキ
(溶融亜鉛メツキ、溶融亜鉛合金メツキ、溶融亜
鉛−アルミニウム合金メツキ)層、3……“γ
相”又は“γ+αの混相”から成るZn−Ni合金
メツキ層。
FIG. 1 is a schematic diagram of a surface-treated steel sheet according to the present invention. FIG. 2 is a schematic explanatory view of the beaded hat molding test, with FIG. 2 a showing the molding process, and FIGS. 2 b and 2 c showing the cellophane tape evaluation section, respectively. FIG. 3 is a schematic explanatory diagram of the improved Powden test method. In the drawings, 1... Steel plate, 2... Hot-dip plating (hot-dip galvanizing, hot-dip zinc alloy plating, molten zinc-aluminum alloy plating) layer, 3... "γ
Zn-Ni alloy plating layer consisting of "phase" or "mixed phase of γ+α".

Claims (1)

【特許請求の範囲】[Claims] 1 鋼板の少なくとも片面に、溶融亜鉛系メツキ
の下層と、片面当り0.5〜20g/m2の“γ相単相
のZn−Ni合金メツキ”又は“γ相とα相との混
相のZn−Ni合金メツキ”から成る上層とで構成
されるメツキ層を設けて成る、プレス加工性並び
にスポツト溶接性に優れた表面処理鋼板。
1. On at least one side of the steel plate, a lower layer of molten zinc plating and 0.5 to 20 g/m 2 of "γ phase single phase Zn-Ni alloy plating" or "mixed phase Zn-Ni plating of γ phase and α phase" A surface-treated steel sheet with excellent press workability and spot weldability, which is provided with a plating layer consisting of an upper layer consisting of "alloy plating".
JP20778488A 1988-08-22 1988-08-22 Surface-treated steel sheet having superior workability and weldability Granted JPH0257697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20778488A JPH0257697A (en) 1988-08-22 1988-08-22 Surface-treated steel sheet having superior workability and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20778488A JPH0257697A (en) 1988-08-22 1988-08-22 Surface-treated steel sheet having superior workability and weldability

Publications (2)

Publication Number Publication Date
JPH0257697A JPH0257697A (en) 1990-02-27
JPH0536516B2 true JPH0536516B2 (en) 1993-05-31

Family

ID=16545449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20778488A Granted JPH0257697A (en) 1988-08-22 1988-08-22 Surface-treated steel sheet having superior workability and weldability

Country Status (1)

Country Link
JP (1) JPH0257697A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2290133T3 (en) * 2009-08-25 2012-09-28 Thyssenkrupp Steel Europe Ag Method for producing a steel component with an anti-corrosive metal coating and steel component
JP5884151B2 (en) * 2010-11-25 2016-03-15 Jfeスチール株式会社 Steel sheet for hot press and method for producing hot press member using the same
EP2808417B1 (en) 2012-03-07 2019-04-24 JFE Steel Corporation Steel sheet for hot press-forming, method for manufacturing the same and method for producing hot press-formed parts using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207597A (en) * 1985-03-11 1986-09-13 Nippon Steel Corp Alloyed hot dip galvanized steel sheet having superior workability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207597A (en) * 1985-03-11 1986-09-13 Nippon Steel Corp Alloyed hot dip galvanized steel sheet having superior workability

Also Published As

Publication number Publication date
JPH0257697A (en) 1990-02-27

Similar Documents

Publication Publication Date Title
US5849423A (en) Zinciferous plated steel sheet and method for manufacturing same
JPH0536516B2 (en)
JPH03126888A (en) Surface-treated steel sheet excellent in workability and weldability
JPS63186860A (en) Manufacture of surface-treated steel sheet excellent in rust resistance and weldability
JPS5993897A (en) Surface treated steel sheet having high corrosion resistance
JPH01290798A (en) Composite electroplated steel sheet having superior corrosion resistance and weldability
JPH02263962A (en) Surface treated steel sheet excellent in workability and coating suitability
JPS61207597A (en) Alloyed hot dip galvanized steel sheet having superior workability
JPS627890A (en) Zinc or zinc alloy plated steel sheet having superior corrosion resistance, paintability and workability
JPH0120057B2 (en)
JP2712924B2 (en) Zinc-nickel-chromium alloy electroplated steel sheet with excellent corrosion resistance, plating adhesion, chemical conversion treatment and coating film adhesion
JPS62192597A (en) Plated steel sheet having superior powdering resistance
JP3224457B2 (en) Material for welding cans with excellent high-speed seam weldability, corrosion resistance, heat resistance and paint adhesion
JPH0324293A (en) Multi-ply plated steel sheet excellent in workability, corrosion resistance and water-resistant adhesion
JP2619440B2 (en) Surface-treated steel sheet with excellent workability and paintability
JPH0653957B2 (en) Method for manufacturing surface-treated steel sheet
JPH028036B2 (en)
JPH0285393A (en) Zinc alloy electroplated steel sheet having superior powdering and cratering resistance
JPH0520514B2 (en)
JPH0120058B2 (en)
JPS591694A (en) Rust preventive steel sheet
JPH0382746A (en) Surface treated steel sheet excellent in workability and coating suitability
JPS61270391A (en) Steel sheet for fuel vessel
JPH0241594B2 (en)
JPH11350198A (en) Composite zinc alloy plated metal sheet and its production